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Zusammenfassung
Das Hyperassignment-Problem, das in der hier behandelten Version von Borndör-
fer und Heismann in [BH12] eingeführt wurde, kann als eine Verallgemeinerung des
perfekten Matching-Problems in Graphen gesehen werden.
Gegeben ist ein Hypergraph H = (V,W,A), wobei V und W zwei gleich große,

disjunkte Knotenmengen sind und eine Menge an Hyperkanten A ⊆ 2V ∪W , sodass
|a ∩ V | = |a ∩W | für jede Hyperkante a ∈ A gilt. Zusätzlich sind Kosten ca ∈ R
auf den Hyperkanten a ∈ A gegeben. Gesucht wird nun ein perfektes Matching, das
Borndörfer und Heismann auch Hyperassignment nennen, mit minimalem Gewicht
bezüglich der Gewichtsfunktion c.
Nach einer kurzen Einleitung und Zusammenfassung einiger wichtiger Resultate

der Linearen Optimierung werden in dieser Arbeit zunächst einige Grundlagen der
Theorie der Hypergraphen analog zur Graphentheorie entwickelt. Danach werden in
Kapitel 4 balancierte Hypergraphen behandelt, die eine Verallgemeinerung bipartiter
Graphen darstellen, sowie normale Hypergraphen, welche genau die Klasse bilden,
deren Matching-Polytop ganzzahlig ist.
Anschließend wird das Hyperassignment-Problem in partitionierten Hypergraphen

untersucht. Ein partitionierter Hypergraph ist ein Hypergraph H = (V,W,A), in
dem V und W partitioniert werden können, also V = V1 ∪ V2 ∪ . . . ∪ Vk und W =
W1∪W2∪ . . .∪Wr, sodass zusätzlich für jede Hyperkante a ∈ A Indizes i ∈ {1, . . . , k}
und j ∈ {1, . . . , r} existieren mit a∩ V ⊆ Vi und a∩W ⊆ Wj. Besonders interessant
sind partitionierte Hypergraphen, bei denen die Parts höchstens Größe sieben haben,
da diese in der Praxis vorkommen. Jedoch ist das Hyperassignment Problem selbst für
partitionierte Hypergraphen, in denen jeder Part höchstens aus zwei Knoten besteht,
NP-schwer.
Der Schwerpunkt des fünften Kapitels liegt auf der Untersuchung des Matching-

sowie des perfekten Matching-Polytops partitionierter Hypergraphen, insbesondere
solcher mit Parts der Größe zwei. Für einige dieser Hypergraphen kann die Dimen-
sion des perfekten Matching-Polytops angegeben werden, was für allgemeine Hyper-
graphen sehr schwer ist. Außerdem werden gültige Ungleichungen und Facetten der
beiden Polytope beschrieben.
Zusätzlich wird gezeigt, dass die triviale LP-Relaxierung der folgenden IP-Formulie-

rung des Hyperassignment-Problems eine unbeschränkte Ganzzahligkeitslücke be-
sitzt:

mina∈A caxa
unter

∑
a∈A:v∈A

xa = 1 ∀v ∈ V ∪W

xa ∈ {0, 1} ∀a ∈ A.

Sucht man nur ein kostenminimales Matching, so besitzt die triviale LP-Relaxierung
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nur eine Ganzzahligkeitslücke von drei für partitionierte Hypergraphen mit Parts der
Größe zwei.
Neben der theoretischen Seite werden zum Schluss die Ergebnisse der Berechnung

minimaler gebrochener Beispiele für partitionierte Hypergraphen mit Parts der Größe
zwei, die insgesamt höchstens zwölf Knoten besitzen, vorgestellt.
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1. Motivation
Regularity plays an important role in rail transport. Passenger usually prefer regular
schedules, i.e., the schedule on Monday should be nearly the same as that on Tuesday,
Wednesday, etc. If the schedule is regular, then also the vehicles serving the trips
should be similar on each day.
The problem to assign railway vehicles to trips in a given timetable is known as

Railway Vehicle Rotation Planning. The timetable repeats itself every week and most
trips appear nearly every day. This regularity should be transferred to the schedule of
the railway vehicles. For example, if on Monday the trip 1091 from Berlin to Munich
is followed by the trip 1090 from Munich to Berlin, then this should be the case on
all other days on which both trips exists, in this case from Monday to Friday.
It is clear that regular schedules are easier to handle in practice than non-regular

ones. Therefore, Borndörfer, Reuther, Schlechte and Weider introduced a model using
hypergraphs, see [BRSW11]. Furthermore, Borndörfer and Heismann investigated a
simpler version of this problem in [BH11] on which we will focus now.
As above, a weekly repeating timetable is given, which consists of trips from a

departure station to another station together with the departure day, the departure
time, and its duration. We have to assign one vehicle to every trip. During a trip the
vehicle does not change, so we are only interested in the departure and the arrival
location, the departure time, and the duration of the trip, and not in the intermediate
stops of the trip. The arrival location of a trip need not be the departure location of
the following trip because a vehicle can do a “deadhead trip” to another train station
without any passengers.
The aim is to construct an assignment of each trip to a trip served after it with the

same vehicle. Starting with one fixed trip, we get a sequence of trips served by the
same vehicle, which eventually has to become periodic as the timetable is periodic.
Thus, the trips of the timetable are partitioned into disjoint rotations each operated
by a different vehicle. The cost of a rotation is the sum of the operation costs of each
pair of consecutive trips, depending on the duration and distance of the “deadhead
trip”, as well as the duration of the break between the trips.
The assignment of the trips can be modelled using perfect matchings in a bipartite

graph G = (V,E). The vertex set V consists of two disjoint copies V1 and V2 of the
trips. There is an edge between a trip v ∈ V1 and a trip w ∈ V2 if and only if a vehicle
can operate trip w after trip v. Furthermore, the cost of an edge are the operation
costs of the corresponding pair of consecutive trips. A perfect matching of minimum
costs corresponds to a rotation plan of minimum operation cost. Finding a perfect
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1. Motivation

matching in a bipartite graph can be accomplished in polynomial time, so we can
compute a rotation plan in polynomial time.
However, this approach does not consider regularity. For that, we group all trips

that differ only by the departure day and call them a “train”. This is a natural
construction, for example, all trips from Berlin Südkreuz via Frankfurt to Munich
Main Station starting at 6:00 and arriving at 13:27 are called ICE 1091, regardless
of the weekday they start. A passenger that uses this connection to Frankfurt on
different weekdays always knows that 1091 is the right train and does not have to
remember a different number for every day.
Now, adding regularity can be done in the following way:
Suppose v1, . . . , vn and w1, . . . wn are two trains such that each pair {vi, wi} can

be operated consecutive. Regularity means that if one edge {vi, wi} is contained in a
perfect matching, we would like that all edges {v1, w1}, . . . , {vn, wn} are elements of
this perfect matching. For that, we introduce a hyperedge ẽ = {v1, . . . , vn, w1, . . . , wn}
and give this hyperedge costs cẽ smaller than the sum of the costs of all edges {vi, wi},
i = 1, . . . , n. Now, instead of using all edges {v1, w1}, . . . , {vn, wn} we can use the
hyperedge ẽ, thereby getting a reward of ∑n

i=1 c{vi,wi} − cẽ for regularity.
The advantage of this method is that we still have a linear cost function. However,

we have to work in hypergraphs, which are much more complicated than ordinary
graphs. It turns out that finding a minimum cost perfect matching in a hypergraph
is NP-hard in general.
For more information on the application and a more elaborated model for Railway

Vehicle Rotation Planning see [BRSW11]. In this thesis we will focus on the problem
of finding a perfect matching in a hypergraph.
After a short summary of some basic results of linear programming used later, we

give an introduction to the theory of hypergraphs.
In Chapter 4 we focus on balanced and normal hypergraphs, which can be seen

as a generalization of bipartite graphs. For these classes of hypergraphs the perfect
matching polytope has an easy description and a perfect matching can be found in
polynomial time. Furthermore, a Hall type condition for the existence of a perfect
matching in a balanced hypergraph exists for which we find a generalization to normal
hypergraphs.
In Chapter 5 we look at a special class of hypergraphs, arising from the modelling

of the Vehicle Rotation Planning Problem described above. The main emphasis lies
on the investigation of the matching and perfect matching polytope of this class of
hypergraphs. Besides theoretical results on the dimension, faces and facets, and the
integrality gap, we present computational results for hypergraphs with few vertices.
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2. Linear Programming and
Polyhedral Theory

This chapter gives an overview of a small part of the theory of linear programming
concentrating on concepts that are used in this thesis. The notion, definitions, and
theorems follow the lecture notes of Grötschel, see [Grö10]. In particular, by K we
denote the real numbers R or the rational numbers Q.
Proofs are omitted, they can be found in [Grö10] or [Sch99].

2.1. Polyhedra and Polytopes
A linear program (LP) consists of a linear function f : Kn → K and a system of
linear inequalities. The goal is to find a solution of this system that minimizes (or
maximizes) f . As f is linear, it can be represented by a vector c ∈ Kn. So every (LP)
can be written as

min cTx subject to Ax ≤ b,

where A ∈ Km×n and b ∈ Km.
The set of solutions of a system of linear inequalities is a geometric object, called

polyhedron.
Definition. A subset P ⊆ Kn is a polyhedron if there exist a matrix A ∈ Km×n and
a vector b ∈ Km such that

P = {x ∈ Kn|Ax ≤ b} =
m⋂
k=1
{x ∈ Kn|Ak.x ≤ bk}.

If b = 0, P is called a convex cone. A bounded polyhedron is called a polytope.
An important property of a polyhedron P ⊆ Kn is that its projection onto some
linear subspace U of dimension less than n is still a polyhedron. Of course, this also
holds for polytopes because projecting a bounded set gives again a bounded set. All
investigated polyhedra in this thesis are bounded and thus polytopes.
The next definitions are needed to obtain another way of representing a polyhedron.

Definition. A vector x ∈ Kn is a linear combination of vectors x1, . . . , xk ∈ Kn if
there exist λ1, . . . , λk ∈ K with

x =
k∑
i=1

λixi.
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2. Linear Programming and Polyhedral Theory

Moreover, x is called a conical combination of x1, . . . , xn if λi ≥ 0 for all 1 ≤ i ≤ k
and an affine combination if ∑k

i=1 λi = 1. A linear combination that is both conical
and affine is called a convex combination.
For a set ∅ 6= S ⊆ Kn denote by lin(S), cone(S), aff(S), conv(S) the linear, conical,

affine, convex hull of S, respectively, i.e., the set of all vectors in Kn that can be
written as a finite linear, conical, affine or convex combination of elements in S. The
affine and the convex hull of the empty set are defined to be empty, whereas the linear
hull and the conical hull of the empty set are {0}.

Theorem 2.1.1. Let P := {x ∈ Kn|Ax ≤ b} be a polyhedron defined by a matrix
A ∈ Km×n and a vector b ∈ Km. There exist finite sets V,E ⊆ Kn such that

P = conv(V ) + cone(E).

On the other hand, every subset that can be written as conv(V ) + cone(E) for finite
subsets V,E of Kn is a polyhedron.

The above theorem implies that a polytope is just the convex hull of finitely many
points. This fact can be used to model discrete optimization problems. In such
a problem, a finite set S and a family of subsets T is given. Furthermore, every
s ∈ S has costs cs and the objective is to find an element T ∈ T of minimum cost
c(T ) := ∑

s∈T cs. By Theorem 2.1.1, the convex hull of all vectors χT ∈ KS with
T ∈ T defined by

χTs :=

1, if s ∈ T
0, else

is a polytope in KS. Thus, we can formulate every discrete optimization problem as
a linear program.
An important tool to decide whether a system of equations and inequalities has a

solution is Farkas’ Lemma. There are many equivalent formulations, the most useful
one for this thesis is the following:

Theorem 2.1.2. Let A ∈ Km×n and b ∈ Km. Then exactly one of the two following
statements holds:

1. There exists a vector x ∈ Kn with Ax = b and x ≥ 0.

2. There exists a vector y ∈ Km with Ay ≥ 0 and bTy < 0.

4



2.2. Faces, Facets and Vertices

2.2. Faces, Facets and Vertices
As shown in the last section, a polytope P can be written as the solution set of a
system of linear inequalities or as the convex hull of finitely many points. However,
these representations are not unique. There are many systems of linear inequalities
representing P and many sets S whose convex hull is P . In this section it is shown
how to represent P by a minimal system Ax ≤ b and a minimal set S.

Definition. Let P ⊆ Kn be a polyhedron. A subset F of P is called a face of P
if there exists a vector a ∈ Kn and a scalar α ∈ K such that aTx ≤ α holds for all
x ∈ P and

F = P ∩ {x ∈ Kn|aTx = α}.
Then aTx ≤ α is a valid inequality for P and F is said to be induced by this inequality.
A maximal face F 6= P with respect to inclusion of sets is called a facet. Moreover,

x is called a vertex of P if {x} is a face.

If P = {x ∈ Kn|Ax ≤ b} is a polyhedron, then every inequality aTx ≤ α that is
valid for P and induces a non-empty face satisfies uTA = aT and uT b = α for some
u ∈ Km

+ , i.e., it is an affine combination of the inequalities in Ax ≤ b. Furthermore,
aTx = α is equivalent to Ai.x = bi for all i with ui > 0. So the following definition
makes sense:

Definition. Let P = {x ∈ Kn|Ax ≤ b} with A ∈ Km×n and b ∈ Km be a polyhedron.
For an arbitrary subset F of P the equality set is defined by

eq(F ) := {i ∈ {1, . . . ,m}|Ai.x = bi ∀ x ∈ F}.

On the other hand, every set I ⊆ {1, . . . ,m} induces a face

fa(I) := {x ∈ P |Ai.x = bi ∀i ∈ I}.

Remark. It can be shown that every face F is of the form fa(I) and F = fa(eq(F )).

We have seen that every face of a polytope of the form {x ∈ Kn|Ax ≤ b} comes from
an inequality which is an affine combination of the inequalities in Ax ≤ b. Of course,
it is possible that an inequality of the system Ax ≤ b can be expressed as an affine
combination of other inequalities in this system. Deleting such an inequality does not
change the polytope. This motivates the following definition:

Definition. Let P = {x ∈ Kn|Ax ≤ b} with A ∈ Km×n, b ∈ Km be a polyhedron.
An inequality Ai.x ≤ bi is called redundant with respect to Ax ≤ b if

P = {x ∈ Kn|Ak.x ≤ bk ∀ k ∈ {1, . . . ,m} \ {i}}

and implicit if i ∈ eq(P ).
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2. Linear Programming and Polyhedral Theory

For a given polyhedron, it is natural to look for an irredundant system of linear
inequalities and equations, i.e., Ax ≤ b and A′x = b′ such that A′ has full row rank
and Ax ≤ b contains no redundant inequalities with respect to Ax ≤ b, A′x = b′.
It turns out that an irredundant system only contains inequalities defining facets.

To this end, let F be the set of facets of a given polyhedron P = {x ∈ Kn|Ax ≤ b}.
Then there exists an index set I ⊆ {1, . . . ,m} \ eq(P ) of size F with

F ∈ F ⇔ F = fa({i}) for exactly one i ∈ I.

Such a set I is called a facet index set.

Theorem 2.2.1. Let P = {x ∈ Kn|Ax ≤ b} with A ∈ Km×n, b ∈ Km be a non-empty
polyhedron, I ⊆ {1, . . . ,m} \ eq(P ) and J ⊆ eq(P ). The system AI.x ≤ bI , AJ.x = bJ
is irredundant if and only if I is a facet index set and AJ. is a rank(Aeq(P ).)×n matrix
of full row rank.

To characterize facets of a polyhedron the notion of a dimension is needed.

Definition. Let P ⊆ Kn be a polyhedron and AP be the smallest affine subspace of
Kn containing P . Then the dimension of P , dim(P ), is defined as the affine dimension
of AP .

If P is given as the solution set of a system of linear inequalities, the dimension can
be calculated explicitly:

Theorem 2.2.2. Let P = {x ∈ Kn|Ax ≤ b} with A ∈ Km×n, b ∈ Km be a polyhedron.
Then

dim(P ) = n− rank(Aeq(P ).).

Now, we can state a theorem that characterizes facets of a polyhedron using the
dimension of a facet:

Theorem 2.2.3. Let P ⊆ Kn be a polyhedron and ∅ ( F ( P be a face of P . The
following are equivalent:

1. F is a facet of P .

2. dim(F ) = dim(P )− 1.

3. There are dim(P ) affine independent vectors in F .

As facets lead to a minimal representation of the form Ax ≤ b, vertices lead to a
minimal representation of a polytope of the form conv(S). For a general polyhedron
P also a minimal set E such that P = conv(S) + cone(E) can be characterized. We
omit details for this as only polytopes appear in this thesis.
The next theorem gives some characterizations for vertices of a polyhedron.
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2.2. Faces, Facets and Vertices

Theorem 2.2.4. Let P = {x ∈ Kn|Ax ≤ b} ⊆ Kn be a polyhedron. A vector x ∈ P
is a vertex if and only if one of the equivalent statements holds:

1. The face {x} has dimension zero.

2. rank(Aeq({x}).) = n.

3. x cannot be written as a proper convex combination of elements in P , i.e., if
x = λy + (1− λ)z for y, z ∈ P with 0 < λ < 1, then y = z.

The last statement of Theorem 2.2.4 implies that if P = conv(S), then all vertices
are elements of S. It can be shown that one can even choose S to be just the set of
all vertices of P to get a minimal representation of P .
Theorem 2.2.4, 2. gives the following two conclusions for a polyhedron of the form

P = {x ∈ Kn|Ax = b, x ≥ 0}:

Corollary 2.2.5. Let x ∈ P with P as above. Then x is a vertex of P if and only if
the column vectors of A corresponding to entries xi > 0 are linearly independent.

Corollary 2.2.6. Let x ∈ P be a vertex of the polyhedron P , k ∈ {1, . . . , n} be an
index with xk = 0 and π : Kn → Kn−1 be the projection to the (n − 1)-dimensional
subspace spanned by all standard basis vectors ei for i 6= k. Then π(x) is a vertex of
the polyhedron π(P ).

These two facts will be used several times in this thesis as we will investigate
polytopes of the above form.
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3. Introduction to Hypergraphs
The following chapter is a short introduction to the theory of hypergraphs with a
special focus on commonalities and differences to graph theory.
After some basic definitions, matchings in hypergraphs are defined and the Hyper-

assignment Problem is introduced. It consists of finding a minimum cost perfect
matching, which is also called hyperassignment, in hypergraphs having a special struc-
ture. Furthermore, the relation of the Hyperassignment Problem to the Stable Set
Problem is described. For some special graph classes the Stable Set Problem can be
solved in polynomial time, giving hypergraph classes for which the Hyperassignment
Problem can be solved efficiently.

3.1. Basic Definitions
A hypergraph can be seen as a generalization of an ordinary graph, where in contrast
to the edges of a graph hyperedges can connect more than two vertices.

Definition. A hypergraph H = (V, E) consists of a non-empty set of vertices (or
nodes) V and a multiset E of subsets of the vertices. An element of E is called a
hyperedge and the rank of a hypergraph r(H) is maxe∈E |e|.
As in ordinary graphs, a hyperedge e is said to be incident to a vertex v (or a vertex

v is incident to a hyperedge e) if v ∈ e. Two hyperedges e1, e2 ∈ E that intersect or
two vertices v1, v2 ∈ V that have a common incident hyperedge are called adjacent.
Furthermore, δ(v) denotes the multiset of all hyperedges incident to v. Its size

degH(v) := |δ(V )| is called the degree of a vertex v and ∆(H) := maxv∈V degH(v) is
the maximum degree of H.

Remark. Usually E does not contain any multiple elements but it can be useful to
multiply hyperedges. So in this definition E is a multiset and not just a subset of the
power set 2V . An element e ∈ E of size two will be called an edge and H is called a
graph if all hyperedges are edges. Proper hyperedges are hyperedges of size greater
than two.

Generalizing directed graphs is more difficult and there are several approaches (e.g.,
[GLP93]). Here the definition of Borndörfer and Heismann ([BH12]) is used (they
decided to call this generalization bipartite hypergraph).

9



3. Introduction to Hypergraphs

Definition. A bipartite hypergraph D = (V,W,A) is a hypergraph whose set of
vertices consists of two disjoint sets V and W of the same cardinality and a set of
hyperedges A. Furthermore, every hyperedge a ∈ A satisfies |a ∩ V | = |a ∩W | > 0.

The “direction” is not directly visible in this definition. The sets V and W can be
seen as two disjoint copies of the same vertex set and a hyperedge a goes from its tail
a ∩ V to its head a ∩W .
Many concepts of graph theory can be transferred to hypergraphs. In the following

only a few are mentioned which will be useful later. A detailed introduction is given
in [Ber89].

Definition. A partial hypergraph of H = (V, E) is a hypergraph restricted to a
subset of hyperedges, i.e., H[E ′] = (V, E ′), in which every element of E ′ is an element
of E .
A subhypergraph induced by a subset S of the vertices is the hypergraph H|S with

vertex set S and hyperedges e ∩ S for every e ∈ E with e ∩ S 6= ∅.
A partial subhypergraph is a partial hypergraph of a subhypergraph (or the other

way around).

Remark. The definition of a subhypergraph does not agree with that of subgraph
in an ordinary graph. In a subhypergraph we do not only restrict the set of vertices
to some subset, but we also change the hyperedges from e to e ∩ S if the later set
is nonempty. For example, if G = (V,E) is a graph and S a subset of V , then
the induced subgraph G[S] contains all edges e ∈ E with both vertices in S, but
the subhypergraph G|S contains additionally the loops e ∩ S for all edges e having
exactly one vertex in S.

Definition. The dual H∗ = (V ∗.E∗) of a hypergraph H = (V, E) without multiple
hyperedges has the set E as its set of vertices and for every v ∈ V a hyperedge
{e ∈ E|v ∈ e}.

When defining paths and cycles in hypergraphs, a difficulty arises as a hyperedge can
be incident to not only its predecessor and its successor, but also to other vertices of
the sequence (this cannot happen in graphs). So one has to distinguish two kinds of
paths and cycles.

Definition. A sequence P = v0, e1, v1, . . . , el, vl is called a path of length l in a
hypergraph H = (V, E) if vi ∈ V , 0 ≤ i ≤ l, and ei ∈ E , 1 ≤ i ≤ l, are pairwise
distinct, respectively, and vi−1, vi ∈ ei, 1 ≤ i ≤ l. If furthermore v0 = vl, a path is
called a cycle.
P is called a strong path (or cycle) if |ei ∩ {v0, . . . , vl}| = 2 for every hyperedge

ei ∈ {e1, . . . , el}.
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3.2. Representation of Hypergraphs

Later, the notion of a strong cycle will be useful in defining a special class of hyper-
graphs which can be seen as a counterpart of bipartite graphs.

Definition. A hypergraph H = (V, E) has the Helly property if every set of pairwise
intersecting hyperedges is intersecting; i.e, they have a common vertex.

Ordinary graphs containing a triangle do not have the Helly property but all other
graphs do. This is the case because if the Helly property holds, then for every three
vertices v1, v2, v3 ∈ V the set of edges being incident to at least two of the three
vertices is intersecting, so w.l.o.g. all these edges contain v1. As edges in graphs are
incident to exactly two vertices, this means that there is no edge between v2 and v3,
so the graph is triangle-free.
Colorings in hypergraphs are defined slightly different than in graphs. Adjacent

edges or vertices can have the same color, only “monochromatic” vertices or edges
are forbidden.

Definition. A function c : E → {1, . . . , k} is an edge coloring of a hypergraph
H = (V, E) in k colors if any vertex with degree at least two is incident to hyperedges
e, f ∈ E with c(e) 6= c(f).
A vertex coloring in k colors is a function c : V → {1, . . . , k} such that for every

hyperedge e with |e| > 1 there are two vertices v1, v2 ∈ V with c(v1) 6= c(v2).
For 1 ≤ i ≤ k the set Ci := c−1({i}) is called edge or vertex color class, respectively.

Remark. An edge coloring in H corresponds to a vertex coloring in the dual H∗ and
vice versa.

Definition. A hypergraph H has the colored edge property if there exists an edge
coloring in ∆(H) colors such that c(e) 6= c(f) for all adjacent hyperedges e, f ∈ E .
Furthermore, H is called k-colorable if H admits a vertex coloring in k colors.

By the last remark, a hypergraph has the colored edge property if and only if its dual
admits a vertex coloring in ∆(H) colors such that two distinct adjacent vertices are
colored differently.

3.2. Representation of Hypergraphs
There are two standard possibilities of representing hypergraphs by graphs. The first
one is called bipartite representation, which can be used to decide algorithmically,
whether a hypergraph has a strong odd cycle.

Definition. For a hypergraph H = (V, E) without multiple edges we define a bipar-
tite graph G = (S,E), called the bipartite representation of H, as follows:
The set S is the disjoint union of V and E . There is an edge between a vertex

v ∈ V and a hyperedge e ∈ E if and only if v ∈ e.

11



3. Introduction to Hypergraphs

Another possibility is to forget about the vertices and just look at hyperedges and
how they are related.

Definition. The line graph L(H) = (VE , EE) of a hypergraph is a graph with node
set VE which contains one vertex for every hyperedge and an edge between ve and vf
if e and f have a nonempty intersection.

Remark. An odd cycle in a hypergraph corresponds to a cycle of length two mod-
ulo four in the bipartite representation. If additionally the odd cycle is strong, the
corresponding cycle in the bipartite representation is an subgraph induced by the set
of vertices of that cycle.
The set of hyperedges of an odd cycle induces an odd cycle of the same length

in the line graph. However, this cycle can have a chord even if the original cycle is
strong because two edges of a strong cycle can intersect in a vertex which does not
belong to the strong cycle.

Another way of representing hypergraphs uses 0-1-matrices as in graphs.

Definition. The incidence matrix A = (av,e)v∈V,e∈E ∈ RV×E of a hypergraph H =
(V, E) is defined by

av,e :=

1 if v ∈ e
0 else

.

A hypergraph can be drawn in the following way:

• Each vertex is represented by a little disc.

• Each hyperedge is drawn as a closed curve containing exactly the vertices defin-
ing this hyperedge.

Figure 3.1 gives an example of a drawing of a hypergraph. This hypergraph has the
incidence matrix 

1 1 0 1
1 0 1 1
1 0 1 0
1 1 0 0
1 0 0 1

 .

Its line graph and bipartite representation are shown in Figure 3.2.

3.3. Matchings
The definition of a matching in a hypergraph coincides with that of a matching in a
graph.

12
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Figure 3.1.: Example of a hypergraph

Figure 3.2.: Line graph (left) and bipartite representation (right)
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Definition. A subset M of E is called a matching of H if every vertex v ∈ V has at
most degree one in the partial hypergraph induced by M . If every vertex has exactly
degree one, the matching M is called perfect. A maximal matching is a matching M
such that M is not a proper subset of another matching.

In contrast to graphs it is not clear what a maximum matching should be, as a
matching with maximal number of hyperedges must not be a matching in which the
number of covered vertices is maximal. So there are two kinds of maxima criteria:

Definition. AmatchingM with maximal number of hyperedges is called E-maximum
matching and γE(H) := |M | is called the E-matching number.
A V -maximum matching is a matching M such that the number of vertices V (M)

with degree one inH[M ] is maximal and γV (H) := |V (M)| is the V -matching number.

For example, the hypergraph displayed in Figure 3.1 has one V -maximum matching,
namely the hyperedge containing all five vertices. But this is not E-maximum because
the two hyperedges of size two form a matching that has more hyperedges.
The dual concept of a matching is a vertex cover. As there are two different notions

of maximum matchings, there are also two kinds of vertex covers:

Definition. An E-vertex cover S is a set of vertices S ⊆ V such that every hyperedge
is incident to at least one vertex in S. A minimum E-vertex cover S is of minimal
size among all E-vertex covers and τE(H) := |S| is called E-vertex cover number.
A V -vertex cover S is a multiset of vertices S ⊆ V such that every hyperedge

e ∈ E is incident to at least |e| vertices in S, where multiple vertices are counted with
multiplicity. A minimum V -vertex cover S is of minimal size among all V -vertex
covers and τV (H) := |S| is called V -vertex cover number.

The inequality γE(H) ≤ τE(H) holds because every E-vertex cover must contain at
least one vertex for every hyperedge of a E-maximum matching.
Similarly, γV (H) ≤ τV (H) holds. As every vertex V -vertex cover S must contain at

least |e| (multiple) vertices for every hyperedge e contained in a V -maximummatching
M , the size of S is at least ∑m∈M |m| = γV (H).
Classes of hypergraphs for which equality holds will be investigated in the next

chapter.

3.4. The Hyperassignment Problem
Perfect matchings in bipartite hypergraphs are also called hyperassignments. This
comes from the fact that one can see a perfect matching M as an assignment of
subsets of V to subsets of W by assigning the set m∩ V to m∩W for every m ∈M .
The hypergraph assignment problem (abbr. HAP) is the following:

14
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Definition. Given a bipartite hypergraph D = (V,W,A) and some cost function
c : A → R, find a minimum cost hyperassignment, i.e., a hyperassignment H ⊆ A
such that

c(H) :=
∑
a∈H

c(a) ≤
∑
a∈H′

ca = c(H ′)

holds for all hyperassignment H ′ of D whenever D admits a hyperassignment, else
decide that no hyperassignment exists.

HAP can be formulated as an integer linear optimization problem, where the cost
function c is interpreted as a vector c ∈ RA:

min cTx
subject to

∑
a∈δ(v)

xa = 1 ∀v ∈ V ∪W (3.1)

xa ∈ {0, 1} ∀ a ∈ A (3.2)

Lemma 3.4.1. D admits a hyperassignment if and only if the above integer linear
program is feasible. Furthermore, every optimal solution of the ILP corresponds to a
minimum cost hyperassignment and vice versa.

Proof. Let H be a hyperassignment of D, then x ∈ ZA with

xa =

1, a ∈ H
0, a /∈ H

satisfies (3.1) and (3.2), so it is a feasible solution to the ILP.
Now let x ∈ {0, 1}A be a feasible solution of the integer program, then the set

H := {a|xa = 1} is a hyperassignment of D because (3.1) implies that every vertex
v ∈ V ∪W is incident to exactly one hyperedge of H.
The second claim holds, since for every solution x of the ILP cTx is equal to the

cost of the corresponding hyperassignment H in D.

3.5. Special Classes of Hypergraphs
A special class of hypergraphs are r-uniform hypergraphs where every hyperedge has
size r. If additionally V can be partitioned into r sets V1, . . . , Vr such that |e∩Vi| = 1
for every hyperedge e and every 1 ≤ i ≤ r, the hypergraph is called r-partite. In
particular, for r = 2 this is just a bipartite graph.
In a r-uniform hypergraph every E-maximum matching is V -maximum and the

other way around. Furthermore γV (H) = rγE(H). Matchings in uniform hypergraphs
are a deep field of study (see e.g., [Für81], [FKS93]).
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Another special class are regular hypergraphs, in which every vertex has the same
degree.
A graph based hypergraph is a hypergraph, such that every proper hyperedge e is

the disjoint union of edges. For example, the hypergraphs constructed in Chapter 1
to solve the Railway Vehicle Rotation Planning problem are graph based.
There is another important class of bipartite hypergraphs, arising from this appli-

cation:
Definition. A partitioned hypergraph is a bipartite hypergraph D = (V,W,A) with
vertex sets V and W that can be partitioned into non-empty sets {V1, . . . , Vk} and
{W1, . . . ,Wl} such that for every a ∈ A there exist indices i ∈ {1, . . . , k} and j ∈
{1, . . . , l} with a ∩ V ⊆ Vi and a ∩W ⊆ Wj. The sets {V1, . . . , Vk}, {W1, . . . ,Wl} are
called a partitioning of D in this case.
A partitioning {V1, . . . , Vk}, {W1, . . . ,Wl} is finer than partitioning {V ′1 , . . . , V ′m},
{W ′

1, . . . ,W
′
n} if for all 1 ≤ i ≤ m there is a 1 ≤ j ≤ k with V ′i ⊆ Vj and for all

1 ≤ i′ ≤ n there is a 1 ≤ j′ ≤ l with W ′
i′ ⊆ Wj′ and at least one subset is proper. A

finest partitioning is one for which no finer partitioning exists.
Lemma 3.5.1. Let D = (V,W,A) be a bipartite hypergraph. Then there is a unique
finest partitioning.
Proof. The existence is clear since V1 = V , W1 = W is a partitioning for every
bipartite hypergraph.
Suppose there are two different finest partitionings {V1, . . . , Vk}, {W1, . . . ,Wl} and
{V ′1 , . . . , V ′m}, {W ′

1, . . . ,W
′
n}. Look at the sets Vij = Vi ∩ V ′j for all pairs of indices

with 1 ≤ i ≤ k, 1 ≤ j ≤ m and Wrs = Wr ∩W ′
s for all 1 ≤ r ≤ l, 1 ≤ s ≤ n. Then

those of the sets that are nonempty form a partitioning of V and W , respectively,
that is finer than the two originally partitionings. This shows that there must be a
unique finest partitioning.

By the last lemma the next definition is well defined:
Definition. Let D = (V,A) be a partitioned hypergraph. The maximum part size
of D is the maximum cardinality of a set in the finest partitioning.
Of course, the maximum size |a ∩ V | where a ranges over all hyperedges is a lower
bound for the maximum part size. Actually, every bipartite hypergraph can be trans-
formed into a partitioned hypergraph with maximum part size equal to that number
such that there is a one-to-one correspondence between hyperassignments in the orig-
inal bipartite hypergraph and the new partitioned hypergraph (see [BH12]):
Theorem 3.5.2. Let D = (V,W,A) be a bipartite hypergraph and c : A → R be a cost
function on the hyperedges. There exists a partitioned hypergraph D′ = (V ′,W ′,A′)
with maximum part size mina∈A |a ∩ V | = mina∈W |a ∩W | and a cost function c′ :
A′ → R such that there is a cost preserving bijection between the hyperassignments
in D and D′ with respect to c and c′.
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Unfortunately, even for bipartite hypergraphs with maximum part size two the
hyperassignment problem turns out to be NP-hard (see [BH12]).

3.6. HAP and the Stable Set Problem
Every matching in a hypergraph corresponds to a stable set in the line graph. To get
a correspondence between perfect matchings and certain stable set, a weight function
is used.

Theorem 3.6.1. Let H = (V, E) be a hypergraph, L(H) = (VE , EE) its line graph and
d : VE → R be the weight function with d(ve) := |e| for all ve ∈ VE .
Every perfect matching M ⊆ E of H gives a stable set S := {vm|m ∈ M} of

maximum d-weight in L(H)
On the other side, if there exists a stable set S of weight d(S) = |V |, then every

maximum d-weight stable set in L(D) corresponds to a perfect matching in L(D).

Proof. If M is a perfect matching, then SM := {vm|m ∈M} is a stable set of weight∑
m∈M |m| = |V |.
On the other hand, if S is a stable set of weight |V |, then MS := {e|ve ∈ S} is a

matching covering ∑m∈M |m| = d(S) = |V | vertices, so it is perfect.
It remains to show that L(D) cannot have a stable set of larger weight than |V |.

Suppose a stable set T ⊆ VE with d(T ) > |V | exists. No two hyperedges of the
corresponding set of hyperedges MT intersect, otherwise T would not be stable, so
MT is a matching.
This gives |V | < d(T ) = ∑

e∈MT
|e| = |{v ∈ V | v is covered by some e ∈ MT}| ≤

|V |, a contradiction.

The theorem above shows that deciding whether a bipartite hypergraph has a
hyperassignment or not can be reduced to the stable set problem. However, the
real problem is to find a hyperassignment of minimum weight. This can be done by
adjusting the weight function of the line graph.

Theorem 3.6.2. Let D = (V,W,A) be a bipartite hypergraph, c : A → R+ be a cost
function on the hyperedges, and L(D) = (VA, E) be the line graph of D. We define a
weight function w : VA → R on the vertices of L(D) by w(va) := K · |a| − c(a), where
K := ∑

a∈A c(a) + 1 ∈ R+ is a constant.
If D has a hyperassignment, then every hyperassignment M of minimum cost corre-

sponds to a maximum weight stable set in L(D) with respect to c and w, respectively.

Proof. It suffices to show that∑va∈S |a| ≥
∑
va∈T |a| for every maximum weight stable

set S and every stable set T of L(D). Then a stable set S of maximum w-weight has
also maximum weight with respect to the weight function d(va) := |a|. This implies
by the proof of the last theorem that S corresponds to a V -maximum matching MS.
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In particular, if D admits a hyperassignment, MS covers all vertices, i.e., MS is a
hyperassignment.
Suppose there is a maximum weight stable set S and a stable set T such that∑
va∈S |a| <

∑
va∈T |a|. As S has maximum weight, we have that∑
va∈S

(K · |a| − c(a)) = w(S) ≥ w(T ) =
∑
va∈T

(K · |a| − c(a)).

This gives the following contradiction

0 ≤ w(S)− w(T )

= K ·

∑
va∈S
|a| −

∑
va∈T
|a|

+
∑
va∈T

c(a)−
∑
va∈S

c(a)

≤ −K +
∑
va∈T

c(a) ≤ −1.

On the other side, a maximum size stable set can be calculated using HAP:

Theorem 3.6.3. For a given graph G = (V,E) let D = (E×{0, 1},A) be the bipartite
hypergraph with hyperedges av := {(e, 0)|e 3 v} ∪ {(e, 1)|e 3 v} for all v ∈ V and
edges ae := {(e, 0), (e, 1)} for every edge e ∈ E. Define c : A → R by c(av) = −1 and
c(ae) = 0.
A minimum cost hyperassignment in D gives a maximum size stable set in G, and

conversely.

Proof. Let M be a minimum cost hyperassignment with respect to c defined above
and set S := {v ∈ V |av ∈ M}. Suppose S is not stable, then there is an edge e
connecting two vertices v1, v2 ∈ S, but e corresponds to the two vertices (e, 0) and
(e, 1) in D which are therefore incident to both hyperedges av1 , av2 ∈ M . This is a
contradiction to M being a matching. So S is a stable set of size −c(M).
On the other side, if S is a stable set in G then all hyperedges av for v ∈ S together

with hyperedges ae for edges e not covered by S form a hyperassignment in D of cost
−|S|.
Together we get that a maximum size stable set in G corresponds to a minimum

cost hyperassignment in D.

There are some classes for which the stable set problem can be solved in polynomial
time:

Perfect graphs: Hypergraphs corresponding to this class of graphs will be treated in
the next chapter.
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Claw-free graphs: A claw-free graph is a graph G = (V,E) containing no K1,3 as an
induced subgraph. The stable set polytope of this class is not fully understood
but there is an algorithm running in polynomial time which solves even the
weighted stable set problem.

t-perfect graphs: A graph G = (V,E) is called t-perfect if

STAB(G) : = conv({χS ∈ RV |S ⊆ V is a stable set})

is equal to

CSTAB(G) : = {x ∈ RV |0 ≤ xv ≤ 1 ∀ v ∈ V, xu + xv ≤ 1 ∀ {uv} ∈ E,

x(V (C)) ≤ |C| − 1
2 ∀ odd cycles C}.

t-perfect graphs are important because odd cycle constraints can be separated
in polynomial time:
Let x ∈ RV with 0 ≤ x ≤ 1 and xu + xv ≤ 1 for all edges {u, v} ∈ E.
To check whether x satisfies all odd cycle constraints we construct a length
function l : E → R+ by setting l(e) := 1 − xu − xv ≥ 0 for all e = uv ∈ E.
Now we search a shortest odd cycle C in G with respect to l (this can be done
in polynomial time). If l(C) ≥ 1, then x satisfies all odd cycle inequalities.
Otherwise, we have found an odd cycle constraint that cuts off x.
The polynomial-time solvability of the separation problem implies that also the
optimization problem can be solved in polynomial time (cf. [GLS81]).
No characterization of t-perfect graphs is known yet. However, there are some
examples:
• Almost bipartite graphs: A graph G = (V,E) such that deleting one vertex
v ∈ V makes G bipartite, so v is contained in every odd cycle.
• Graphs without an odd K4 as a subgraph (see [GS98]): A odd K4 is a

subdivision of K4 such that all triangles have become odd circuits.
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In this chapter we will investigate balanced and normal hypergraphs. They share
some nice properties with bipartite graphs, for example, their matching and perfect
matching polytope can be described by the trivial inequalities x ≥ 0 and the degree
inequalities x(δ(v)) ≤ 1 and x(δ(v)) = 1, respectively. In particular, for balanced or
normal bipartite hypergraphs the Hyperassignment Problem can be solved in poly-
nomial time.
Furthermore, Kőnig’s Theorem holds for balanced hypergraphs and a Hall-type

condition for the existence of a perfect matching can be formulated.

Definition. A hypergraph H = (V, E) without strong odd cycles is called balanced.
Equivalently, the incidence matrix A of H does not contain an odd square submatrix
of the form 

1 1 0 . . . 0 0
0 1 1 . . . 0 0
... ... . . . . . . ... ...
0 0 . . . 0 1 1
1 0 . . . 0 0 1


after permuting some rows and columns.

Every partial hypergraph and every subhypergraph of a balanced hypergraph is bal-
anced again because they obviously cannot have any strong odd cycles. Also the dual
of a balanced hypergraph is balanced:
If C = v0, e1, v1, . . . , el, vl = v0 is a strong odd cycle in H, then e1, v1, . . . , el, vl, e1

is an odd cycle in H∗. C is strong in H∗ because every hyperedge evi
corresponding

to vi is only incident to vertices e in H∗ with vi ∈ e, so vi is only incident to ei−1 and
ei in C. This shows that H is balanced if H∗ is balanced, since (H∗)∗ = H also the
other direction holds.

Remark. In a bipartite hypergraph D = (V,W,A) two consecutive vertices of a
cycle can be both in V (or W ) or one lies in V and the other in W . In the first case,
the two vertices of V (or W ) are connected by a proper hyperedge. In the remaining,
such a hyperedge will be called a tail-to-tail hyperedge. This denotation comes from
[CN95], where similar circles for Leontief flow problems are investigated.
Because of the structure of a bipartite hypergraph, every odd cycle uses an odd

number of tail-to-tail hyperedges.
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Theorem 4.0.4. A hypergraph H = (V, E) is balanced if and only if every subhyper-
graph of H is 2-colorable.

Proof. If H is not balanced, then there exists a strong odd cycle C in H. The
subhypergraph induced by the set of vertices contained in C is not 2-colorable.
As every subhypergraph of a balanced hypergraph is balanced again, it suffices to

show that every balanced hypergraph is 2-colorable. Let H be balanced, we will give
an algorithm due to Cameron and Edmonds, see [CE90].

• For k = 1, . . . , |V | we do the following:

• As long as not all vertices are colored and there is no monochromatic hyperedge
of size at least two, we color the k-th vertex and label it as follows:
1. If there is an edge e, whose incident vertices are colored in one color except

one vertex, then color this vertex with the other color, label it with k and
“forced by hyperedge e”.

2. Otherwise, color arbitrarily one of the uncolored vertices, label it with k
and “freely colored”.

Clearly, this algorithm terminates after at most |V | steps. Suppose the above algo-
rithm stopped, because there was a monochromatic hyperedge e ∈ E with |e| > 1.
We construct a strong odd cycle using the labelling obtained from the algorithm as
in [CE90].
First we define for every colored vertex v a sequence alternating between vertices

and hyperedges. The sequence F (v) = v1, e1, v2, . . . , ek, vk+1 starts with with v1 =
v and ends with a freely colored vertex vk+1. Every vertex vi is followed by the
hyperedge ei, which forced vi’s coloring, and every hyperedge ei is followed by the
vertex of ei with the highest number smaller than that of vi w.r.t. the labelling.
Let w be the highest and w′ be the second highest numbered vertex contained in

the monochromatic hyperedge e. As soon as w′ was colored, w is forced by e, but
the algorithm did not color w in a different color than w′, so it colored other “forced”
vertices. This shows that the freely colored end vertex of F (w′) is the same as that
of F (w). Let v′ be the first common vertex of F (w) and F (w′). Now, we can use
F (w) and F (w′) to construct a path from w via v′ to w′. As w and w′ have the same
color and the color of the vertices of the path alternate between two colors, closing
the path with e gives a strong cycle of odd length.

Remark. The algorithm of the above proof cannot decide whether a hypergraph is
balanced or not. Even though it will give a correct 2-coloring if the given hypergraph
is balanced, it can also give a correct 2-coloring of a non-balanced hypergraph. For
example, for a bipartite hypergraph D = (V,W,A) the algorithm can color in every
“free” step a vertex of V with blue, then it might do some “forced” red colorings of
vertices of W that are connected by an edge to a new blue vertex, after that there
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might be some “forced” blue colorings of vertices of V , etc. If there are some uncolered
vertices of W left after the coloring of V , all remaining vertices can be colored red.
This will give a correct 2-coloring of a bipartite hypergraph, whether it is balanced
or not.

Theorem 4.0.5. Every balanced hypergraph H has the colored edge property.

Proof. The claim is trivial for ∆(H) = 1.
So we can assume k := ∆(H) ≥ 2. Let S1, S2, . . . , Sk be the color classes of a vertex

coloring c of H∗ = (V ∗, E∗) where some classes could be empty. This is possible since
H∗ is balanced and thus 2-colorable.
If for every hyperedge in H∗ all adjacent vertices are in different color classes, c is

an edge coloring of H such that c(e) 6= c(f) for adjacent hyperedges e 6= f .
Otherwise, we use an idea in [CE90] to construct a “better” coloring. Suppose

there is a hyperedge e∗ of H∗ which has two vertices of the same color. This implies
that there are classes Sq, Sp with |e∗ ∩ Sq| ≥ 2 and e∗ ∩ Sp = ∅ because |e∗| ≤ k. The
subhypergraph of H∗ induced by Sp ∪ Sq is balanced and thus it admits a 2-coloring.
Let S ′p and S ′q be the color classes of this coloring. Replacing Sp and Sq by S ′p and S ′q
yields a new coloring c′. c′ uses one more color for the vertices of e∗ than c, but as
least as many colors as c for the vertices of all other hyperedges of H∗.
Repeating the above procedure finally gives a vertex coloring of H∗ as desired.

In the remaining of this chapter, Kőnig and Hall type theorems for balanced hyper-
graphs will be shown; moreover, the polyhedral structure of their matching polytopes
will be investigated.

4.1. Integral Polyhedra
Balanced hypergraphs are important in a polyhedral point of view since the LP-
relaxation of their matching and covering polytopes is integral.
Just as in Lemma 3.4.1, the convex hull of the characteristic vectors of all match-

ings, perfect matchings and covering of a hypergraph H = (V, E) is given by

IPM(H) := conv({x ∈ {0, 1}E |Ax ≤ 1}), (4.1)
IPPM(H) := conv({x ∈ {0, 1}E |Ax = 1}), (4.2)
IPC(H) := conv({x ∈ {0, 1}E |Ax ≥ 1}), (4.3)

where A is the incidence matrix of H. The integer polytopes IPM(H), IPPM(H) and
IPC(H) will be called matching polytope, perfect matching polytope and covering
polytope, respectively.
Let LPM , LPPM , LPC denote the polytopes obtained from the above systems of

linear inequalities by replacing x ∈ {0, 1}E by x ∈ RE and 0 ≤ x ≤ 1. They will
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be called fractional matching polytope, fractional perfect matching polytope and
fractional covering polytope, respectively.

Theorem 4.1.1. Let H = (V, E) be a hypergraph. Then the following four claims are
equivalent:

1. H is balanced.

2. For every partial subhypergraphH′ ofH the perfect matching polytope LPPM(H′)
is integral.

3. For every partial subhypergraph H′ of H the covering polytope LPC(H′) is inte-
gral.

4. For every partial subhypergraph H′ of H the matching polytope LPM(H′) is
integral.

Proof. (1) ⇒ (2) : Every partial subhypergraph is balanced, so it suffices to show
that LPPM(H) is integral for every balanced hypergraph H = (V, E). For this we use
induction on |V |+ |E|.
If the polytope is empty, there is nothing to show. Now suppose LPPM 6= ∅ and

let x∗ be a vertex of it. If x∗e = 0 for some e ∈ E , then projecting x∗ to RE\e yields
a vertex of LPPM(H[E \ e]) by Corollary 2.2.6. Using induction shows that x∗ is
integral.
Otherwise, we will show that H contains no cycles, so there is at least one vertex

v ∈ V of degree one giving the equation x∗e = 1 for the unique hyperedge e incident
to v. It follows that there are no e′ 6= e with e∩ e′ 6= ∅, otherwise x∗e′ = 0. The vector
obtained by projecting x∗ to RE\{e} is a vertex of the perfect matching polytope of
H′ := (V \ e, E \ {e}). By induction, this vector and thus x∗ is integral. So it is
enough to show that there are no cycles in H.
First, we show thatH does not contain any strong even cycle. Otherwise, projecting

x∗ to the perfect matching polytope of the partial subhypergraph induced by the
strong even cycle yields a vertex for which the vectors χe corresponding to positive
entries in x∗ are not linearly independent, because the matrix with these vectors as
columns is (up to permutation):

1 1 0 · · · 0
0 1 1 · · · 0
... . . . ...
0 0 · · · 1 1
1 0 · · · 0 1

 ,

and it has determinant zero, as the number of rows is even.
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4.1. Integral Polyhedra

Because H is balanced, it clearly does not contain any strong odd cycle. So suppose
there is a cycle in H which is not strong. Pick a shortest one, say C = v0, e1, . . . , el, vl.
Then there is an hyperedge ei containing at least three vertices vi−1, vi and some vj.
W.l.o.g. j > i, then C ′ := v0, e1, . . . , vi−1, ei, vj, ej+1, . . . , el, vl is a shorter cycle.
Hence, by the choice of C the cycle C ′ must be strong, this is a contradiction.

(2) ⇒ (3) : Let x∗ be a vertex of LPC(H). Aeq(x∗). is the incidence matrix of
partial subhypergraph H′ of H. H′ is induced by the set of vertices and hyperedges
corresponding to the rows and columns of Aeq(x∗)., respectively. So, H′ is a bal-
anced hypergraph, too, implying that x∗ is a vertex of LPPM(H′), and therefore x∗
is integral.

(3)⇒ (4) : Similar to the last one.
(4)⇒ (1) : If H is not balanced, it contains a partial subhypergraph C correspond-

ing to a strong odd cycle of length l ∈ Z. The vector x∗ with all entries equal to 1
2 is

a solution of
max 1Tx subject to x ∈ LPM(C)

with value l
2 . But every matching of C has size at most l−1

2 , so LPM(C) is not
integral.

Balanced hypergraphs have the very strong property, that their (perfect) matching
polytope is integral for every partial subhypergraph. There is a larger class of hyper-
graphs for which the three polytopes above are integer, so called normal hypergraphs.

Definition. A hypergraph H = (V, E) is called normal if it has the Helly property
and L(H) is perfect.

Remark. The usual definition of a normal hypergraph requires that all partial hy-
pergraphs have the colored edge property, which is equivalent to the above definition.
This version was chosen, because nowadays the strong perfect graph theorem can be
used (see [CRST06]), making the proof of the next theorem easier.

It turns out that normal hypergraphs are exactly the class of hypergraphs, for which
the matching polytope is integer.

Theorem 4.1.2. The following two statements are equivalent for a hypergraph H:

1. H is normal.

2. PM(H) is integral.

Proof. (2)⇒ (1) : First suppose H has not the Helly-property. Then there are three
hyperedges e1, e2, e3 such that every two of them intersect but not all three. The
vector x ∈ RE with entries xei

= 1
2 for i = 1, 2, 3 and xe = 0 else lies in LPM(H), but

is not a convex combination of characteristic vectors of matchings.
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4. Balanced and Normal Hypergraphs

Now, suppose L(H) is not perfect. If L(H) has an odd hole, H has a strong odd
cycle, therefore LPM(H) would not be integral.
If L(H) has an odd anti-hole of size k, then setting

xe :=


1

k−3 if e lies in the odd anti-hole
0 else

gives a vector x ∈ LPM(H), which is not in the convex hull of the characteristic
vectors of matchings.

(1) ⇒ (2) : First observe that the matching polytope is equal to the stable set
polytope of the line graph L(H) = (E , E), which is:

STAB(L(H)) = conv({χS ∈ RE |S is a stable set}).

This follows from the fact that every stable set in L(H) is a matching in H and vice
versa.
The line graph L(H) is perfect. Thus, its stable set polytope is determined by the

non-negativity constraints xe ≥ 0 for all vertices e ∈ E of L(H) and by the clique
inequalities x(Q) ≤ 1 for all cliques Q of L(H). Every clique of the line graph is
contained in one of the form δ(v) for some v ∈ V , because H has the Helly property.
This, together with the first observation, gives

IPM(H) = STAB(L(H)) = QSTAB(L(H))
= {x ∈ RE |x ≥ 0, x(δ(v)) ≤ 1 ∀v ∈ V }
= LPM(H),

which is the claim.

Remark. The last two theorems imply that a balanced hypergraph is normal.

Hypergraphs failing to be normal because they do not have the Helly-property are
not much more difficult.

Theorem 4.1.3. Let H = (V, E) be a hypergraph with incidence matrix A such that
L(H) is perfect. Then

IPM(H) = {x ∈ RE |Ax ≤ 1, x(Q) ≤ 1 for all cliques Q in L(H), 0 ≤ x ≤ 1}.

Proof. For every clique Q we add one dummy vertex vQ contained in every hyperedge
of Q. The resulting hypergraph HQ has the Helly-property and L(HQ) = L(H) is
perfect, thus HQ is normal. Furthermore, there is a natural bijection between the
hyperedges of H and that of HQ preserving matchings which shows that

IPM(H) = IPM(HQ).
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4.2. Kőnig’s Theorem and a Hall Condition

The last polytope is integral and equal to

{x ∈ RE |Ax ≤ 1, x(Q) ≤ 1 for all cliques Q in L(H), 0 ≤ x ≤ 1}

proving the claim.

Remark. Clique inequalities cannot be separated in polynomial time. But for perfect
graphs the orthonormal representation constraints imply the clique inequalities and
it is possible to separate them, see ([GLS93]). Moreover, for partitioned hypergraphs
of fixed maximum part size d the clique inequalities can be separated directly, see
[Hei10].

4.2. Kőnig’s Theorem and a Hall Condition
A bipartite graph G = (V,E) with color classes U and W has a matching covering
U if and only if |N(S)| ≥ |S| for all S ⊆ U , where N(S) is the set of neighbours of
S. This is a well known application of Hall’s marriage theorem for the existence of a
transversal in a SDR to matchings in bipartite graphs. To derive such a “Hall”-type
condition for perfect matching in hypergraphs one has to reformulate the condition:

Theorem 4.2.1. A bipartite graph G = (V,E) has a perfect matching if and only if
for all pairs of disjoint node sets R,B with |R| > |B| there exists an edge e ∈ E such
that |e ∩R| > |e ∩B|.

Proof. Let U and W be the color classes of G.
First, suppose G has no perfect matching. If U and W are not of the same size,

w.l.o.g. |U | > |W |, then R = U and B = W violates the condition of the theorem.
So, we might assume |U | = |W |. By Hall’s Theorem there exists a set S ⊆ U with
|S| > |N(S)|. Now, choosing R = S and B = N(S) gives a pair violating the right
hand side of the theorem.
On the other hand, if there exist disjoint node sets R,B with |R| > |B| and
|e ∩ R| ≤ |e ∩ B| for every edge e ∈ E, then G has no perfect matching. To see this,
take SU = R ∩ U and SW = R ∩W . As every edge which has one node in R must
have the other one in B, it follows that N(SU) ⊆ B ∩W and N(SW ) ⊆ B ∩U , giving

|N(SU)|+ |N(SW )| ≤ |B| < |R| = |SU |+ |SW |.

So at least one of the sets SU , SW violates the classical Hall condition; thus G has no
perfect matching.

Now we can state a Hall condition for balanced hypergraphs:

Theorem 4.2.2. Let H = (V, E) be a balanced hypergraph. H has a perfect matching
if and only if for all disjoint node sets R,B with |R| > |B| there exists a hyperedge
e ∈ E such that |e ∩R| > |e ∩B|.
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4. Balanced and Normal Hypergraphs

Figure 4.1.: The hypergraph H4

If a hypergraph (not necessarily balanced) has a perfect matchingM , then for every
pair of disjoint sets R,B ⊆ V with |R| > |B| we have:∑

e∈M
|e ∩R| = |R| > |B| =

∑
e∈M
|e ∩B|.

So there is at least one edge e ∈ M with |e ∩ R| > |e ∩ B|. This shows the necessity
of the above condition for all hypergraphs, not just balanced ones.
Conforti et al. give a polyhedral proof for sufficiency in [CCKV96] and Huck and

Triesch a combinatorial one in [HT02].
Looking at the polyhedral proof, which uses integrality of the perfect matching

polytope and Farkas’ Lemma, one might think that Theorem 4.2.2 could still hold
for normal hypergraphs. This is not the case, as the following example shows:
Example. For every natural number n ≥ 3, let Hn = (Vn, En) be the hypergraph
with vertex set {1, . . . , n, n + 1} and a hyperedge S ∪ {n + 1} for every subset S of
{1, . . . , n} that has size n− 1. For example, Figure 4.1 shows H4.
Every two hyperedges of Hn intersect in the (n+ 1)-th vertex, so Hn is Helly and

its line graph is Kn which is perfect. Thus Hn is a normal hypergraph and Hn has
no perfect matching. However, for every pair of disjoint set R,B ⊆ V with |R| > |B|
there is an e ∈ En with |e ∩R| > |e ∩B|.
For B = ∅ this is obvious, so from now on let |B| ≥ 1.
If n + 1 /∈ R, there is either an n − 1 subset S of {1, . . . , n} with R ⊆ S or

R = {1, . . . , n}. In the first case, choosing e = S ∪ {n + 1} ∈ En gives a hyperedge
with

|e ∩R| = |R| > |B| ≥ |B ∩ e|.
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4.2. Kőnig’s Theorem and a Hall Condition

Figure 4.2.: H3
4

In the other case, B = {n+ 1} and therefore |R ∩ e| = n− 1 > 1 = |B ∩ e| holds for
all e ∈ En.
Now, let n + 1 ∈ R. The set R \ {n + 1} has size at most n − 1 as B 6= ∅. So

there exists an n− 1 element subset S of {1, . . . , n} with R \ {n+ 1} ⊆ S. Choosing
e = S ∪ {n+ 1} ∈ En gives

|e ∩R| = |R| > |B| ≥ |e ∩B|.

This shows that Theorem 4.2.2 fails for normal hypergraphs.
However, if we copy each vertex n− 1 times and add each copy of a vertex v ∈ Vn

to all hyperedges e ∈ En containing v we get a pair R,B violating the Hall condition.
To see this, we put exactly one copy of every vertex 1, . . . , n into R and all n − 1
copies of vertex n + 1 into B. With this choice |e ∩ R| = n − 1 = |e ∩ B| holds for
every hyperedge.
For example, in the case n = 4 we get the hypergraph shown in Figure 4.2. Taking

R to be the set of grey vertices and B to be the set of non-filled vertices gives a pair
violating the Hall condition.

The following theorem shows how the idea of the example can be transferred to all
normal hypergraphs:

Theorem 4.2.3. Let H = (V, E) be a normal hypergraph and HN = (VN , EN) be the
hypergraph with V N := {(v, i)|v ∈ V, 1 ≤ i ≤ N} and EN := {eN |e ∈ E} where the
hyperedges are defined by eN := {(v, i)|v ∈ e, 1 ≤ i ≤ N}.
H has no perfect matching if and only if there exists a natural number N such that
HN = (V N , EN) does not satisfy the Hall condition for hypergraphs.
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4. Balanced and Normal Hypergraphs

Proof. Suppose H has no perfect matching. Let A be the incidence matrix of H. The
system Ax = 1 cannot have a solution x ≥ 0, otherwise it has an integer solution
because of Theorem 4.1.2. By Farkas’ Lemma there exists a vector z ∈ QV with
zTA ≥ 0 and zT1 < 0. Scaling z, we can assume z ∈ ZV .
Now, we take N := maxv∈V |zv| and define a pair (R,B) of disjoint node sets by

R := {(v, i)|zv < 0, 1 ≤ i ≤ |zv|},
B := {(v, i)|zv > 0, 1 ≤ i ≤ zv}.

R is larger than B because zT1 = ∑
v∈V zv = |B| − |R| < 0. Moreover, zTA ≥ 0

implies |e∩R| ≤ |e∩B| for all e ∈ EN . This shows that R,B is a pair violating Hall’s
condition in HN .
On the other hand, if there is an N such that HN does not satisfy Hall’s condition,

then HN has no perfect matching and thus H has none.

Hall’s condition for balanced hypergraphs implies that a balanced hypergraph with
maximum degree ∆ can be partitioned into ∆ disjoint matchings. Using the proof of
this from [CCV06] and Theorem 4.2.3, it can be proven for normal hypergraphs, too.

Theorem 4.2.4. Let H = (V, E) be a normal hypergraph, then H can be partitioned
into ∆(H) disjoint matchings.

Proof. For ∆(H) = 1 the edges of H form a matching.
Now let ∆ := ∆(H) > 1. For every vertex v with deg(v) < ∆(H) add deg(v)−∆(H)

copies of the one element hyperedge {v}. After that, H still has the Helly-property
and L(H) remains perfect.
Assume H has no perfect matching. Theorem 4.2.3 shows that there is a number

N ∈ N such that HN does not fulfil Hall’s condition. So there exists a pair R,B with
|R| > |B| and |e ∩ R| ≤ |e ∩ B| for all e ∈ EN . As degHN ((v, i)) = degH(v) = ∆
for all v ∈ V and all 1 ≤ i ≤ N , HN is also ∆-regular. Adding the inequalities
|e ∩R| ≤ |e ∩B| for all e ∈ EN gives ∆|R| ≤ ∆|B|, contradicting |R| > |B|.
Therefore, H must have a perfect matching M . Deleting all hyperedges in M from
E gives a hypergraph with smaller maximum degree. So the assertion follows by
induction on ∆.

Remark. The above theorem shows that a normal hypergraph has the colored edge
property (take the matchings as color classes). Clearly, every partial hypergraph of a
normal hypergraph is normal again since its line graph is a subgraph of the original
line graph, and the Helly-property still holds after removing some hyperedges. Thus,
every partial hypergraph of a normal hypergraph has the colored edge property.

Kőnig’s Theorem follows already from the fact that the matching polytope of balanced
hypergraphs is integral but there is also a nice combinatorial proof by Scheidweiler
and Triesch ([ST11]).
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Theorem 4.2.5. Let H = (V, E) be a balanced hypergraph. Then

γE(H) = τE(H).

Proof. γE(H) ≤ τE(H) was shown in Chapter 2. Suppose there is a balanced hyper-
graph for which the inequality is strict. Among these choose a hypergraph H = (V, E)
with |V |+ |E| minimal.
If there is a vertex v ∈ V with v ∈ V (M) for every E-maximum matching M , then
H− v := (V \ v, E ′) with E ′ := {e|e ∈ E : v /∈ e} has E-matching number γE(H)− 1
and E-vertex cover number τE(H) − 1. H is a minimal counterexample, so the last
two numbers are equal. This implies

γE(H) = τE(H),

contradicting the assumption.
Now, suppose that for every v ∈ V there is a E-maximum matching Mv such that

v is not covered by Mv. We choose one such matching for each vertex v ∈ e′ where
e′ ∈ E is a fixed hyperedge. Using these matchings and the fixed edge e′, we define the
hypergraph H′ := (V ′, E ′) by it’s set of vertices V ′ := ⋃

v∈e′ V (Mv)∪ e′ and the set of
hyperedges E ′ which consists of the fixed hyperedge e′ and of k copies of every e ∈ E ,
where k is the number of matchings Mv (v ∈ e′) containing e. So H′ is a hypergraph
with ∑v∈e′ |Mv| + 1 = |e′|γE(H) + 1 hyperedges and maximum degree ∆(H′) ≤ |e′|.
By construction, H′ is obtained from a partial hypergraph of H by multiplying some
hyperedges, thus it is also balanced. In particular H′ has the colored edge property
which shows that the hyperedges can be colored with |e′| colors such that no two
adjacent hyperedges get the same color. The |e′| color classes are matchings of H′
and at least one class has size γE + 1. This class is also a matching of H as it cannot
have multiple hyperedges. But then we have found a matching with more than γE
hyperedges, a contradiction.

Remark. The proof actually holds for normal hypergraphs because only the colored
edge property is used, and multiplying hyperdeges does not destroy normality (c.f.
[Ber89]).

Theorem 4.2.5 implies Kőnig’s Theorem for the case of V -maximum matchings and
V -minimum vertex covers. This can be done by a reduction of Berge, see [Ber89] in
Chapter 5, p. 180.

Corollary 4.2.6. Let H = (V, E) be a balanced hypergraph. Then

γV (H) = τV (H).

Proof. We construct a new hypergraph H′ from H by replacing each vertex v ∈ V
by m = maxe∈δ(v) |e| copies v1, . . . , vm and each hyperedge e = {v1, . . . vk} ∈ E by
|e| = k new hyperedges ei := {vi1, . . . , vik}, 1 ≤ i ≤ k.
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By the construction of H′, V -maximum matchings of H are transformed into E-
maximum matchings of H′ and V -minimum vertex covers of H into E-minimum
vertex covers of H′. The hypergraph H′ is also balanced, so Theorem 4.2.5 implies
the claim of the corollary.

Scheidweiler and Triesch give an interesting estimation of the V -matching number
of a balanced hypergraph which also holds for normal hypergraphs (using the same
proof).

Theorem 4.2.7. Given a normal hypergraph H = (V, E) and a natural number q ∈ N
with ∑

v∈V
(∆(H)− degH(v)) ≤ q∆(H)− 1,

then γV (H) ≥ |V | − q + 1 holds.

Proof. By Theorem 4.2.4, E can be partitioned into ∆(H) matchings M1, . . . ,M∆(H).
Suppose each matching covers at most |V | − q vertices. This implies that

∑
v∈V

degH(v) =
∆(H)∑
i=1

∑
v∈V

degH[Mi](v) ≤ ∆(H)(|V | − q),

so ∑
v∈V

(∆(H)− degH(v)) ≥ |V |∆(H)− (∆(H)(|V | − q)) = q∆(H),

which is a contradiction to the assumption.

The last theorem shows that a normal hypergraph has a matching covering many
vertices if the degrees of the vertices differ not too much from each other, so it is a
sharpened version of Theorem 4.2.4. Another interesting fact is that it is possible to
multiply certain hyperedges to obtain the right value of γV (H), for details see [Sch11].

4.3. Complexity
4.3.1. Testing Balancedness
Checking whether a hypergraph is balanced or not can be accomplished in polynomial
time. For this, the bipartite representation is used. This bipartite graph does not
contain an induced cycle of length 4k+2 for a k ∈ N if and only if the given hypergraph
is balanced.
It is clear that a cycle of length 4k + 2 uses 2k + 1 vertices of each side of the

bipartition. So an easy algorithm to check whether a bipartite graph contains such
an induced cycle is to take all pairs of 2k+1 subsets of the two partitions and test if the
graph induced by these sets of vertices is a cycle. Calculating an induced subgraph
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of a graph and deciding whether it is a cycle can be done in polynomial time, for
example, by looking at the degrees of the vertices, which must be equal to two, and
then check if the subgraph is connected, which takes only linear time. However, there
are too many subsets to test. If H = (V, E) and n = b(min(|V |, |E|)− 1) /2c, then
there are

n∑
k=1

(
|V |

2k + 1

)
·
(
|E|

2k + 1

)
possibilities.
To obtain a polynomial running time more sophisticated tools are needed. Con-

forti, Cornuéjols and Rao gave the first polynomial-time algorithm using decomposi-
tion results. Later Zambelli ([Zam05]) found an easier algorithm with running time
O((|V |+ |E|)9).
Although deciding whether a graph is balanced or not lies in P , there is no algorithm

known that can be practically used for large instances.

4.3.2. Hall Condition
Conforti, Di Summa and Zambelli gave in [CSZ07] an algorithm that can be used
to find a perfect matching or a pair R,B violating the Hall condition in a balanced
hypergraph. For this we need the following notions:
Let A ∈ Rm×n be a matrix. We denote by Ai the (m − 1) × n matrix obtained

from A by removing the i-th row of A. Further, we call the system Ax = 1, x ≥ 0
minimally infeasible if it has no solution but Aix = 1, x ≥ 0 is feasible for every
1 ≤ i ≤ m.

Theorem 4.3.1. There is a polynomial time algorithm which gives for every hyper-
graph H = (V, E) one of the following outputs:

• H is not balanced.

• A pair R,B ⊆ V violating the Hall condition.

• A perfect matching.

Proof. Let A ∈ RV×E be the incidence matrix of H.
First, calculate a vertex x∗ of LPPM(H). If x∗ exists, then it is either fractional,

implying that H is not balanced, or it is integral, giving the perfect matching M :=
{e|x∗e = 1} of H.
Otherwise, we do the following:
If Av = 1, x ≥ 0 is infeasible, remove row v (so we delete vertex v from H but we

keep hyperedges which become empty). Iterate until we get a hypergraph H̃ with
incidence matrix Ã for which the system Ãx = 1, x ≥ 0 is minimally infeasible.
For every row i of Ã we calculate a vertex xi of Ãix = 1, x ≥ 0. If some xi is

fractional then H is not balanced. If all xi are integral, we set R := {i|Ai.xi = 0} and
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B := {i|Ai.xi ≥ 2}. Conforti et al. show in [CSZ07] that in a balanced hypergraph,
such that the system defining LPPM is minimally infeasible, taking R and B as above
gives a pair violating the Hall condition. So, we test if R and B indeed violate the
Hall Condition. If not, H̃ and thus H are not balanced.
The algorithm runs in polynomial time, since calculating a vertex of a polytope can

be done in polynomial time and the number of removed rows is bounded by |V |.

Remark. The algorithm above cannot be used to decide whether a hypergraph is
balanced. If H is not balanced and has a perfect matching the algorithm can give the
first or the last output. Furthermore, for a hypergraph without perfect matching there
can be a pair violating the Hall condition, even if the hypergraph is not balanced.
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In this chapter partitioned hypergraphs are investigated by looking at the structure
of their matching and perfect matching polytope. The first section gives theoretical
results on the dimension, valid inequalities, facets and the integrality gap of both
polytopes, whereas the second section summarizes computational results for parti-
tioned hypergraphs with maximum part size two having few vertices.
First, we define an infinite sequence Dn of bipartite hypergraphs where n is an even

natural number:

Definition. Dn has disjoint vertex sets Vn = {v1, . . . , vn} and Wn = {w1, . . . wn}.
Each of the two vertex sets is partitioned into n

2 parts of size two, say V i
2n = {v2i−1, v2i}

and W i
2n = {w2i−1, w2i} (1 ≤ i ≤ n

2 ). The set of hyperedges An of Dn consists of n2

edges {vi, wj} for 1 ≤ i, j ≤ n and (n2 )2 proper hyperedges of the form V i
n ∪W j

n for
all 1 ≤ i, j ≤ n

2 .

Remark. The graph induced by the set of edges is the complete bipartite graph
Kn,n. If we are just looking at the hyperedges and shrink each part of V and W to
one vertex, then the hyperedges become edges between the parts and the resulting
graph is Kn

2 ,
n
2
. In a complete bipartite graph Kk,k the edge set can be partitioned

into k perfect matchings. Thus the hyperedges of Dn can be partitioned into n + n
2

perfect matchings. This shows that for every hyperedge there is a hyperassignment
containing it and one missing it.

We draw a partitioned hypergraph of maximum part size two in the following way:

• The vertices and edges are drawn as usual, i.e., a vertex is represented as a disc
and an edge as a line joining its endvertices.

• A part is represented by an ellipse around the corresponding two vertices.

• A proper hyperedge is represented by a line joining the two parts that the
hyperedge connects.

Figure 5.1 showsD6 as an example; the complete bipartite hypergraph with 12 vertices
partitioned into 6 parts of size two.
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Figure 5.1.: The hypergraph D6

5.1. Polyhedral Results
In this section we will investigate the matching polytope, the perfect matching poly-
tope, and their fractional variants (as defined in chapter 3). We focus on partitioned
hypergraphs of part size two. These are partial subhypergraphs of some Dn.
Although it is difficult to calculate the dimension of the perfect matching polytope

for general hypergraphs, we give some results for partial hypergraphs of Dn, exploiting
known results on the dimension of the perfect matching polytope of bipartite graphs.
After that, we look at the extended formulation of (HAP) in partitioned hyper-

graphs found by Borndörfer and Heismann in [BH12]. We show that the extended
formulation implies all clique inequalities.
Then we summarize different classes of inequalities that are known for the matching

and the perfect matching polytope. In the first case, some facets can be characterized.
In the second case, we give some necessary conditions for some classes of inequalities
to define facets.
At the end of this section, we show that the integrality gap of the natural LP-

relaxation of the Hyperassignment Problem is unbounded, whereas the integrality
gap of the LP-relaxation of the maximum weight matching problem is equal to three
for partitioned hypergraphs of part size two.

5.1.1. Dimension
First of all, we need to know the dimension of a polytope, for example, to prove that
certain inequalities define facets. This is simple for the matching polytope but not
for the perfect matching polytope.

Theorem 5.1.1. IPM(Dn) has full dimension.
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Proof. {χ∅} ∪ {χa|a ∈ An} is a set of |An| + 1 affinely independent vectors, so
IPM(Dn) ⊆ RAn has full dimension.

Remark. The same argument shows that IPM(H) is full dimensional for every hy-
pergraph H.

The dimension of the perfect matching polytope is more difficult to calculate, as it
is NP-hard to decide whether a hypergraph has a perfect matching. However, the
dimension of the fractional perfect matching polytope can be calculated much easier
as we have a full description in terms of inequalities and equations.

Theorem 5.1.2. Let D = (V,W,A) be a bipartite, graph based hypergraph such that
every hyperedge a ∈ A is contained in a perfect matching. Let G be the underlying
graph, i.e. G = (V ∪W,E) with edge set E = {a ∈ A| |a| = 2}. Denote by k the
number of connected components of G. Then

dim(LPPM(D)) = |A| − 2|V |+ k.

Proof. As no inequality of the form xa ≥ 0 is implicit, the dimension of LPPM(D) is
equal to |A| − rank(A) where A is the incidence matrix of D. Furthermore, the rank
of A is equal to the maximum number of linear independent columns of A. Every
column of A that corresponds to a hyperedge is the sum of the columns corresponding
to a set of underlying disjoint edges because D is graph based. Thus, A has the same
rank as the incidence matrix of G.
By Theorem 18.6 in [Sch03], the dimension of the perfect matching polytope of G is

equal to |E|− (|V |+ |W |) +k. So the incidence matrix of G has rank |V |+ |W |−k =
2|V | − k. This shows that

dim(LPPM(D)) = |A| − rank(A) = |A| − 2|V |+ k.

Corollary 5.1.3. The dimension of LPPM(Dn) is 5
4n

2 − 2n+ 1 for any even n ∈ N.

We know that Dn has a perfect matching and that every hyperedge is contained
in one. This can be used to extend the proof of Theorem 18.6 in [Sch03] about the
dimension of the perfect matching polytope of a bipartite graph to the dimension of
IPPM(Dn).

Theorem 5.1.4. The dimension of IPPM(Dn) is 5
4n

2 − 2n+ 1 for any even n ∈ N.

Proof. The perfect matching polytope of Dn lies in the fractional perfect matching
polytope of Dn, therefore its dimension is at most dimLPPM(Dn) = 5

4n
2 − 2n+ 1.

For the reverse inequality, choose a vector x in the relative interior of IPPM(Dn).
Then 0 < xa < 1 for all a ∈ An because each hyperedge is contained in one but not
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in every perfect matching. Let T be a set of edges of Dn corresponding to a spanning
tree of Kn,n. We show that by adjusting the x-values of T we can obtain a vector
x′ in the perfect matching polytope with x′a∗ = xa∗ ± ε for a fixed a∗ ∈ An \ T and
x′a = xa for all a ∈ An \ (T ∪ a∗):
First, let a∗ be an edge, i.e., |a∗| = 2, then the partial hypergraph induced by T

together with a∗ contains exactly one cycle C. Choose some ε > 0 such that ε is
smaller than mina∈C xa and mina∈C(1− xa). C has even length because D[T ∪ {a∗}]
is bipartite as a graph. Adding and subtracting alternately ε to xa for all edges a ∈ C
gives a new vector x′ ∈ IPPM(Dn) as desired. In this way the value of xa∗ can by
changed by a small ε > 0.
Next, let a∗ ∈ An\T be a proper hyperedge. Then a∗ can be written as the disjoint

union of two edges a1 and a2. There are three cases:

1. a1, a2 ∈ T :
As above, there is some x̃ ∈ IPPM(Dn) such that x̃a1 = xa1 ± ε for an ε > 0
with 2ε smaller than mina∈T∪{a1,a2} xa and mina∈T∪{a1,a2}(1 − xa) and x̃a = xa
for all a ∈ A \ (T ∪ {a1}).
Repeating the argument for x̃ and a2 gives a vector x′′ ∈ IPPM(Dn) with
x′′a2 = x̃a2 ± ε = xa2 ± ε and x′′a = x̃a for all a ∈ An \ (T ∪ {a2}). Observe that
x′′a = x̃a = xa for all a ∈ An \ (T ∪ {a1, a2}) and x′′a = xa ± ε for a = a1 or
a = a2. Thus, x′ defined by

x′a =


x′′a, a ∈ T
xa ± ε, a = a∗

xa, else

is an element of the perfect matching polytope with x′a∗ = xa ± ε and x′a = xa
for all a ∈ An \ (T ∪ {a∗}).

2. a1, a2 ∈ T :
Let ε > 0 be smaller than min{xa∗ , xa1 , xa2 , 1 − xa∗ , 1 − xa1 , 1 − xa2}, then
x′ ∈ RAn defined by:

x′a :=


xa ± ε, for a = a∗

xa ∓ ε, for a = a1, a2

xa, else

lies in the perfect matching polytope of Dn and fulfils x′a∗ = xa± ε and x′a = xa
for all a ∈ An \ (T ∪ {a∗}).

3. a1 ∈ T and a2 /∈ T :

38



5.1. Polyhedral Results

If a1 lies not in the circle C defined T ∪ {a2}, then a vector x′ as above can be
constructed by adjusting the values of C and xa1 separately by some ±ε.
Otherwise, alternately assign ±ε to the hyperedges of C with ε > 0 small
enough.
If both a1 and a2 received the same value, say both got +ε, then x′ defined
by adjusting the x-values of C \ {a1, a2} by the assigned ±ε and xa∗ by +ε
gives a vector x′ ∈ IPPM(Dn) with x′a∗ = xa∗ + ε and x′a = xa for all a ∈
An \ (T ∪{a∗}). In the symmetric case that a1 and a2 received value −ε, we get
an x′ ∈ IPPM(Dn) with x′a∗ = xa∗ − ε and x′a = xa for all a ∈ An \ (T ∪ {a∗}).
Now, suppose we assigned +ε to a1 and −ε to a2. We alternately adjust the
values xa for all a ∈ C by the given value ±ε, except for a = a1 and a = a2. For
a = a1 we add 2ε and for a = a2 we do not change xa. Furthermore, we subtract
ε from xa∗ . This gives a vector x′ ∈ RAn with x′a∗ = xa∗ − ε and x′a = xa for all
a ∈ An \ (T ∪ {a∗}). It is clear that x′(δ(v)) = x(δ(v)) = 1 for all v ∈ V ∪W
with v /∈ a1 ∪ a2. For v ∈ a1 we get

x′(δ(v)) = x(δ(v)) + 2ε− ε− ε = 1

and for v ∈ a2 we get

x′(δ(v) = x(δ(v)) + ε− ε = 1.

So x′ lies in the perfect matching polytope.
In the same way we can construct a vector x′ ∈ IPPM(Dn) if we have assigned
−ε to a1 and +ε to a2. Then x′a∗ = xa∗+ε and x′a = xa for all a ∈ An\(T ∪{a∗})
holds.

Geometrically, this means that it is possible to make a little step from an interior
point in the direction given by some e ∈ An \ T without leaving the polytope, so
dim(IPPM(Dn)) must be at least |An \ T | = 5

4n
2 − 2n+ 1.

For a subhypergraph of Dn Theorem 18.6 in [Sch03] yields the following:

Theorem 5.1.5. Let D be a graph based partial hypergraph of Dn such that every
a ∈ A is contained in a perfect matching. Furthermore, assume that the subgraph
of D induced by the set of edges in D is connected and that the graph obtained by
shrinking all parts and connecting to parts by an edge if there is a hyperedge between
the two parts in D. Then

dim(IPPM(D)) = |A| − 2n+ 1

holds.
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Proof. The dimension of LPPM(D) is equal to |A|−2n+1. As IPPM(D) is contained
in LPPM(D), we get dim(IPPM(D)) ≤ |A| − 2n+ 1.
For the other direction, observe that in the proof of the “≥” part in Theorem 5.1.4

we only used that each a ∈ A is contained in a perfect matching but also missed by a
perfect matching and that each proper hyperedge can be written as the disjoint union
of two edges. By assumption each hyperedge is contained in a perfect matching and
D is graph based which implies the last property.
Suppose there is a hyperedge a∗ ∈ A contained in every matching, then a hyperedge

adjacent to a∗ cannot lie in a perfect matching. This means that a∗ is isolated.
But then one of the graphs assumed to be connected in the assertion would not be
connected. Thus every hyperedge is contained in a perfect matching and missed by
one.

5.1.2. An Extended Formulation
Borndörfer and Heismann give an extended formulation for (HAP) in partitioned
hypergraphs using so called “configurations“([Hei10], [BH12]):

Definition. Let D = (V,W,A) be a partitioned hypergraph with parts {V1, . . . , Vk}
and {W1, . . . ,Wl}. A subset C ⊆ A is a configuration of a part P ∈ {V1, . . . , Vk}
(or P ∈ {W1, . . . ,Wl}) if a1 ∩ a2 = ∅ for two different hyperedges a1, a2 ∈ C and⋃
a∈C a ∩ V = P (or ⋃a∈C a ∩W = P ). Let CP denote the set of configurations of

part P and CV := ⋃k
i=1 CVi

and CW := ⋃l
i=1 CWi

the set of configurations of V and W ,
respectively. Furthermore, C := CV ∪CW is defined to be the set of all configurations.

Now we can state the Configuration ILP for a partitioned hypergraph D = (V,W,A)
with costs c : A → R:

min x∈RA c
Tx

subject to
∑
a∈δ(v)

xa = 1 ∀v ∈ V ∪W (5.1)
∑

C∈CV :a∈C
yC = xa ∀a ∈ A (5.2)

∑
C∈CW :a∈C

yC = xa ∀a ∈ A (5.3)

x, y ≥ 0 (5.4)
x ∈ ZA (5.5)
y ∈ ZCV × ZCW (5.6)

Denote by LPC(D) := {(x, y) ∈ RA × (RCV × RCW )| (x, y) fulfils (5.1)-(5.4)} the
polytope corresponding to the LP-relaxation of the Configuration ILP.
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Projecting a solution (x, y) of the Configuration ILP to x ∈ RA yields a solution of
(HAP) and each solution of (HAP) can be extended to a solution of the Configuration
ILP (see [BH12] for a proof). So this ILP is a correct extended formulation of the
hyperassignment problem. Moreover, the projection of LPC to RA is stronger than
LPPM because it implies also the clique inequalities:

Theorem 5.1.6. Let D = (V,W,A) be a partitioned hypergraph and (x, y) ∈ LPC(D).
Then x(Q) ≤ 1 holds for all cliques Q ⊆ A of L(D).

Proof. The proof is due to [BH12].
First, we show that for every clique Q there exists a part P with Q ⊆ δ(P ). If Q

is empty, there is nothing to show. So let a1 ∈ Q with a1 ∩V ⊆ Vi and a1 ∩W ⊆ Wj.
Every hyperedge intersecting a1 must intersect at least one of the two parts Vi and
Wj. If there is an edge a2 ∈ Q with a2 ∩W * Wj, then any other edge a ∈ Q must
intersect Vi, otherwise a ∩ a2 = ∅ or a ∩ a1 = ∅. The same argument holds for the
case a2 ∩ V * Vi.
W.l.o.g. Q ⊆ δ(P ) for a part P ⊆ V . For very vertex v ∈ P the following holds:

1 =
∑
a∈δ(v)

xa

=
∑
a∈δ(v)

∑
C∈CV :a∈C

yC

=
∑

C∈CV :a∈C
|δ(v) ∩ C|yC

=
∑
C∈CP

yC , as |δ(v) ∩ C| = 1 for all C ∈ CP , and 0 else,

=
∑
a∈Q

∑
C∈CP :a∈C

yC +
∑

C∈CP :C∩Q=∅
yC (?)

≥
∑
a∈Q

∑
C∈CP :a∈C

yC

=
∑
a∈Q

xa = x(Q).

(?) holds because every configuration C ∈ CP contains at most one hyperedge a with
a ∈ Q.

The last theorem shows that the projection LPC(D) to RA yields a better relaxation
of IPPM(D) than LPPM(D), but the number of variables has increased.
For a partitioned hypergraph D = (V,W,A) of maximum part size two the number

of configurations is bounded by O(|V ||A|). To see this, we determine the maximum
number of configurations containing a fixed hyperedge a ∈ A. If a is a hyperedge,
then a∩V = Vi for some part Vi of V , so {a} is already a configuration and there are
no other configurations C ∈ CV containing a. Similarly, {a} is the only configuration

41



5. Partitioned Hypergraphs

of CW containing a. If a is an edge and a ∩ V ⊆ Vi is a part of size two, then
all configurations C ∈ CV containing a are of the form {a, a′} where a′ is an edge
connecting the unique vertex of Vi \ a with a vertex of W \ a. This implies that at
most |W | − 1 = |V | − 1 configurations C ∈ CV contain a. Using the same argument
shows that a lies in at most |V | − 1 configurations C ∈ CW . Together we get that
there are less than 2|V ||A| configurations.
Although for fixed part size d the number of configurations is bounded by a poly-

nomial in the number of hyperedges and vertices, the degree of this polynomial grows
fast for increasing d. Therefore, Heismann gives in [Hei10] an efficient algorithm to
optimize over the LP-relaxation of the configuration formulation without enumerating
all configurations.

5.1.3. Valid Inequalities and Facets
We start looking at the matching polytope, which is easier to handle. The theorems
are formulated in terms of Dn but the proofs hold for other hypergraphs, too.

Theorem 5.1.7. Every trivial inequality xa ≥ 0 defines a facet of IPM(Dn).

Proof. Fix a hyperedge a∗ ∈ An. The |An| − 1 linearly independent vectors χa with
a ∈ An \ {a∗} are elements of the matching polytope and satisfy xa∗ = 0.
So {x ∈ IPM(Dn)|xa∗ = 0} is a facet.

Theorem 5.1.8. A clique inequality x(Q) ≤ 1 defines a facet of IPM(Dn) if and only
if Q is a maximal clique.

Proof. If Q′ is a clique containing Q as a proper subset then x(Q′) ≤ 1 implies
x(Q) ≤ 1.
Now let Q be a maximal clique in Dn. So Q is a maximal clique in L(Dn) and

thus x(Q) ≤ 1 defines a facet of the stable set polytope of L(D) (see [GLS93]). The
dimension STAB(L(D)) is |An|, so there are |An| − 1 linearly independent vectors in
STAB(L(D)) satisfying x(Q) = 1. These vectors lie also in the matching polytope of
Dn, so x(Q) ≤ 1 defines a facet for IPM(Dn).

Another interesting class of inequalities are odd-cycle inequalities:

x(C) ≤ |C| − 1
2

for an odd cycle C. It is not easy to say when an odd-cycle inequality is facet-defining.
If C has length three, it is just a clique and therefore Theorem 5.1.8 can be used. For
|C| ≥ 5 it is clear that C should at least be a strong cycle:

Theorem 5.1.9. If an odd cycle inequality is not strong, then it is redundant with
respect to Ax ≤ 1, x ≥ 0 and all odd-cycle inequalities.
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Proof. Suppose the odd cycle C = (v0, e1, v1, . . . , el, vl = v0) is not strong. Then
there is a hyperedge ei containing three vertices vi−1, vi, vj. We can assume j > i, so
C ′ := (v0, e1, . . . , vi−1, ei, vj, ej+1, . . . , el, vl) and C ′′ := (vi, ei+1 . . . , vj, ei, vi) are two
cycles with |C ′| + |C ′′| = |C| + 1 as hyperedge ei is used twice. This implies that
either both cycles are even or both are odd.
If both cycles are odd, then the inequality corresponding to C is redundant since

it is implied by the cycle-inequalities of C ′ and C ′′:

x(C) ≤ x(C ′) + x(C ′′) ≤ |C
′|+ |C ′′| − 2

2 = |C| − 1
2 .

The case that both cycles are even remains to be shown. Without loss of generality
we may assume j = l−1. Then it holds that C ′ := (v0, e1, . . . , vi−1, ei, vl−1, el, vl = v0)
and C ′′ := (vi, ei+1 . . . , el−1, vl−1, ei, vi). C ′ has even length, so i must be odd. Now,

xe2s−1 + xe2s ≤ 1

for all s = 1, . . . , i−1
2 implies that

i−1∑
k=1

xek
≤ |C

′| − 2
2 .

Similarly,
l−2∑

k=i+1
xek
≤ |C

′′| − 2
2

holds. Together with xei
+ xel−1 + xel

≤ 1 this yields

x(C) =
l∑

k=1
xek
≤ |C

′| − 2
2 + |C

′′| − 2
2 + 1 = |C

′|+ |C ′′| − 2
2 = |C| − 1

2 ,

which shows that the cycle inequality corresponding to C is redundant.

Now we turn to the perfect matching polytope.

Theorem 5.1.10. Let D = (V,W,A) be a partial subhypergraph of Dn. The trivial
inequality xa ≥ 0 defines a facet for LPPM(D) if and only if there is no constant
k ∈ [0, 1] such that xa = k is a valid equation for the perfect matching polytope.

Proof. If xa = k for all x ∈ LPPM(D), then xa ≥ 0 does not define a facet.
Now let a ∈ A such that xa = k is not valid for the perfect matching polytope.

W.l.o.g. we can assume that there is no implicit inequality of the form xa′ ≥ 0 for
a′ ∈ A \ {a}. We look at the subgraph D′ induced by A \ {a}. The dimension

43



5. Partitioned Hypergraphs

of LPPM(D) and the dimension of LPPM(D′) can be calculated using the incidence
matrices A of D and A′ of D′:

dim(LPPM(D)) = |A| − rank(A)
dim(LPPM(D′)) = |A \ {a}| − rank(A′).

As there is no valid equation for LPPM(D) of the form xa = k the rank of A′ equals
the rank of A. This shows that:

dim(LPPM(D′)) = dim(LPPM(D))− 1.
So there are exactly dim(LPPM(D′))+1 affinely independent vectors zi ∈ LPPM(D′).
Setting

zia′ :=

zia′ a′ 6= a

0 a′ = a

gives dim(LPPM(D)) affinely independent vectors of LPPM(D) satisfying zia = 0. As
the face F := {x ∈ LPPM |xa = 0} is not equal to LPPM(D), it must have dimension
dim(LPPM(D))− 1. Hence, F is a facet.
Theorem 5.1.11. The trivial inequality xa ≥ 0 with a ∈ An defines a facet for
IPPM(Dn).
Proof. By the results of the first section in this chapter, the dimension of the polytope
IPPM(Dn) is one bigger than the dimension of the polytope IPPM(Dn[A \ {a}]) for
every fixed hyperedge a ∈ A. Thus, the same proof as in Theorem 5.1.4 shows that
xa ≥ 0 defines a facet for the perfect matching polytope.

Of course, the odd cycle-inequalities are valid for the perfect matching polytope
and Theorem 5.1.9 holds, too.
In the case of graphs, the perfect matching polytope is defined by the trivial in-

equalities, the equations x(δ(v)) = 1 and the odd set inequalities

x(E[U ]) ≤ |U | − 1
2

for all odd subsets U of the vertex set. Heismann found a generalization of these
inequalities to bipartite hypergraphs. Observe that

x(E[U ]) =
∑
e∈E

⌊
|{v ∈ U |e ∈ δ(v)}|

2

⌋
xe,

as E[U ] is the set of edges having both nodes in U . In a bipartite hypergraph the
set δ(v) forms a clique. Substituting {δ(v)|v ∈ U} by any odd collection of cliques
Q = {Q1, Q2, . . . , Q2k+1} results in the following inequality∑

a∈A

⌊
|{Q ∈ Q|a ∈ Q}|

2

⌋
xa ≤ k, (5.7)

which is called an odd clique set inequality.
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Theorem 5.1.12. Let D = (V,W,A) be a bipartite hypergraph and Q be a collection
of cliques of size 2k + 1 (k ∈ N). The inequality (5.7) is valid for IPPM(D).

Proof. It is enough to show that (5.7) is satisfied by all vectors χM , where M is a
perfect matching. So let x := χM for a fixed perfect matching M , then

∑
a∈A

⌊
|{Q ∈ Q|a ∈ Q}|

2

⌋
xa =

∑
a∈M

⌊
|{Q ∈ Q|a ∈ Q}|

2

⌋
.

For each Q ∈ Q there is at most one a ∈M with a ∈ Q, implying∑
a∈M
|{Q ∈ Q|a ∈ Q}| ≤ 2k + 1.

If equality holds, at least one summand must be odd, so dividing by two and rounding
down both sides yields ∑

a∈M

⌊
|{Q ∈ Q|a ∈ Q}|

2

⌋
≤ k,

which proves the claim.

Theorem 5.1.13. Every inequality of the form (5.7) is implied by one for which all
Q ∈ Q are maximal cliques. Furthermore, we can assume Qi 6= Qj for i 6= j.

Proof. For every Q ∈ Q let Q′ be a maximal clique containing Q. These cliques build
a collection Q′ of the same size as Q. Furthermore, for every a ∈ A

|{Q ∈ Q|a ∈ Q}| ≤ |{Q ∈ Q′|a ∈ Q}|

holds. So ∑
a∈A

⌊
|{Q ∈ Q|a ∈ Q}|

2

⌋
xa ≤

∑
a∈A

⌊
|{Q ∈ Q′|a ∈ Q}|

2

⌋
xa ≤ k

follows. This implies the first claim.
Now suppose Q = {Q1, Q2, . . . , Q2k+1} and Q1 = Q2. Set Q′′ = {Q3, . . . , Q2k+1},

this is an odd clique set of size 2(k− 1) + 1. For a fixed a ∈ A, b|{Q ∈ Q|a ∈ Q}/2|c
is one bigger than b|{Q ∈ Q′′|a ∈ Q}|/2c if a ∈ Q1, and otherwise both numbers are
equal. Adding

∑
a∈A

⌊
|{Q ∈ Q′′|a ∈ Q}|

2

⌋
xa ≤ k − 1

and the clique inequality corresponding to Q1 = Q2, we get
∑
a∈A

(⌊
|{Q ∈ Q′′|a ∈ Q}|

2

⌋
+ |a ∩Q1|

)
xa ≤ k,

which is equal to inequality (5.7) for Q.
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Remark. A clique inequality x(Q) ≤ 1 can be seen as an odd clique set inequality.
For that, we take 3 copies of Q as Q. We get:

1 ≥
∑
a∈A

⌊
|{Q ∈ Q|a ∈ Q}|

2

⌋
xa =

∑
a∈Q

xa.

Only in this case it makes sense to take multiple sets into Q, so we look at the clique
inequalities separately.

Odd cycle inequalities are a special case of odd clique set inequalities:
If {a1, a2, . . . , a2k+1} are the hyperedges of an odd cycle (in the traversed order),

then Q1 := {a1, a2}, Q2 := {a2, a3}, . . . , Q2k+1 := {a2k+1, a1} are cliques and setting
Q := {Q1, . . . , Q2k+1} yields:

k ≥
∑
a∈A

⌊
|{Q ∈ Q|a ∈ Q}|

2

⌋
xa =

2k+1∑
i=1

xai
.

So, if we can decide for any odd clique set inequality whether it defines a facet or not,
we can characterize when an odd cycle inequality is facet defining. One necessary
condition is the following:

Corollary 5.1.14. Let C = (v0, a1, v1, a2, . . . , v2k, a2k+1, v0) be an odd cycle in a
bipartite hypergraph D = (V,W,A). If there are two cliques Q,Q′ with (Q∩Q′)\C 6= ∅
such that ai, ai+1 ∈ Q and aj, aj+1 ∈ Q′ for j 6= i, i.e., Q and Q′ contain each a pair
of consecutive hyperedges of C and these two pairs are different, then x(C) ≤ |C|−1

2 is
redundant with respect to Ax = 1, x ≥ 0 and all odd clique set inequalities.

Proof. Otherwise, let a∗ ∈ (Q ∩ Q′) \ C. Define Q := {Q1, . . . , Q2k+1} as above
and set Q′ := {Q′1, . . . , Q′2k+1}, where Q′i is a maximal clique containing Qi for each
i ∈ {1, . . . 2k + 1}. It follows that

|{Q′ ∈ Q′|a ∈ Q′}| − |{Q ∈ Q|a ∈ Q}| ≥

2, if a = a∗

0, else.

Thus, the odd clique set inequality of Q′ implies the odd clique set inequality of Q,
which is equal to the odd cycle inequality x(C) ≤ |C|−1

2 .

Remark. If C = v0, a1, v1, . . . , v2k, a2k+1, v2k+1 = v0 is an odd cycle then for every
0 ≤ i ≤ 2k the set δ(vi) is a clique containing a pair of adjacent hyperedges of C. So
the last corollary implies that if the odd cycle inequality of C defines a facet, then C
has no “chord”, i.e., a hyperedge a /∈ {a1, . . . , a2k+1} incident to at least two distinct
vertices of the cycle.
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Figure 5.2.: Example with a large integrality gap

5.1.4. Integrality Gap
The integrality gap of LPPM can be arbitrarily large, even if we add all clique in-
equalities, as the following example shows:

Example. Let D be the hypergraph drawn in Figure 5.2. D has one hyperedge which
is contained in one strong cycle of length five and in another strong cycle of length
seven and it has one extra edge e∗ (drawn with a dashed line). e∗ is contained in the
unique perfect matching of D.
Assigning costs M > 0 to e∗ and 0 to all other hyperedges gives an integrality gap

of M because the cost of the perfect matching is M but the cost of the fractional
solution x ∈ LPPM(D) defined by xe = 1

2 for all hyperedges e 6= e∗ is zero. M
can be chosen arbitrarily large, so the integrality gap of the LP relaxation of the
hyperassignment problem is unbounded.
Observe that D has the Helly property, so it satisfies all clique inequalities.

In contrast to perfect matchings the integrality gap of

max btx (5.8)
subject to x ∈ LPM

is bounded for k-uniform hypergraphs. Füredi, Kahn and Seymour show in [FKS93]
that it is at most k − 1 + 1

k
. For k-partite hypergraphs the result can be strengthen

to k − 1. In general, bipartite hypergraphs are not k-partite or k-uniform, however,
they can be transformed into those provided they are partitioned:

Theorem 5.1.15. Let D = (V,W,A) be a partial hypergraph of Dn for some even
n ∈ N with weight function b : A → R+.
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There exists a 4-partite hypergraph D′ = (V ′ ∪W ′,A′) and a function b′ : A′ → R
such that there is a bijection between the matchings in D and the matchings in D′
preserving the weights.

Proof. For every edge a ∈ A, |a| = 2, we add two new vertices va and wa, further, we
define for every such edge a hyperedge a′ := a ∪ {va, wa}. We set V ′ := V

⋃
a:|a|=2 va,

W ′ := W
⋃
a:|a|=2wa and A′ := {a|a ∈ A, |a| = 4} ∪ {a′|a ∈ A, |a| = 2} with

weights b′(a) = b(a) and b′(a′) = b(a). Every matching M in D gives a corresponding
matching M ′ := {a|a ∈ M, |a| = 4} ∪ {a′|a ∈ M, |a| = 2} in D′ of the same weight
and vice versa.
It remains to show that D′ is 4-partite. For every part P ⊆ V we number the

two vertices with 1 and 2, for a part P ⊆ W we number them with 3 and 4. Every
hyperedge a of size four between two parts contains exactly one vertex of each number.
A hyperedge of the form a′ = a∪{va, wa} contains two vertices with different numbers
and two vertices, namely va and wa, not numbered yet. We give va and wa the two
missing numbers, it is not important which vertex gets which number because va and
wa are only incident to a′ in D′. Now, setting Vi := {v ∈ V ′ ∪W ′|v has number i}
for i = 1, 2, 3, 4, yields a partition of V ′ ∪W ′ such that |a∩ Vi| = 1 for all a ∈ A′ and
1 ≤ i ≤ 4. This shows that D′ is 4-partite.

The matching polytope of D and that of D′ coincide as the inequalities x(δ(v)) ≤ 1
are the same for v ∈ V ∪ W and the additional inequalities x(δ(v)) = xa ≤ 1 for
v = va or v = wa in LPP (D′) are redundant. This shows:

Theorem 5.1.16. The LP (5.8) has integrality gap at most 3 for every partial hy-
pergraph D of some Dn.

Proof. The program 5.8 has the same integrality gap forD as forD′, which is 3 = 4−1,
as D′ is 4-partite.

Remark. The above ideas can be generalized for partitioned hypergraphs of arbi-
trary part sizes.
For that, let D = (V,W,A) be a partitioned hypergraph with parts {V1, . . . , Vk}

and {W1, . . . ,Wl} and maximum part size M ∈ N. For every hyperedge a ∈ A with
|a∩V | = |a∩W | < M we add new vertices v1

a, . . . , v
M−|a∩V |
a to V and w1

a, . . . , w
M−|a∩W |

to W . After that, we replace a by a ∪ {v1
a, . . . , v

M−|a∩V |
a , w1

a, . . . , w
M−|a∩W |}.

We number the vertices of a part Vi ∈ {V1, . . . , Vk} using |Vi| different elements of
{1, . . . ,M} and the vertices of a partWj ∈ {W1, . . . ,Wl} using |Wj| different elements
of {M + 1, . . . , 2M}. Finally, for every hyperedge a ∈ A with |a∩ V | = |a∩W | < M
we give the vertices v1

a, . . . , v
M−|a∩V |
a and w1

a, . . . , w
M−|a∩W | the numbers for which the

hyperedge a does not already contain a vertex of. This can be done arbitrarily. At
the end we are left with a 2M -partite hypergraph D′ such that there is a bijection
between the matchings in D and the matchings in D′ as in Theorem 5.1.15.
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1− 21 b

1− 23 b

1

Figure 5.3.: Example

Similar to the case of partitioned hypergraphs with parts of size two, we see that
the linear program (5.8) has integrality gap at most 2M − 1 for any partitioned
hypergraph with maximum part size M .

Another interesting fact is that there are vertices of the fractional perfect matching
polytope such that the least common multiple of the denominators of all entries is
arbitrarily large.

Example. First, look at Figure 5.3. It shows a subhypergraph D of D8 containing
four strong odd cycles of length three.
In order to find a vector x ∈ LPPM(D) we first observe that an entry corresponding

to one of the three hyperedges leaving the first upper part must be equal to 1
2 . Also

the values of the two edges incident to the first lower part must be the same, say
they are equal to some b ∈ R between zero and one. After that, the x-values of all
other hyperedges can be calculated successively because they only depend on b. Now,
x(δ(v)) = 1 is satisfied for all vertices except of the lower P1_1, P1_2 and P2_2, for
which the corresponding equation holds if and only if

1
2 + b+ 1− 23b = 1,

21b+ 22b+ 23b = 1,

which is the case for b = 1
2(23−1) = 1

14 .
Of course, this example can be generalized by adding k strong odd cycles of length

three for an integer k ≥ 2. Then b has to satisfy the following two equations:

1
2 + b+ 1− 2k−1b = 1,

21b+ 22b+ . . .+ 2k−1b = 1.
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The first equations has the solution b = 1
2(2k−1−1) = 1

2k−2 which is also a solution of
the second equation as

k−1∑
i=1

2ib = (
k−1∑
i=0

2i − 1)b = (2k − 1− 1)b = 1.

Because all values of x depend only on b and b is unique, the polytope LPPM(D)
contains only one point, therefore x is a vertex of this polytope. For k → ∞ the
denominators of the entries of this vertex can become arbitrarily large.

5.2. Computational Results
In this section we give computational results for Dn for small n and some generaliza-
tions for arbitrary sizes.
Even for small n the number of facets and vertices of IPPM and LPPM can be

very large. For example, IPPM(D6) has 14, 049 facets. Heismann calculated all of
them and clustered them using “symmetry”. In this context symmetry is induced by
all permutations of the vertices respecting the partition and bipartition, i.e., the n
parts of each side V or W can be permuted, the two vertices of each part can be
interchanged, and V and W can be swapped. This gives n! ·n! · 2n · 2n · 2 = n!2 · 22n+1

bijections of the vertex set.
Each π : Vn ∪Wn → Vn ∪Wn gives a permutation of the set of hyperedges, namely

π′ : An → An with π′(a) := {π(v)|v ∈ a}. The set {π(v)|v ∈ a} is again a hyperedge
of Dn, because π maps parts onto parts.
An inequality of the form ∑

a∈An

daxa ≤ e,

where e, da ∈ R for all a ∈ A, is symmetric to an inequality∑
a∈An

d′axa ≤ e′,

where e′, d′a ∈ R, if there is a permutation π : An → An such that d′a = dπ(a) and
furthermore e = e′ (probably after adding some multiples of equations of the form
x(δ(v)) = 1 to the second inequality).
Similarly, two partial hypergraphs D1 = (Vn,Wn,A1),D2 = (Vn,Wn,A2) of some
Dn are symmetric if there is a permutation of An mapping A1 onto A2.
Exploiting symmetry, the 14, 049 facets of IPPM(D6) can be partitioned into 30

classes, where 16 come from odd clique set inequalities.
In contrast to the case of the matching polytope, we do not know when the LP-

relaxation of the perfect matching polytope is integral. Of course, if LPM is integral
also LPPM is integral, but not the other way around.
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It is not possible to calculate all vertices of LPPM(D6) without considering the
symmetry, there are too many of them. So it is not possible to use for example
PORTA to get all vertices.
To get an idea of the reasons destroying integrality, we calculated (with symmetry)

all minimal partial hypergraphs of D6 with fractional LP-relaxation of the perfect
matching polytope, we call them “minimal fractional“. Here, minimal means that no
proper partial hypergraph has the same property and two symmetric hypergraphs are
considered to be equal.
To explain the connection between vertices of LPPM(D6) and minimal fractional

hypergraphs, the following lemma is needed:

Lemma 5.2.1. Let D = (V,W,A) be a partial hypergraph of some Dn such that
LPPM(D) is not integral but LPPM(D′) is integral (or empty) for every proper partial
hypergraph D′ of D. Then D has at most 2n− 1 hyperedges and LPPM(D) contains
a unique vertex.

Proof. Let x ∈ LPPM(D) be a fractional vertex. If xa∗ = 0 for some a∗ ∈ A, then
projecting x to RA\a∗ yields a fractional vertex of LPPM(D[A \ a∗]), contradicting
that D is minimal fractional.
By Corollary 2.2.5 and x > 0, the |A| column vectors of the incidence matrix A

of D must be linearly independent. This implies |A| ≤ rank(A), which is at most
|Vn|+ |Wn| − 1 = 2n− 1 because the sum of all rows corresponding to vertices of Vn
equals the sum of the rows corresponding to vertices of Wn.
The size of A is also an upper bound on the rank of the 2n × |A|-matrix A. So

rank(A) = |A|, hence Ax = 1 has at most one solution. This shows that the polytope
LPPM(D) contains only one element, which then is the unique vertex of LPPM(D).

Now, we can show how to get a vertex of LPPM(Dn) from a minimal fractional
hypergraph D = (Vn,Wn,A) of Dn:
Let A′ ∈ R2n×|A| be the incidence matrix of D and A ∈ R2n×|An| be the incidence

matrix of Dn. Using the unique vertex x′ ∈ LPPM(D), we define a vector x ∈ RA by

xa :=

x′a, if a ∈ A
0, else.

x satisfies Ax = 1 and x ≥ 0, so it lies in LPPM(Dn). The column vectors of A
corresponding to entries xa > 0 are exactly the column vectors of A′. These column
vectors are linearly independent, thus x is a vertex of the polytope LPPM(Dn).
On the other hand, let x be a fractional vertex of LPPM(Dn). If A is the set of

all hyperedges with xa > 0, then by Corollary 2.2.6 the projection of x to RA is a
fractional vertex of LPPM(Dn[A]). The rank of the incidence matrix A′ of Dn[A]
is |A|, so LPPM(Dn[A]) contains only one element, implying that Dn[A] is minimal
fractional.
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5. Partitioned Hypergraphs

This shows in particular that the calculation of all minimal fractional hypergraphs
of D6 is equivalent to the calculation of all fractional vertices of LPPM(D6).
In the following, we describe the method for calculating the minimal fractional

hypergraphs:
Each partial hypergraph D = (Vn,Wn,A) of Dn is represented by a boolean array

bD indexed by the elements of a ∈ An with ”true“ at position a if a ∈ A, and ”false“
else.
We calculate inductively all symmetry classes of partial hypergraphs having h

hyperedges of size four and a edges which have no proper fractional partial hyper-
graph. For that let Ch,a denote the set of representatives for this symmetry classes
and let Fh,a ⊆ Ch,a be the set of representatives corresponding to minimal fractional
hypergraphs. We choose the lexicographic smallest representative of a symmetry class
to get a unique representative of each class.
Observe that F0,a = ∅ as D is just an ordinary bipartite graph if it has no hyper-

edges. So we only have to calculate Ch,a and Fh,a for h ≥ 1. Moreover, by Lemma
5.2.1, we only have to consider Ch,a with h+ a ≤ 2n− 1.
C1,0 has only one element because all hypergraphs having exactly one hyperedge of

size four are symmetric. This hypergraph is not fractional, thus F1,0 = ∅. Now, we
can inductively calculate all other Ch,a:

Ch,a = {bD| D has h hyperedges and a edges,
@ bD′ ∈ Fh̃,ã with (h̃, ã) < (h, a) such that bD ≥ bD′},

where we define (h̃, ã) < (h, a) to hold if and only if h̃ ≤ h, ã ≤ a and at least one of
the inequalities is strict. Furthermore, the boolean arrays bD and bD′ are interpreted
as 0-1 vectors with 0 for ”false“ and 1 for ”true“. bD ≥ bD′ holds if and only if every
hyperedge of D′ is also an element of D, i.e., D′ is a partial hypergraph of D. So the
second condition above guarantees that D with bD ∈ Ch,a has no proper fractional
partial hypergraph.
Algorithm 1 describes how Fh,a is calculated from Ch,a. To test the integrality of a

polytope we use the function LATTICE() from polymake [GJ00] .

Algorithm 1 Calculate Fh,a from Ch,a
Fh,a ← ∅
for all bD ∈ Ch,a do
Check if LPPM(D) is integral.
if LPPM(D) fractional then
Fh,a ← Fh,a ∪ bD

end if
end for

It remains to show how to get all Ch,a with h + a ≤ 2n − 1. The set Ch,a can be
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calculated from Ch−1,a or Ch,a−1 (if a ≥ 1). Algorithm 2 shows the first case, the
second one is similar, only |e| = 4 has to be replaced by |e| = 2.

Algorithm 2 Calculate Ch,a from Ch−1,a

Ch,a ← ∅
for all bD ∈ Ch−1,a do
for all hyperedges e ∈ An \ A with |e| = 4 do
D′ ← D + e = (V,W,A ∪ {e})
b← bD′
for all permutations π respecting the symmetry do
permute bD′ w.r.t. π to get π(bD′)
if π(bD′) is lexicographic smaller than b then
b← π(bD′)

end if
end for
if b /∈ Ch,a then
if not (∃ b′ ∈ Fh̃,ã with (h̃, ã) < (h, a) such that b′ ≤ b) then
Ch,a ← Ch,a ∪ b

end if
end if

end for
end for

Remark. The sets Ch,a become very huge for increasing h and a, even though just
the representative of a class is stored. For D6 the calculations were only possible
because of 5.2.1.

Every minimal fractional partial hypergraph of Dm can be extended to one for Dn
with m < n by adding hyperedges which form a perfect matching of the vertices
Vn \ Vm,Wn \Wm. Similarly, two minimal fractional partial hypergraphs, say of Dk
and Dm, give rise to a minimal fractional hypergraph of Dk+m. So it is reasonable to
start looking at D2 and D4 before D6.
However, in the case D2 we get no fractional hypergraphs as the bipartite hyper-

graph D2 has no strong odd cycle and therefore LPPM(D2) is integral.
In the next two subsection the minimal fractional partial hypergraphs of D4 and
D6 are investigated.

5.2.1. The case D4

The case D4 is more interesting than D2. Here we get three classes, where in two
of them there are two vertex disjoint strong odd cycles sharing the same tail-to-tail
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Figure 5.4.: Minimal fractional examples: F1,5 and F1,6

P1_1 P1_2

P1_1 P1_2

P2_1 P2_2

P2_1 P2_2

1

Figure 5.5.: Minimal fractional example: F2,4

hyperedge, see Figure 5.4. In the other class there are two vertex disjoint cycles with
two different tail-to-tail hyperedges which intersect, see Figure 5.5. In all cases LPPM
just contains one fractional point x with xe = 1

2 for all hyperedges e drawn solidly
and xe = 1 for the hyperedge drawn with a dashed line.

5.2.2. The case D6

For D6 the examples cannot be classified as easy as for D4. We describe the fractional
partial hypergraphs which are understood and list the remaining examples in the
appendix.
We start with the fractional partial hypergraphs having only one proper hyperedge,

i.e. a hyperedge of size four. For them, we know that after adding all odd cycle
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inequalities the polytope LPPM is integral. This is the case because the deletion of
the unique hyperedge of size four gives a balanced hypergraph, i.e., the line graph
of such a hypergraph is t-perfect. Furthermore, by Theorem 4.1.1, every fractional
partial hypergraph must contain a strong odd cycle. Indeed, all minimal fractional
partial hypergraphs having only one proper hyperedge contain two strong odd cycles
that are disjoint except for their tail-to-tail hyperedge:

Lemma 5.2.2. Let D = (Vn,Wn,A) be a minimal fractional hypergraph with exactly
one hyperedge of size four. It’s set of hyperedges A can be partitioned into two strong
odd cycles that are disjoint except for the unique proper hyperedge, and possibly a
perfect matching of the vertices not covered by the two strong odd cycles.

Proof. Let x∗ ∈ RA be a vertex of LPPM(D). As D is minimal fractional, this vertex
is unique. Now, we delete all a ∈ A with x∗a = 1. These hyperedges form a matching
and all vertices that are covered by this matching are not incident to any other
hyperedges.
Let A′ ⊆ A be the set of remaining hyperedges and V ⊆ Vn,W ⊆ Wn be the set of

vertices not covered by A \ A′. We set D′ := (V,W,A′) which is again a partitioned
hypergraph of part size two.
Projecting x∗ to RA′ yields a vertex x′ ∈ RA′ of LPPM(D′) with 0 < x′a < 1 for all

hyperedges a ∈ A′. This also shows that the unique hyperedge of size four lies in A′,
which will be denoted by ã in the remaining of the proof.
As in the proof of Theorem 4.1.1 the size of A′ is at most |V |+ |W |− 1 = 2|V |− 1.

On the other hand, the degree of each vertex v ∈ V must be at least two. This implies
that

2|V | ≤
∑
v∈V
|δ(v)| =

∑
v∈V
|{a ∈ A′|v ∈ a}| = |A′|+ 1 ≤ 2|V |,

because each edge is counted exactly once and ã is counted twice. So every vertex
v ∈ V has degree two. Similarly, it can be shown that the degree of every vertex
w ∈ W is two.
If we replace ã by the two edges ã ∩ V and ã ∩W we get an ordinary graph G.

Every vertex in G has degree two, so the edges of G can be partitioned into cycles.
If some cycle has even length, then it correspond to a strong even cycle in D′, but
then x′ can not be a vertex. So G has only odd cycles. Because of the structure of
the graph G, exactly one of the two edges ã ∩ V and ã ∩W is contained in an odd
cycle of G. Altogether, we see that G must be the disjoint union of two odd cycles.
Transferred to D′ the two odd cycles in G form two strong odd cycles in D′ that

are disjoint except for ã. This shows the claim.

Remark. Lemma 5.2.2 also shows that the polytope LPPM(D) is half-integral for a
minimal fractional hypergraph D = (Vn,Wn,A) having exactly one proper hyperedge
ã ∈ A.
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Let a ∈ A be a hyperedge with 0 < xa < 1 for x ∈ LPPM(D). Then a lies on
a strong odd cycle C = (v0, a1, v1, . . . , al, vl = v0) with a1 = a after some possible
renumbering. All x values of the other hyperedges in C are determined by xa, namely
xa2 = 1− xa, xa3 = xa, . . . , xal

= xa as l is odd. This implies that 1 = xa + xal
= 2xa,

thus xa = 1
2 .

Unfortunately, even for minimal fractional hypergraphs with two proper hyperedges
there is no nice analogue of the last lemma. However, some edges in a minimal
fractional hypergraph as in Lemma 5.2.2 can be replaced by proper hyperedges. For
that we need the notion of parallel edges.

Definition. LetD = (V,W,A) be a partitioned hypergraph with arbitrary maximum
part size. Two edges a1, a2 ∈ A are called parallel if:

• a1 and a2 do not intersect,

• a1 ∩ V and a2 ∩ V lie in the same part of V ,

• a1 ∩W and a2 ∩W lie in the same part of W .

The next lemma shows that two parallel edges can be replaced by a proper hyperedge.

Lemma 5.2.3. Let D = (Vn,Wn,A) be a minimal fractional hypergraph. If a1, a2 ∈ A
are two parallel hyperedges with xa1 = xa2 for the unique element x ∈ LPPM(D),
then replacing a1 and a2 by the proper hyperedge a1 ∪ a2 gives a minimal fractional
hypergraph.

Proof. Let D′ = (Vn,Wn,A′) be the bipartite hypergraph obtained from D by replac-
ing the two edges a1, a2 by the hyperedge a1 ∪ a2.
First, we show that LPPM(D′) is fractional. For that, let x ∈ LPPM(D) and define

x̃ ∈ A′ by

x̃a :=

xa, if a 6= a1 ∪ a2

xa1 , if a = a1 ∪ a2
.

Because of xa1 = xa2 and a1 ∩ a2 = ∅, it is clear that x̃(δ(v)) = x(δ(v)) = 1 for all
v ∈ V ∪W . So x̃ lies in LPPM(D′).
SupposeD′ contains a proper partial hypergraph D̃ = (Vn,Wn, Ã) that is fractional.

If a1 ∪ a2 /∈ Ã, then D̃ is a proper partial hypergraph of D. Otherwise, replacing the
hyperedge a1 ∪ a2 by the two edges a1 and a2 gives a partial hypergraph of D that
is fractional. So in both cases we get a contradiction to the assumption that D is
minimal fractional, thus also D′ is minimal fractional.

Example. We start with the fractional hypergraph shown in Figure 5.6 which has
x ≡ 1

2 as the unique element of its perfect matching polytope. This hypergraph has
three pairs of parallel edges that can be replaced by a proper hyperedge.
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Figure 5.6.: A hypergraph with three pairs of parallel edges.

Figure 5.7.: One pair of parallel edges replaced.

In this way we get 23 − 1 = 7 new fractional hypergraphs. However, some of
these hypergraphs might be symmetric. This is indeed the case: When replacing two
pairs of parallel edges only two non-symmetric hypergraphs occur. All other resulting
hypergraphs are not symmetric to each other.
Figure 5.7 and 5.8 depict an example of replacing one or two pairs of parallel

edges. Finally, the hypergraph obtained by replacing all three pairs of parallel edges
is displayed in Figure 5.9.

As we have no good characterization of the remaining examples, we list them in the
appendix. We omit fractional hypergraphs arising from other fractional hypergraphs
by replacing parallel edges. Moreover, we do not list the fractional hypergraph arising
from the case k = 3 in the second example of section 5.1.4, which is the only minimal
fractional hypergraph of D6 for which the vertex of it’s fractional perfect matching
polytope has an entry equal to 1

6 .
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Figure 5.8.: Two pairs of parallel edges replaced

Figure 5.9.: All parallel edges replaced
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6. Summary
In this thesis the hyperassignment problem was investigated with a special focus on
connections to the theory of hypergraphs, in particular balanced and normal hyper-
graphs, as well as its relation to the Stable Set Problem. With Theorem 4.2.3 a
variant of Hall’s Theorem for normal hypergraphs was found.
The main point was the investigation of the matching and perfect matching poly-

tope for partitioned hypergraphs. Therefore, valid inequalities and facets were found,
and the dimension of some polytopes could be calculated. It was shown that the triv-
ial LP-relaxation of the Hyperassignment Problem obtained by relaxing xi ∈ {0, 1}
by 0 ≤ xi ≤ 1 has an arbitrarily large integrality gap, even after adding all clique
inequalities. Whereas the integrality gap of the trivial LP-relaxation of the maximum
weight matching problem for partitioned hypergraphs with maximum part size M is
at most 2M − 1.
Additionally, computational results for small partitioned hypergraphs of part size

two were presented. Using symmetry it was possible to calculate all minimal fractional
vertices of the fractional perfect matching polytope of partitioned hypergraphs with
part size two having at most twelve vertices.
Another open problem is to classify all facets of D6. Up to symmetry, we know

that sixteen classes are induced by odd clique set inequalities. However, we could not
classify the inequalities defining the other fourteen classes.
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A. Appendix

We list all 45 minimal fractional hypergraphs which are not of the forms described in
section 5.2. For a listed hypergraph D = (V6,W6,A) the value of the unique vector
x ∈ LPPM(D) at position a is indicated by the line style in which the hyperedge a is
drawn:

' 1 ' 1
2 ' 1

4 ' 3
4 ' 2

3 ' 1
3

A.1. 2 Hyperedges
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A.2. 3 Hyperedges
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A.3. 4 Hyperedges
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