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Abstract

Rare but important transition events between long lived states are a key feature of
many molecular systems. In many cases the computation of rare event statistics by direct
molecular dynamics (MD) simulations is infeasible even on the most powerful computers
because of the immensely long simulation timescales needed. Recently a technique
for spatial discretization of the molecular state space designed to help overcome such
problems, so-called Markov State Models (MSMs), has attracted a lot of attention. We
review the theoretical background and algorithmic realization of MSMs and illustrate
their use by some numerical examples. Furthermore we introduce a novel approach
to using MSMs for the efficient solution of optimal control problems that appear in
applications where one desires to optimize molecular properties by means of external
controls.
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1 Introduction

Stochastic processes are widely used to model physical, chemical or biological systems. The
goal is to approximately compute interesting properties of the system by analyzing the
stochastic model. As soon as randomness is involved there are mainly two options for per-
forming this analysis: (1) Direct sampling and (2) the construction of a discrete coarse
grained model of the system. In a direct sampling approach, one tries to generate a sta-
tistically significant amount of events that characterize the property of the system one is
interested in. For this purpose, computer simulations of the model are a powerful tool. For
example, an event could refer to the transition between two well-defined macroscopic states
of the system. In chemical applications such transitions can often be interpreted as reactions,
or in the context of a molecular system as conformational changes. Interesting properties
are e.g. average waiting times for such reactions or conformational changes and along which
pathways the transitions typically occur. The problem with a direct sampling approach is
that many interesting events are so called rare events. Therefore the computational effort
for generating sufficient statistics for reliable estimates is very high, and, particularly if the
state space is continuous and high dimensional, estimation by direct numerical simulation is
infeasible.

Available techniques for rare event simulations in continuous state space are discussed
in [1]. In this article, we will discuss approach (2) to the estimation of rare event statistics via
discretization of the state space of the system under consideration. That is, instead of dealing
with the computation of rare events for the original, continuous process, we will approximate
them by a so-called Markov State Model (MSM) with discrete finite state space. The reason
is that for such a discrete model one can numerically compute many interesting properties
without simulation, mostly by solving linear systems of equations as in discrete transition
path theory (TPT) [2]. We will see that this approach, called Markov State Modelling, avoids



the combinatorial explosion of the number of discretization elements with increasing size of
the molecular system in contrast to other methods for spatial discretization.

The actual construction of an MSM requires to sample certain transition probabilities
of the underlying dynamics between sets. The idea is (1) to choose the sets such that the
samling effort is much lower than the direct estimation of the rare events under consideration,
and (2) to compute all interesting quantities for the MSM from its transition matrix, cf. [2,3].
There are many examples for the successful application of this strategy. In [4], for example, it
was used to compute dominant folding pathways for the PinWW domain in explicit solvent.
However, we have to make sure that the Markov State Model approximates the orginial
dynamics well enough. For example, the MSM should correctly reproduce the timescales of
the processes of interest. These approximation issues have been discussed since more than
a decade now [5,6]; in this article we will review the present state of research on this topic.
In the algorithmic realization of Markov State Modelling for realistic molecular systems the
transition probabilities and the respective statistical uncertainties are estimated from short
MD trajectories only, cf. [7]. This makes Markov State Modelling applicable to many different
molecular systems and processes, cf. [8-13].

In the first part of this article we will discuss the approximation quality of two different
types of Markov State Models that are defined with respect to a full partition of state space
or with respect to so-called core sets. We will also discuss the algorithmic realization of
MSMs and provide references to the manifold of realistic applications to molecular systems
in equilibrium that are available in the literature today.

The second part will show how to use MSMs for optimizing particular molecular proper-
ties. In this type of application one wants to steer the molecular system at hand by external
controls in a way such that a pre-selected molecular property is optimized (minimized or
maximized). That is, one wants to compute a specific external control from a family of ad-
missible controls that optimizes the property of interest under certain side conditions. The
property to be optimized can be quite diverse: For example, it can be (1) the population
of a certain conformation that one wants to maximize under a side condition that limits
the total work done by the external control or (2) the mean first passage time to a certain
conformation that one wants to minimize (in order to speed up a rare event) but under the
condition that one can still safely estimate the mean first passage time of the uncontrolled
system. The theoretical background of case (1) has been considered in [14], for example,
and of case (2) in [1,15]. There one finds the mathematical problem that has to be solved
in order to compute the optimal control. Here we will demostrate that one can use MSMs
for the efficient solution of such a mathematical problem (for both cases). We will see that
the spatial discretization underlying an MSM turns the high-dimensional continuous optimal
control problem into a rather low-dimensional discrete optimal control problem of the same
form that can be solved efficiently. Based on these insights, MSM discretization yields an
efficient algorithm for solving the optimal control problem whose performance we will outline
in some numerical examples including an application to Alanine dipeptide.

2 MSM Construction

Let (X¢)t>0 be a time-continuous Markov process on a continuous state space E, e.g. E C R,
That is, X; is the state of the molecular system at time t as resulting from any usually used
from of molecular dynamics simulation, be it based on Newtonian dynamics with thermostats
or resulting from Langevin dynamics or other diffusion molecular dynamics models. The idea
of Markov State Modelling is to derive a Markov chain (Xk)keN on a finite and preferably
small state space E= {1, ...,n} that models characteristic dynamics of the continuous process



(X¢). For example, in molecular dynamics applications such characteristic dynamics could
refer to protein folding processes [16,17], conformational rearrangements between native
protein substates [18,19], or ligand binding processes [20]. Since the approximating Markov
chain (Xj)ken lives on a finite state space, the construction of an MSM boils down to the
computation of its transition matrix P

Py = P[Xp41 = j| Xp = i]. (1)

The main benefit is that for a finite Markov chain one can compute many interesting
dynamical properties directly from its transition matrix, e.g. timescales and metastability
in the system [5,21,22], a hierarchy of important transition pathways [2], or mean first
passage times between selected states. With respect to na MSM, these computations should
be used afterwards to answer related questions for the original continuous process. To do
this we must be able to link the states of the Markov chain back to spatial information of
the original process and the approximation of the process (X;) by the MSM must be valid
in some sense.

Having this in mind the first natural idea is to let the states of an MSM correspond to
sets Ay, ..., A, C E in continuous state space that form a full partition, i.e.

AnAj=0fori#j |JA=E (2)
i=1

Typical choices for such sets are box discretizations or voronoi tesselations [23]. For such a
full partition it is trivial to also define a corresponding discretized process by the original
switching dynamics between the sets. For a given lag time 7 > 0, we can define the index
process

Xp=ie Xpr € A (3)

It is well known that this process is not Markovian, mainly due to the so called recrossing
problem. It refers to the fact that the original process typically crosses the boundary between
two sets A; and A; several times when transitions take place, as illustrated in Figure 1. This
results in cumulative transitions between indices ¢ and j for the index process, that is, a not
memoryless transition behavior.

A

Figure 1: Cumulative transitions between two sets along boundaries are typical.

The non-Markovianity of the index process is often seen as a problem in Markov State
Modeling because many arguments assume that Xy is a Markov process. In this article, we



will not make this assumption. We interpret the process (X'k) as a tool to construct the
following transition matrix P”

Pl =P[Xji1 = j| Xy = 1] = P[X(k41)r € Aj|Xir € A}] (4)

ij
and hence the MSM as the Markov chain (X' k) ken associated with this transition matrix.
From above it is clear that in general we have X # X and in [24] it was analyzed how these
two processes relate in terms of density propagation. In the following, we will show under
which assumptions and in which sense the MSM (X x) will be a good approximation of the
original dynamics given by (X;). For convenience we will usually write P™ = P and leave
the 7-dependence implicit.

3 Analytical Results

In order to compare the MSM to the continuous process we introduce one of the key objects for
our analysis, the transfer operator of a Markov process. We assume that the Markov process
(X¢) has a unique, positive invariant probability measure p and that it is time-reversible.
Then, for any time-step ¢ > 0 we define the transfer operator T; via the property

/ Tiv(y)u(dy) = / v(z)p(t, z, A)u(dr) for all measurable A (5)
A E

as an operator Ty : L?(u) — L*(p). Here, p(t,z, A) = P[X; € A|Xy = z] defines the transition
probability measure and L?(u) denotes the Hilbert space of functions v with

/ o(y)2u(dy) < oo (6)
E

and the scalar product
o) = [ twyuleutin). ™

Note that T} is nothing else than the propagator of densities under the dynamics, but the
densities are understood as densities with respect to the measure pu. That is, if the Markov
process is initially distributed according to

PXo € A = [ wo(a)u(da), 0
A
its probability distribution at time t is given by
PX; € B] = / ve(x)p(dz), vy = Tyvp. 9)
B

The benefit of working with p-weighted densities is that the transfer operator T3 becomes
essentially self-adjoint on L?(u) for all cases of molecular dynamics satisfying some form of
detailed balance condition. Hence, it has real eigenvalues and orthogonal eigenvectors with
respect to (7) (or at least the dominant spectral elements are real-valued). Moreover, the
construction of an MSM can be seen as a projection of the transfer operator [25] . Assume Q
is an orthogonal projection in L?(1) onto an n-dimensional subspace D C L?(u) with 1 € D,
and x1, ..., Xn 1S a basis of D. Then, the so called projected transfer operator QT,Q : D — D
has the matrix representation

Py =PM™!, (10)



with the non-negative, invertible mass matrix M € R™" with entries

(X3 x5)
ij = . 11
1= ) )
The matrix P € R™" is also non-negative and has entries
Ty
p. - X Trxg) (12)
<Xi7 ]l>

Full Partition MSM. If we choose x; = 14, to be the characteristic function of set A;
for i = 1,...,n, one can easily check that we get M = I to be the identity matrix and

Pij = ]P)“[XT S Aj‘Xo S Az] (13)

as in (4). The subscript p shall indicate that Xy ~ p. So the transition probabilities are
evaluated along equilibrium paths.

The previously constructed transition matrix of the MSM based on a full partition can be
interpreted as a projection onto a space of densities which are constant on the partitioning
sets. This interpretation of an MSM is useful since it allows to analyze its approximation
quality. For example, in [25,26] it is proven that we can reproduce an eigenvalue A of a
self-adjoint transfer operator T; by the MSM by choosing the subspace appropriately. That
is, if u is a corresponding normalized eigenvector, @) the orthogonal projection to a subspace
D with 1 € D, then there exists an eigenvalue A of the projected transfer operator QT;Q
with

A=Al < Ad(1 - 6%)7 8,

where A; < 1 is the largest non-trivial eigenvalue of T} and 6 = ||u — Qul|.
In particular, for § < % one can simplify the equation to

A=Al < 200 (14)

An eigenvalue \; of the transfer operator directly relates to an implied timescales 7; of

the system via .
= Tlogtn) (15)

So the transition matrix (4) that we construct from transitions between the sets A4, ..., A,, will
generate a Markov chain that will reproduce the original timescales well if the partitioning
sets are chosen such that the corresponding eigenvectors are almost constant on these sets.
In this case 6 = ||u — Qul|, that is the approximation error of the eigenvector by a piecewise
constant function on the sets will be small.

The projection error § depends on our choice of the discretizing sets. As an example let
us consider a diffusion in the potential that is illustrated in Figure 2, that is, the reversible
Markov process given by the stochastic differential equation

dX; = —VV(X,)dt + V2ed B, (16)

where V is the potential, B; denotes a Brownian motion and € > 0.
The figure also shows a choice of three sets that form a full partition of state space. The
computation of the transition matrix (4) for o = 0.7 and a lag time 7 = 1 yields

0.9877 0.0123 0.0000
Pg =P =0.0420 0.9160 0.0419
0.0000 0.0123 0.9877
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Figure 2: A potential with three wells and a choice of 3 sets A1, Aa, As.

that has three eigenvalues \g = 1, \; = 0.9877, Ay = 0.9037. The following table shows the
two resulting implied timescales (15) in comparison to the timescales of the original system.

| & | T
original | 103.7608 | 11.9566
full partition 3 sets | 80.6548 | 9.8784

As one can see, the timescales are strongly underestimated. This is a typical phenomenon.
From a statistical point of view, the recrossing problem will lead to cumulatively appearing
transition counts when one computes the transition probabilities P,[X, € A;| X, € A;] from
a trajectory (Xy), as discussed above. Therefore on average transitions between sets seem to
become too likely and hence the processes in the coarse grained system get accelerated. We
have seen in (14) that this cannot happen if the associated eigenvectors can be approximated
well by the subspace that corresponds to the MSM. Figure 3 shows the first non-trivial
eigenvector u; belonging to the timescale 77 = 103.7608 and its best-approximation by a
step function.

The eigenvector is indeed almost constant in the vicinity of the wells, but within the
transition region between the wells the eigenvector is varying and the approximation by a
step function is not accurate. So we have two explanations why the main error is introduced
in the region close to shared boundaries of neighboring sets: (1) because of recrossing issues
and (2) because of the main projection error of the associated eigenvector. Of course, one
solution would be an adaptive refinement of the discretization, that is, one could choose a
larger number of smaller sets such that the eigenvector is better approximated by a step
function on these sets. In the following section, we will present an alternative solution for
overcoming the recrossing problem and reducing the projection error without refining the
discretization.

4 The Core Set Approach

From (10) we know how to compute a matrix representation for a projected transfer operator
for an arbitrary subspace D C L?(u). For a given basis x1, ..., xn we have to compute (11)
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Figure 3: The first non-trivial eigenvector u; (solid blue) and its projection Qui (dashed red) onto
step functions that are constant on A, As, As.

and (12), so
Y (1) N (xi, 1) ~

In general, the evaluation of these scalar products for arbitrary basis functions is a non-trivial
task. On the other hand, we have seen that for characteristic functions x; = 14, on a full
partition we do not have to compute the scalar products numerically since the matrix entries
have a stochastic interpretation in terms of transition probabilities between sets (13). This
means they can be directly estimated from a trajectory of the process which is a strong
computational advantage, particularly in high dimensional state spaces.

Now, the question is if there is another basis than characteristic functions that a) is
more adapted to the eigenvectors of the transfer operator, and b) still leads to a probabilistic
interpretation of the matrix entries (17) such that scalar products never have to be computed.
The basic idea is to stick to a set-oriented definition of the basis, but to relax the full partition
constraint. We will define our basis with respect to so called core sets Cy, ...,C,, C E that
are still disjoint, so C; N C; = (), but they do not have to form a full partition. Figure 4
suggests that this could lead to a reduction of the recrossing phenomenon since the sets do
not share boundaries anymore.

G,

Figure 4: Core sets do not have to share boundaries anymore. This can reduce the recrossing effect.

Now, we use the core sets to define our basis functions xi, ..., Xn. Assume T, is again



a self-adjoint transfer operator and consider n core sets C1,...,C,,. For every i, take the
committor function y; of the process with respect to core set C;, that is, x;(z) denotes
the probability to hit the core set C; next rather than the other core sets when starting
the process in z. If we now study the the projection @) onto the space spanned by these
committor functions, the two following properties hold [25,27].

(P1) The matrices M and P in (10) can be written as
My =PuXF =jIXp =i, Py =PuX{, =jIX; =1, (18)

where (X;7) and (X, ) are forward and backward milestoning processes [25,28], that is,

X, =1 if the process came at time ¢t = k7 last from core set C; and X',j = j if the
process went next to core set C; after time ¢ = k7.

(P2) Let u; be an eigenvector of T, that is almost constant on the core sets. Let the region
C = E\|J, C; that is not assigned to a core set be left quickly enough, so E,[7(C°)] < T;
for all € C, where 7; is the timescale associated with u; and E,[7(C°)] is the expected
hitting time of C° = J; C; when starting in « € C. Then, ||u; — Qu;|| is small, so the
committor approximation to the eigenvector is accurate.

The message behind (P1) is that it is possible to relax the full partition constraint and
use a core set discretization that does not cover the whole state space. We can still define a
basis for a projection of the transfer operator that leads to a matrix representation that can
be interpreted in terms of transition probabilities.

Important remark: The construction of the projection onto the committors is only nec-
essary for theoretical purposes. In practice, neither the committor functions, nor scalar
products between the committors have to be computed numerically, since the matrix entries
of M and P can be estimated from trajectories again.

Property (P2) yields that the relaxation of the full partition constraint should also lead
to an improvement of the MSM if the region C between the core sets is typically left on a
faster timescale than the processes of interest take place. Let us get back to the example from
above. We will see that we can achieve a strong improvement of the approximation by simply
excluding a small part of state space from our discretiazion. In Figure 5 we have turned our
initial full partition into a core set discretization by removing parts of the transition region
between the wells.

The matrix Pg = PM~! that represents the projection QT,@Q of the transfer operator
onto the committor space associated with the core sets is given by

0.9897 0.0103 0.0000
Pg =10.0352 0.9298 0.0351
0.0000 0.0103 0.9897

Comparing to the MSM for the full partition one can see that transitions between indices ¢
and j, i # j are less likely. As the following table shows this leads to a far more accurate
reproduction of the timescales in the system.

Ty T

original | 103.7608 | 11.9566
3 core sets | 100.8066 | 11.9145
full partition 3 sets | 80.6548 | 9.8784
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Figure 5: Excluding a small region of state space from the sets A1, Az, A3 as in Figure 2 to form core
sets C1,C2,C3 that do not share boundaries anymore.

From the discussion above this has to be expected because the eigenvectors are almost
constant in the vicinity of the wells and we removed a part of state space from the discretiza-
tion that is typically left quickly compared to the timescales 77 and T5. So, the committor
functions should deliver a good approximation of the first two eigenvectors. Figure 6 under-
lines this theoretical result.

5 Practical Considerations and MD Applications

In the previous sections we have interpreted the construction of an MSM as projection of
the dynamics onto some finite dimensional ansatz space. We have discussed two types of
spaces that both have been defined on the basis of a set discretization. First, we chose a full
partition of state space and the associated space of step functions, and second we analyzed a
discretization by core sets and the associated space spanned by committor functions. These
two methods have the advantage that the resulting projections lead to transition matrices
for the MSM with entries that are given in terms of transition probabilities between the sets.
That is, one can compute estimates for the transition matrices from simulation data. This
is an important property for practical applications because it means that we never need to
compute committor functions, or scalar products between committors or step functions. We
rather generate trajectories xg, 1, ...xxy of the process (X;), let us say for a time step h > 0,
8o x; = Xp;. For example, we can then define for a full partition Ay, ..., 4,, and a lag time
7 = nh the discrete trajectory s =i < z € A; and compute the matrix P

N—n
R C.
Pji= =2 Ci; = T ol . 19
J Zcij J kZ:(){k}{k+n]} (19)

It is well-known [29] that P is a maximum likelihood estimator for the full partition MSM
transition matrix (4). Similarly one can also compute estimates for a core set MSM by using
the definition of milestoning processes [27,28]. That is, if we have core sets Ci, ..., Cy,, a lag
time 7 = nh as before, and we define discrete milestoning trajectories by

s, =1 11 € A; or came last from A; before time k

s;r =i & x € A; or went next to A; after time k,
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Figure 6: Upper panel: The first non-trivial eigenvector u1 (solid blue) and its projection Qyu1 (finely
dashed red) onto stepfunctions (full partition) and its projection Q.u1 (dashed green) onto committors
(core sets). Lower panel: The same plot for the second non-trivial eigenvector us.

we can compute an estimator ]5@ = PM~! of the core set MSM matrix (10) by counting
transitions:

C.. N-—n
Py==2=  Cy= Yyl _pp (20)
J ;C’LJ J P { kf} { k+ni]}
N N
T tj L
Mij =g~y N = 2 Lo Ly 21
i k=0

Since in practice we will only have a finite amount of data available, we will have statistical
errors when constructing an MSM. This is an additional error to the projection error related
to the discretization that we have discussed above. On the other hand, one should note that
these errors are not independent of each other. For example, it is clear that if we take a
full partition of state space and we let the partition become arbitrarily fine by letting the
number of sets go to infinity, the discretization error will vanish. At the same time, for a fixed
amount of statistics, the statistical error will become arbitrarily large because we will need
to compute more and more estimators for transition events between the increasing number
of sets. For more information on statistical errors we refer to the literature [29,30].
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Besides the choice of discretization and the available statistics, the estimates above also
depend on a lag time 7. This dependence can be used to validate an MSM by a Chapman
Kolmogorov test [29]. This is based on the fact that the MSM matrices approximately form
a semi-group for all large enough lag times 7 > 7%, although for small lag times this is
typically not true due to memory effects. These facts also motivate to look at something like
an infinitesimal generator that approximately generates these MSM transition matrices for
large enough lag times. In [27], two types of generator constructions have been compared
for a core set setting. The first generator K is simply constructed from the transition rates
between the core sets in the milestoning sense, that is

T

N:.
T ij . . L B
K” = Th_I;I;o ??,Z # Vi K“ = éé KZ]7 (22)
VE]

where NE; is the amount of time in [0,7] the process has spent on its way from core set
C; to Cj, and RT is the total time in [0, 7] the process came last from C;. On the other
hand, one can see [27,31] that K* = KM~! with the mass matrix M from above (18) can
be interpreted as a projection of the original generator of the process, and also as derivative
of the core set MSM from above, i.e.

PM~t—1
K*=lim ——

T—0 T

; (23)

where P depends on 7 (17).

Let us now analyze how the choice of core sets, particularly the size of the core sets,
influences the resulting approximation. Therefore, we consider an MD example that was dis-
cussed in [27], namely one molecule of alanine dipeptide monitored via its ¢ and ¢ backbone
dihedral angles. Two core sets are defined as balls with radius r around the two points with
angular coordinates z, = (—80,—60) and z3 = (—80,170). The stationary distribution of
the process and the two centers of the core sets x,,xg in the angular space are shown in
Figure 7.

Figure 7: The stationary distribution of alanine dipeptide and the two centers of the core sets za,zg
in the angular space as white dots.

For computing a reference timescale several MSMs based on full partitions using 10,15,
and 250 sets have been constructed for increasing lag times. In [27], it is shown that in each
setting the estimate for the longest implied timescale of the process converged to =~ 19 ps

11



for large enough 7. Now the implied timescales for the two different generators K (22) and
K* (23) are computed. In Figure 8, the resulting timescales are plotted against the reference
timescale =~ 19 ps for varying size of the core sets.

W———F—— T

— — estimate from milestoning generator K
— estimate from projection K*
- reference estimate from standard MSMs

0 10 20 30 40 50 60
core size (angles)

Figure 8: Estimate of the implied timescales from K (22), the projected generator K* (23) and the
reference computed from several full partition MSMs.

One can see that the estimate by the milestoning generator K is rather sensitive to the
size of core sets. It overestimates the timescales for small core sizes and underestimates it
for larger core sizes. On the other hand, the projected genetator K* can never overestimate
the timescale due to its interpretation as projection. It is also rather robust against the
choice of size of the core sets until the core sets become too large, e.g. r > 15. Then, the
discretization becomes close to a full partition discretization using only two sets. In this
case the timescales have to be underestimated heavily because of recrossing phenomena. On
the other hand, the underestimation for very small core sets has to be explained by a lack
of statistics. When the core sets are chosen arbitrarily small, it is clearly more difficult for
the process to hit the sets and therefore transition events become rare. Note that for the
straightforward milestoning generator K the processes seem to become very slow, but for the
projected generator K* = KM ™! this effect is theoretically corrected by the mass matrix
M. Nevertheless, in both cases the generation of enough statistics will be problematic for
too small core sets.

Further Applications in MD. Markov State Modelling has been show to apply success-
fully to many different molecular systems like peptides including time-resolved spectroscopic
experiments [10-12], proteins and protein folding [4,9,13], or DNA [32]. In most of the re-
spective publications full partition MSMs are used and the underlying dicretization is based
on cluster finding methods, see [29] for a review. Core set based approaches have been used
just recently [10,27].

Very rare transitions between discretization sets. When constructing a full partition
or a core set MSM we have to estimate transition probabilities between sets in state space,
and it can happen that we cannot avoid that some of these transitions are very rare. That is,

12



the transition probabilities for a lag time 7 between some sets can be non-zero, but small even
if compared to the remaining transition probabilities that are small already. This is why it
is important to note that neglecting these very rare transitions during the construction of an
MSM does not harm its approximation quality. For example, we can define for a transition
matrix P another transition matrix P by

. {PM-, i, (0.0) ¢ R o
O’ Z#]»(Z;])GR

where R denotes the set of pairs of indices for which the transition are very rare and for
which we set the transition probability to zero. If the Markov chain is reversible and (i, j) €
R & (4,1) € R, one can show that for all ordered eigenvalues A\;(P) and A;(P) it holds that

M(P) = M(P) <max 3 Py (25)
Jj#4,(i,5)ER

That is, if we cannot estimate a very small transition probability P;; for a very rare transition
event between two sets A; and A;, and even totally neglect this probability by setting it to
zero, the timescales of the MSM remain almost unaffected. Thus, if we compute the set of
”first order” transition probability of a system correctly enough and ignore all ”higher order”
ones, then our accuracy will not be spoiled.

6 MSM for Optimal Control Problems

In this section we will borrow ideas from the previous section and explain how MSMs can be
used to discretize optimal control problems that are linear-quadratic in the control variables
and which appear in e.g. sampling of rare events. Specifically, we consider the case that
(Xt)1>0 is the solution of

dX, = (V2u; — VV(X,))dt + /2edBy (26)

with potential V, Brownian motion B; and temperature ¢ > 0 as in (16) and an unknown
control variable u: [0, 00) — R¢ that is chosen so as to minimize the cost function

J(u;z) = E UO (f(XS) + % |ut2> ds

(The factors of 1/2 and v/2 in front of the control terms are for notational convenience.)
Here f > 0 is a bounded continuous function called running cost and 7 < oo (a.s.) is
a random stopping time that is determined by X; hitting a given target set A C E, i.e.
7 = inf{t > 0: X; € A}, in other words, we are interested in controlling X; = X}* until it
reaches A. As an example, consider the case f =1 and A = C; with the potential considered
in Figure 5, which amounts to the situation that one seeks to minimize the time to reach the
core set C7 by tilting the potential towards the target set Cy; tilting the potential too much
is prevented by the quadratic penalization term in the cost functional that grows when too
much force is applied.

Other choices of f in (26) result in alternative applications. One obvious application
would be to set 7 =T to a fixed time and f to the characteristic function of the complement
of a conformation set C', f = 1g\¢. In this case, minimization of J wrt. the control u; would
mean maximization of the probability to find the system in the conformation C' until time T

Xo=1|. (27)
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under a penalty on the external work done to the system. See [14] for more details on such
applications.

There are other types of cost functions J one might consider, e.g. control until a deter-
ministic finite time 7 = T is reached, or even 7 — oo, and the construction would follow
analogously. For compactness we consider here only cost functions as in (27).

Optimal control and equilibrium expectation values. It turns out that when mini-
mizing J it is sufficient to consider control strategies that are Markovian and depend only
on X, i.e. we consider feedback laws of the form u; = «a(X;) for some smooth func-
tion a: E — RZ Moreover only controls with finite energy are considered, for otherwise
J(u;x) = co. For control problems of the form (26)—(27) the optimal feedback function can
be shown to be a*(x) = —v2VW where W is the value function or optimal-cost-to-go [1,15]

W(z) = muin J(u;x) (28)

with the minimum running over all admissible Markovian feedback strategies. It can be shown
that W satisfies the following dynamic programming equation of Hamilton-Jacobi-Bellman
type (see [33]):

LW(z) — VW (z)?+ f =0

29

with the second-order differential operator
L=eA-VV.V

that is the infinitesimal generator of the process X; for v = 0. If the value function W is
known, it can be plugged into the equation of motion which then turns out to be of the form

dX; = —VU(X])dt + V2edB; (30)

with the new potential
Ulx) =V(x)+2W(z).

The difficulty is that equation (29) is a nonlinear partial differential equation and for
realistic high-dimensional systems it is not at all obvious how to discretize it, employing
any kind of state space partitioning. It has been demonstrated in [14, 15] that (29) can
be transformed into a linear equation by a logarithmic transformation. Setting W(z) =
—elog ¢(x) it readily follows, using chain rule and equation (29), that ¢ solves the linear
equation

(L—e'f)¢p=0
ola=1.

The last equation is linear and can be solved by using MSMs as we will show below. Moreover,
by the Feynman-Kac theorem [34], the solution to (31) can be expressed as

(31)

1 T
o(x)=E [exp (—6/ f(Xt)dt> ‘Xo = x} , (32)
0
where X; solves the control-free equation
dXt = —VV(Xt)dt —+ V QEdBt .

That is, the optimal control for (26) can be computed by solving (31) which can be done
in principle via Monte-Carlo approximation of the expected value in (32) if critical slowing
down by rare events can be avoided.
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Remark. The optimization problem (28) admits an interpretation in terms of entropy
minimization: Let Q = Q% and P = QY denote the path probability measures of controlled
and uncontrolled trajectories starting at x at time ¢ = 0, and set

z- [ " F(X)ds,

then it follows that we can write

dq
W(x) = min J(u; ), J(u;x) = Z +el — ) ¢ dQ, 33
(1) = in Jwo), () /{ +eog(dp)}c2 (33)
where the notation “QQ < P” means that @ has a density! with respect to P. It turns out
that for every such @ there is exactly one control strategy u such that Q) = Q¥ is generated
by (26), in this sense the notation in (33) is meaningful. The second term

1(QIP) =< [ 10g (jfi) iQ

is the relative entropy or Kullback-Leibler divergence between ) and P. For details on this
matter that are based on Girsanov transformations for stochastic differential equations we
refer to [35] or the article [1] in this special issue.

7 MSM Discretization of Optimal Control Problems

The basic idea is now to choose a subspace D C L?(u) with basis x1, . .., x» as in Markov state
modelling and then discretize the dynamic programming equation (29) of our optimal control
problem by projecting the equivalent log transformed equation (31) onto that subspace. As
we will see the resulting discrete matrix equation can be transformed back into an optimal
control problem for a discrete Markov jump process (MJP).

We will do this construction for the full partition case x; = 14, and the core set case
Xi = ¢; discussed earlier. We will see that in both cases, we arrive at a structure-preserving
discretization of the original optimal control problem where the states of the corresponding
MJP will be related to the partition subsets A;. The first case will give us back a well-known
lattice discretization for continuous control problems, the Markov chain approximation [36].
This is illustrated in the following diagram:

SDE MJP
discretize - N
Linear equation Lp=¢1 _ -1
q p=¢"fo DV Go=e1f¢
W = —elog ¢ W:—elogé
? . .
Control Problem W =min, J(u) --------2------- > W = min, J(v)

Subspace projection. The key step for the discretization is that we pick a suitable sub-
space D C L?(u) that is adapted to the boundary value problem (31). Specifically, we
require that the subspace contains the constant function T € D and that it gives a good
representation of the most dominant metastable sets. To this end we choose basis functions
X1s- -+ Xn+1 With the following properties:

IThat is, the density function dQ/dP exists, is almost everywhere positive and normalized.
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(S1) The x; form a partition of unity, that is Z?jll x; = 1.

(S2) The y; are adapted to the boundary conditions in (31), that is x,+1/a = 1 and x;|a =0
forie {1,...,n}.

Now let @ be the orthogonal projection onto D, and define the matrices

F = X IX5) W L)
! <X’L'a 1> ! <X17 ]1>
Now, if ¢ solves the linear boundary value problem (31), then the coefficients qgl, ey QZJHH of

its finite-dimensional representation Q¢ = > j (;AS]- X; on the subspace D satisfy the constrained

linear system
1

Kij—e 'Fi;); =0, ie{l,....,n}
1( ) U) J (34)
d;n-‘rl:la

that is the discrete analogue of (31). The discrete solution ngS = Q¢ is optimal in the sense of
being the best approximation of ¢ in the energy norm, i.e.,

l6 = lla = it llo—vla, (35)

n

+

<.
Il

where

615 = (¢, (7' = L)g)
is the energy norm on L2(u), and the infimum runs over all functions ¢ € L?(u) that are
of the form +(z) = >_, ¢;x;(x) with coefficients ¢); € R. This is a standard result about
projections of PDEs, see [37] for details.? In analogy with equation (14) we can use the above
result to get the error estimate

~ 1 .
o3l < (1+ JalQAQ ) int o - vl (36)

where A = e~1f — L is a shorthand for the operator appearing in (31) and the constant
§ > 0 is defined such that [[v[|% > 6]|v]|% holds for all v € L?(u); see [38]. The bottom line of
(35) is that discretizing (31) via (34) minimizes the projection error measured in the energy
norm. Since all functions are p-weighted, the approximation will be good in regions visited
with high probability and less good in regions with lower probability. The error estimate
(36) is along the lines of the MSM approximation result: If we switch to the norm on L?(1),
the function (;AS = Q¢ is still almost the best approximation of ¢, provided that A leaves the
subspace D almost invariant. As was pointed out earlier this is exactly the case when the y;
are close to the eigenfunctions of A (e.g., when the system is metastable).

The best approximation error ||Q1¢||, = infyep ||¢ — 9|/, which appears in (36) will
vanish if the x; form an arbitrarily fine full partition of E. If we follow the core set idea from
section 4 and choose the x; to be committor functions, we have good control over ||Q¢||,.
Due to [38],

1Q 61l < IIP*¢llu + 1(C)? [8ll e + 201 P dloo] (37)

2By the same argument as in the previous sections A = ¢~1 f — L is symmetric and positive definite as an
operator on the weighted Hilbert space L2(u). Moreover Hqﬁ”i =N, fP) + e(Vp, V).
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where C' = E\U;C; is the transition region, x = sup, ¢ E;Tg\ ¢ is the maximum expected
time of hitting the metastable set from outside (which is short) and P is the orthogonal
projection onto the subspace V = {v € L?(u),v = const on every C;} C L?*(u). Note that
PL¢=0on C. The errors |P4|,, and || P+ ¢|/o measure how constant the solution ¢ is on
the core sets. Hence (37) together with (36) gives us complete control over the approximation
error of our projection method even if we consider just a few core sets. In section 8, we will
investigate the full and core set partition cases further.

Properties of the projected problem. We introduce now the diagonal matrix A with
entries A;; = ), Fi; (zero otherwise) and the full matrix G = K —e 1 (F—A), and rearrange

(34) as follows:
1

(Gij—e7'Ny) dj =0, ie{l,...,n}
1 (38)
é)n-l-l - 1,
This equation can be given a stochastic interpretation. To this end let us introduce

the vector 7 € R"*! with nonnegative entries m; = (x;, 1) and notice that Y, m; = 1 follows
immediately from the fact that the basis functions x; form a partition of unity, i.e. > . x; = 1.

n

+

.
Il

This implies that 7 is a probability distribution on the discrete state space E= {1,...,n+1}.
We summarise properties of the matrices K, F and G, see also [38]:

(M1) K is a generator matrix of a MJP (X;);>0 (i.e., K is a real-valued square matrix
with row sum zero and positive off-diagonal entries) with stationary distribution 7 that
satisfies detailed balance X

WiKij:ﬂ—jKjiu i,jGE

(M2) F >0 (entry-wise) with m; F;; = m; Fj; for all i,j € E.

(M3) G has row sum zero and satisfies 77G = 0 and m,G;; = 7;Gj; for all i,j € E;
furthermore there exists a constant 0 < C < oo such that G;; > 0 for all ¢ # j if
I/l < C. In this case equation (38) admits a unique and strictly positive solution
é>0.

Tt follows that if the running costs f are such that (M3) holds, then G is a generator matrix
of a MJP that we shall denote by (X;)¢>0, and (38) has a unique and positive solution. In

this case the logarithmic transformation W = —elog ¢ is well-defined. It was shown in [39]
that W can be interpreted as the value function of a Markov decision problem with cost
functional (cf. also [33])

J(vii) = E UO (FCE) + k(Ko v ) ds

Xy = z] (39)

that is minimized over the set of Markovian control strategies v: E— (0, 00) subject to the
constraint that the controlled process X; = X is generated by G¥ where

v v(i) 'Giju(g), i # ]
v LY 4
sz { _ Zj;ﬁi ij , =7 ( 0)

with stopping time 7 = inf{¢t > 0: X, =n+ 1} and running costs
o oL v(j) v(j)
f@) = Ay, k(z,v)sZGij{v(i) [1og1 +1;. (41)

i v(7)
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Properties of the projected problem, cont’d. From [39] we know that the optimal
cost, . .
W (i) = min J(v; )

is given by W = felogqg where ¢ solves (38), with the optimal feedback strategy given by
v*(i) = ¢; (see [33]). We list additional properties:

(i) The v-controlled system has the unique invariant distribution

N2
v(i)*m;
v v v v
= (], M), T o=
Zy
with Z, an appropriate normalization constant; in terms of the value function 7* = 7¥
reads 1
* * * * —2:" YW (i
T = (7], i), = OF
*

(ii) GV is reversible and stationary with respect to 7%, i.e., 7/ G}; = 7} G, for all i,j € E.

(iii) J admits the same interpretation as (33) in terms of the relative entropy:

. . . . dQ
W (i) = min J(v;4 J(v;1) = Z 1 — | pd
(7) gg}? (v;14), (v;14) /{ + elog (dP)} Q
where P denotes expectation with respect to the uncontrolled MJP X, starting at
Xo = i, @ denotes the path measure of the corresponding controlled process with
generator G and

Z/OTf(Xods-

A few remarks seem in order: Item (i) of the above list is in accordance with the continuous
setting, in which the optimally controlled dynamics is governed by the new potential U =
V +2W and has the stationary distribution p* oc exp(—2¢~1W)u with u being the stationary
distribution of the uncontrolled process. Hence the effect of the control on the invariant
distribution is the same in both cases. Further note that optimal strategies change the jump
rates according to

Gl =Gye—s (WO-WO), (42)

that is W acts as an effective potential as in the continuous case, and the change in the jump
rates can be interpreted in terms of Kramer’s law for this effective potential.

This completes our derivation of the discretized optimal control problem, and we now
compare it with the continuous problem we started with for the case of a full partition of E
and a core set partition of E.

8 Markov Chain Approximations and Beyond

Full partitions. Let E be fully partitioned into disjoint sets Aj,..., A,y1 with centers
Z1,...,Zn4+1 and such that A, y; := A, and define x; := xa,. These x; satisfy the assump-
tions (S1) and (S2) discussed in section 7. Since they are not overlapping, F' is diagonal,
and
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fi) =~ [ renterts = B (X01% € A (43)

is just obtained by averaging f(z) over the cell A;. (43) is also a sampling formula for
f@@). It follows directly that G = K, and in particular (M3) holds for any f. One can show
that K has components

1 pv(z:,)— V(e 1 g1 m(Si))
BV (Zi;)=V(z:)) ATl g1 \Zu) 44
Aij ‘ ’ * b m(hU)m(Al) ( )
if 7 and j are neighbours (K;; = 0 otherwise). Here m is the Lebesgue measure, and
hij, Si; and T;; are defined as in Figure 9. K is the generator of a MJP on the cells A; and
coincides with the so-called finite volume approzimation of L discussed in [40]. It is reversible
with stationary distribution

T = / du ~ m(A;)e PV @),
Aj

A, [ X
Tii
¢ J
@
A;

Figure 9: The mesh for the full partition.

One can show that the approximation error vanishes for n — oo. K and 7 can be
computed from the potential V' and the geometry of the mesh. By inspecting (12) and (13),
we see that K is connected to the transition matrix P” of a full partition MSM with lagtime
T by

1
(xi» Lxj) = Kij,

U

R .1 1

lim, - (Pf; — Mij;) = lim 7?1_<sz ;(TT - 1x;) =

thus K is the generator of the semigroup of transition matrices P”. Therefore we could

obtain K by sampling in the same way we obtained P” through equation (19) in section 5.

This is difficult however due to recrossing problems for small 7, see e.g. [41]. Finally, let

us note in passing that we can drastically simplify k? if the cells A; are boxes of length h.
Denote the elementary lattice vectors by e,,. Then

B = Sl P+ O), (i) = o (05 u(i +e) — log (i — )

1) = =|u’(1 uy (1) == —=— (logv(i + e,) — logv(i — e,
2 >t V2 2h 8 s
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which establishes the connection to the continuous case. But more is true: The whole
discrete control problem reduces to first order in A to the well-known Markov chain approx-
imation (MCA) [36], which allows us to use convergence theory for MCAs to conclude that
for n — oo, optimal control and value function of the discrete control problem converge to
their continuous counterparts. More details can be found in [38].

Core set partition. Now we choose core sets C1,...,Cphy1 with C,11 = A and we let
X; = ¢; to be the commitor function of the process with respect to C; as in section 4.
These x; satisfy the assumptions (S1) and (S2) discussed in section 7. The projection onto
the committor basis also allows for a stochastic interpretation. Recall the definition of the
forward and backward milestoning process )N(ti from (18). The discrete costs can be written
as

fi) = %(qi,fqu = /Vi(x)f(x)dx —E, [1(X0)| X7 = 1] (45)

where v;(x) = %ﬁ‘(m) = P(X, = z|X; = i) is the probability density of finding the
system in state x given that it came last from i. Hence f (i) is the average costs conditioned
on the information X; = i, i.e. X; came last from A;, which is the natural extension to
the full partition case where f (1) was the average costs conditioned on the information that
X € A,

The matrix K =m, Ny, Lg;) is reversible with stationary distribution

m = (gi, 1) = Pu(Xy =)

and is related to core MSMs again:

K = lim = (P — M)
T—0T

where P7™ and M are now the matrices for core MSMs as in (18). Formally, K is the
generator of the P7, but these do not form a semigroup since M # 1, and therefore we
cannot interpret K directly as e.g. the generator of Xt_ . Nevertheless, the entries of K are
the transition rates between the core sets as defined in transition path theory [42]. We can
sample P™ and M using (20) and (21), and because we used an incomplete partition, the
recrossing problem is removed, and there is no difficulty in sampling P for all lagtimes 7
and therefore K directly. It is worth noting that F' can also be sampled:

Fij=E, [f(Xt)X{Xj:j}’X; - Z}

Therefore, as in the construction of core MSMs, we do not need to compute committor
functions explicitly. Note however that G # L, there is a reweighting due to the overlap
of the ¢;’s which causes F' to be nondiagonal. This reweighting is the surprising bit of this
discretization. From properties (M1)-(M3) from section 7 we see however that G and K are
both reversible with stationary distribution 7. Finally, note that if the cost function f(x)
doesn’t satisfy ||f|lcc < C from (M3), G will not even be a generator matrix. In this case
(34) still has a solution & which is the bestapproximation to ¢, but this solution may not be
unique, it may not satisfy (;3 > 0, and we have no interpretion as a discrete control problem.
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9 Numerical Results

9.1 1D Potential Revisited

Firstly, we study diffusion in the triple well potential which is presented in Figure 2. This
potential has three mimima at approximately xo/; = £3.4 and z2 = 0. We choose the three
core sets C; = [x; — d, z; + 6] around the minima with § = 0.2. Take 7 to be the first hitting

time of Cp. We are interested in the moment generating function ¢(z) = E [6_67107—} of

passages into Cy and the cumulant generating function W = elog ¢. This is of the form (32)
for A= C; and f = o a constant function.

In Figure 10a the potential V' and effective potential U are shown for 3 = 2 and o = 0.08
(solid lines), cf. equation (30). One can observe that the optimal control effectively lifts
the second and third well up which means that the optimal control will drive the system
into Cy very quickly. The reference computations here have been carried out using a full
partition FEM discretization of (31) with a lattice spacing of A = 0.01. Now we study the
MJP approximation constructed via the committor functions shown in Figure 10b. These
span a three-dimensional subspace, but due to the boundary conditions the subspace D of the
method is actually two-dimensional. The dashed line in Figure 10a gives the approximation
to U calculated by solving (38). We can observe extremely good approximation quality,
even in the transition region. In Figure 10c the approximation to the optimal control a*(x)
(solid line) and its approximation &* = —v/2VIWW (dashed line) are shown. The core sets are
shown in blue. We can observe jumps in &* at the left boundaries of the core sets. This
is to be expected and comes from the fact that the committor functions are not smooth at
the boundaries of the core sets, but only continuous. Therefore the approximation to U is
continuous, but the approximation to a* is not.

Next we construct a core MSM to sample the matrices K and F. 100 trajectories of
length 7" = 20000 were used to build the MSM. In Figure 10d, W and its estimate using the
core MSM is shown for ¢ = 0.5 and different values of o. Each of the 100 trajectories has seen
about four transitions. For comparison, a direct sampling estimate of W using the same data
is shown (green). The direct sampling estimate suffers from a large bias and variance and is
practically useless. In contrast, the MSM estimator for W performs well for all considered
values of ¢ and always its variance is significantly small. The constant C' which ensures
(;3 > 0 when o < C is approximately 0.2 in this case. This seems restrictive but still allows
to capture all interesting information about ¢ and W.

9.2 Alanine Dipeptide

Lastly, we study a-(-transitions in Alanine dipeptide, a well-studied test system for Molecular
Dynamics applications. We use a 1us long trajectory simulated with the CHARMM 27 force
field. The conformational dynamics is monitored as usual via the backbone dihedral angles
¢ and 1. The data was first presented in [27]. We construct a full partition MSM with 250
clusters using k-means clustering. We are interested in the MFPT (i) = E;[7,] where 7, is
the first hitting time of the a conformation, which we define as a circle with radius r = 45
around (¢q,Ya) = (=80, —60). The MFPT vector £ solves the boundary value problem

Kt = —1outside of , t=0in e,

but since K is not available directly via sampling, we have to consider the equation

1 - .
—(PT"—1)t=—1outsideofa, t=0ina
-
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Figure 10: Three well potential example for € = 0.5 and o = 0.08. (a) Potential V (z) (blue), effective
potential U = V + 2W (green) and approximation of U with committors (dashed red). (b) The three
committors gi1(z), g2(z) and g3(x). (c) The optimal control a*(z) (solid line) and its approximation
(dashed line). Core sets are shown in blue. (d) Optimal cost W for 8 = 2 as a function of o. Blue:
Exact solution. Red: Core MSM estimate. Green: Direct sampling estimate.

instead. The result will depend on the choice of lagtime 7. In Figure 1la, the results
are shown for 7 = 5, we can identify the [-structure as the red cloud of clusters where
t(i) is approximately constant. In Figure 11b, f3, = E(f(i)|i € ) is shown as a function
of 7. We observe a linear behavior for large 7 which is due to the linear error introduced
in the replacement of K with X (P — 1) and a nonlinear drop for small 7 which is due to
Non-Markovianity. Our best guess is therefore a linear interpolation to 7 = 0, which is
indicated by the solid line. The result is tA(BOO)( = 35.5ps. As a comparison the reference value

tg‘;f = 36.1ps from [27] is shown as a dashed line. It was computed in [27] as an inverse

rate, using the slowest ITS and information about the equilibrium weights of the oz and beta
structure. We see very good agreement. The result is of course dependent though on the
assignment of clusters to the a and g structure. Some tests show that fgg as computed with
the interpolation method is fairly insensitive to this choice.

In [14] it is demonstrated how to use the method presented herein for maximizing the

population of the a-conformation of Alanin dipeptide based on the MSM used here.
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Figure 11: Dipeptide example. (a) MFPT from 3 to « in ¢ space for 7 = 5. The red cloud to the
right is the S-structure. (b) MFPT as a function of 7 (dashed line) and linear interpolation to 7 = 0
(solid line). Green dashed line: Reference computed via slowest ITS.

10 Conclusion

In this article, we have discussed an approach to overcome direct sampling issues of rare
events in molecular dynamics based on spatial discretization of the molecular state space.
The strategy is to define a discretization by subsets of state space such that the samling
effort with respect to transitions between the sets is much lower than the direct estimation
of the rare events under consideration. That is, without having to simulate rare events we
construct a so called Markov State Model, a Markov chain approximation to the original
dynamics. Since the state space of the MSM is finite, we can then calculate the properties
of interest by simply solving linear systems of equations. Of course, it is crucial that these
properties of the MSM can be related to the rare event properties of the original process that
we have not been able to sample directly.

This is why we have analyzed the approximation quality of MSMs in the first part of the
article. We have used the interpretation of MSMs as projections of the transfer operator to
(1) derive conditions that guarantee an accurate reproduction of the dynamics, and (2) show
how to construct models based on a core set discretization by leaving the state space partly
undiscretized.

In the second part of the article, we have used the concept of MSM discretization to
solve MD optimal control problems in which one computes the optimal external force that
drives the molecular system to show an optimized behavior (maximal possible population in
a conformation; minimal mean first passage time to a certain conformation) under certain
constraints. We have demonstrated that the spatial discretization underlying an MSM turns
the high-dimensional continuous optimal control problem into a rather low-dimensional dis-
crete optimal control problem of the same form that can be solved efficiently. This result
allows two different types of application: (1) If one can construct an MSM for a molecular
system in equilibrium, then one can use it to compute optimal controls that extremize a given
costs criterion. (2) If an MSM can be computed based on transition probabilities between
neighboring core sets alone then the rare event statistics for transitions between strongly sep-
arated metastable states of the system can be computed from an associated optimal control
problem that can be solved after discretization using the pre-computed MSM.
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