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A Primal-Dual Approximation Algorithm for the
Steiner Connectivity Problem§

Ralf Borndörfer∗ Marika Karbstein∗

Abstract

We extend the primal-dual approximation technique of Goemans and Williamson
to the Steiner connectivity problem, a kind of Steiner tree problem in hypergraphs.
This yields a (k+1)-approximation algorithm for the case that k is the minimum
of the maximal number of nodes in a hyperedge minus 1 and the maximal number
of terminal nodes in a hyperedge. These results require the proof of a degree prop-
erty for terminal nodes in hypergraphs which generalizes the well-known graph
property that the average degree of terminal nodes in Steiner trees is at most 2.

1 Introduction
Goemans and Williamson [3] developed a primal-dual approximation technique for
graph problems. They showed that this technique yields a 2-approximation algorithm
for Steiner tree and Steiner forest problems.

In this article we extend the primal-dual algorithm to the Steiner connectivity prob-
lem. This problem can be seen as a Steiner tree problem in hypergraphs. It can also be
seen as a generalization of the Steiner tree problem in graphs, where we consider a set
of paths instead of edges. More precisely, the task is to connect a subset of nodes, the
terminal nodes, by a set of paths (out of a given set) with minimum cost. The Steiner
connectivity problem is the prototype problem for line planning in public transport
with integrated passenger routing which is considered in, e. g., [1, 6, 7]. A detailed
investigation of the Steiner connectivity problem can be found in [2] and [4]. We prove
that the primal-dual algorithm yields a (k+1)-approximation guarantee for the Steiner
connectivity problem where k is the minimum of (a) the maximum number of edges in
a path and (b) the maximum number of terminal nodes in a path. Note that we have
k = 1 for the Steiner tree problem, i. e., the 2-approximation result for this special case
is included.

Goemans and Williamson [3] prove the approximation factor for the Steiner tree
problem by using the fact that the average degree of a terminal node (number of edges
§Supported by the DFG Research Center Matheon “Mathematics for key technologies”
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Figure 1: Example of a Steiner connectivity problem. Left: A graph with four terminal nodes
(T = {a, d, e, f}) and six paths

(
P = {p1 = (a, b, c, d), p2 = (e, f, g), p3 = (a, e), p4 = (e, f, c), p5 =

(g, d), p6 = (f, g, c, d)}
)
. Right: A feasible solution with three paths (P′ = {p3, p4, p6}).

incident to the node) in a tree is at most 2. We generalize this result to our case.
Namely, we show that the average path-degree of a terminal node (number of paths
incident to the node) for an inclusion wise minimal solution is at most k+1 where k is
defined as in the above cases (a) and (b).

The Steiner connectivity problem can also be defined as a kind of Steiner tree
problem in hypergraphs by interpreting each path as a hyperedge in a hypergraph with
the same node and terminal node set. The problem is then to find a cost minimal set
of hyperedges that connect all terminal nodes. The degree property can be interpreted
in a straight forward way in hypergraphs.

The (k+1)-approximation result for case (a) was stated in the context of hypergraphs
by Takeshita, Fujito, and Watanabe [5] in a paper written in Japanese. As far as we
could find out, however, they do not give a proof for the degree property for this
case. In fact, an inquiry with the authors and several other persons in the hypergraph
community revealed that there is none published. Case (b) is new and extends the
result.

We use the following notation. We are given an undirected graph G = (V,E), a
set of terminal nodes T ⊆ V , and a set of elementary paths P in G. We denote by
V (p) ⊆ V the set of nodes and by E(p) ⊆ E the set of edges of p; V (P′) = ∪p∈P′V (p)
and E(P′) = ∪p∈P′E(p), P′ ⊆ P. We assume that each edge is covered by at least
one path p ∈ P; in particular, G has no loops. A set P′ ⊆ P is T -connecting if every
two nodes in T are connected in the subgraph H = (V,E(P′)). By assumption P is
V -connecting if H = G is connected. The paths have nonnegative costs c ∈ RP

+. The
Steiner connectivity problem is to find a T -connecting set P′ ⊆ P of minimum cost.
Figure 1 gives an example of a Steiner connectivity problem and a feasible solution.
The length |p| = |E(p)| of a path is the number of edges it contains. Finally, we denote
by degP(v) = |{p ∈ P : v ∈ V (p)}| the path-degree w. r. t. P of node v ∈ V . We skip
“w. r. t. P” in the notation if there is no danger of confusion.

The article is structured as follows. We state the degree property and a self-
contained proof in Section 2. In Section 3 we will describe and proof the primal-dual
approximation algorithm for the Steiner connectivity problem.
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2 The Degree Property
If the length of all paths in P is 1, i. e., the paths correspond to edges, a minimal V -
connecting set is a spanning tree in G. A tree has |V | nodes and |V |−1 edges, and each
edge is incident to exactly two nodes. The average node degree in a tree is therefore
2(|V |−1)
|V | ≤ 2− 2

|V | ≤ 2, i. e., at most 2. It is well known that this bound also holds for the
average degree of a terminal node in an inclusion wise minimal Steiner tree, because
each non-terminal node has degree at least 2. In contrast to that, a non-terminal node
in an inclusion wise minimal T -connecting set can have a path-degree of 1, compare
with node g in the right of Figure 1. However, the degree property of terminal nodes
in Steiner trees can be generalized to minimal T -connecting sets as follows.

Lemma 2.1 (Degree Lemma). The average path-degree of a terminal node w. r. t.
an inclusion wise minimal T -connecting set P′ is at most (k + 1), where k denotes the
minimum of
(a) the maximal number of edges in a path,
(b) the maximal number of terminal nodes in a path.

More precisely, we have∑
t∈T

degP′(t) ≤ (k + 1)(|T | − 1), k = min{max
p∈P
|p|,max

p∈P
|T ∩ V (p)|}.

Proof. We only consider paths that contain at least one terminal node since these are
the only paths that contribute to the path-degree of the terminal nodes. Denote the
set of these paths by P′(T ). The idea of the proof is to consider these paths in such
a sequence that either each path or a pair of paths establishes a connection to some
new terminal. Reaching all terminals then requires at most |T | − 1 such paths or pairs
of paths. This gives rise to a sum of path-degrees at the terminal nodes of at most
(|T | − 1)(k+1). The details of this argument are as follows. Define a starting order on
P′(T ) as follows.

P′(T ) = {p1, . . . , pn} = {p11, . . . , p1s1 , . . . , p
`
1, . . . , p

`
s`
},

where
◦ V (pji ) ∩ (∪i−1r=1V (pjr)) 6= ∅, j = 1, . . . , `, i = 2, . . . , sj, and
◦ pji ∩ p

j̃

ĩ
= ∅, for all j 6= j̃, i = 1, . . . , sj, ĩ = 1, . . . , sj̃,

i. e., the graph induced by the paths pj1, . . . , p
j
i , i ≤ sj, j ∈ {1, . . . , `}, is connected

and there is no connection to the graph induced by the paths pj̃1, . . . , p
j̃

ĩ
, ĩ ≤ sj̃, j̃ ∈

{1, . . . , `}, j 6= j̃.
We define Ti = ∪ij=1(V (pi) ∩ T ) to be the set of terminal nodes that are covered by

p1, . . . , pi. We have Ti ⊆ Ti+1, i = 1, . . . , n− 1, and Ti = Ti+1 is also possible. Figure 2
shows the notation of this proof on an example.

Let r1 ≥ 1 be the number of terminal nodes contained in path p1, i. e., r1 = |T1|.
For i ≥ 2 let ri = |Ti \ Ti−1| be the number of additional terminal nodes contained in
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Figure 2: Given is an inclusion wise minimal T -connecting set for T = {A,B,C,D}. The proof of
Lemma 2.1 considers only p1, p2, p3, p5. A starting order can be P′(T ) = {(p1, p2, p3), (p5)} which is
also a final order. We have T1 = T2 = {A,B}, T3 = {A,B,C}, T4 = {A,B,C,D}. The path p1 gives
rise to case 1., while p2 comes in case 2. Paths p2 and p3 constitute a pair.

pi, i. e., terminal nodes not contained in Ti−1. Then we have one of the following two
cases:

1. ri ≥ 1; then the maximum number of terminal nodes from the set Ti−1 contained
in path pi is
◦ the minimum of |Ti−1|−1 = (

∑i−1
j=1 rj)−1 and k+1−ri, if k is the maximum

length of the paths, or
◦ the minimum of |Ti−1| − 1 = (

∑i−1
j=1 rj)− 1 and k − ri, if k is the maximum

number of terminal nodes.
In both cases, pi increases the sum of the path-degrees of all terminal nodes by
at most ri plus the minimum of k and (

∑i−1
j=1 rj)− 1.

2. ri = 0, i. e., pi contains a subset of terminal nodes of Ti−1. Note that the order of
the paths implies that the terminal nodes in pi are connected by a subset of the
paths p1, . . . , pi−1.
Due to minimality, there has to exist a path ph, h > i, with V (pi) ∩ V (ph) 6= ∅
such that ph adds rh ≥ 1 new terminal nodes and covers no terminal nodes of Ti,
i. e., pi and ph have a non-terminal node in common. Move path ph to position
i+ 1. Both paths, pi and ph, increase the sum of the path-degree of the terminal
nodes by at most rh plus the minimum of {|Ti| − 1 = (

∑i−1
j=1 rj)− 1, k}:

◦ If k is the maximum path-length, pi contains at most k terminal nodes since
it has a non-terminal node in common with ph.
◦ If k is the maximum number of terminal nodes in a path, the statement

above is also true.
The (final) order of the set P′(T ) yields m paths and pairs of paths, respectively, that
increase the path-degree on all terminal nodes by at most ri +min{k, (

∑i−1
j=1 rj) − 1},

ri ≥ 1, i = 1, . . . ,m ≤ n. Let 1 ≤ j ≤ m be an index such that (i) and (ii) below are
satisfied (if

∑m
i=1 ri ≤ k, the Lemma holds trivially); clearly (iii) – (v) also hold.

(i)
∑j

i=1 ri ≥ k + 1,
(ii)

∑j−1
i=1 ri ≤ k,
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Figure 3: Worst case example for the Degree Lemma 2.1, case (a) (left) and case (b) (right).

(iii) r1 + . . .+ rm = |T |,
(iv) m ≤ |T |,
(v) j ≤ k + 1.

We can then bound the sum of the path-degrees on all terminal nodes as follows:∑
t∈T

degP′(t) =
∑
t∈T

degP′(T )(t)

≤ r1 + (r2 +min{k, r1 − 1}) + . . .+ (rm +min{k, (
m−1∑
i=1

ri)− 1})

≤ r1 + r2 + (r1 − 1) + . . .+ rj + (r1 + . . . rj−1 − 1) + rj+1 + k + . . . rm + k

(i)-(iii)
≤ |T |+ (r1 − 1) + . . .+ (r1 + . . .+ rj−1 − 1) + (m− j)k (1)

(ii),(iv)
≤ |T |+ k(j − 1)− 1 · (j − 1) + (|T | − j)k
= |T |+ jk − k − j + 1 + |T |k − jk

if j ≥ 2
≤ |T | − 1 + |T |k − k = (|T | − 1)(k + 1).

For j = 1 we have m− 1 ≤ (|T | − r1) ≤ (|T | − 2) since r1 = k + 1 ≥ 2 and, therefore,

(1) = |T |+ (m− 1)k ≤ |T |+ (|T | − 2)k
≤ |T |+ |T |k − k − 1 = (|T | − 1)(k + 1).

We briefly show that this bound is tight for case (a) and (b) of Lemma 2.1. Consider
the instance in the left of Figure 3. All nodes are terminal nodes. We have n nodes
in the rim and k nodes in the middle. Suppose each path contains one node of the
rim and all nodes in the middle. All paths together form a minimal V -connecting set.
We have n nodes with path-degree 1 and k nodes with path-degree n, i. e., the total
degree is n(k+1), which gives an average path-degree of n(k+1)

(n+k)
. This is arbitrarily close

to (k + 1) as n goes to infinity. This instance can be slightly modified to get a worst
case example for case (b), compare with the right of Figure 3. We have n additional
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non-terminal nodes in the inner rim and each path contains a non-terminal node in the
inner rim and all nodes in the middle. We further have n paths that connect the outer
rim with the inner rim. The maximal number of terminal nodes in a path is k and we
have the same path degree for each terminal node as for the case (a) above.

3 The Primal-Dual Algorithm
In the following we will construct a primal-dual algorithm to find a T -connecting set.
It is analogous to the algorithm of Goemans and Williamson [3] for the Steiner forest
problem. Our application to the Steiner connectivity problem is listed in Algorithm 1.

The algorithm constructs a T -connecting set P′. In the beginning P′ = ∅ and each
terminal node is considered to form a connected component that contains only itself.
The idea is to extend and merge the connected components along paths until we have
only one connected component left. In each iteration moats around the connected
components are grown until a path goes tight. The radii of the moats correspond to the
values of the dual variables for the cuts around the connected components, and a path
goes tight if its associated inequality in the dual program becomes an equality, compare
with equation (2).

More precisely, let Bi be the set of all connected components in iteration i of Al-
gorithm 1; the initial set is B0 = {{t} : t ∈ T}, i. e., the set of all terminal nodes.
We iterate as long as Bi consists of more than one connected component. Denote by
Bi
p = {b ∈ Bi : p ∈ Pδ(b)} the set of connected components the path p “cuts” in iter-

ation i. Here, Pδ(b) := {p ∈ P : δ(b) ∩ E(p) 6= ∅}. We set |Bi
p| = 0 for Bi

p = ∅. In
iteration i we choose, among paths p ∈ P with |Bi

p| > 0, a path for which the quo-
tient of reduced cost and number of connected components the path cuts in iteration
i is minimal, line 4. Denote by ai this minimum value, line 5; it gives the maximum
amount the dual variables can be increased. The associated path is added to P′ (ties
broken arbitrarily), line 6, and the dual variables or moat radii are increased by the
value ai, line 8. If the path contains several connected components, these are merged
into one connected component, line 10. All non-terminal nodes of the path are also
added to the new connected component. Note that the path contains at least two con-
nected components or at least one connected component and one non-terminal node.
Line 12 is an updating step to prepare the computation of the next amount of increase
of the dual variables. The final set of chosen paths is T -connecting. In the end of the
algorithm, lines 16 to 20, we consecutively remove paths as long as the resulting set is
still T -connecting to obtain a minimal T -connecting set P′.

Let W = {W ⊂ V ; ∅ 6= W ∩ T 6= T}. We call the set Pδ(W ) := {p ∈ P :
δ(W )∩E(p) 6= ∅} of all paths that cross the cut δ(W ) = {e ∈ E | |e∩W | = 1} at least
once a Steiner path cut. The analysis of Algorithm 1 is based on the consideration of
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Algorithm 1: A primal-dual heuristic for the Steiner connectivity problem.
Input : A connected graph G = (V,E), a set of paths P with costs c ∈ RP

≥0, a
set of terminal nodes T ⊆ V .

Output: A T -connecting set P′ ⊆ P.

B0 := {{t} | t ∈ T}}, P′ := ∅, c0p := cp for all p ∈ P, i := 01

yW := 0∀W ⊂ V , W ∩ T 6= ∅, V \W ∩ T 6= ∅ //only set when needed2

while |Bi| > 1 do3

p = argminq∈P{
ciq
|Biq |

: |Bi
q| > 0}4

ai :=
cip
|Bip|5

P′ := P′ ∪ {p}6

for all b ∈ Bi do7

yb := yb + ai8

end9

Bi+1 := (Bi \Bi
p) ∪ {b1 ∪ . . . ∪ bk ∪ V (p)} with {b1, . . . , bk} := Bi

p10

for all q ∈ P \ P′ do11

ci+1
q := ciq − |Bi

q|ai12

end13

i := i+ 114

end15

for all p ∈ P′ do16

if P′ \ p is T -connecting then17

P′ := P′ \ p //deleting step18

end19

end20

the following dual programs:

min
∑
p∈P

cp xp max
∑
W∈W

yW

s.t.
∑

p∈Pδ(W )

xp ≥ 1 ∀W ∈ W s.t.
∑

W∈W:p∈Pδ(W )

yW ≤ cp ∀ p ∈ P

xp ≥ 0 ∀ p ∈ P yW ≥ 0 ∀W ∈ W.

(2)

The primal program is the LP relaxation of the undirected cut formulation of the Steiner
connectivity problem. It minimizes the cost of a set of paths. This set of paths has to
contain at least one path of each Steiner path cut and is, hence, a T -connecting set.

Proposition 3.1. Setting xp = 1 for all p ∈ P′, xp = 0 for all p ∈ P \ P′, and using
variables y as defined at the end of Algorithm 1 gives solutions for the primal and dual
programs (2).

Proof. It is easy to see that P′ is a T -connecting set. Now, consider yW , W ∈ W .
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Clearly, yW ≥ 0, W ∈ W . Let p ∈ P and r be the last iteration of the while-loop, i. e.,
at the end of this last iteration ar and cr+1

p , p ∈ P \ P′, are defined. Then we get

∑
W∈W:p∈Pδ(W )

yW
(i)
=

r∑
i=0

∑
b∈Bip

ai
(ii)
= c0p − cr+1

p

(iii)

≤ cp. (3)

(i) Compare with line 8 in Algorithm 1.
(ii) We use the following equations, compare with line 12 in the algorithm,

cr+1
p = crp −

∑
b∈Brp

ar = c0p −
r∑
i=0

∑
b∈Bip

ai.

(iii) This follows since 0 ≤ cr+1
p ≤ c0p = cp, compare with lines 1, 4, and 5 in Algo-

rithm 1.
Hence, y is feasible for the dual program in (2). Moreover, we have equality in (3) for
p ∈ P′, i. e.,∑

W∈W:p∈Pδ(W )

yW = cp. (4)

Proposition 3.2. Given a Steiner connectivity instance, let Popt be the minimum cost
T -connecting set and P′ a T -connecting set computed with Algorithm 1. Then

c(P′) ≤ (k + 1) c(Popt)
(
1− 1

|T |

)
,

i. e., Algorithm 1 is a (k + 1)-approximation algorithm with k being the minimum of
(a) the maximal number of edges in a path,
(b) the maximal number of terminal nodes in a path.

Proof. Summing up the cost of all paths in P′, we get∑
p∈P′

cp
(4)
=
∑
p∈P′

∑
W∈W:p∈Pδ(W )

yW =
∑
W∈W

∑
p∈Pδ(W )∩P′

yW =
∑
W∈W

degP′(W )yW .

If we can show the following∑
W∈W

degP′(W )yW ≤ (k + 1)
(
1− 1

|T |

) ∑
W∈W

yW , (5)

we are done. Note that this is more general than to require degP′(W ) ≤ (k+1)(1− 1
|T |).

We show inequality (5) by induction over the iterations of the algorithm. Initially,
yW = 0 for all W ∈ W , so inequality (5) is true. Now, we have to show that the
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increase on the left hand side is smaller than the increase on the right hand side in
every iteration, i. e., for each iteration i we have to show the following

ai
∑
b∈Bi

degP′(b) ≤ (k + 1)
(
1− 1

|Bi|

)∑
b∈Bi

ai
|Bi|≤|T |
≤ (k + 1)

(
1− 1

|T |

)∑
b∈Bi

ai

⇔
∑
b∈Bi

degP′(b) ≤ (k + 1)(|Bi| − 1) = (k + 1)
(
1− 1

|Bi|

)
|Bi|.

Each b ∈ Bi is connected. Consider the graph G̃ that contains a node for each b ∈ Bi

and all nodes v ∈ V that are not contained in one of the b ∈ Bi. Then the final set
P′ restricted to G̃ is a minimal Bi-connecting set. The rest follows with the Degree
Lemma 2.1 since P′ is minimal.
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