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Abstract

This series of lectures has been given to a class of mathematics postdocs at a
European summer school on Computational Mathematics Driven by Indus-
trial Applications in Martina Franca, Italy (organized by CIME). It deals
with a variety of challenging real life problems selected from clinical cancer
therapy, communication technology, polymer production, and pharmaceu-
tical drug design. All of these problems from rather diverse application
areas share two common features: (a) they have been modelled by various
differential equations – elliptic, parabolic, or Schrödinger–type partial differ-
ential equations, countable ordinary differential equations, or Hamiltonian
systems, (b) their numerical solution has turned out to be a real challenge
to computational mathematics.
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Introduction

This series of lectures has been given to a class of mathematics postdocs at a
European summer school in Martina Franca (organized by CIME). It deals with
a variety of challenging real life problems selected from clinical cancer therapy,
communication technology, polymer production, and pharmaceutical drug design.
All of these problems from rather diverse application areas share two common
features: (a) they have been modelled by various differential equations – elliptic,
parabolic, or Schrödinger–type partial differential equations, countable ordinary
differential equations, or Hamiltonian systems, (b) their numerical solution has
turned out to be a real challenge to computational mathematics.

Therefore, before diving into actual computation, the computational concepts to be
applied need to be carefully considered. To start with, any numerical analyst must
be prepared to totally remodel problems coming from science or engineering – see
e.g. Sections 3 and 4 below. The computational problems to be treated should
be well–posed, important features of any underlying continuous model should be
passed on, if at all possible, to the discrete model, and the computational resources
employed (computing time, storage, graphics) should be adequate.

Speaking in mathematical terms, the solutions to be approximated live in appro-
priate infinite dimensional function spaces, e.g. in Sobolev spaces in Sections 1
and 2, in discrete weighted sequence spaces in Section 3, or in certain statistically
weighted function spaces in Section 4. The mathematical paradigm advocated
throughout this paper is that – already due to mathematical aesthetics – any infi-
nite dimensional space should not be represented by just a single finite dimensional
space (with possibly large dimension), but by a well–designed sequence of finite
dimensional spaces, which successively exploit the asymptotic properties charac-
terizing the original function space. The fascinating, but (for a mathematician)
not really surprising experience is that mathematical aesthetics go directly with
computational efficiency. In other words, a careful and sufficiently ingenious real-
ization of the above paradigm will lead to efficient algorithms that actually work
in hard real life problems. The reason for this coincidence of aesthetics and ef-
ficiency lies in the fact that function spaces describe some data redundancy that
can be exploited in the numerical solution process. In order to do so, adaptivity of
algorithms is one of the leading construction principles. Typically, wherever adap-
tivity has been successfully realized, algorithms with a computational complexity
close to the (unavoidable) complexity of the problem emerge – a feature of extreme
importance especially in challenging problems of science, technology, or medicine.
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In traditional industrial environments, however, new efficient mathematical algo-
rithms are not automatically accepted – even if they significantly supercede already
existing older ones (if not old–fashioned ones) within long established commercial
software systems. Exceptions do occur where simulation or optimization is the
dominating competition factor. Due to this experience the author’s group has put
a lot of effort in the design of virtual labs. These specialized integrated software
systems permit a fast and convenient switch between numerical code and interac-
tive visualization tools (that we also develop, but do not touch here). Sometimes
only such virtual labs open the door for new mathematical ideas in hospitals or
industrial labs.

1 Partial Differential Equations in Cancer

Therapy Planning

The present section deals with partial differential equation (PDE) models arising
in medicine (example: cancer therapy hyperthermia) and high frequency electri-
cal engineering (example: radio wave absorption). In this type of application the
3D geometry – say, of human patients – motivates the choice of tetrahedral finite
element methods (FEM). The clinical setting requires the robust computational
solution of problems to prescribed accuracy at highest possible speed on local
workstations. Reliability plays the dominant role in medicine, which is a nice par-
allelism with the intentions of mathematics. Numerical speed is required to permit
a fast simulation of different scenarios for different patients. In other words: the
situation both requires and deserves the construction of highly efficient algorithms,
numerical software, and visualization tools.

1.1 Multilevel Finite Element Methods Revisited

The presentation of this section focusses on elliptic or parabolic PDEs and Maxwell’s
equations. Mathematically speaking, the stationary solutions of these PDEs live
in some Sobolev space like Hα or Hcurl depending on the prescribed boundary con-
ditions, whereas the time dependent solutions live in some scale of these spaces.
In view of the above mentioned paradigm and the expected computational com-
plexity, these spaces are approximated by a sequence of finite element spaces in
the frame of multigrid (MG) or multilevel (ML) methods. Before going into the
technical details of the real life problems to be presented below, a roadmap of
several advanced computational concepts will be given first that have turned out
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to be important not only for the herein selected applications.

Optimal multigrid complexity. Classical MG methods have been first ad-
vocated for actual computation in the 70’s by A. Brandt [26] and Hackbusch

[52]. The latter author has paved the success path for MG methods by first proving
an optimal computational complexity estimate O(N) for the so–called W–cycle,
where N was understood to be the number of nodes in a uniform space grid. The
same attractive feature was observed in suitable implementations of the simpler
V–cycle and later proved by Braess and Hackbusch[23] under certain regu-
larity assumptions and for uniform grids. The subsequent development was then
characterized by a successive extension of MG methods from the originally only
elliptic problems to larger and larger problem classes.

Adaptive multilevel methods. In quite a number of industrially relevant prob-
lems rather localized phenomena occur. In this case, uniform grids are by no
means optimal, which, in turn, also means that the classical MG methods on uni-
form grids could not be regarded as optimal. For this reason, multigrid methods
on adaptive grids have been developed quite early, probably first by R. Bank [8]
in his code PLTMG in the context of problems arising from semiconductor device
modelling where sharp local boundary layers arise naturally. Later adaptive MG
implementations are the code family KASKADE [14] by the author’s group and
the code family UG [11] by Wittum, Bastian, and co-workers. UG in partic-
ular pays careful attention to parallelization issues [12]. The proof of an optimal
computational complexity estimate O(Nad), where Nad is now understood to be
the often much smaller adaptive number of nodes, turned out to need more so-
phisticated proof techniques; for the well–known V–cycle, this challenging task has
been performed by Bramble, Pasciak, Wang, and Xu [25] – see also Xu [90].
His rather elegant theoretical tools came from the interpretation of MG methods
as abstract multiplicative Schwarz methods (equivalent to abstract Gauss–Seidel
methods) based on an underlying multilevel splitting in function space.

Hierarchical bases finite element methods. Independent of the classical
MG methods, a novel multilevel method based on conjugate gradient iteration with
some hierarchical basis (HB) preconditioning had been suggested in the mid 80’s for
elliptic PDEs by Yserentant [91]. From the scratch, this new type of algorithm
turned out to be competitive with classical MG in terms of computational speed.
An adaptive 2D version of the new method had been designed and implemented
in the late 80’s by Deuflhard, Leinen, and Yserentant [39] in the code
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KASKADE. On top of that first realization, a more mature version including also
3D has been worked out by Bornemann, Erdmann, and Kornhuber [16].
The present version of KASKADE [14] contains the original HB–preconditioner for
2D and the more recent BPX–preconditioner due to Xu [89, 24] for 3D. For an
account of its performance see Section 1.2.

Additive versus multiplicative multigrid methods. After the theoretical
milestone paper by Xu [90], the hierarchical basis type methods are now inter-
preted as abstract additive Schwarz methods (equivalent to abstract Jacobi meth-
ods) also based on a multilevel decomposition in function space. By construction
additive Schwarz methods provide some preconditioning. In this interpretation,
which the author prefers to adopt, the classical multigrid methods are then called
multiplicative MG methods, whereas the HB– or BPX–preconditioned CG methods
are called additive MG methods. In particular, the BPX–preconditioning and the
V–cycle are just the additive and multiplicative counterparts. From theoretical
analysis, multiplicative MG methods might require less iterations – which, how-
ever, need not imply less computing time (see e.g. the Maxwell MG solvers in
Section 1.2 below, Table 1.1). Moreover, if an additive MG involves only one iter-
ation on the finest grid, then multiplicative MG methods cannot gain too much. In
the subsequently described elliptic problems, the bulk of computing time is anyway
spent in the evaluation of the stiffness matrix elements and the right hand side
elements. Summarizing, the question of whether additive or multiplicative MG
methods should be preferred, appears to be less important than other conceptual
issues – see below. For the orientation of the reader: UG is strictly multiplica-
tive, PLTMG is dominantly multiplicative with some additive options, KASKADE
is dominantly additive with some multiplicative code e.g. for eigenvalue problems
and the harmonic Maxwell’s equations. A common software platform of UG and
KASKADE is in preparation.

Cascadic multigrid methods. These rather recent MG methods can be un-
derstood as some confluence of additive and multiplicative MG methods. From
the additive point of view, cascadic multigrid (CMG) methods are characterized
by the simplest possible preconditioner: either no or just a diagonal preconditioner
is applied; as a distinguishing feature, coarser levels are visited more often than
finer levels – to serve as preconditioning substitutes. From the multiplicative side,
CMG methods may be understood as MG methods with an increased number of
smoothing iterations on coarser levels, but without any coarse grid corrections. As
a first algorithm of this type, a cascadic conjugate gradient method (CCG) had been
proposed by the author in [30]. The general CMG class with arbitrary smoothers
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beyond CG has been presented by Bornemann and Deuflhard [20]. In their
paper they analyzed CMG in terms of convergence and computational complexity
in an adaptive setting – based on first much more restrictive convergence results
due to Shaidurov [82]. These CMG methods exhibit good convergence properties
only in H1, but not in L2 – unlike additive (with appropriate preconditioning) or
multiplicative MG methods. Therefore, though being certainly easiest to imple-
ment among all MG methods, CMG methods – the youngest members of the MG
family – are still in the process of maturing. Just to avoid mixing terms: CMG
is different from the code KASKADE, which predominantly realizes additive MG
methods.

Local error estimators. Any efficient implementation of adaptive MG methods
(additive, multiplicative, cascadic) must be based on cheap local error estimators
or, at least, local error indicators. In the best case, these are derived from the-
oretical a–posteriori error estimates. These estimates will be local only, if local
(right hand side) perturbations in the given problem remain local – i.e. if the
Greens’ function of the PDE problem exhibits local behavior. As a consequence
of this elementary insight, adaptive MG methods will be essentially applicable to
linear or nonlinear elliptic or parabolic problems. As for a comparative assess-
ment of the different available local error estimators, there is a beautiful paper by
Bornemann, Erdmann, and Kornhuber [17] that gives a unified theoretical
framework for most of the popular 2D and 3D error estimators. For orientation:
PLTMG uses the triangle oriented estimator of Bank and Weiser [10], KASKADE
the edge oriented estimator of Deuflhard, Leinen, Yserentant, and UG the
estimator of Babuska and Miller [4].

Adaptive grid refinement. Within adaptive ML methods simplicial grids play
a dominant role, since they behave nicely in local refinement processes. In con-
nection with any selected error estimator, the local extrapolation method due to
Babuska and Rheinboldt [5] can be applied to determine some threshold value,
above which a geometrical element (tetrahedron, triangle, edge) is marked for local
refinement. Once this marking has been done, well–designed strategies need to be
applied to produce a complete FE grid on the next refinement level. The art of
refinement is quite established in 2D (see the “red” and “green” refinements due
to Bank et al. [9] or the “blue” refinement due to Kornhuber and Roitzsch

[62]). In 3D there is still work left to be done, even though successful strategies
due to Rivara[73], Ong[71], or Bey[15] have been around for quite a time.
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Multilevel methods for nonlinear elliptic problems. For nonlinear elliptic
problems there are two basic lines of MG methods: (I) the nonlinear MG method,
sometimes also called full approximation scheme (FAS), wherein nonlinear resid-
uals are evaluated within MG cycles, and (II) the Newton MG method, wherein
linear residuals are evaluated within the MG method for the solution of the lin-
ear systems for the Newton corrections. In [42, 44] Deuflhard and Weiser

proposed an adaptive version for the second MG approach based on an affine
conjugate characterization of nonlinearity via the special Lipschitz condition

‖F ′(x)−1/2
(
F ′(y) − F ′(x)

)
(y − x)‖ ≤ ω‖F ′(x)1/2(y − x)‖. (1.1)

This type of condition enters into certain affine invariant convergence results for
both local and global inexact Newton methods in the function spaces W p,q. The
associated code Newton–KASKADE realizes a theoretically backed optimal balance
between outer Newton iterations with possible adaptive damping, multilevel dis-
cretization, and inner preconditioned CG iterations; its performance is exemplified
in Section 1.2 below.

Method of lines for parabolic PDEs. For time dependent PDEs, the most
popular approach is still the so–called method of lines (MOL), which realizes a
first space / then time discretization. After space discretization a typically large
block–structured system of ordinary differential equations (ODEs) arises, which is
then solved by any stiff ODE integrator: in the simplest (but often inefficient) case
by an implicit or backward Euler with constant timestep, in advanced versions by
some implicit multistep code (like DASSL), some implicit Runge–Kutta code (like
RADAU 5), or some linearly implicit extrapolation code (like LIMEX) with adaptive
control of timestep and possibly time discretization order. However, if one aims at
dynamically adapted non–uniform space grids in 2D or 3D with MG methods to
be applied, which is the typical case in parabolic PDEs, then the MOL approach
will lead into some mass.

Adaptive Rothe method for linear parabolic PDEs. Starting 91, Borne-

mann [18, 19] suggested to abandon the MOL for parabolic PDEs and to use
the so–called Rothe method instead, which realizes a first time / then space dis-
cretization. His first papers dealt with initial boundary value problems for linear
scalar parabolic PDEs such as

ut = −Δu + f(x), u(x, 0) = ϕ(x), u(x, t) |∂Ω= ψ(t), t ≥ 0, x ∈ Ω ⊂ Rd . (1.2)
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Upon incorporating the boundary conditions into a linear elliptic operator A some
function U is defined by virtue of the abstract Cauchy problem

U ′(t) = AU + F, U(0) = U0 . (1.3)

Note that U represents a spatial function living in some scale of Hilbert spaces
Hα(Ω). The above abstract ordinary differential equation (ODE) may now be
formally discretized for time step τ by some stiff integration scheme. For simplicity,
we choose the implicit Euler method, which generates an equation of the type

(I − τA)ΔU = τF . (1.4)

This equation represents some (τ–dependent) elliptic boundary value problem,
which can be solved by any adaptive multilevel method. Moreover, the available
advanced ODE technology may also enter, but now in function space – which means
that any error control devices known from finite dimensional ODEs are realized
via spatial approximations using an adaptive MLFEM. Summarizing, a substantial
advantage of this reversed order of discretization turns out to be that dynamic
space grid adaptation and adaptive MG methods within each time layer are, in
principle, easy to apply. Moreover, this approach nicely reflects the underlying
theoretical structure.

Adaptive Rothe method for nonlinear parabolic PDEs. The above algo-
rithmic approach can be extended to the nonlinear parabolic case. A rather direct
extension is obtained on the basis of some abstract stiffness theory presented by
the author in [31]. In this paper stiff time discretization of a nonlinear ODE initial
value problem, say

U ′ = F (U), U(0) = U0 (1.5)

has been interpreted as a simplified Newton iteration for the evolution problem in
function space. This Newton iteration, in turn, may be formally understood as a
Picard iteration for the slightly rewritten ODE

U ′ −AU = F (U) −AU, U(0) = U0 (1.6)

wherein A ≈ F ′(U0) – i.e. in finite dimension A is just an approximate Jaco-
bian (n, n)–matrix of the right hand side. From this theoretical insight linearly
implicit stiff integration methods appear naturally – as opposed to nonlinear stiff
discretization schemes like BDF or implicit RK methods. The concept directly
carries over to infinite dimension when equations (1.5) and (1.6) are any abstract
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Cauchy problem. Upon applying, for simplicity, the linearly implicit Euler dis-
cretization to (1.5), we arrive at some linear boundary value problem of the kind

(I − τA)ΔU = τ
(
F (U) −AU

)
. (1.7)

Following this line, Lang [63, 64] developed the adaptive multilevel code KAR-
DOS that realizes a linearly implicit (embedded) Runge–Kutta method of low order
on each discretization level. In its present form, this most recent code from the
KASKADE family is applicable to 3D nonlinear systems of reaction–diffusion equa-
tions with mild convection. Generally speaking, since the adaptive Rothe method
is fully adaptive in both time and space, it is able to resolve extreme multiscales
in time and space that often arise in hard real life problems – like e.g. in chemical
combustion. An early comparison of the new approach with the more traditional
MOL approach (both adaptive 1D implementations) can be found in the survey
paper [38]. The Rothe method will play a role in Section 1.2, Section 2, and
Section 3.

1.2 Clinical Therapy Planning by Virtual Patients

The so–called regional hyperthermia is a rather recent promising cancer therapy
based on the local heating of tumor tissue to above a threshold value of about
42 ◦C. At present this therapy is applied in combination with chemotherapy or
radiotherapy. The idea is that heated tumor cells are more sensitive to extinction
by either rays or drugs. For the medical treatment, the cancer patient is put into an
applicator, which essentially consists of a set of 83 (old) or 24 (new) radiofrequency
antennas and a water bolus to allow for a low reflection passage of the radio waves
into the body – see Fig. 1.1.

The antennas emit radiation at a frequency of about 100 MHz corresponding to a
wave length in water of about 30 cm, which – physically speaking – means that wave
optics and interference phenomena rather than ray optics must be modelled. Heat
within the body is produced by absorption of the radio waves and distributed by
blood circulation in the tumor as well as in sane tissue. Mathematically speaking,
the whole system (patient, water bolus, applicator, surrounding air) is modelled
by the time harmonic Maxwell’s equations in inhomogeneous media and a so–
called bio–heat transfer (BHT) partial differential equation describing the heat
distribution in the body. The task is to tune the set of radiofrequency antennas
optimally such that the heat will concentrate within the tumor of a patient, but
not at any hot spots elsewhere.
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Figure 1.1: Real patient in hospital (Sigma–60 applicator).

In the project to be reported here, we have been collaborating with internationally
renowned oncologists at one of the large Berlin hospitals, the Rudolf–Virchow–
Klinikum at the Charité of the Humboldt University. Our task is to support the
patient–specific planning of individual therapies. In order to make the method at
all useful in a clinical environment, the computational results must be obtained
within hours (at most) on a workstation in hospital to medical reliability. In ad-
dition, any numerical results are to be presented in visual form so that they can
be directly interpreted and conveniently handled by medical staff. These require-
ments made the development of an integrated software package necessary that
combines efficient 3D interaction tools with both numerical and computer graph-
ical algorithms. As a prerequisite for the PDE solvers, a rather detailed virtual
patient needs to be built up from medical imaging input (at present computed
tomograms). The system as it stands now is already able to decide about the
question whether a given patient can be expected to be successfully treated by
hyperthermia using a given applicator. The presentation herein essentially follows
the articles [41, 40]

Electric field simulation. We model the antennas by a fixed (angular) fre-
quency ω and the human tissues so that Ohm’s law holds. Let the electric field
have a representation of the form ReE(x)eiωt with a complex amplitude E(x) de-
fined on a computational domain Ω ⊂ R3. Then the time harmonic Maxwell’s
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equations in terms of the electric field E and the magnetic field H read

curl H = i ωε E , curl E = −i ωμH , (1.8)

where μ is the permeability and ε = ε′ − iσ/ω is defined via the generic dielectric
constant ε′ and the conductivity σ. The two equations in (1.8) are combined with
the well–known double–curl equation

curl (
1

μ
curl E) − ω2ε E = 0, (1.9)

which will be the basis for the subsequent FE model. An appropriate function
space for the differential operator in (1.9) and Dirichlet boundary conditions on
the boundary ΓD is

Hcurl := {w ∈ (L2(Ω))3 ; curlw ∈ (L2(Ω))3, wt = E0
t on ΓD}.

The function space Hcurl ;0 is used for homogeneous boundary conditions wt = 0.
We are now ready to give a variational formulation for the desired field E in the
form: Determine E ∈ Hcurl such that for all w ∈ Hcurl ;0∫

Ω

{ 1

μ
curlE curlw − ω2εEw} dΩ −

∫
Γext

β(n × E) (n × w) dΓ = 0. (1.10)

Herein the second integral describes a contribution on the exterior boundary Γext.
The above bilinear form is coercive for non–vanishing σ, which implies that the
problem has a unique solution. Note that the negative part of the integrand plays
an important role especially for high frequency ω. In the positive semi–definite part,
the ample nullspace of the curl–operator is rather undesirable, since all standard
iterative methods (including MG) are known to preserve nullspace components.
This causes a slowing down of convergence, once these nullspace components are
present.

For the FE discretization of (1.10) we employ Nédélec’s curl –conforming finite
elements of lowest order [70] on a tetrahedral triangulation Th of the domain – also
called Whitney 1–forms or edge elements. These elements are easy to refine, which
is a necessary prerequisite for any adaptive FEM. They are divergence–free and
inherit continuity of the tangential electrical field components from the physical
equations so that unwanted spurious discrete solutions [21] are suppressed. More-
over, as pointed out recently by Hiptmair [55], they permit a discrete Helmholtz
decomposition, which turned out to be crucial for the construction of an adap-
tive multigrid method with so–called hybrid smoothing [13]. As exemplified in
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Ref. Nodes #Iter CPU [min]
Depth Std M–Hyb A–Hyb Std M–Hyb A–Hyb

0 128 365 4250 354 413 150 24 20
1 373 084 4832 265 277 800 76 60
2 1 085 269 > 10000 186 194 > 2000 215 160

Table 1.1: Multilevel solvers: standard smoothing (Std), multiplicative hybrid smoothing (M-
Hyb), and additive hybrid smoothing (A–Hyb).

Table 1.1 for Gauss–Seidel smoothing, both the multiplicative and the additive
hybrid MG versions exhibit optimal multigrid complexity: the number of itera-
tions does not increase with increasing refinement levels; this had not been the
case for the former standard (Std) versions. Note that in this case the additive
compared to the multiplicative version turns out to require slightly more iterations
but slightly less computing time.

Heat Transfer Model. Our present model for the dissipation of heat in the
human body (cf. Pennes [72]) assumes potential flow for the blood within the
various tissues including the tumor. This leads to the so–called bio–heat transfer
equation (BHT)

ρtct
∂T

∂t
= div(k grad T ) − Wρb ρt cb (T − Ta) + Q Q =

σ

2
|E|2 . (1.11)

Herein ρt, ρb denotes the density of tissue and blood, ct, cb the specific heat of
tissue and blood, T, Ta the temperature of tissue and arterial blood, k the thermal
conductivity of tissue, W the blood perfusion, Q the power deposition within the
tissue, and σ the electric conductivity. The thermal effects of strong blood vessels
are excluded in this simplified model – but will be included in a future stage of the
project. For W = W (x), this parabolic PDE is linear. We solve it by the adaptive
multilevel method KASTIO as implemented within the tool box KASKADE. A more
realistic model takes into account that blood flow depends on tissue temperature:
experiments in [85] have shown that the blood flow in normal tissues, e.g., skin
and muscle, increases significantly when heated up to 41−43◦C, whereas in the
tumor zone the blood flow decreases with temperature. On this experimental
basis, we chose W = W (T ) monotonically increasing in muscle and fat tissue,
but monotonically decreasing in tumor tissue. The arising nonlinear PDE has
been solved by the code KARDOS [65] for the time dependent case and by the
code Newton–KASKADE [43] in the stationary case – both within the package
KASKADE.
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Initial Grid Generation. The multilevel FEMs just described require an initial
coarse grid, which captures the essential geometric features of the stated problem
including a subdomain characterization for the different materials (bone, fat, mus-
cle, ...). The total number of elements should be as large as necessary to state the
problem correctly, but as small as possible in order to reduce computational costs.
Starting point is a stack of plane CT images (about 60 per patient) containing only
density information, which first need to be segmented according to physiological
and oncological knowledge; this is done by the medical staff. The task then is
to construct 3D grids from this type of input. It has turned out in the course of
the project, that we had to develop our own fast and robust techniques for grid
generation. These techniques include: (a) extraction of compartment interfaces
from segmentation results by a proper generalization of the marching cubes algo-
rithm [66] to non–binary classifications [54]: a significant speed–up is obtained via
lookup–tables; (b)coarsening of compartment surfaces to allow for initial grids with
as few elements as possible [83]; (c) tetrahedral mesh generation: each compart-
ment is filled with tetrahedra starting from its surface by using a 3D–advancing
front method [84].

At present, the whole grid generation process can be performed automatically
within about 15 minutes CPU time on a UNIX workstation. A typical coarse grid
patient model consists of 40,000 – 60,000 tetrahedra and 8,000 – 10,000 vertices.

Optimization Algorithm. In therapy planning, the antenna parameters for
each channel j = 1, ..., k (equivalent to k pairs of coupled antennas) must be com-
puted. We parametrize the complex amplitudes zj by their real amplitudes aj and
their phases θj according to zj = aj exp(−iθj). Then parameters p = {� zj,	 zj}
must be determined such that the following therapeutic goals are achieved:

• within the tumor a therapeutic temperature level Tt ≈ 43◦C is maintained,

• regions of healthy tissue are not heated above Th ≈ 42◦C.

For most patients both requirements cannot be fulfilled simultaneously. In search-
ing for a compromise we avoid destruction of healthy tissue by the additional
constraint that temperature in healthy tissue must not exceed certain limits which
depend on the tissue type: 42◦C for more sensitive tissue compartments (like blad-
der or intestine) and 44◦C otherwise.
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From these goals we arrive at the following objective function

f(p) =

∫
x ∈ Vtumor

T (x, p) < Tt

(Tt − T (x, p))2 dx +

∫
x 
∈ Vtumor

T (x, p) > Th

(T (x, p) − Th)
2 dx (1.12)

to be minimized subject to the constraints

T (x, p) ≤ Tlim(x) , x 
∈ Vtumor.

In the linear heat transfer model, simple superposition of the electric field E into
k modes can be employed, which in Q ∼ | E |2 leads to k2 basic modes to be
computed in advance, plus one further mode for the basal temperature Tbas. For
the nonlinear bioheat transfer model, we constructed some fixed point iteration
[40] that converges at an average contraction rate of θ ≈ 0.3. This algorithm
exploits the fact that the Maxwell solves are considerably more expensive than the
BHT solves.

Figure 1.2: Optimized temperature distributions: linear (left) versus nonlinear model (right).
Black lines: body outline and tumor contour. Light grey to dark grey: regions from 39◦C to
43◦C.

The total computational cost for the nonlinear case (with n iterations) can be
counted to be
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costtotal = k ∗ costMaxwell +

n ∗ (costnlBHT + (k2 + 1) ∗ costlBHT + costOpt) (1.13)

where the notation is certainly self–explaining. We observed n ≈ 6. The total cost
for the linear case is obtained by inserting costnlBHT = 0 and n = 1 above.

Upon comparing linear versus nonlinear perfusion models, significant differences
show up. As can be seen in Fig. 1.2, the nonlinear model predicts a tumor heating,
which from the therapeutic point of view is slightly preferable. The nonlinear
model also influences the choice of optimal parameters for the k channels.

Old versus new applicator. Our earlier computations have led to considerable
improvements over the old applicator (Sigma–60, k = 4 channels, circular cross
section with larger water bolus) in the form of some new applicator (Sigma–Eye,
k = 12 channels, eye shaped cross section with smaller water bolus), see Fig. 1.3.

Figure 1.3: Virtual patient in Sigma–60 (left) and Sigma–Eye (right) applicator.

The therapeutic improvement can be seen in Table 1.2, which condenses the infor-
mation obtained from simulation results for three virtual patients with different
tumor locations. In order to illustrate the relative computational weights for the
different algorithmic parts, we document some comparative results for both the
old and the new applicator in Table 1.3 for the linear heat transfer model. The
field computation times per channel of the old Sigma–60 appeared to be ∼ 20
minutes as compared to ∼ 10 minutes for the new Sigma–Eye, an effect due to the
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smaller bolus volume. As expected, the temperature computation times roughly
scale with k2.

part of tumor volume
Virtual patient heated to above 43◦C

Sigma–60 Sigma–Eye

distal (supraanal) rectal carcinoma 17.5% 62.5

highly presacral rectal carcinoma 0.7% 18.4

cervical carcinoma at pelvic wall 24.8% 49.1

Table 1.2: Therapeutic improvement of new (Sigma–Eye) over old (Sigma–60) hyperthermia
applicator.

Virtual Lab. The whole integrated software environment HyperPlan now con-
sists of about 300.000 lines of code, wherein only about 120.000 lines are numerical
code, the other parts are segmentation algorithms, grid generation methods, and
visualization tools. This virtual lab has been recently sold to industry and will
be worldwide distributed together with the applicator hardware – increasing the
applicator’s efficiency significantly.

Sigma–60 Sigma–Eye

k = 4 k = 12

Segmentation 2 – 4 hours∗

Grid Generation 15 min∗∗

Field Calculations 80 min∗∗ 120 min∗∗

Temperature Calculations 2 min∗∗ 20 min∗∗

Optimization 6 sec∗∗ 1 min∗∗

∗ interactive
∗∗ CPU time (SUN UltraSparc)

Table 1.3: Computation times per patient.
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2 Partial Differential Equations in Optical Chip

Design

Every netsurfer now and then tends to have the impression that the abbreviation
www means world wide waiting rather than world wide web – despite the tremen-
dous information propagation speed of modern glass fibres. A drastically better
performance rate – by many orders of magnitude! – can be expected by future so–
called optical networks. In such networks all active components (like microlasers)
or passive components (like couplers or tapers) are assembled on integrated optical
chips. The technological aim is that signal processing on such a chip should reach
a speed comparable to that of signal propagation along the fibre. In the project
to be reported here the author’s group at ZIB has been collaborating with the
Heinrich–Hertz–Institute (HHI) in Berlin and with an industry research lab. As
an example, Fig. 2.1 shows a patented optical chip that has been designed by HHI
with parameters carefully specified on the basis of ZIB simulations. Its schematic
representation is given in Fig. 2.2.

Figure 2.1: Integrated optical chip (central black stripe) mounted on ceramics substrate.

The design of integrated optical components is presently based on two different
simplified mathematical models. Their efficient simulation requires the construc-
tion of two types of computational methods, the beam propagation methods (initial
boundary value problems) and the guided mode methods (Helmholtz eigenproblems
in selected cross section planes). For both of them we have made suggestions to be
described now. Typical features coming from the technological problem are its geo-
metric complexity, its multiscale structure, and the requirement of quite stringent
error tolerances to control the behavior of the signals over long distances.
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Figure 2.2: Schematic representation of the chip in Fig. 2.1.

2.1 Beam Propagation Analysis

When modelling the signal propagation along a glass fibre, the fibre axis naturally
arises as a time–like coordinate z. In order to derive the so–called Fresnel

approximation, the electric field E is written in terms of a slowly varying amplitude
u as

E = ue−in0k0z , (2.1)

with k0 the vacuum wave number and n0 some effective refraction index to be
specified below. Assume that we start from Maxwell’s equations in the form (1.9).
Let u depend on the propagation variable z and, for simplicity, only on one cross
section variable x. For ease of writing we redefine x := k0x, z := k0z, g := n2 −
n2

0, c := 2in0. The specification of n0 comes in by some projection argument to
take energy conservation in the Fresnel approximation at least to some extent
into account. This leads to

n2
0 =

(n2u, u) − (∇u,∇u)

(u, u)
. (2.2)

We thus end up with the normalized paraxial wave equation for the transversal
electrical mode (TE) in the form

Δu + g · u = cuz , (2.3)

which obviously is some complex Schrödinger–type equation. For pure beam
propagation, we may even neglect the term uzz so that Δu here means just uxx.
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This initial boundary value problem has been solved numerically in several techno-
logical projects by F. Schmidt [76] using an adaptive Rothe method. As already
described in Section 1.1 above, this technique offers simultaneous adaptivity in
both time and space together with multilevel speed. However, the desirable adap-
tivity cannot be fully exploited, unless suitable boundary conditions have been
constructed, which are to be discussed next.

Discrete transparent boundary conditions. The idea behind the construc-
tion of transparent boundary conditions (TB) for wave type equations is to re-
strict the computations to some region of interest choosing boundary conditions
such that waves touching the boundaries just pass these boundaries without any
reflections. For some time the canonical approach has been to start from a set of
TB derived from the continuous model, i.e. from the wave equation itself; these
(non–local) boundary conditions were then discretized. However, proceeding like
that will often induce discretized reflected waves and even instability [68]. For this
reason, we derived a different approach in [78] that we called discrete transparent
boundary conditions (DTB) – directly based on the Rothe method. Just like in
the continuous case, these DTB are also of nonlocal Cauchy type. In addition each
linear implicit discretization scheme induces its own DTB.

In order to exemplify the approach, we return to the above PDE (2.3). In the
Rothe method the discretization for the time–like variable z, i.e. the direction of
propagation, goes first. We deliberately apply the implicit midpoint rule, which
has the selective feature that it conserves energy also in the discrete case. Conse-
quently, any energy jumps observed in the course of the simulations must originate
from the Fresnel approximation – a convenient and cheap monitor for the valid-
ity of the employed model. After z–discretization of (2.3) neighboring time layers
(i, i + 1) will be related according to (note: j =

√
−1)

∂2ui+1

∂x2
− λ2

i+1ui+1 = −∂2ui

∂x2
+ κ2

i+1ui (2.4)

λ2
i+1(x) :=

4jn0(zi + 1
2
Δzi+1)

Δzi+1

− g(x, zi + 1
2
Δzi+1)

κ2
i+1(x) := −4jn0(zi + 1

2
Δzi+1)

Δzi+1

− g(x, zi + 1
2
Δzi+1)

σ2
i+1(x) := 2g(x, zi + 1

2
Δzi+1).

This relation defines a nested sequence of 1D boundary value problems for suc-
cessive solutions ui(x) within some finite region of interest; let x = a denote one
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of the boundaries. Note that we need not restrict the time steps Δzi to be con-
stant. Following the lines of [78], the above non–local pattern can be taken into
account in terms of certain Laplace transforms Ui(p), which can be defined via
the recurrence relations

Ui+1(p) =
ui+1(a) − ui(a)

p + λi+1

+ Ui(p) − σ2
i+1

Ui(p) − Ui(λi+1)

p2 − λ2
i+1

. (2.5)

Once this can be solved, the boundary values of the solution ui+1 at x = a are
defined by

∂(ui+1 − ui)

∂x

∣∣∣∣
x=a

+ λi+1(ui+1(a) − ui(a)) = σ2
i+1Ui(λi+1). (2.6)

Note that the new boundary conditions at time layer i+1 require the old boundary
conditions from time layer i and the term Ui(λi+1) so that the recurrence (2.5)
should be evaluated at p = λi+2. Hence, whenever λi+1 = λi+2 – typically when
locally constant stepsizes Δzi+1 = Δzi+2 and homogeneous materials occur – then
both the denominator and the numerator in the third right hand term of (2.3)
vanish: so some limit needs to be taken. Numerical trouble will already arise for
nearly zeroes. For this reason, the above recurrence relation turned out to be
hard to stabilize numerically. Once this has been achieved (see [78]), the obtained
algorithm was easy to realize. Summarizing, this type of DTB goes perfectly
together with full adaptivity in space and time.

Remark. An even more elegant derivation of DTB by Schmidt and Yevick [79]
applies some shift operator calculus. An inspired extension of DTB to the 2D
Helmholtz equation can be found in the recent paper by Schmidt[77], who derives
and exploits some type of discrete Mikusiński operator calculus.

Numerical illustration. In order to illustrate both the adaptive Rothe method
for the paraxial wave equation and the role of the discrete transparent boundary
conditions, we give a numerical comparison from [78]. In Fig. 2.3 (left) a Gaussian
peak with slight axial deviation is shown to hit homogeneous Dirichlet conditions
(metallic boundary); the corresponding nodal flux obtained from the adaptive
scheme is presented in Fig. 2.3 (right). Obviously, due to multiple reflections
and the associated interference pattern the spatial grids fill up after few time
steps making adaptivity dispensable. In contrast to this undesirable behavior,
the numerical results obtained with our discrete transparent boundary conditions
for the implicit midpoint discretization are pleasing: see Fig. 2.4 (left) and the
corresponding nodal flux pattern in Fig. 2.4 (right). Recall that the computational
amount is roughly proportional to the number of occurring nodes.
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Figure 2.3: Gaussian peak propagation with metallic boundary conditions. Left: solution with
interference pattern. Right: corresponding nodal flux.
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Figure 2.4: Gaussian peak propagation with discrete transparent boundary conditions for
the implicit midpoint rule as z–discretization. Left: solution without any reflections. Right:
corresponding nodal flux.

2.2 Guided Mode Analysis

As an alternative tool in chip design, engineers study so–called guided modes. For
this purpose they select certain cross sections orthogonal to the propagation direc-
tion (see e.g. the arrows in Fig. 2.2). In the thus defined planes Maxwell’s equations
are simplified to (scalar or vectorial) 2D Helmholtz eigenvalue problems. Recall
the already mentioned typical features coming from the technological problem like
geometric complexity and multiscale structure. In addition, close eigenvalue clus-
ters naturally occur that must be resolved to high accuracy. Therefore subspace
iteration methods play a dominant role to assure a proper condition of the numer-
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ical problem (compare [50]) and, at the same time, reasonable convergence rates.
In what follows we present adaptive FEMs for the complex Helmholtz eigenprob-
lem, which have been recently developed by the author’s group and successfully
applied to the challenging problem class from integrated optics.

In order to derive the associated mathematical model, we look for solutions that
are translation invariant along the propagation direction. They may be found
through the ansatz

E(x, y, z) = u(x, y)e−iμz. (2.7)

Upon inserting this form into the paraxial wave equation (2.3) and introducing the
notation λ = −μ2, we arrive at the Helmholtz eigenvalue problem

−Δu(x, y) − g(x, y) · u(x, y) = λ u(x, y), (x, y) ∈ Ω ⊂ R2 . (2.8)

Eigenfunctions to Re(λ) ≥ 0 are called evanescent modes: they die out along the
fibre due to exponential damping. Eigenfunctions to Re(λ) < 0 are called guided
modes: they live along the whole fibre as long as spatial dependencies are ignored.
As already stated above, the latter are the objects of interest for the design of
integrated optical chips. In weak formulation the above eigenvalue problem reads

a(u, v) = λ (u, v), ∀v ∈ H, (2.9)

with the sesquilinear form a(u, v) = (∇u,∇v) − (gu, v) and some Sobolev space
H chosen according to either Dirichlet or Neumann boundary conditions. For g
real (no material losses assumed) the inner product (·, ·) is just the L2–product,
a(·, ·) is a symmetric bilinear form, and the eigenproblem is selfadjoint. If material
losses are included into the model – as they should! – then the eigenproblem is
generally non–selfadjoint.

Selfadjoint Helmholtz eigenproblems. In this case all eigenvalues λ are real
and the eigenfunctions form an orthonormal basis. Technological interest focusses
on clusters of the q lowest negative eigenvalues, which give rise to the q largest
z–frequencies μ in the ansatz (2.7) and thus – via the dispersion relation – to the
q lowest (x, y)–frequencies, i.e. to the q smoothest spatial modes. Multigrid meth-
ods for the solution of selfadjoint eigenproblems have been around for quite a time
– see e.g. the cokernel projection method due to Hackbusch[52] or the Rayleigh
quotient minimization method (RQM) due to Mandel/McCormick[67]. Asymp-
totically both approaches are equivalent. For the present challenging technological
problem class, however, we nevertheless had to develop our own code, which is
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based on the latter MG approach. Let in finite dimension the invariant subspace
associated with the eigenvalue cluster be represented by some orthogonal matrix
U . Then RQM means

R(U) = min
V

R(V ) with R(V ) = trace
(
(V ∗BV )−1(V ∗AV )

)
. (2.10)

In addition to adaptivity, we carefully studied and selected the smoother: we found
out that (nonlinear) conjugate gradient methods are less sensitive to clustering of
eigenvalues than e.g. Gauss–Seidel or Jacobi methods; moreover, cg–methods
are better suited to start the subspace iteration – for details we refer to [34].
For coarse grid correction the canonical interpolation would do. By construction,
global monotonicity of the MG method with respect to the Rayleigh quotient has
been achieved – which, in turn, led to a high robustness of the algorithm even
for rather poor initial coarse grids. A simple illustrating 1D example showing this
increased robustness of the RQM MG method [67] over the projected MG method
[52] can be found in [34].

Non–selfadjoint Helmholtz eigenproblem. In this case the eigenvalues λ are
complex lying in a left bounded half stripe region of the complex plane such that
Reλ1 ≤ Reλ2 ≤ . . . → ∞. The eigenvalues with lowest negative real part are those
of technological interest. After proper discretization a non–Hermitian eigenvalue
problem would arise. Looking over the fence into numerical linear algebra (cf. [50]),
we expect to solve such eigenvalue problems via orthogonal transformations to a
Schur normal form. As it turns out, we can actually follow this line of thought also
in our present operator case, since the complex Helmholtz equation differs from
its real counterpart only via the complexity of g. In other words, the complex
Helmholtz operator is nearly selfadjoint – up to only a compact perturbation. In
this situation a completeness result due to Katsnelson [60] states that (a) the
corresponding spectrum is discrete and (b) there exists a Schur basis {uj}∞j=1 of
L2(Ω) such that

a(v, uj) = λj (v, uj) +

j−1∑
k=1

τkj (v, uk) ∀v ∈ H1
0 (Ω). (2.11)

With this result in mind, we developed a generalization of the above MG method
for the selfadjoint case. Of course, the solution of our problem now is no longer a
minimum of the Rayleigh quotient, but still a stationary point. In the selfadjoint
case, discretization by finite elements had led to a set of nested discrete eigenvalue
problems of the type

ÃΘ = B̃ΘΛ̂
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with the orthogonally projected matrices

Ã =
(
Ũ P̃

)∗
A

(
Ũ P̃

)
and B̃ =

(
Ũ P̃

)∗
B

(
Ũ P̃

)
.

Herein Θ denotes the eigenmode approximations, while the matrices P̃ represent
the simultaneous subspace iteration. The essential extension idea to the non–
selfadjoint case now is to replace these projected eigenvalue problems in each
smoothing step and each coarse grid correction by projected Schur problems

ÃΘ = B̃ΘT̂ ,

wherein the T̂ are now triangular matrices. Numerical experience confirms that
in this way some smoothing can actually be realized. As in the simpler case the
canonical coarse grid correction (interpolation) is taken. The thus modified algo-
rithm resembles a block Arnoldi method [74]. The arising coarse grid problems
are of the same type as the original problem but of smaller dimension. There-
fore a recursive construction leads to a multigrid algorithm, which is schematically
written down here [48].

Algorithm.

[Ul, Tl] = MGM(Al, Bl, Ul, Tl, l)

1. presmoothing: Ul → Ũl, Tl → T̃l

2. coarse grid correction: Ũl → Ûl, T̃l → T̂l

• compute Al−1 = V ∗
l AlVl and Bl−1 = V ∗

l BlVl, where in case

∗ l = lmax: Vl =
(

Ũl Pl

)
∗ l < lmax: Vl =

(
Ũl

0
Pl

)
• if

∗ l > 1: [Ul−1, Tl−1] = MGM(Al−1, Bl−1,

(
I
0

)
, T̃l, l − 1)

∗ l = 1: solve A0U0 = B0U0T0 , U∗
0 B0U0 = I

• set Ûl = VlUl−1, T̂l = Tl−1

3. postsmoothing: Ûl → Ul, T̂l → Tl
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Herein the matrices Al and Bl are the (augmented) system and mass matrices
corresponding to FE spaces Sl. The matrices Ul with q columns and the upper tri-
angular matrices Tl represent the unknowns. The prolongation matrices Pl perform
the interpolation from the finer spaces Sl to the coarser spaces Sl−1.

The above algorithm is just a working algorithm in the sense that it has proved to
be efficient in rather difficult application problems with multiscale structure and
that experience has confirmed optimal MG complexity. A thorough theoretical
investigation, however, is still missing.

Multi Quantum Well (MQW) Laser. For illustration purposes we here give
the results of computations for a special integrated optical component, a MQW
layer as part of some MQW laser. The cross section of the MQW layer is depicted
in Fig. 2.5: the left hand structure has some length scale of about 10μm, whereas
the right hand zoom shows several monomolecular layers of about 10nm thickness.

Metal
InGaAs

SiN

p−InP

InGaAsP

n−InP

Figure 2.5: Cross section of MQW layer with zoom.

The scale factor of 1000 ≈ 210 must be spanned by adaptive grids – uniform grids
would give rise to unreasonably large numbers of nodes. In our adaptive setting
we started with coarse grids of about 2.500 nodes and ended up with finest grids of
about 15.000 nodes – uniform grid refinement would have produced some estimated
2.500.000 nodes. In this problem g(x, y) = k2

0n
2(x, y) with k0 the vacuum wave

number of light and n(x, y) the different refractive indexes, which are complex
valued within the MQW layer and the metal layers, but real valued otherwise. The
exact design parameters must be kept confidential. In what follows we describe
a typical technologically relevant parameter study about the dependence of the
eigenvalues upon the imaginary part of some refractive index. We computed the
four eigenvalues with lowest real parts for five parameter values – see Fig. 2.6. We
also computed the corresponding invariant subspaces. Logarithmic contour plots
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of the finest mesh approximation of the two Schur modes u1, u2 associated with
eigenvalues λ1, λ2 (see arrows in Fig. 2.6) are given in Fig. 2.7. Observe that
u1 is the symmetric fundamental mode, while u2 is the anti–symmetric first order
mode.
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Figure 2.6: Dependence of eigenvalue cluster on imaginary part of refractive index.
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Figure 2.7: Logarithmic contour plots of |u1|2 and |u2|2.
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3 Countable Ordinary Differential Equations in

Polymer Industry

Chemically speaking, polymers are a special kind of macromolecules: chains of
simple molecules or molecular groups, the monomers. The chains typically consist
of ten thousand up to ten million monomers, say, and may be linear (the simpler
case to be treated here) or even bifurcating. Copolymers are built from more than
one type of monomer. Polymer materials include a variety of synthetic materials
such as lacquers, adhesives, PVC, and MMA. Mathematically speaking, models of
polyreaction kinetics involve a huge set of ordinary differential equations (ODEs),
usually nonlinear and stiff. The numbers of ODEs again range from ten thousand
up to ten million – one per each arising polymer length. For a mathematician
it is simpler to think of countably infinitely many ODEs to be called countable
ODEs or just CODEs. Even though CODEs are usually underrated if not totally
overlooked in standard mathematical textbooks on differential equations, they play
an important role in several scientific fields, e.g. in environmental science (soot
formation), astrophysics (cosmic dust), or medicine (pharmacokinetics). In this
section we will first describe the CODE models of typical polyreaction mechanisms.
A survey of the basic computational approaches will follow. In more detail, we
will then present the recent concept of adaptive discrete Galerkin methods. This
concept has been first proposed in [45] by the author and Wulkow, who has then
improved the method considerably in his thesis [87]. On this mathematical and
software basis he had started a spin–off firm, which – after the usual critical initial
phase – meanwhile consults in chemical industry and research labs all over the
world.

3.1 Polyreaction Kinetics

In order to convey an impression of the CODE problem class, we begin with a short
list of polyreaction mechanisms that arise in industrial applications. Only under
unrealistic simplifications few of these CODEs can be solved in closed analytic
form. In industrial applications, however, the mechanisms arise within combina-
tions, which makes an analytical treatment anyway hopeless. That is why two
realistic problems are also included here in some detail. As for the notation, let
Ps(t) be the concentration of polymers of chain length or polymer degree s at time
t. For ease of writing, we will not distinguish between the chemical species Ps, its
concentration Ps(t), and the chain length distribution {Ps(t)}s=1,2..., but just rely
on the context.
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Chain addition polymerization or free radical polymerization. With
M(t) denoting some monomer concentration, this special reaction mechanism is

Ps + M
kp−→ Ps+1, s = 1, 2, . . . , (3.1)

where kp > 0 is the reaction rate coefficient. The kinetics of this reaction is
modeled by

P ′
1 = kpMP1

P ′
s = kpM(Ps − Ps−1), s = 2, 3, . . .

M ′ = kpM
∞∑

s=1

Ps

(3.2)

with the given initial values

P1(0) = P10, Ps(0) = 0, s = 2, 3, . . . , M(0) = M0 . (3.3)

Coagulation and irreversible polycondensation. This mechanism can be
described in chemical terms as

Ps + Pr −→ Ps+r (3.4)

and modeled mathematically by the nonlinear CODE

P ′
s =

1

2

s−1∑
r=1

kr,s−rPrPs−r − Ps

∞∑
r=1

ksrPrs s = 1, 2, . . . . (3.5)

Once again, the initial distribution Ps(0) is usually given.

Example: Biopolymerization [22]. This problem deals with an attempt to
recycle waste of synthetic materials in an ecologically satisfactory way – which
is certainly an important problem of modern industrial societies. An attractive
idea in this context is to look out for synthetic materials that are both produced
and eaten by bacteria – under different environmental conditions, of course. A
schematic illustration of the production process within such a bacterial recycling
is given in Fig. 3.1: there certain bacteria use fructose as a chemical input to
produce polyester (PHB) as chemical output. The macromolecular reaction steps

27



polyestersugar

Figure 3.1: Biopolymerization: bacteria eat sugar and produce polyester. White areas: poly-
ester granules within bacteria cells.

of production and degradation of PHB can be summarized in the chemical model

E
ka−→ A

A + M
ki−→ P1

Ps + M
kp−→ Ps+1

Ps
kt−→ Ds + E

Ds+r
kd−→ Ds + Dr

with s, r = 1, 2, . . . . Herein M denotes the monomer fructose, E an enzyme, A the
activated enzyme, Ps the so–called “living” and Ds the so–called “dead” PHB–
polymer. The mathematical model for the above process comprises the CODE
system

E ′ = −kaE + kt

smax∑
r=1

Pr

A′ = +kaE − kiAM

M ′ = −kpM

smax∑
r=1

Pr − kiAM

P ′
1 = −kpMP1 + kiAM − ktP1

P ′
s = −kpM(Ps − Ps−1) − kdPs , s = 2, 3, . . . , smax

D′
s = +ktPs − kd(s − 1)Ds + 2kd

smax∑
r=s+1

Dr , s = 1, 2, . . . , smax.
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Herein the truncation index smax is not known a priori, practical considerations
lead to roughly smax = 50.000 – which means that the above system consists of
100.000 ODEs, each of which has roughly the same number of terms in the right
side.

Copolymerization. Most industrial synthetic materials are copolymers, typi-
cally consisting of three up to seven different sorts of monomers. The mathematical
modelling of such systems is often performed in terms of some multidimensionsal
ansatz Psr... with s monomers of type A, r monomers of tape B etc. This ansatz,
however, leads to an enormous blowup in terms of both computing time and stor-
age. An alternative model has been suggested in the chemical literature (see [46] for
reference). In this approach polymers are characterized by their chemically active
site at one end of the chain. In the process of numerical solution of the polyre-
action CODE enough information about these active sites comes up anyway. In
this much simpler framework the following questions of chemical and economical
relevance can still be answered: Which portion of the monomer is consumed in the
course of the reaction? What are the time dependent relative distributions of the
different polymers? A typical example with three monomers will be given at the
end of Section 3.3 below.

3.2 Basic Computational Approaches

As exemplified in the previous Section 3.1, CODE initial value problems are in
general infinite sets of nonlinear ODEs like

P ′
s(t) = fs(P1(t), . . . , Ps(t), Ps+1(t), . . . ) , s = 1, . . . (3.6)

given together with initial values Ps(0). Whenever the above right hand side fs

contains only arguments up to Ps, i.e. it has the form fs(P1(t), . . . , Ps(t)), then
the system can, in principle, be solved one by one – a property called self–closing
in the literature. If fs has the general form as above, then it is said to be open.
The latter case is the typical one in real life applications. In what follows we will
survey and assess the basic algorithmic concepts for the numerical solution of open
CODEs.

Direct numerical integration. In not too complicated cases direct stiff inte-
gration of the reaction kinetics ODEs is still a popular approach. In fact, the author
and former co–workers have developed the efficient software package LARKIN (for

29



LARge chemical KINetics) to tackle such systems, see [6]. Typically, with any such
package, a sequential process is performed starting from a small number of ODEs
and successively running up to larger and larger numbers. However, compared to
direct integration even in this restricted application, the method to be presented
in Section 3.3 has proved computational speed–up factors of more than 10.000 to-
gether with better accuracies for quantities of industrial relevance – compare [46].
Finally, since all stiff integrators require the Jacobian matrix of the right hand side,
this approach suffers from a rather narrow domain of applicability, just think of
the 100.000 by 100.000 nonzero Jacobian elements in the above biopolymerization
example.

Lumping technique. In this kind of technique linear combinations of compo-
nents are collected to certain supercomponents, for which then ODEs are derived
and solved numerically. A proper collection of components requires a lot of a–priori
insight into the process under consideration, sometimes just a log(s)–equilibration
is imposed. However, even though this technique is reported to work satisfactorily
in some linear ODE cases, it is certainly totally unreliable for nonlinear ODEs,
which represent the bulk of industrially relevant models.

Method of statistical moments. The canonical formulation for distributions
– like Ps(t) here – is in terms of statistical moments

μk(t)[P ] :=
∑
s≥1

skPs(t), k = 0, 1, . . . , .

Note that mass conservation shows up as μ0(t) = const. Insertion of the above de-
finition into a polyreaction CODE (see Section 3.1 above) generates an infinite set
of ODEs for these moments, a CODE again. It is easy to show that the structural
property open/selfclosing of the original polyreaction CODE is passed on to the
moment CODE. The whole approach is based on the theorem of Stieltjes, which
states that the knowledge of all moments (if they are bounded) is equivalent to
the knowledge of the distribution. If, however, only a finite number N of moments
is known, in practice mostly only few moments, then there exists a full range of
approximations P

(N)
s with unclear representation and approximation quality.

One popular method to deal with this lack of information is to specify the distrib-
ution in advance. For example, assume that – on the grounds of scientific insight
into the given problem – the unknown distribution is expected to be a Poisson
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distribution

Ps = C e−λs λs−1

(s − 1)!
,

then the unknown parameters λ, C can be determined from just the two moments

C = μ0, λ =
μ1

μ0

.

Once the two moments are computed, the distribution as a whole seems to be
known. Sometimes this kind of specification is also hidden behind so–called closure
relations. However, strictly speaking, none of these approaches can assure that the
stated problem is really solved – without further check of whether the assumptions
made are appropriate. An insidious feature of any such approach is that all the
thus computed approximations look optically smooth and therefore “plausible” –
even when they are totally wrong! That is why these two approaches are only
recommended for situations wherein the essential features of the solution are well–
studied.

Last but not least, it is not clear how many terms need to be kept in the trun-
cated moment CODE. Of course, the approximate moments μ

(N)
k corresponding to

truncation index N should be accurate enough within some prescribed tolerance
compared to the exact moments μk. The choice of truncation index N becomes
even hopeless when the reaction rate coefficients depend on the chain length – as
e.g. in soot formation, cf. [45, 88].

Monte Carlo method. Markov chains play some role in the computation of
stationary solutions of copolymerization problems. In the application studied here,
however, Monte Carlo methods require too much computing time in comparison
with the method to be presented in Section 3.3. They will play an important role
in Section 4.2 below in some different context.

Galerkin methods for continuous PDE models. A rather popular approach
to condense the infinite number of ODEs is to model the degree s by some real
variable, interpreting sums as infinite integrals and thus arriving at integro–partial
differential equations, usually with lag terms (like e.g. the neutron transport equa-
tion). Following this line, an unknown modelling error for low s is introduced –
which is the very part of the models where measurements are typically available.
Moreover, depending on the polyreaction mechanism, the arising problem may
turn out to be ill–posed, which in turn requires some regularization to be carefully
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studied. In [49], Gajewski/Zacharias suggested Galerkin methods in Hilbert
space based on modified Laguerre polynomials Lα

k for the weight function

Ψ(s) = σαe−σ with σ = β(t)s, β =
μ0(t)

μ1(t)
. (3.7)

The specification of β assures scaling invariance in the (continuous) variable s.

Discrete Galerkin methods for CODEs. In [45] the author had suggested to
use the above PDE approach only in principle, but to avoid turning the discrete
variable s artificially into a continuous one. Upon interpreting discrete inner prod-
ucts as infinite sums, the discrete nature of the problem can be preserved – thus
keeping the proper regularization. As a first attempt on this mathematical basis,
discrete Galerkin methods based on discrete Laguerre polynomials lk for the
weight function

Ψ(s) = ρs, ρ < 1 . (3.8)

were constructed. The specification of ρ via “scaling” of the argument as in (3.7)
is not directly possible here, since for a discrete variable s scaling is not a proper
concept (see, however, the “moving weight function” concept below). This discrete
Galerkin approach turned out to be the starting point for the construction of a
new class of rather efficient algorithms to be discussed in detail in the next section.

3.3 Adaptive Discrete Galerkin Methods

For ease of presentation we replace the above nonlinear CODE (3.6) by the linear
CODE

P ′
s(t) = (AP (t))s Ps(0) given . (3.9)

Herein the discrete operator A describing the polyreaction mechanisms may be
bounded (rare) or, unbounded (typical). The key to the construction of discrete
Galerkin methods is the introduction of a discrete inner product

(f, g) :=
∞∑

s=1

f(s)g(s)Ψ(s) (3.10)

in terms of some prescribed componentwise positive weighting function Ψ. This
product induces a set of orthogonal polynomials {lj}, j = 1, 2, . . . satisfying the
relations

(lj, lk) = γjδjk , γj > 0 j, k = 0, 1, 2, . . . (3.11)
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For the solution P of the CODE we naturally try the corresponding ansatz

Ps(t) = Ψ(s)
∞∑

k=0

ak(t)lk(s). (3.12)

Moving weight function. There exists an interesting close connection between
the statistical moments μk and the just introduced coefficients ak. Upon represent-
ing the monomials sk by the orthogonal set of polynomials, we are able to derive
an infinite lower triangular system of algebraic equations of the form

μ0 = b00γ0a0,
μ1 = b10γ0a0 + b11γ1a1,
μ2 = . . . ,

(3.13)

where bkk 
= 0 is guaranteed. Herein the moments μk arise row–wise, whereas the
coefficients ak arise column–wise. This implies that if all moments are given and
bounded, then all coefficients can be computed, which is just the already mentioned
Stieltjes theorem. If only N moments are given, then only N coefficients can be
computed. On the side of the coefficients, however, we have a reasonable option
of truncating the expansion (3.12), since they (unlike the moments) are known
to decrease asymptotically, if the solution P can actually be represented by the
above ansatz. In other words, the solution P must be contained in some weighted
sequence space, say HΨ, with an associated inner product and its induced norm

< f, g >:=
∞∑

s=1

f(s)g(s)/Ψ(s), ‖f‖2 :=< f, f > . (3.14)

In order to enforce that P ∈ HΨ throughout the whole evolution, we additionally
require that P ≈ μ0Ψ by imposing the moving weight function conditions

ν0[Ψ] = 1, ν1[Ψ] =
μ1[P ]

μ0[P ]
(3.15)

wherein the νk denote the statistical moments of the prescribed weight function.
The first condition means that Ψ is some probability density function, whereas
the second one assures some time dependent coupling of the mean values of the
unknown distribution P to the known distribution Ψ – hence the name. Insertion
of (3.15) into (3.13) leads to the two equivalent conditions

a0(t) = μ0(t), a1(t) = 0 (3.16)
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independent of the underlying problem and of the choice of weight function. Sum-
marizing, with these two additional conditions a much smaller number n of degrees
of freedom turned out to be sufficient to characterize the dynamics of realistic
polyreaction systems.

Method of lines. Upon insertion of the expansion (3.12) into the CODE (3.9),
multiplication by the test function lj(s), summation over s, change of summation
order, and use of the above orthogonality relations, we end up with the CODE

γja
′
j(t) =

∞∑
k=0

ak(t)(lj,Alk) j = 0, 1, . . . . (3.17)

for the ak. In the above moving weight function approach the ODE for a1 can
be dropped (recall that a1 = 0) and a new ODE can be created instead, say, for
the parameter ρ in the discrete Laguerre method based on Ψ as in (3.8). In
other words, in this method of lines type approach the moving weight function
induces a moving basis lk(s; ρ(t)), k = 0, 1, . . . – similar to moving nodes in PDE
applications with moving fronts.

For the numerical realization of (3.17), the inner products

(lj,Alk) =
∞∑

s=1

lj(s)A(s)lk(s)Ψ(s)

must be approximated by a finite number of terms to prescribed accuracy. In rare
cases analytical methods allow a closed form representation, which is cheap to eval-
uate. In most cases, however, numerical approximations turn out to be the only
choice. We developed two efficient approximation methods: an adaptive multi-
grid summation technique (compare Section 9.7.2 in the undergraduate numerical
analysis textbook [35]), a discrete variant of the MG method described in Section
1.1, and a Gauss–Christoffel summation, a discrete variant of Gauss–Christoffel
quadrature based on the selected weight function Ψ. As for the applied time
discretization, linearly implicit schemes in the generally nonlinear CODEs (3.6)
turned out to be efficient to tackle the unbounded part of the discrete Fréchet
operators of the right hand side. In addition, adaptive timestep and order control
is as useful as in ordinary stiff integration.

Adaptive truncation. Truncation of this CODE by setting

aj = 0, j = n, n + 1, . . .

leads to the discrete Galerkin approximation

P (n)
s (t) = Ψ(s)

n∑
k=0

a
(n)
k (t)lk(s). (3.18)
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In the simpler case of self–closing CODEs, the coefficients ak do not depend on
the truncation index n. The key to adaptivivity in any (global) Galerkin method
is that the truncation error can be estimated by∣∣P (n) − P

∣∣ .
=

∣∣P (n) − P (n+1)
∣∣ =[

(a
(n)
n+1)(t)

2γn+1 +
∑n

k=0

(
a

(n)
k (t) − a

(n+1)
k (t)

)2

γk

]1
2

.
(3.19)

Note that if we want to assure a condition like∣∣P (n) − P (n+1)
∣∣ ≤ TOL

for some prescribed error tolerance TOL, then we might thus obtain some time
dependent number n(t) of terms in the Galerkin approximation.

Adaptive Rothe method. As already tacitly indicated in the above moving
weight function conditions, the typical CODE initial value problem lives in some
scale of Hilbert spaces, say Hρ(t), t ≥ t0 for the discrete Laguerre method, rather
than just in single fixed space. This nicely shows up in a special Lipschitz condition,
a nonlinear extension of a semi–continuity assumption:

‖f(t, u) − f(t, v)‖ρ̄ ≤ M

(ρ̄ − ρ)γ
‖u − v‖ρ, 0 < γ ≤ 1,

ρ̄ > ρ and u, v ∈ Hρ .
(3.20)

This condition is the essential ingredient of a uniqueness theorem for CODEs – see
[87]. In analogy to the discussion for PDEs in Section 1.1 above, the appropriate
order of discretization will therefore be first time discretization, then Galerkin
approximation, which is the so–called Rothe method. Starting from some initial
value u(t) = φ suppose we apply some linearly implicit Euler discretization

(I − τA)Δu = τf(ϕ) , u1 = ϕ + Δu , (3.21)

wherein A is the derivative fu(ϕ). This is a linear boundary value problem in some
discrete sequence space to be treated numerically by a discrete Galerkin method.
The numerical realization of the time step control requires an estimate η1 of the
error ‖u1−u(t+ τ)‖ in the norm ‖ · ‖ induced by the corresponding inner product.
For this purpose we solve the correction equation

(I − τA)η1 = −1

2
τ 2Af(ϕ) , u2 = u1 + η1 , (3.22)
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which obviously has the same structure as (3.21). The approximation u2 is of order
2 in time, which implies the estimated optimal time step (with safety factor σ < 1)

τnew = τ

√
στtol

‖η1‖
. (3.23)

In this realization the truncation index for (3.22) may correspond to a less strin-
gent (absolute) error tolerance than the one for (3.21), since (3.23) requires less
accuracy; in this setting the approximation u1 is regarded as the accepted solution.
If the same absolute accuracy is prescribed in both equations, then u2 is taken as
the accepted approximation.

Discrete h-p–method. For sufficiently complex problems in industry global
Galerkin methods – such as the one given in (3.12) – have meanwhile been clearly
outperformed by local Galerkin methods (similar as FEMs in PDEs). In order to
be able to construct local multilevel bases, the weight function has to be restricted
to Ψ = 1 on finite subintervals, which induce (discrete) Chebyshev polynomials
tk of degree k. The actually developed method combines adaptive interval refine-
ment (h–method) with adaptive choice of the local degree (p–method) to obtain
some rather sophisticated adaptive h-p–method on some finite interval. In order
to match the asymptotic tail of the distribution, global representations still play a
role.

In the course of the years the successive efficient treatment of industrially relevant
polyreaction problems has led to a steady increase of modern rather sophisti-
cated algorithmic tools that made their way into the commercial software package
PrediciTM of Wulkow [88]. The following copolymerization example with three
monomers should give some flavor of such problems.

Example: Radical terpolymerization [46]. Let Ps be the polymer with ac-
tive end MMA (index a), Qs the one with styrole (index b), and Rs the one with
MSA (index c below). With this notation, the chemical reaction scheme reads

Initialization:

I
kd−→ 2I∗

I∗ + MMA
kl−→ P ∗

1

I∗ + S
kl−→ Q∗

1

I∗ + MSA
kl−→ R1
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Chain growth:

P ∗
s + MMA

kpaa−→ P ∗
s+1

P ∗
s + S

kpab−→ Q∗
s+1

P ∗
s + MSA

kpac−→ R∗
s+1

Q∗
s + MMA

kpba−→ P ∗
s+1

Q∗
s + S

kpbb−→ Q∗
s+1

Q∗
s + MSA

kpbc−→ R∗
s+1

R∗
s + MMA

kpca−→ P ∗
s+1

R∗
s + S

kpcb−→ Q∗
s+1

Chain termination:

P ∗
s + P ∗

r
kcaa−→ Ds+r

P ∗
s + Q∗

r

kcab−→ Ds+r

Q∗
s + Q∗

r

kcbb−→ Ds+r

For reasons of confidentiality some parts of the mechanism are left out. Initial
values and generic reaction rate coefficients are given in [46]. Under the modelling
assumption that in this specific polymerization process the living chains live only
for a very short time span, the copolymer distribution can be computed as follows.
Define e.g. integrated quantities like

P̄s(t) =

∫ t

0

Ps(t)dt .

which (up to normalization) counts the number of coplymers with MMA in fixed
position s. Then the relation P̄s : Q̄s : R̄s offers detailed insight into the composi-
tion of the copolymer. In Fig. 3.2 such compositions are shown for times t = 360
min and t = 1.080 min. Information of this kind could not have been gained from
statistical moment analysis as applied earlier in industry.
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Figure 3.2: Copolymer composition versus chain length for two times t.

4 Hamiltonian Equations in Pharmaceutical Drug

Design

The design of highly specific drugs on the computer, the so-called rational drug
design (as opposed to irrational drug consumption), is a fairly recent dream of
biochemistry and pharmaceutical industry. Typically, a lot of heuristics go with
this problem, which we skip here. At first mathematical glance, drug design seems
to involve the numerical integration of the Hamiltonian differential equations that
describe the dynamics of the molecular system under consideration. Following
this idea, a huge discrepancy of time scales shows up: phenomena of interest,
such as protein folding or active site docking, occur on a micro- or millisecond
scale, whereas present routine computations only cover time spans of up to a few
nanoseconds (at best). This gap has stimulated a lot of work in an interdisci-
plinary field including Numerical Analysis, Statistical Physics, Biochemistry, and
Dynamical Systems. The present section reports about some recent and still ongo-
ing collaboration of the author and his group with internationally renowned RNA
biochemists including biotech firms in the Berlin region.
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Our special contribution to drug design starts from the known insight that the
corresponding trajectories are chaotic, which means that small perturbations of
the initial values of such trajectories asymptotically lead to unbounded deviations.
In terms of Numerical Analysis this means that the Hamiltonian initial value
problems (IVPs) are ill–conditioned after short time spans. On the basis of this
insight, we suggested a novel concept for the computation of essential features of
Hamiltonian dynamical systems. The key idea presented in Section 4.1. below is
to directly compute chemical conformations and rates of conformational changes,
interpreting chemical conformations as almost invariant sets in the phase space
(positions and momenta) of the corresponding dynamical system. In a first step,
this led to an eigenproblem for eigenvalue clusters around the Perron root of the
so-called Frobenius-Perron operator associated with the (numerical) flux of
the dynamical system.

In a second step, in Section 4.2., we interpreted chemical conformations as objects
in the position space of the Hamiltonian dynamical system. Moreover, we aban-
doned the deterministic Hamiltonian systems with given initial values to turn over
to ensembles of initial values in the frame of Statistical Physics. This led to the
natural construction of a stochastic operator, which appears to be selfadjoint over
some weighted L2-space. Discretization of that operator by means of certain hy-
brid Monte Carlo methods (HMC) generates nearly uncoupled Markov chains that
need to be computed. As it turns out, the eigenvectors associated with the Perron
cluster of eigenvalues for the stochastic operator contain the desired information
about the chemical conformations and their patterns of change.

The described approach is presently worked out in collaboration with biochemists
that design RNA drugs in their chemical labs. Our aim is to substitute time
consuming and costly experiments in the chemical RNA lab by reliable simulations
in a virtual RNA Lab. First steps in this direction are illustrated in Section 4. 3
at some fairly complex, but moderate size RNA molecule.

4.1 Deterministic Chaos in Molecular Dynamics

In classical textbooks on Molecular Dynamics (MD), see e.g. [1], a single molecule
is modelled by a Hamilton function

H(q, p) = 1
2
pT M−1p + V (q) (4.1)

with q the 3D atomic positions, p the (generalized) momenta, M the diagonal
mass matrix, and V a differentiable potential function. The Hamilton function is
called separated, whenever the p-part and the q-part of H are separated as above.
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The Hamilton function defined on the phase space Γ ⊂ R6N induces the canonical
equations of motion, the Hamiltonian equations

q̇ = M−1p, ṗ = −grad V , (4.2)

which describe the dynamics of the molecule in a deterministic way: For given
initial state x0 = (q(0), p(0)) the unique formal solution of (4.2) is usually written
as x(t) = (q(t), p(t)) = Φtx0 in terms of the flow Φt. Numerical integration of (4.2)
by any one-step method with stepsize τ leads to the discrete solution

xk+1 = Ψτxk ⇒ xk = (Ψτ )k x0, (4.3)

in terms of a discrete flow Ψτ .

Condition of the initial value problem. Given an initial perturbation δx0 we
are interested in its growth along the flow

δx(t; x0) = Φt(x0 + δx0) − Φtx0 .

The condition number κ(t) of an initial value problem (see the textbook by Deufl-

hard and Bornemann [32]) may be defined as the worst case error propagation
factor in first order perturbation analysis so that (in some suitable norm | · |)

|δx(t; x0)| < κ(t)|δx0| for all x0.

It is of utmost importance to keep in mind that κ(t) is a quantity characterizing
the analytic problem independent of any discretization. A linear growth result
κ(t) ∼ t holds for a subclass of so–called integrable Hamiltonian systems such as
the popular Kepler problem – see Arnold [3]. In real life MD problems, however,
κ increases exponentially. In order to illustrate this behavior, Fig. 4.1 shows results
for the simple Butane molecule. In order to be able to ignore any discretization
error effects, unusually small time steps (τ = 0.005 fs) within the Verlet scheme
have been chosen. A physically negligible initial perturbation 10−4Å can be seen to
overgrow the nominal solution after a time span T > 500 fsec, which is significantly
shorter than the time spans of physical interest.

Once long term trajectories in MD have been identified as ill-conditioned mathe-
matical objects, they should be avoided in actual computation. Only short term
trajectories should be accepted as numerical input for further scientific interpre-
tation. This seems to be in direct contradiction to the possible prediction of long
term behavior of biomolecules! How can we overcome this difficulty?

Warning. There are quite a number of beautiful movies about the dynamics
of biomolecules that visualize merely accidental numerical results of long term
simulations – and are therefore of doubtful value for chemical interpretation.
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Figure 4.1: Two dynamical simulations for the Butane molecule with initial deviation 10−4Å.
Left: Evolutions of the total molecule length (in Å). Right: Dynamics of the deviation (in Å).

Multiscale structure. In order to gain more insight, we proceed to a rather in-
structive example due to Grubmüller and Tavan [51]. Figure 4.2 describes the
dynamics of a polymer chain of 100 CH2 groups. Possible timesteps for numerical
integration are confined to τ < 10 fsec due to fast oscillations. Time scales of
physical interest range from 103 to 105 psec in this problem, which is a factor 105

to 107 larger. The figure presents six different zoom levels in time, each of which
scales up by a factor 10. On the smaller time scales (upper levels) the dynamical
behavior is characterized by nonlinear oscillations around certain vague “equilib-
rium positions”. On larger and larger time scales these oscillations become less
and less important. On the largest time scale (lowest level) we observe a kind of
flip–flop behavior between two “conformations”.

This observation suggests an alternative to long term trajectory simulation: the
essential dynamical pattern of a molecular process could as well be modelled by
probabilities for the molecular system to stay within different conformations. From
a chemical point of view, conformations describe clusters of geometric configura-
tions associated with some specified chemical functionality. In a conformation,
the large scale geometric structure of the molecule is understood to be conserved,
whereas on smaller scales the system may well rotate, oscillate, or fluctuate. In
order to understand a chemical system, conformations and their average life spans
are the main objects of chemical interest. Therefore the direct computation of
conformational dynamics seems to be the concept to pursue.

Frobenius–Perron operator. In a first approach, we recurred to the so-called
Frobenius-Perron operator U associated with the flow Φτ . This operator is
defined on the set M of probability measures over the phase space Γ by virtue of

(Uμ)(G) = μ(Φ−τ (G)) for all measurable G ⊂ Γ and arbitrary μ ∈ M. (4.4)
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Figure 4.2: MD simulation of a polymer chain of 100 CH2 groups due to [51]. Time scale zoom
factor 10 from level to level.

Invariant sets are the union of all those states that a dynamical system can reach,
i.e. they correspond to an infinite duration of stay. Moreover, they are fixed points
of U associated with the so-called Perron eigenvalue λ = 1 of U . In [33], we
interpreted conformations as almost invariant subsets in phase space corresponding
to finite, but still large duration of stay – a phenomenon often called metastability.
In the spirit of earlier work of Dellnitz/Junge [29] we analyzed the connection
of almost invariant sets with eigenmodes to real eigenvalue clusters around the
Perron root, to be called Perron clusters hereafter – see Deuflhard, Huisinga,

Fischer, and Schütte [37].

Following Hsu [57] the discretization of the Frobenius-Perron operator is done on a
box covering {G1, . . . , Gn} associated with characteristic functions χGi

. Since the
flow Φτ conserves energy, these boxes would be expected to subdivide the energy
surface Γ0(E) = {x ∈ Γ : H(x) = E}. However, a typical discrete flow (Ψτ/k)k

with k steps will not conserve energy exactly – even symplectic discretizations
preserve energy only on average over long times. Therefore the boxes have to
subdivide energy cells defined by

Γδ(E) = {x ∈ Γ, |H(x) − E| ≤ δ}

in terms of some perturbation parameter δ. With f = (Ψτ/k)k ≈ Φτ the discretized
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Frobenius-Perron operator Un = (ui,j) can be written componentwise as

uij =
m(f−1(Gi) ∩ Gj)

m(Gj)
, i = 1, . . . , n, (4.5)

where m denotes the Lebesgue measure; roughly speaking, this means that m(Gj)
is the volume of the box Gj. The geometric situation as a whole is illustrated in Fig.
4.3. The approximations of the various volumes are performed by some equidistrib-
uted Monte Carlo method. In order to speed up computations, a nested sequence
of boxes is constructed for an adaptive multilevel box method called subdivision
algorithm by Dellnitz/Hohmann [28].

�
�
�

f
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m(Gi)

Gj

f -1(Gi)

m(f 
-1(Gi)   Gj)∩

Figure 4.3: Stochastic matrix element ui,j computed from (4.5)

The realization of this first attempt, however, turned out to suffer from two impor-
tant disadvantages. The first one is of a theoretical nature: since the Frobenius–
Perron operator for a deterministic Hamiltonian system is unitary in L2(Γ), real
eigenvalues inside the unit circle cannot exist. But they did exist and had been
computed and interpreted in our method! This comes from the fact that, by sub-
dividing energy cells rather than the energy surface, we had allowed for stochastic
perturbations of the deterministic systems; in this more general setting, eigen-
values could show up also inside the unit circle and did contain the information
wanted. Consequently, to model this situation correctly, a more general stochastic
theory would be needed – which is still missing. Second, this approach obviously
causes some curse of dimension, which prevents the method to be applicable to
realistic molecules. To understand this perhaps unexpected and certainly unde-
sirable effect, recall that the described subdivision method had been successfully
developed in [29] for hyperbolic systems, where the dynamics is known to collapse
asymptotically to some low dimensional attractor; this feature, however, does not
carry over to Hamiltonian systems.
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4.2 Identification of Metastable Conformations

This section describes a rather recent improved approach mainly due to Schütte

[80, 81]. This approach keeps the conceptual advantages of the Dynamical Systems
approach (as given in Section 4.1), but avoids the conceptual disadvantages by ex-
ploiting concepts of Statistical Physics instead. Its key new feature is the replace-
ment of the Frobenius-Perron operator by some well-designed Markov operator,
a spatial transition operator based on Boltzmann statistics. Most experiments
in a chemical lab are performed under the conditions of constant temperature and
volume, which is known to give rise to the canonical density

f0(x) =
1

Z
exp (−β H(x)) , with Z =

∫
Γ

exp (−β H(x)) dx, (4.6)

where β = 1/kBT , temperature T , and Boltzmann’s constant kB.

We start with some notion of almost invariant sets in the language of statistics.
For some selected set S let χS denote its characteristic function, i.e. χS(x) = 1
iff x ∈ S and χS(x) = 0 otherwise. Then the transition probability between two
subsets S1, S2 of the phase space Γ is given by

w(S1, S2, τ) =
1∫

S1
f0(x) dx

∫
S1

χS2(Φ
τx) f0(x) dx S1, S2 ⊂ Γ (4.7)

By this definition almost invariant sets will be those with w(S, S, τ) ≈ 1. In Section
4.1 we had understood chemical conformations as almost invariant sets in phase
space. However, in reality these objects are observed in position space. That is
why we now turn over to characterize conformations as sets B in position space
Ω ⊂ R3N . Upon allowing for arbitrary momenta p, we are naturally led to focus
our interest on the phase space fiber

Γ(B) = {(q, p) ∈ Γ, q ∈ B} . (4.8)

With this notation we now call a set B ⊂ Ω a conformation whenever

w(Γ(B), Γ(B), τ) ≈ 1. (4.9)

For H separable as in (4.1), f0 from (4.6) splits into the product

f0(x) =
1

Zp

exp

(
−β

2
pT M−1p

)
︸ ︷︷ ︸

=P(p)

1

Zq

exp (−β V (q))︸ ︷︷ ︸
=Q(q)

, (4.10)
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with P and Q normalized such that∫
P(p)dp =

∫
Q(q)dq = 1.

Upon returning to (4.8), we may specify the conditional probability for a system
being in set B ⊂ Ω to move to set C ⊂ Ω after some time τ as

w(Γ(B), Γ(C), τ) =
1∫

Γ(B)

f0(x) dx

∫
Γ(B)

χΓ(C)(Φ
τx) f0(x) dx . (4.11)

Construction of spatial Markov operator. With these preparations we are
now ready to confine all terms to position space only. The denominator in (4.11)
represents the probability for a system from the statistical ensemble to be within
B ⊂ Ω which can be simplified using dx = dqdp (for H separable) and the nor-
malization of P to yield

π(B) =

∫
Γ(B)

f0(x) dx =

∫
B

Q(q) dq . (4.12)

The analog treatment of the numerator in (4.11) will give rise to the definition of
an operator T . Let ξ1(q, p) = q denote the projection from the variables x to the
position variables and introduce an inner product in the weighted Hilbert space
L2
Q by

〈u, v〉Q =

∫
Ω

u∗(q) v(q)Q(q) dq

together with its induced norm

‖u‖2
Q = 〈u, u〉Q .

With this notation we may write∫
Γ(B)

χΓ(C)(Φ
τx) f0(x) dx =

∫
C

{∫
R3N

χB(ξ1Φ
τ (q, p))P(p) dp

}
Q(q) dq

︸ ︷︷ ︸
=: 〈TχB ,χC〉Q

(4.13)

thus defining the operator

Tu(q) =

∫
u(ξ1Φ

τ (q, p))P(p) dp, (4.14)
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Upon combining (4.11) up to (4.13) we may write the conditional probability of a
system being in B to move into C during time τ as

w(B, C, τ) =
〈TχB, χC〉Q

π(B)
B, C ⊂ Ω (4.15)

By construction, T can be interpreted as the restriction of the Frobenius–Perron
operator U , see (4.4), to position space via averaging over the momentum part of
the canonical distribution. The operator T is defined on the weighted spaces

Lr
Q(Ω) = {u : Ω → C,

∫
Ω

|u(q)|rQ(q) dq < ∞}, r = 1, 2.

In terms of these spaces the important properties of T are (Schütte [80]):

1. T is bounded in Lp
Q(Ω): ‖Tu‖Q ≤ ‖u‖Q p = 1, 2

2. T is a Markov operator on L1
Q(Ω).

3. T is selfadjoint in L2
Q, since Φτ is reversible. Hence, the spectrum σ(T ) is

real-valued and bounded: σ(T ) ⊂ [−1, 1].

4. There exists a Perron cluster of discrete eigenvalues well-separated from the
remaining (continuous) part of the spectrum.

Properties 1-3 hold for Hamiltonian systems in general; property 4 only holds
under additional assumptions – which are, however, satisfied in the systems of
interest here. Summarizing, T has just the theoretical properties needed as a basis
for the computational identification of conformational subsets via the eigenmodes
to Perron clusters of eigenvalues.

Discretization of Markov operator. We proceed as in the previous section by
introducing a set of boxes, this time in position space rather than phase space. Let
{G1, . . . , Gn} ⊂ Ω denote a covering of Ω. In view of a Galerkin approximation
in L2

Q we define the basis Vn = span{χ1, . . . , χn} in terms of the characteristic
functions χi = χGi

. Moreover, let π(Gi) = πi. In this basis we may construct an
(n, n)-matrix P = (pij) via spatial transition probabilities as

pij =
〈Tχi, χj〉Q

πi

= w(Gi, Gj, τ) i, j ∈ {1, . . . , n}. (4.16)

By construction, this matrix P is row-wise stochastic and, since T is self-adjoint,
also reversible. Upon observing the condition of detailed balance in the form

πi pij = πj pji, ∀i, j ∈ {1, . . . , n}.
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the matrix is symmetric with respect to a weighted discrete inner product, which
implies that σ(P ) ⊂ [−1, 1], real. Moreover, there exists a Perron cluster of eigen-
values, if the boxes are well-chosen to really cover the relevant position space.

Hybrid Monte Carlo realization. The above introduced Markov operator T
in L1

Q(Ω) can also be interpreted as a transition operator that generates a Markov

chain {qk}k=0,1,... via the discrete stochastic dynamical system

qk+1 = ξ1Φ
τ (qk, pk), k = 0, 1, . . . , (4.17)

wherein the momenta pk in each step are chosen randomly from the distribution
P . Obviously, upon changing from the Frobenius-Perron operator U to the transi-
tion operator T , we also change from the discrete deterministic dynamical system
(4.3) to its stochastic counterpart (4.17). Iterations of (4.17) realize sequences
{qk} that are asymptotically distributed according to Q. This feature can be ex-
ploited by application of suitable Monte Carlo (MC) methods. After M samples
{qj} from (4.17) the Q-expectation value of any spatial observable A : Ω → R is
approximated by an averaged sum such that

∣∣∣ 1

M

M∑
j=1

A(qj) −
∫
Ω

A(q)Q(q) dq
∣∣∣ ≤ C M−1/2, (4.18)

with a constant C not explicitly depending on dim(Γ) = 6N . In the present con-
text, the observable will be any of the 1

2
n(n+1) integrand factors Tχiχj arising in

(4.16). As the integrand contains the (short term numerical) flux, a hybrid Monte
Carlo (HMC) method is preferably applied, which is a compromise between trajec-
tory evaluation and MC. In more detail, the matrix elements pij are asymptotically
approximated by virtue of relative frequencies

# (qk ∈ Gi ∧ qk+1 ∈ Gj)

# (qk ∈ Gi)
→ w(Gi, Gj, τ) = pij i, j ∈ {1, . . . , n}. (4.19)

The theoretical result (4.18) raises the expectation that we have eventually over-
come the curse of dimension. However, the well-known undesirable effect of critical
slowing down of the iteration due to local trapping is still possible. For this rea-
son, we developed an adaptive temperature variant called ATHMC – see Fischer,

Cordes, and Schütte [47].

Essential degrees of freedom. In realistic RNA drug molecules we have to face
around N > 100 atoms – see Fig. 4.5. If we subdivide each of the 3N state variables
into m pieces, then the dimension of the stochastic matrix P would be n = m3N

– which would be just too much even for a Krylov space iterative eigenproblem
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solver. Therefore, in the spirit of a suggestion due to Amadei, Linssen, and

Berendsen [2], we start with a long term HMC series and apply some covariance
analysis to it; this technique then helps to reduce the total number of state variables
to a subset of d << 3N essential variables so that only n = md discretization boxes
are needed. A realistic example will be presented in the subsequent Section 4.3.

Eigenvalue Cluster analysis. Assume that we know how to evaluate the entries
of P . So we are finally left with the numerical solution of the eigenproblem

Pα = λα with α = (α1, . . . , αn) .

for a cluster of eigenvalues around the Perron eigenvalue λ = 1. One question is
that we will not know in advance how many of the eigenvalues close to 1 should be
included into the Perron cluster. The basic insight from [37] is that the k eigen-
values in the Perron cluster should be interpretable as a perturbed k-fold Perron
root. The decision about k is quite subtle and has to be made by careful exami-
nation of the matrix W defined below in (4.22). Suppose now that this decision
has been made. Then the conformational sets can be computed via appropriate
linear combinations of the eigenmodes corresponding to the Perron cluster. Each
conformation, say B, is represented as a set of indices, say IB, that mark the as-
sociated boxes belonging to the spatial conformation. Given such a conformation
as subset B ⊂ Ω, the probability for the dynamical system to stay within B can
easily be evaluated via the relation

w(B, B, τ) =
1∑

i∈IB

πi

∑
i,j∈IB

πi pij . (4.20)

This should be distinguished from the probability for the system to be within a
conformation (compare also (4.12))

π(B) =
∑
i∈IB

πi . (4.21)

Finally, with k conformations B1, B2, . . . , Bk identified, the transition rates be-
tween conformations can be arranged in the (k, k)–matrix

W = (wij) =
(
w(Bi, Bj, τ)

)
, i, j = 1, . . . , k (4.22)

which, together with the vector {π(B1), . . . , π(Bk)}, contains the core information
of conformation dynamics. Details of this Perron cluster analysis omitted here can
be found in our paper [37].
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4.3 Virtual RNA Lab

In the frame of our collaboration with RNA technologists, all the above described
mathematical techniques (and more) together with a variety of state of the art
tools in scientific visualization are to be collected within some virtual RNA lab.
Such a virtual lab is an integrated software package that permits a convenient
switch between numerical code, fast visualization, and 3D graphic interaction. In
order to give some flavor and at the same time to illustrate the above mathemat-
ical methods, a moderate size RNA molecule, the trinucleotide r(ACC), will be
presented in some detail.

Hamilton function. The function H defined in (4.1) consists of the kinetic en-
ergy (p=momenta, M = mass tensor) and of the potential energy terms V like
the covalent energy terms for bond stretching, angle bending, out-of-plane oscilla-
tions, dihedral torsions, non-bonded Lennard-Jones, and Coulomb terms. We have
used the semi-emperical force field GROMOS96 [86]. The set of parameters had
been adapted by the GROMOS96 group to quantum chemical calculations and ex-
perimental observations. The whole set was refined self-consistently to reproduce
experimental results on chemical systems.

H(q, p) = 1
2
pT M−1p +∑

k,l

Vbond(qk, ql) +

∑
k,l,j

Vangle(qk, ql, qj) +

∑
k,l,j,m

Vout−of−plane(qk, ql, qj, qm) +

∑
k,l,j,m

Vdihedral(qk, ql, qj, qm) +

∑
k,l

VLennard−Jones(qk, ql) +

∑
k,l

VCoulomb(qk, ql)

The short term trajectories needed in the computational model of Section 4.2 were
realized by m = 40 steps of a Verlet discretization with local timestep τ/m = 2
fsec, which means τ = 0.08 psec.

Dimension reduction. The moderate size RNA molecule r(ACC) has N = 70
atoms, which means a phase space dimension 6N = 420 for the Hamiltonian
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dynamical system and half of that for the position space. From chemical insight,
a set of 37 torsion angles is responsible for the existence of different chemical
conformations – see Fig. 4.4 left. By means of M = 320.000 sampling points
within an ATHMC run, the covariance analysis due to [2] supplied a set of only
d = 4 essential variables!

Perron cluster analysis. Upon subdividing two of the essential variables by
2, the other two by 3, we end up with only n = 36 boxes in position space.
The approximation of the ∼ 1

2
n2 elements of the stochastic matrix P required

M = 128.000 samplings of short term trajectories. The numerical eigenproblem
solution for the (36, 36)-matrix P yielded the following candidates for the Perron
cluster:

k 1 2 3 4 5 6 7 8 9 . . .

λk 1.000 0.999 0.989 0.974 0.963 0.946 0.933 0.904 0.805 . . .

Table 4.1: Perron eigenvalue cluster for r(ACC).

A first significant gap can be clearly observed after λ2 = 0.999, which would have
led to k = 2 conformations. A careful further analysis via the correlation matrix
W , however, led to the decision k = 8, which also shows a remarkable gap to the
rest of the spectrum. The eight conformations {D1c, D1t, . . . D4c, D4t} actually
show significant structural differences, which supply a lot of insight to the chemical
expert. In Table 4.2 we give the additional information about the probabilities for
the dynamical system to be within a conformation (first row) and the probabilities
to stay within a conformation (second row). In Fig. 4.4 two of the computed
conformations are presented. Observe that D2c and D3c differ in a turn of the
torsion angle χ and a flip–flop in the pseudo–angle P , which has appeared as an
essential variable from our computation.

conformations D1c D1t D2c D2t D3c D3t D4c D4t
prob. to be within 0.107 0.011 0.116 0.028 0.320 0.038 0.285 0.095
prob. to stay within 0.986 0.938 0.961 0.888 0.991 0.949 0.981 0.962

Table 4.2: Probabilities π(Bi) due to (4.21) and wii due to (4.20), i = 1, . . . , 8.
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Figure 4.4: Conformations D3c (left) and D2c (right) of the r(ACC) molecule. Left: 6 out of
37 torsion angles. Look at the torsion angle χ and the pseudo-angle P to compare.

Conformational transition rates. The transition probabilities between the con-
formations are collected in the (8, 8)-matrix W from (4.22) which here reads⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.986 5.310−3 1.410−5 8.110−3 5.310−4 0 0 0
5.110−2 0.938 1.010−2 4.610−6 2.610−4 6.310−4 0 1.110−7
4.010−5 3.110−3 0.949 4.810−2 0 3.610−7 3.610−5 2.610−5
2.710−3 1.610−7 5.710−3 0.991 7.710−8 0 8.010−4 1.210−9
4.910−4 2.510−5 0 2.110−7 0.961 1.310−2 2.510−2 7.310−4

0 2.610−4 5.010−7 0 5.610−2 0.888 3.510−3 5.210−2
0 0 4.710−6 9.010−4 1.010−2 3.410−4 0.981 7.410−3
0 1.410−8 1.010−5 4.010−9 9.010−4 1.510−2 2.210−2 0.962

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Recall that the diagonal elements of W are the same as the second row in Table 4.2,
whereas the first row in Table 4.2 does not show up in W .

Extension to larger molecules. The above moderate size molecule is a quite
good candidate to sharpen the mathematician’s knife in this kind of collaboration.
Biomolecules of real interest to our partners are larger – see e.g. the hammerhead
molecule as represented in Fig. 4.5.

This type of biomolecule consists of about 150 − 200 nucleotides; each nucleotide
gives rise to roughly 12 torsion angles, which sums up to about 2.000 torsion
angles that might generate conformations and should therefore be subdivided!
Fortunately, chemists report that usually the larger the molecules, the stiffer their
structure. If this is reliable, then covariance analysis for the associated HMC
data will bring up ”not too many” essential degrees of freedom that should still
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be tractable within our algorithmic framework. Future developments will include
parallelization of the ATHMC part, a hierarchical framework to sample all relevant
spatial configuration data, and a telescoping of the method with some kind of
subspace multigrid eigenproblem solver similar to the one presented in [48].

Figure 4.5: Hammerhead molecule, a flexible candidate for RNA drug design.
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almost invariant aggregates in reversible nearly uncoupled Markov chains. Lin.
Alg. Appl., accepted.

55



[38] P. Deuflhard, J. Lang, U. Nowak: Recent Progress in Dynamical Process Si-
mulation. In: H. Neunzert (ed.): Topics in Industrial Mathematics, Wiley &
Teubner Publishers, pp. 122–137 (1996).

[39] P. Deuflhard, P. Leinen, H. Yserentant: Concepts of an Adaptive Hierarchical
Finite Element Code. IMPACT Comp. Sci. Eng. 1, pp. 3–35 (1989).

[40] P. Deuflhard, M. Seebass: Adaptive Multilevel FEM as Decisive Tools in the
Clinical Cancer Therapy Hyperthermia. In: Choi–Hong Lai, Peter Bjørstad,
Mark Cross, O. Widlund (eds.), Procs. 11th International Conference on Do-
main Decomposition Methods (DD11), UK, 1998 (to appear 1999).

[41] P. Deuflhard, M. Seebass, D. Stalling, R. Beck, H.C. Hege: Hyperthermia
Treatment Planning in Clinical Cancer Therapy: Modelling, Simulation, and
Visualization. Plenary Keynote talk, 15th IMACS World Congress 1997. In:
Achim Sydow (ed.), Vol. 3, Computational Physics, Chemistry and Biology.
Wissenschaft and Technik Verlag, pp. 9–17 (1997).

[42] P. Deuflhard, M. Weiser: Local Inexact Newton Multilevel FEM for Nonlinear
Elliptic Problems. In [27], pp. 129–138 (1997).

[43] P. Deuflhard, M. Weiser, M. Seebass: A New Nonlinear Elliptic Multilevel
FEM Appied to Regional Hyperthermia. Konrad Zuse Zentrum, Preprint SC
98-35 (1998).

[44] P. Deuflhard, M. Weiser: Global Inexact Newton Multilevel FEM for Nonlinear
Elliptic Problems. In [53], pp. 71–89 (1998).

[45] P. Deuflhard, M. Wulkow: Computational Treatment of Polyreaction Kinetics
by Orthogonal Polynomials of a Discrete Variable. IMPACT Comp. Sci. Eng.1,
pp. 269–301 (1989).

[46] P. Deuflhard, M. Wulkow: Simulationsverfahren für die Polymerchemie. In
[7], pp. 117–136 (1995).

[47] A. Fischer, F. Cordes, and Ch. Schütte: Hybrid Monte Carlo with adaptive
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