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Abstract

Semidefinite relaxations of quadratic 0-1 programming or graph partitioning
problems are well known to be of high quality. However, solving them by primal-
dual interior point methods can take much time even for problems of moderate size.
The recent spectral bundle method of Helmberg and Rendl can solve quite efficiently
large structured equality-constrained semidefinite programs if the trace of the primal
matrix variable is fixed, as happens in many applications. We extend the method
so that it can handle inequality constraints without seriously increasing computa-
tion time. In addition, we introduce inexact null steps. This abolishes the need of
computing exact eigenvectors for subgradients, which brings along significant advan-
tages in theory and in practice. Encouraging preliminary computational results are
reported.

Key Words. Eigenvalue optimization, convex optimization, semidefinite programming, proxi-
mal bundle method, large-scale problems.
MSC 1991. 65F15, 90C25; Secondary 52A41, 90C06.

1 Introduction

It is well known [22, 10, 23, 8] that semidefinite programming allows to design powerful
relaxations for quadratic 0-1 programming and graph partitioning problems. To describe
such relaxations, let 〈A,B〉 := trATB =

∑
aijbij denote the inner product of matrices

A,B ∈ IRm×n, let Sn denote the space of symmetric matrices of order n, and Sn
+ :=

{A ∈ Sn : A � 0} its cone of positive semidefinite matrices. Let A : S n → IRm be a linear

operator andAT : IRm → Sn its adjoint, defined by 〈AX, y〉 =
〈
X,ATy

〉
∀X ∈ Sn, y ∈ IRm,
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having the form

AX =

⎡⎢⎢⎣
〈A1, X〉

...
〈Am, X〉

⎤⎥⎥⎦ and ATy =
m∑
i=1

yiAi,

with given matrices Ai ∈ Sn. For a fixed I ⊂ {1, . . . , m}, AI and yI refer to rows I of A
and y ∈ IRm, respectively. Finally, let Ī := {1, . . . , m} \ I. Then the primal-dual pair of
semidefinite programs is written in standard form as

(P)

max 〈C,X〉 ,
s.t. AĪX = bĪ ,

AIX ≤ bI ,
X � 0,

(D)
min 〈b, y〉 ,
s.t. Z = ATy − C,

Z � 0, yI ≥ 0,

where the cost matrix C ∈ Sn and the right-hand side vector b ∈ IRm are given. In most
applications, Ai are (sparse) matrices of rank one or two and C is sparse.

Primal-dual interior point methods [1, 17, 20, 25], which are most commonly used
for solving problem (P), offer few opportunities to exploit its structure. Their work per
iteration is typically dominated by the factorization of a dense symmetric positive definite
matrix of order m, and by one or more factorizations of the variable X during the line
search. The solution times for problems with m ≥ 5000 or n ≥ 500, say, are prohibitive.
The recent purely dual approach of [3](see also [2]) is able to exploit the sparsity of C and
Ai for the dual variable Z, but in general still needs to factorize a dense positive definite
matrix of order m.

The alternative approach of [16] transforms (D) into the eigenvalue optimization prob-
lem

min
y∈IRm,yI≥0

aλmax(C −ATy) + 〈b, y〉 , (1.1)

where λmax(·) is the maximum eigenvalue of · and a > 0 is such that A ĪX = bĪ implies
trX = a (as happens in most combinatorial applications). The spectral bundle method [16]
is tailored to the structure of (1.1) with I = ∅. In contrast to standard bundle methods [19,
30], it constructs a non-polyhedral semidefinite cutting surface model of the objective by
accumulating eigenvectors instead of subgradients. Minimization of the model augmented
with a regularizing quadratic term yields the next iterate. The model is enriched by one
or more eigenvectors corresponding to the largest eigenvalues at this iterate, computed
efficiently by Lanczos methods (see, e.g., [9]) via matrix-vector multiplications that do
not require the matrix in explicit form. Thus structural properties of C and A i can be
exploited. Aggregation of the past eigenvector information ensures bounded storage and
efficient solvability of consecutive subproblems even for large m and n.

So far the spectral bundle method could handle only equality constraints in (P), i.e.,
I = ∅, because sign constraints on the dual variables y might increase significantly the
solution times for its semidefinite subproblems. In this paper we employ Lagrangian
relaxation to approximate the solution of sign constrained subproblems. Surprisingly,
just one update of Lagrange multipliers per subproblem suffices to ensure convergence.
The subproblems can be solved as efficiently as in the unconstrained case, thus rendering
our method an attractive choice for large-scale semidefinite cutting-plane algorithms.
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The Lanczos process approximates the maximal eigenvalue iteratively from below. If
the Lanczos vector providing the current lower bound suffices to improve the bundle model
sufficiently, the process may be stopped prematurely. First numerical experiments based on
this idea were presented in [14] and exhibited significant improvements on the performance
reported in [16]. Here, we provide a proper theoretical foundation for this approach.
By abolishing the need of computing exact eigenvectors in theory we ensure practical
implementability. Our revised implementation following the theory is equally efficient.

Like most first-order methods, the spectral bundle method exhibits fast progress in
the beginning, but shows a strong tailing-off effect as the optimal solution is approached.
Fortunately, many semidefinite relaxations do not have to be solved exactly. Rather, an
approximate solution is used to improve the current relaxation (e.g., by cutting planes),
which is then resolved.

Since the first writing of the paper, promising results have been published for nonlinear
approaches. These are based on factorizing the positive semidefinite variables and working
with the factors as new variables [5, 6, 4, 32, 7]. Regarding the spectral bundle method
various alternatives for formulating and updating the bundle have been compared in [24],
some exhibited remarkable improvements in computation time. A C++-implementation of
the spectral bundle method along the lines of this paper has recently been made available
[12], possible approaches for using it in a cutting plane framework are described in [11].

The paper is organized as follows. Section 2 gives our extension of the spectral bundle
method to inequality constraints. Convergence of our method is established in §3, and its
modifications are described in §4. Section 5 discusses efficiency of the subproblem solution.
Finally, §6 gives computational results. The paper is rather heavy in notation. For the
convenience of the reader we provide an appendix listing the most important objects and
definitions.

2 Extension of the spectral bundle method

In order to simplify notation we assume that a = 1 and I = {1, . . . , m} in problem (1.1).
In addition, we employ the indicator function ıY of Y := IRm

+ (ıY (y) = 0 if y ∈ Y , ∞
otherwise) to extend the definition of the objective function to IRm,

min
y∈IRm

{
f(y) := λmax(C −ATy) + 〈b, y〉+ ıY (y)

}
. (2.1)

We start by giving a dual formulation of the “nontrivial” components λmax(·) and ıY
of f and use this to derive a family of convex minorants as well as the subdifferential of f .

Concerning the maximum eigenvalue function λmax(·), we note that, with

W :=
{
W ∈ Sn

+ : trW = 1
}
= conv

{
vvT : ‖v‖ = 1

}
(2.2)

for any X ∈ Sn, the maximum eigenvalue (v. [26, Thm 1])

λmax(X) = max { 〈X,W 〉 : W ∈ W } = max
{
vTXv : ‖v‖ = 1

}
, (2.3)
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can be computed by finding its maximizing (normalized) eigenvector v. Thus, the function

λmax(C −ATy) = max
{ 〈
C −ATy,W

〉
:W ∈ W

}
(2.4)

is a convex finite-valued (and hence continuous) max-type function. Using (2.2) and (2.3)
it can be worked out that the set of maximizers in (2.4) is the convex hull of the dyadic
products vvT of all normalized eigenvectors v to the maximum eigenvalue of C −A Ty.

Likewise, the indicator function ıY can be described in dual form by

ıY (y) = sup{−ηTy : η ∈ IRm
+ }. (2.5)

Combining (2.3) and (2.5) we may rewrite f of (2.1) as

f(y) = sup{
〈
C −ATy,W

〉
+ 〈b− η, y〉 : (W, η) ∈ W × IRm

+ }. (2.6)

Therefore, any particular choice of W ∈ W and η ∈ IRm
+ gives rise to an affine function

that minorizes f on IRm,

fW,η(y) := 〈C,W 〉+ 〈b− η −AW, y〉 ≤ f(y) ∀y ∈ IRm. (2.7)

Further convex minorants of f are conveniently defined by taking the pointwise supre-
mum over a family of affine functions fW,η, where the family is described by subsets Ŵ ⊆ W
and Ŷ ⊆ IRm

+ ,

fŴ,Ŷ
(y) := sup

{
fW,η(y) : (W, η) ∈ Ŵ × Ŷ

}
≤ f(y) ∀y ∈ IRm. (2.8)

Instead of f{W},Ŷ and fŴ ,{η} we often write fW,Ŷ and fŴ ,η
, respectively. We will make

heavy use of this notation in the following. It is worth to get acquainted with it by
verifying that fW ,Y = f , fW ,0(y) = f(y) for y ∈ IRm

+ , and that on the domain of f the
subdifferential of f is described by

∂f(y) =
{
∇fW,η = b− η −AW : fW,η(y) = f(y), (W, η) ∈ W × IRm

+

}
∀y ∈ IRm

+ . (2.9)

We turn to the description of our algorithmic approach. The nonsmooth convex mini-
mization problem (2.1) could be solved over y ∈ IRm

+ by the proximal bundle method [19].
We first sketch this method to introduce some useful concepts.

The method generates a trial point y+ := argminY f̂(·) + u
2
‖ · −ŷ‖2 from the current

iterate ŷ, where f̂ is an accumulated cutting plane model of f and the weight u > 0 keeps
y+ near ŷ. A descent step ŷ+ = y+ occurs if f(ŷ) − f(y+) ≥ κ[f(ŷ) − f̂(y+)], where
κ ∈ (0, 1). Otherwise a null step ŷ+ = ŷ is made but the next model is improved with a
new cutting plane computed at y+.

Our spectral bundle method is tailored for the eigenvalue problem (2.1). Instead of the
usual polyhedral f̂ , it uses a semidefinite cutting surface model fŴ,0

of f (v. (2.8)) where

Ŵ �= ∅ is an appropriate closed convex subset of W (v. (2.2)). Since W is compact, Ŵ is
compact as well, and for Ŷ = {0} the sup in (2.8) turns into a finite-valued max, so fŴ ,0

makes sense.
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For large m, the usual bundle subproblem of finding the standard trial point

ŷ∗ := argmin
{
fŴ,Y

(·) + u
2
‖ · −ŷ‖2

}
= argmin

{
fŴ ,0

(y) + u
2
‖y − ŷ‖2 : y ≥ 0

}
(2.10)

is expensive to solve by interior point methods because of the constraints on y (v. §5).
It is much easier to find an approximation y+ to ŷ∗ via Lagrangian relaxation, i.e., we
introduce the Lagrange multipliers η of (2.5) for the sign constraints on y and define the
Lagrangian L : IRm × Ŵ × IRm

+ → IR of (2.10) by

L(y;W, η) := fW,η(y) +
u
2
‖y − ŷ‖2 = 〈C,W 〉+ 〈b− η −AW, y〉+ u

2
‖y − ŷ‖2. (2.11)

The objective function of (2.10) may be expressed as

fŴ ,Y
(·) + u

2
‖ · −ŷ‖2 = sup

{
L(·;W, η) : (W, η) ∈ Ŵ × IRm

+

}
. (2.12)

For each fixed y the primal function is obtained by taking the supremum of L(y; ·, ·) over
W and η. The (Lagrangian) dual function ψ : Ŵ × IRm

+ → IR is determined, for each
fixed pair (W, η), by minimizing L(·;W, η) over y ∈ IRm. Looking at the right hand side of
(2.11) we see that the latter optimization problem is strictly convex and quadratic. Thus,
for each fixed pair (W, η) the (unique) optimal y can be computed explicitly,

yW,η := argminL(·;W, η) = argmin
{
fW,η(·) + u

2
‖ · −ŷ‖2

}
= ŷ − 1

u
(b− η −AW ). (2.13)

Substituting yW,η for y into the right hand side of (2.11) we obtain the dual function ψ,

ψ(W, η) := minL(·;W, η) = 〈C,W 〉+ 〈b−AW − η, ŷ〉 − 1
2u
‖b−AW − η‖2. (2.14)

One can show via standard saddle-point arguments (v. [29, Thm 37.6]) that each maximiz-
ing argument (W ∗, η∗) of ψ (these are not necessarily unique) yields the optimal solution
of (2.10) via

ŷ∗ = yW ∗,η∗ for each (W ∗, η∗) ∈ Arg max
Ŵ×IRm

+

ψ �= ∅. (2.15)

In the algorithm there is no need to solve (2.10) exactly. In fact, already a very rough
approximation (W +, η+) to (W ∗, η∗) of (2.15) gives rise to a candidate y+ = yW+,η+ that
ensures convergence. We determine this approximation (W +, η+) in a Gauss-Seidel fashion
as follows. First fix a multiplier η̂ ∈ IRm

+ and find

W+ ∈ Argmax
{
ψ(W, η̂) : W ∈ Ŵ

}
(2.16)

via an interior point algorithm (v. §5), and then maximize ψ(W +, ·) over η ∈ IRm
+ . By

(2.14) the latter problem is separable concave, i.e., it can be solved for each coordinate of
η separately,

η+ := argmax
{
ψ(W+, η) : η ≥ 0

}
= max

{
0,−uŷ + b−AW+

}
. (2.17)

Inserting the right hand side of (2.17) in the right hand side of (2.13), it is not difficult to
check that the corresponding primal point yW+,η+ is both feasible and complementary:

y+ := yW+,η+ = max
{
ŷ − 1

u
(b−AW+), 0

}
≥ 0, (2.18)〈

η+, y+
〉
= 0. (2.19)
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Remark 2.1 The two “coordinatewise” maximization steps may also be interpreted as
two separate steps in a proximal bundle approach. Indeed, in Lem. 3.1 we show that the
first step (2.16) corresponds to solving the usual bundle subproblem for the cutting surface
model fŴ ,η̂

(v. (2.8)), yielding an intermediate candidate (v. (2.13))

y+
1
2 = yW+,η̂. (2.20)

In the second step the cutting surface model is updated to fW+,Y (v. (2.8)). This model in-
cludes the previous optimizing cutting plane fW+,η̂ (v. (2.7)) and numerous new minorants

of f that improve the model in y+
1
2 if y+

1
2 /∈ IRm

+ . The optimal η+ of (2.17) gives rise to
the solution y+ (v. (2.18)) of the bundle subproblem over this second cutting surface model
(v. Lem. 3.1).

For practical reasons we state the algorithm with an inner loop allowing for several repe-
titions of the two “coordinatewise” maximization steps (2.16) and (2.17).

Algorithm 2.2
Input : y0 ∈ IRm

+ , εopt ≥ 0, κM ∈ (0,∞], κ ∈ (0, 1), a weight u > 0.

Step 0 (Initialization). Set k = 0, ŷ0 = y0, η0 = 0, f(ŷ0) and Ŵ0 (v. §5).
Step 1 (Trial point finding). Set ŷ = ŷk, Ŵ = Ŵk, η̂ = ηk.

(a) Find W+ ∈ Argmax
W∈Ŵ ψ(W, η̂) (v. (2.14)) and set y+

1
2 = yW+,η̂ (v. (2.13)).

(b) Set η+ = argmaxη≥0 ψ(W
+, η) (v. (2.17)) and y+ = yW+,η+ (feasible by (2.18)).

(c) (Stopping criterion) If f(ŷ)− fW+,η+(y
+) ≤ εopt(|f(ŷ)|+ 1), then STOP.

(d) If fŴ ,0
(y+)− fW+,η+(y

+) > κM[f(ŷ)− fW+,η+(y
+)], then set η̂ = η+ and go to (a).

(e) Set yk+1 = y+, W k+1 = W+, and ηk+1 = η+.

Step 2 (Evaluation). Find W k+1
S ∈ ArgmaxW

〈
C −ATyk+1, ·

〉
and f(yk+1) (v. (2.4),(2.1)).

Step 3 (Descent test). If f(ŷk)−f(yk+1) ≥ κ[f(ŷk)−fW k+1,ηk+1(yk+1)] then set ŷk+1 = yk+1

(descent step); otherwise set ŷk+1 = ŷk (null step).

Step 4 (Model updating). Choose a closed convex Ŵk+1 ⊃
{
W k+1,W k+1

S

}
(v. §5).

Step 5. Increase k by 1 and go to Step 2.

Remarks 2.3 (i) The stopping criterion in Step 1(c) is motivated as follows. The gradient
of the affine minorant fW+,η+ (v. (2.7)) of f satisfies (v. (2.18), (2.13))

∇fW+,η+ = b− η+ −AW+ = u(ŷ − y+). (2.21)

Therefore the values of fW+,η+ at ŷ and y+ are related by

fW+,η+(y
+) = fW+,η+(ŷ) +

〈
∇fW+,η+ , y

+ − ŷ
〉
= fW+,η+(ŷ)− u‖y+ − ŷ‖2.
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With fW+,η+ ≤ f (v. (2.7)) we obtain

f(ŷ)− fW+,η+(y
+) = f(ŷ)− fW+,η+(ŷ) + u‖y+ − ŷ‖2 ≥ f(ŷ)− fW+,η+(ŷ) ≥ 0, (2.22)

f(·) ≥ fW+,η+(ŷ) + 〈∇fW+,η+ , · − ŷ〉 = f(ŷ)− [ f(ŷ)− fW+,η+(ŷ) ] + u
〈
ŷ − y+, · − ŷ

〉
.

(2.23)
Thus, a small value of f(ŷ) − fW+,η+(y

+) and (2.22) imply that f(ŷ) − fW+,η+(ŷ) and
‖y+ − ŷ‖ are both small and so ŷ is approximately optimal by (2.23).

(ii) We show in Lemma 3.2(c) below that the inner iterations of Step 1 make y+

approach the solution ŷ∗ of the bundle subproblem (v. (2.10)). The criterion of step 1(d)
for executing additional inner iterations is based on the following considerations. Since
the candidate y+ is feasible (v. (2.18)), the value of the cutting surface model satisfies
fŴ ,Y

(y+) = fŴ ,0
(y+) (v. (2.8)). The affine function fW+,η+ minorizes fŴ ,Y

(use (W+, η+) ∈
Ŵ × IRn

+ in (2.8)) and together with fW+,0(y
+) = fW+,η+(y

+) (〈η+, y+〉 = 0 by (2.18)) we
obtain

fŴ,Y
(y+) = fŴ,0

(y+) ≥ fW+,0(y
+) = fW+,η+(y

+).

If equality holds then (y+,W+, η+) is a saddle-point of L (v. (2.15)) and, thus, y+ =
ŷ∗ (v. (2.10)). In general, however, W+ will not be the maximizing element of Ŵ for
fŴ ,η+

(y+) (cf. (2.8)). If the gap fŴ ,0
(y+) − fW+,η+(y

+) between cutting plane model

and its approximation is “large” relative to the gap f(ŷ) − fW+,η+(y
+) then we consider

the approximate solution (W +, η+) as too inaccurate and improve its quality by further
inner iterations. The parameter κM allows to specify what “large” means, but even for
arbitrarily large gaps convergence is guaranteed. Indeed, for κM = ∞ just one inner
iteration is performed, but convergence is ensured via Lemma 3.2(a).

(iii) Evaluation step 2 may be implemented by computing the maximum eigenvalue
λmax(C − ATyk+1) and a corresponding (normalized) eigenvector v, e.g., by the Lanczos
method (see, e.g., [9]). Then W k+1

S = vvT is an appropriate choice; we use subscript S to
indicate that WS gives rise to a new subgradient of f in y+ (v. (2.9),(2.4)). Since it would
be difficult to compute an exact eigenvector v, we show in §4.1 that a modification of the
algorithm allows the use of approximations.

3 Convergence

We first exhibit useful saddle-point relations at steps 1(a) and 1(b). In terms of cutting

surface models they state that y+
1
2 of (2.20) is the optimal solution of the bundle subprob-

lem for fŴ,η̂
(and W+ is an optimal multiplier in Ŵ) and that y+ of (2.18) is the optimal

solution of the bundle subproblem for fW+,Y (and η+ is the optimal multiplier in IRm
+ ).

Lemma 3.1 For some fixed η̂ ∈ IRm
+ and closed convex Ŵ ⊂ W (v. (2.2)) let W+, η+,

y+, and y+
1
2 be determined by (2.16), (2.17), (2.18), and (2.20), respectively. Then for L

of (2.11) the following relations hold :

L(y+
1
2 ;W, η̂) ≤ L(y+

1
2 ;W+, η̂) ≤ L(y;W+, η̂) ∀y ∈ IRm,W ∈ Ŵ, (3.1a)

L(y+;W+, η) ≤ L(y+;W+, η+) ≤ L(y;W+, η+) ∀y ∈ IRm, η ∈ IRm
+ . (3.1b)
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Proof. In order to simplify notation, let L+ 1
2
(·; ·) := L(·; ·, η̂) on IRm × Ŵ . L+ 1

2
is

convex-concave, Ŵ is compact convex, and ∀W ∈ Ŵ , L(y;W, η̂) → ∞ when ‖y‖ → ∞.
Hence L+ 1

2
has a saddle-point (ȳ,W ) [18, Thm VII.4.3.1]. Since (v. Step 1(a),(2.14))

W+ ∈ ArgmaxŴ miny L(y; ·), (ȳ,W+) is a saddle-point as well [18, Thm VII.4.2.5]. Then

L+ 1
2
(ȳ;W+) ≤ L+ 1

2
(y;W+) ∀y yields ȳ = yW+,η̂ = y+

1
2 (v. (2.13),(2.20)), so (3.1a) holds.

(3.1b) follows from standard convex quadratic programming duality.

An abstract algorithmic framework for minimizing a convex function f is the proximal
point algorithm (see, e.g., [28]); it moves iteratively from ŷ to the so called proximal point
ȳ∗ := argmin f(·) + ‖ · −ŷ‖2. As observed in [19], skipping the descent step test of the
proximal bundle method yields an infinite sequence of null steps whose iterates converge
to the proximal point, while simultaneously the values of the cutting plane models at the
iterates converge to the function value in the proximal point; this setting is also referred
to as an ideal bundle prox iteration. Our algorithm builds on the proximal bundle method
and exhibits the same behavior. The following lemma states that for an infinite sequence
of null steps the yk converge to the proximal point of f , whereas for an infinite sequence of
inner iterations within the same outer iteration the inner iterates converge to the proximal
point of the model fŴ ,Y

. In the latter case, the proximal point is ŷ and, at the same time,
an optimal solution of the minimization problem.

Lemma 3.2 Suppose that, starting from some iteration k̂ ≥ 0, the descent test of Step 3
is omitted and only null steps ŷk+1 = ŷk̂ =: ŷ can be made for k ≥ k̂. Then:

(a) If κM = ∞ in the test of Step 1(d) and k → ∞, then

εk := f(yk)− fW k,ηk(y
k) → 0, (3.2)

yk → y∞ := argmin
{
f(·) + u

2
‖ · −ŷ‖2

}
. (3.3)

(b) If κM <∞ and k → ∞, then (3.2)–(3.3) hold.
(c) If an infinite loop occurs in Step 1(a–d) for k = k̂, then at Step 1(d)

ε+ := fŴk,Y
(y+)− fW+,η+(y

+) → 0, (3.4)

y+ → ŷ = argmin
{
fŴk,Y

(·) + u
2
‖ · −ŷ‖2

}
. (3.5)

Further, in this case ŷk = ŷ ∈ Argmin f and f(ŷ)− fW+,η+(y
+) → 0.

Proof. (a) For k > k̂, just one inner iteration occurs at Step 1 (since κM = ∞). At

Step 1(e) of iteration k we have ηk = η̂, W k+1 = W+ (v. (2.16)), an intermediate yk+
1
2 :=

y+
1
2 = yW k+1,ηk , the new multiplier ηk+1 = η+ (v. (2.17)), and the new feasible candidate

yk+1 = y+ = yW k+1,ηk+1 (v. (2.18)). We first trace the development of L (v. (2.11)) as the

algorithm “moves” from (yk,W k, ηk) to (yk+
1
2 ,W k+1, ηk) to (yk+1,W k+1, ηk+1). To this

end observe that
L(·;W, η) = L(yW,η;W, η) +

u

2
‖ · −yW,η‖2, (3.6)
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because L(·;W, η) is convex quadratic in y and yW,η is its minimizer. We obtain

L(yk+
1
2 ;W k+1, ηk) = max

W∈Ŵk L(y
k+ 1

2 ;W, ηk) [(3.1a)]

≥ L(yk+
1
2 ;W k, ηk) [W k ∈ Ŵk by Step 4]

= L(yk;W k, ηk) + u
2
‖yk+ 1

2 − yk‖2 [yk = yW k,ηk and (3.6)]

(3.7a)

L(yk+1;W k+1, ηk+1) = maxη∈IRm
+
L(yk+1;W k+1, η) [(3.1b)]

≥ L(yk+1;W k+1, ηk) [ηk ∈ IRm
+ ]

= L(yk+
1
2 ;W k+1, ηk) + u

2
‖yk+1 − yk+

1
2‖2 [(3.6)].

(3.7b)

So in each intermediate step L increases by at least u
2
times the squared norm of the change

of y. But, for all k ≥ k̂, L(yk;W k, ηk) is bounded above by f(ŷ), because

L(yk;W k, ηk) ≤ L(ŷ;W k, ηk) [yk = yW k,ηk minimizes L(·;W k, ηk), v. (2.13)]
= fW k,ηk(ŷ) [definition (2.11) of L]
≤ f(ŷ) [by (2.7)].

Therefore, there exists ξ ≤ f(ŷ) such that

L(yk;W k, ηk), L(yk+
1
2 ;W k+1, ηk) → ξ and yk+

1
2 − yk, yk+1 − yk+

1
2 → 0. (3.8)

Informally, the next step of the proof has the following rational. Because the changes
in y go to zero, the subgradient added in Step 2/Step 4 provides “enough local support”
to force fW k,ηk(y

k) towards f(yk) (this works, because the subgradients employed have
bounded norm by construction). We make this mathematically precise.

In Step 2 we determine W k
S satisfying

f(yk) = fW k
S ,0

(yk) = fW k
S ,ηk(y

k) ≥ fW k,ηk(y
k), (3.9)

where the first equation is due to (2.4) and the definition (2.7) of fW,η, the second equation

follows from
〈
ηk, yk

〉
= 0 (v. (2.18)), and the inequality stems from the fact that fW k,ηk

minorizes f (v. (2.7)). Since f(yk) = fW k
S ,η

k(yk), the gradient of the affine function fW k
S ,η

k

is a subgradient of f at yk (v. (2.9)); we denote it by

gk := ∇fW k
S ,ηk = b− ηk −AW k

S . (3.10)

By Step 4,W k
S is contained in Ŵk; thus, the cutting plane fW k

S ,η
k minorizes the intermediate

model fŴk,ηk
(v. (2.8), (3.1a) with η̂ = ηk),

fW k
S ,ηk(y

k+ 1
2 ) ≤ max

W∈Ŵk

fW,ηk(y
k+ 1

2 ) = fW k+1,ηk(y
k+ 1

2 ). (3.11)

This allows to bound εk from above (≥ 0 follows from (3.9)),

εk = fW k
S ,η

k(yk)− fW k,ηk(y
k) [def. (3.2) of εk, (3.9)]

= fW k
S ,η

k(yk+
1
2 )− fW k,ηk(y

k) +
〈
gk, yk − yk+

1
2

〉
[fW k

S ,ηk is affine, (3.10)]

≤ fW k+1,ηk(y
k+ 1

2 )− fW k,ηk(y
k) + ‖gk‖ ‖yk+ 1

2 − yk‖ [(3.11), Cauchy-Schwarz]

= L(yk+
1
2 ;W k+1, ηk)− L(yk;W k, ηk)− u

2
‖yk+ 1

2 − ŷ‖2 + u
2
‖yk − ŷ‖2

+‖gk‖‖yk+ 1
2 − yk‖ [def. (2.11) of L].

(3.12)
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Now,W k
S ,W

k ∈ W are bounded (and so isW, v. (2.2)); so by (2.17) ‖ηk‖ ≤ ‖uŷ−b+AW k‖
and gk = b − AW k

S − ηk are bounded, and therefore (v. (2.13)) yk = yW k,ηk and yk+
1
2 =

yW k+1,ηk are bounded, as well. Hence, (3.8) and the last line of (3.12) yield εk → 0.
It remains to verify (3.3). Let y∞ be the (unique) minimizer of f + u

2
‖ · −ŷ‖2; we have

to show yk → y∞. For this we exploit fW k,ηk(y
k) → f(yk),

f(y∞) + u
2
‖y∞ − ŷ‖2 ≥ L(y∞;W k, ηk) [fW k,ηk ≤ f(2.7), (2.11)]

≥ minL(·;W k, ηk)

= L(yk,W k, ηk) [yk = yW k,ηk(2.18), (2.13)]

= f(yk) + u
2
‖yk − ŷ‖2 − εk, [(3.2), (2.11)]

≥ f(y∞) + u
2
‖y∞ − ŷ‖2 + u

2
‖yk − y∞‖2 − εk,

(3.13)

where the last inequality follows from y∞ being the minimizer of f + u
2
‖ · −ŷ‖2 with f

convex. The first and last line of (3.13) imply u
2
‖yk − y∞‖2 ≤ εk. By (3.2) εk → 0, i.e.,

(3.3) holds. Thus (a) has been proved.
(b) We reduce this case to case (a) by interpreting an inner iteration as an outer itera-

tion with the evaluation Step 2 restricted to optimizing over Ŵk instead of W and with the
updating Step 4 setting Ŵk+1 = Ŵk; in doing so we have to take care that the subsequence
of iterates corresponding to these restricted evaluations is not included in the argument for
(3.2) and (3.3). To make this precise, consider the following modifications of Algorithm 2.2.
At Step 0, set K = ∅. At Step 1(d), instead of returning to Step 1(a), set K := K∪{k+1}
and go to Step 1(e), then at Step 2 find W k+1

S ∈ ArgmaxŴk

〈
C −ATyk+1, ·

〉
, at Step 3

set ŷk+1 = ŷk without evaluating f , and at Step 4 set Ŵk+1 = Ŵk. This modification
only renumbers iterations, so that K indexes the subsequence of additional inner itera-
tions of Step 1, if any. It is not difficult to check that (3.8) remains valid, whereas for

k ∈ K ′ := {1, 2, . . .} \K, (3.12)–(3.13) give (3.2)–(3.3) with “→” replaced by “
K ′−→”, i.e.,

(3.2)–(3.3) for the original version of the algorithm.
(c) Arguing as in (b), suppose K = {k̂, k̂ + 1, . . .} indexes an uninterrupted infinite

sequence of inner iterations (the number of outer iterations |K ′| is finite). For k ≥ k̂, denote

by Ŵ := Ŵ k̂ = Ŵk, let εk := fŴ ,Y
(yk)− fW k,ηk(y

k). For (3.12) use fW k
S ,ηk(y

k) = fŴ ,Y
(yk)

(yk is feasible, (2.18)) and fW k,ηk ≤ fŴ ,Y
; in (3.13) replace f by fŴ ,Y

. We obtain (3.2)–

(3.3) with f replaced by fŴ,η
. This yields (3.4)–(3.5) except for y∞ = ŷ.

It remains to show y∞ = ŷ and ŷ ∈ Argmin f when the condition of Step 1(d) is
satisfied in each iteration k ≥ k̂ of the modified algorithm,

εk+1 = fŴ ,Y
(yk+1)− fW k+1,ηk+1(yk+1) > κM

[
f(ŷ)− fW k+1,ηk+1(yk+1)

]
for k ≥ k̂. (3.14)

Since εk+1 → 0 and κM > 0, relation (3.14) gives f(ŷ)− fW k+1,ηk+1(yk+1) → 0; this allows
to prove optimality of ŷ. Indeed, replacing in (2.22)–(2.23) the superscript “+” by “k+1”
yields

f(ŷ)− fW k+1,ηk+1(yk+1) = f(ŷ)− fW k+1,ηk+1(ŷ) + u‖yk+1 − ŷ‖2 ≥ 0, (3.15)

f(·) ≥ f(ŷ)−
[
f(ŷ)− fW k+1,ηk+1(ŷ)

]
+ u

〈
ŷ − yk+1, · − ŷ

〉
. (3.16)
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Now, f(ŷ) − fW k+1,ηk+1(yk+1) → 0 and (3.15) imply yk+1 → ŷ and fW k+1,ηk+1(ŷ) → f(ŷ)
and together with (3.16) this proves f(·) ≥ f(ŷ). But yk → y∞ and ŷ ∈ IRm

+ , so y
∞ = ŷ ∈

Argmin f , as required.

Remark 3.3 In fact, the first part of the proof of Lem. 3.2(c) shows that the y+ of suc-
cessive inner iterations (within the same outer iteration k) converge to ŷ∗ of (2.10). An
infinite inner loop corresponds to an ideal bundle prox iteration for the cutting surface
model.

If k remains finite, then either the algorithm stops in step 1(c) after a finite number of
iterations (this case is discussed in Rem. 2.3(i)) or an infinite loop of inner iterations occurs.
The latter case is dealt with by Lem. 3.2(c), so we assume from now on that k → ∞.

Next, we finish the case of finitely many descent steps. The basic idea is quickly
explained. Since k → ∞ the algorithm must end with an infinite sequence of null steps
whose iterates converge, by Lem. 3.2(a), to the proximal point y∞. But if f(ŷ) > f(y∞)
then by (3.2) and Step 3, a descent step would be unavoidable eventually. Thus, f(ŷ) =
f(y∞) and, by the uniqueness of the proximal point, ŷ = y∞ will turn out to be an optimal
solution of the minimization problem.

Lemma 3.4 Suppose that, starting from some iteration k̂ ≥ 0, only null steps are made.
Then ŷk̂ ∈ Argmin f .

Proof. By Lem. 3.2, εk+1 = f(yk+1) − fW k+1,ηk+1(yk+1) → 0. For k ≥ k̂, due to the null

step in Step 3, we have ŷk = ŷk̂ = ŷ (v. Step 1) and

f(ŷ)− fW k+1,ηk+1(yk+1)− εk+1 = f(ŷ)− f(yk+1) < κ
[
f(ŷ)− fW k+1,ηk+1(yk+1)

]
,

so εk+1 > (1−κ)[f(ŷ)−fW k+1,ηk+1(yk+1)]. This is like (3.14) with κM replaced by 1−κ > 0
(since κ < 1, v. Input of Algorithm 2.2); hence, the argument following (3.14) yields
ŷ ∈ Argmin f .

In the case of infinitely many descent steps we have to make sure that there is no
danger of false convergence, i.e., the function values of the algorithm cannot converge to a
value strictly greater than the optimal solution value. To this end, consider the following
condition,

f(ŷk) ≥ f(ỹ) for some fixed ỹ ∈ Y and all k. (3.17)

This condition holds if optimal solutions exist (Argmin f �= ∅) or if ỹ is a cluster point of
{ŷk}. Indeed, any cluster point ỹ of {ŷk} must be feasible (all ŷk are feasible and IRm

+ is
closed), and since f(ŷk) ≥ f(ŷk+1) and f is continuous on IRm

+ , the objective value f(ỹ)
must satisfy (3.17).

The following Lemma asserts that, whenever condition (3.17) holds, the iterates {ŷ k}
converge to an optimal solution of the minimization problem.

Lemma 3.5 If (3.17) holds, then ŷk → ȳ for some ȳ ∈ Argmin f , and f(ŷk) ↓ f(ȳ).

11



Proof. In view of Lem. 3.4, we may assume that the set of descent iterations D :=
{k : ŷk+1 = yk+1} is infinite. At Step 3, each iteration k ∈ D satisfies the descent step
criterion and therefore 0 ≤ f(ŷk)− fW k+1,ηk+1(ŷk+1) ≤ 1

κ
[f(ŷk)− f(ŷk+1)] with κ > 0. So

by condition (3.17)∑
k∈D

[
f(ŷk)− fW k+1,ηk+1(ŷk+1)

]
≤ 1

κ

∑
k∈D

[
f(ŷk)− f(ŷk+1)

]
≤ 1

κ

[
f(ŷ0)− f(ỹ)

]
<∞.

(3.18)

Next we show that ‖ŷk− ỹ‖2 increases by at most 2
u

[
f(ŷk)− fW k+1,ηk+1(ŷk+1)

]
in each

descent step (the distance remains the same for null steps k /∈ D, because ŷk+1 = ŷk in
Step 3); together with (3.18) this will show the boundedness of {ŷk} and thus the existence
of an accumulation point.

For k ∈ D, the gradient of fW k+1,ηk+1 may be expressed by (2.21) as (replace “+” by
“k+1” and use ŷk+1 = yk+1)

∇fW k+1,ηk+1 = u(ŷk − ŷk+1). (3.19)

Since fW k+1,ηk+1 ≤ f is affine (v. (2.7)), condition (3.17) implies

f(ŷk) ≥ f(ỹ) ≥ fW k+1,ηk+1(ŷk+1) +
〈
∇fW k+1,ηk+1 , ỹ − ŷk+1

〉
= fW k+1,ηk+1(ŷk+1) + u

〈
ŷk − ŷk+1, ỹ − ŷk+1

〉
.

Using this inequality, we deduce that for each k ∈ D

‖ỹ − ŷk+1‖2 ≤ ‖ỹ − ŷk + ŷk − ŷk+1‖2 + ‖ŷk − ŷk+1‖2
= ‖ỹ − ŷk‖2 + 2

〈
ỹ − ŷk, ŷk − ŷk+1

〉
+ 2

〈
ŷk − ŷk+1, ŷk − ŷk+1

〉
= ‖ỹ − ŷk‖2 + 2

〈
ỹ − ŷk+1, ŷk − ŷk+1

〉
≤ ‖ỹ − ŷk‖2 + 2

u

[
f(ŷk)− fW k+1,ηk+1(ŷk+1)

]
.

Applying this bound recursively down to some i < k and using (3.18) yields

‖ỹ − ŷk‖2 ≤ ‖ỹ − ŷi‖2 + 2
u

∑
j≥i,j∈D

[
f(ŷj)− fW j+1,ηj+1(ŷj+1)

]
<∞ if k > i. (3.20)

Observe, that this also holds for null step iterations k /∈ D because in this case ŷ k+1 = ŷk

by Step 3. Hence, {ŷk} is bounded and has a cluster point ȳ which is in IRm
+ because

ŷk ∈ IRm
+ . In order to show convergence of the iterates to this point set ỹ = ȳ (we may do

so because condition (3.17) holds for any cluster point of {ŷk}, see the paragraph following
(3.17)). For any ε > 0 we can choose i such that both terms in the right-hand side of
(3.20) are at most ε; thus ŷk → ȳ. It remains to show that ȳ is an optimal solution of our
optimization problem.

Since ŷk → ȳ, (3.19) yields ∇fW k+1,ηk+1 = u(ŷk − ŷk+1)
D−→ 0 and the continuity of

f on IRm
+ implies f(ŷk) → f(ȳ). From (3.18) we obtain f(ŷk) − fW k+1,ηk+1(ŷk+1)

D−→ 0,

therefore fW k+1,ηk+1(ŷk+1)
D−→ f(ȳ). Hence f(y) ≥ fW k+1,ηk+1(y) = fW k+1,ηk+1(ŷk+1) +〈

∇fW k+1,ηk+1 , y − ŷk+1
〉
gives in the limit f(y) ≥ f(ȳ) ∀y.
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The remaining case, that condition (3.17) does not hold, is quickly settled; the algo-
rithm exhibits a sequence {ŷk} of feasible points with f(ŷk) → −∞ which is in this case
inf f . Such a sequence must satisfy ‖ŷk‖ → ∞, because for a cluster point condition (3.17)
would hold. We may now state our principal result.

Theorem 3.6 Either ŷk → ȳ ∈ Argmin f , or Argmin f = ∅ and ‖ŷk‖ → ∞. In both
cases f(ŷk) ↓ inf f .

Proof. If (3.17) holds, then by Lem. 3.5, ŷk → ȳ ∈ Argmin f and f(ŷk) ↓ f(ȳ) = f(ỹ), so
ỹ ∈ Argmin f . Otherwise, ‖ŷk‖ → ∞ and, for k → ∞, f(ŷk) is unbounded from below; so
the definition of inf f yields the desired conclusion.

4 Modifications

4.1 Inexact null steps

A driving force in the proof of Lem. 3.2 is that the cutting plane fW k
S
,ηk improves the

cutting surface model in yk to a value above the null step threshold. We will show below
that the additional property of fW k

S ,η
k of being maximal in this respect, i.e., that fW k

S ,η
k

supports f in yk is not really needed. In fact, determining the exact maximizer may be
theoretically and computationally a difficult task. Therefore we now introduce inexact
null steps. In an inexact null step a newly generated cutting plane has to improve the
cutting surface model in yk by a certain minimal amount relative to the predicted progress
f(ŷk) − fW k+1,ηk+1(yk+1) but may well fall short of being supporting. If no such cutting
plane can be found we need to compute f(yk) exactly and perform a descent step.

More formally, fixing κ̄ ∈ [κ, 1), suppose Steps 2 and 3 of Algorithm 2.2 are replaced
by

Step 2’ (Descent test). Find W k+1
S ∈ W such that either

(a) f(ŷk)− fW k+1
S

,0(y
k+1) ≤ κ̄[f(ŷk)− fW k+1,ηk+1(yk+1)], or

(b) fW k+1
S ,0(y

k+1) = f(yk+1) and f(ŷk)− f(yk+1) ≥ κ[f(ŷk)− fW k+1,ηk+1(yk+1)].

In case (a), set ŷk+1 = ŷk (null step), otherwise set ŷk+1 = yk+1 (descent step).
Observe, that the regions for accepting null steps and accepting descent steps have some

overlap. If an oracle returns a supporting cutting plane that intersects this overlapping
region one may decide either way without harm. In fact, for κ̄ ∈ (κ, 1) this may allow to
establish finite convergence properties for certain oracles, but we will not delve into this
here.

We establish convergence of the above modification. If a null step occurs at Step 2’,
then, since fW k+1

S
,ηk+1(yk+1) = fW k+1

S
,0(y

k+1) (v. (2.7),(2.19)), we have

εk+1 := fW k+1
S

,ηk+1(y
k+1)− fW k+1,ηk+1(yk+1) ≥ (1− κ̄)

[
f(ŷ)− fW k+1,ηk+1(yk+1)

]
. (4.1)
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Thus εk+1 ≥ 0, since 1− κ̄ > 0 and f(ŷ)− fW k+1,ηk+1(yk+1) ≥ 0 (v. (2.22)). Hence, an easy
modification of the proof of Lem. 3.2 shows that Lem. 3.2 holds with (3.3) omitted; in
particular, εk → 0 in cases (a) and (b). Then in the proof of Lem. 3.4 one may use (4.1),
which is like (3.14) with κM replaced by 1 − κ̄ > 0. Since for descent steps the modified
method behaves like the original one, the proof of Lem. 3.5 is not affected, and Thm 3.6
remains valid.

In the current context the modifications have both theoretical and practical relevance.
The original Step 2 needs λ = λmax(C −ATyk+1) and its normalized eigenvector v = vk+1

to compute f(yk+1) = λ +
〈
b, yk+1

〉
and W k+1

S = vvT . Now, λ is an algebraic but in
general irrational number and cannot be computed exactly, even less so an eigenvector v.
In practice we use a Lanczos process (see, e.g., [9]) to iteratively generate better v and
corresponding lower bounds on λ; convergence of λ is typically fast, whereas the error
bound relies on the convergence of v which is usually much slower. The new Step 2’ allows
to stop the Lanczos process for computing λmax(C − ATyk+1) as soon as a normalized
vector v is found so that

vT (C−ATyk+1)v+
〈
b, yk+1

〉
= fvvT ,0(y

k+1) ≥ f(ŷk)−κ̄
[
f(ŷk)− fW k+1,ηk+1(yk+1)

]
; (4.2)

then W k+1
S = vvT meets the null-step criterion of Step 2’. There is no need to wait for

convergence and this often saves much work in practice.

4.2 Weight updating

For efficiency, it is crucial to use a variable weight u = uk. The convergence results of §3
extend easily to the weight updates of [19]. Consider the following level modification of
these updates. Set f̄ ∗

0 = −∞ at Step 0, and f̄ ∗
k+1 = max{f̄ ∗

k , fW k+1,ηk+1(yk+1)} at Step 1(e)
of Algorithm 2.2. Insert the following after (d) of Procedure 2.2 of [19]:

(d’) If u = uk and f(ŷk+1) < f̄ ∗
k+1 then set u = uk/2.

Before exiting in (e) of Procedure 2.2 of [19], set f̄ ∗
k+1 = −∞ if uk+1 < uk.

This modification is motivated as follows. We would like fW k+1,ηk+1(yk+1) to be close
to the optimal value f ∗ of (2.1); if it is significantly higher (i.e., uk is too large), then
slow progress occurs. Introduce an indicator l by setting l = 1 at Step 0, and l = k + 1
if uk+1 < uk. Then f̄

∗
k+1 = maxkj=l fW j+1,ηj+1(yj+1) is the highest objective level aimed for

since the latest decrease of uk. Thus f̄
∗
k+1 > f(ŷk+1) implies f̄ ∗

k+1 > f ∗ and hence that uk
is too large. In effect, this modification provides an additional mechanism for decreasing
uk, even if no successive descent steps occur, as required in the original version.

If uk �= uk−1 or ŷk �= ŷk−1, then Step 1 may use a better initial multiplier η̂ =
max{0,−uŷ + b−AW k} (v. (2.17)); again, the results of §3 are not affected.

5 Implementation

Although Step 4 imposes only general requirements on the next working set Ŵk+1, its
actual choice is of utmost importance in practice. Following [16], our implementation uses

Ŵ = Ŵk =
{
PV P T + αW : tr V + α = 1, V ∈ Sr

+, α ≥ 0
}
, (5.1)
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with P = P k ∈ IRn×r and W = W
k ∈ Sn

+ such that P TP = Ir and trW = 1.
By (2.14) and (5.1), (2.16) is equivalent to the quadratic semidefinite program

min 1
2u
‖b−A(PV P T + αW )− η̂‖2 −

〈
PV P T + αW,C −ATŷ

〉
− 〈b− η̂, ŷ〉 ,

s.t. tr V + α = 1,
V � 0, α ≥ 0.

(5.2)

Its optimal solution (V∗, α∗) yields W+ = PV∗P T + α∗W . In updating Ŵ we exploit
information in V ∗ and α∗ like in [16]. Due to several small differences we state the entire
process. Using the spectral decomposition V∗ = QΛQT with Λ11 ≥ . . . ≥ Λrr, let P̂ := PQ.
Let ĵ be the largest j satisfying min{nmin, r} ≤ j ≤ min{nK , r} with Λjj ≥ taΛ11 if
j > nmin, where nK and nmin = min{5, nK} are the maximum and minimum number of
kept columns of P̂ and ta ∈ [0, 1) is an aggregation tolerance. To ensure that W + ∈ Ŵk+1

(v. Step 4), we let

W
k+1

=
(
α∗W +

∑r

j=ĵ+1
ΛjjP̂jP̂

T
j

)
/
(
α∗ +

∑r

j=ĵ+1
Λjj

)
, (5.3)

where P̂j is column j of P̂ . Next, Step 2’ (v. §4.1) delivers a matrix L ∈ IRn×l of Lanczos
vectors of C−ATyk+1 such thatW k+1

S = L1L
T
1 . Then P

k+1 is obtained via QR factorization

as an orthonormal basis of {P̂j}ĵj=1 ∪ {Lj}min{l,nA}
j=1 , where nA is the maximum number of

added columns of L. Thus W k+1
S ∈ Ŵk+1. Since aggregation is not necessary initially, we

use (5.1) with α ≡ 0 until ĵ < r, in which case W
k+1

is initialized via (5.3) with α∗ = 0.
P 0 is set to the first min{nK+nA, l} columns of L found while evaluating λmax(C−ATy0).

The special structure (5.1) of Ŵ allows us to evaluate fŴ ,0
(v. (2.8)) directly:

fŴ ,0
(y+) = max

{
λmax(P

T (C −ATy+)P ),
〈
W,C −ATy+

〉}
+

〈
b, y+

〉
. (5.4)

The eigenvalue computation involved in (5.4) is cheap, since the argument is in S r. There-
fore Step 1(d) of Algorithm 2.2 can be executed efficiently.

Subproblem (5.2) is solved for each update of η̂ in the inner loop or, if κM = ∞, at least
once per iteration. Thus the overall efficiency hinges on the speed of this computation.
We now briefly explain the most important issues arising in this context.

Using the svec-operator described in [31] to expand symmetric matrices from S r into

column vectors of length
(
r+1
2

)
and by ignoring all constants, (5.2) can be brought into

the following form (note that 〈A,B〉 = (svecA)T svecB for A,B ∈ Sr and tr V = 〈I, V 〉)
min 1

2
(svec V )TQ11 svec V + αqT12 svec V + 1

2
q22α

2 + cT1 svec V + c2α,
s.t. α + sTI svec V = 1,

α ≥ 0, V � 0,
(5.5)

where

Q11 =
1
u

m∑
i=1

(
svecP TAiP

) (
svecP TAiP

)T
,

q12 =
1
u
svecP TAT(AW )P,
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q22 =
1
u

〈
AW,AW

〉
,

c1 = − svecP T
[

1
u
AT(b− η̂) + C −ATŷ

]
P,

c2 = −
〈
1
u
(b− η̂)− ŷ,AW

〉
−

〈
C,W

〉
,

sI = svec Ir.

This problem with
(
r+1
2

)
+ 1 variables can be solved quite efficiently by a feasible primal-

dual interior point method if r is not too large, say, at most 40. Thus our algorithm can
be run for problems with a huge number of constraints m.

Note, that it suffices to store and update, instead of W , the m-vector AW and the
scalar

〈
C,W

〉
. The projected matrices P TAiP ∈ Sr are computed at most once for each

instance of (5.5), and by accumulating the values we need only one of them at a time. The
accumulation of Q11 requires O(mr4) operations. Fortunately, changes in η̂ only affect
the linear cost coefficients c1 and c2; these are easy to update. If the inner iteration of
Algorithm 2.2 yields only small changes in η̂, then the optimal solution will also change
only slightly. We exploit this in a restarting heuristic, that is described in detail in [13].

In order to support our claim that solving (2.15) over (W, η) ∈ Ŵ × IRm
+ directly by

an interior point code would be too expensive, we outline its structural disadvantages.
Adding variables η ≥ 0, the quadratic cost matrix of (5.5) is increased to

Q =

⎡⎢⎣ Q11 q12 Q13

qT12 q22 qT23
QT

13 q23 Im

⎤⎥⎦
where

Q13 =
1

u

[
svec(P TA1P ) . . . svec(P

TAmP )
]

and q23 =
1

u
(AW ).

In an interior point code the special structure of the coefficients of η allows to eliminate
the step Δη from the Newton system more or less in advance. Yet, in each iteration of
an interior point code the new right hand side and the new step direction Δη have to be
computed by matrix vector multiplications of the form[

Q13

q23

]
η and

[
QT

13 q
T
23

] [ svec V
α

]

These cannot be avoided and so the running time of the subproblem is no longer indepen-
dent of m. Indeed, the size of the matrix Q13 is

(
r+1
2

)
×m and that of q13 is 1×m. Matrix

q13 is available, but the dense Q13 would have to be stored for efficiency reasons. So in
comparison to the suggested Lagrangian approach one would need O(m

(
r+1
2

)
) additional

storage and each Newton step would require several additional O(m
(
r+1
2

)
) operations.

Since a design criterion for the spectral bundle method is to be applicable to problems
with m > 100000 (e.g., the recent DIMACS challenge instances [27] include semidefinite
relaxations of frequency assignment problems with more than one million constraints) and
r up to at least 40, solving (2.15) by interior point methods directly is in our opinion not
a realistic alternative.
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6 Computational results

Our implementation is a revised and extended version of the one described in [16]. Our
experiments were carried out on a SUN Ultra 10 with a 299 MHz SUNW, UltraSPARC-IIi
CPU and 576 MB main memory (but none of our examples required more than 100 MB).

In bundle methods, bundle sizes and parameter settings may have considerable in-
fluence on computational results. It seems practically impossible to provide one set of
parameters that reliably performs well for all problem instances. Yet tuning parameters
for each instance separately is even less acceptable and so we prefer to present results with
the same parameter settings for all instances. In particular, the weight uk is updated as
described in §4.2, we use inexact null steps throughout (in comparison to exact null step
evaluation we observed a reduction of the average computation time by roughly 30% on
examples G1–G42 of [16]). The parameter values are κR = 0.5, κ̄ = κ = 0.1, κM = 0.6. For
consistency with [16], the bundle update employs nK = 20, nA = 5, ta = 0.01 (v. §5). We
also impose a time limit of one hour; this limit is checked together with the usual stopping
criterion in Step 1(c).

The spectral bundle method is designed for large scale problems, but to the best of
our knowledge there is no test set of suitable large scale instances with known optimal
solutions. Therefore we generated a set of rather small max-cut relaxations of the graphs
G1–G21 with 800 nodes of [16] so that our feasible primal-dual interior point code of [15]
could still solve the instances to optimality (unfortunately, it is not worth-while to report
its computation times).

The relaxations were obtained as follows. Let A be the (weighted) adjacency matrix
of a graph and let C = 1

4
(Diag(Ae)−A), where e denotes the vector of all ones and Diag

transforms a vector into a diagonal matrix. For the solution X∗ of the semidefinite relax-
ation max{ 〈C,X〉 : diag(X) = e,X � 0 } (computed by the code of [15]) we employed the
separation procedure described in [15] to find 1600 violated triangle inequalities (these are

facet defining cutting planes of the form
〈
bbT , X

〉
≥ 1 with b ∈ {−1, 0, 1}n having exactly

three nonzero elements). Writing these inequalities as AX ≥ e the primal formulation of
our max-cut relaxation is

max 〈C,X〉 s.t. diag(X) = e, AX ≥ e, X � 0. (6.1)

In spite of the rather severe size restriction imposed by the interior point code we consider
our setting to be both realistic and relevant for the following reasons. Max-cut and its
semidefinite relaxation are intimately connected to semidefinite relaxations of constrained
quadratic 0-1 programming problems (see, e.g., [21]) and are thus at the heart of many
combinatorial optimization problems. For these problems the cutting plane approach of
improving an initial relaxation by separating violated inequalities has repeatedly proven
to be highly effective. In fact, within the integer programming community the acceptance
of a new method depends strongly on its ability to solve such problems efficiently. So it
makes sense to look at this type of problems.

Since 〈diag(C), diag(X)〉 = eT diag(C) is constant for all feasible X, replacing the
diagonal elements of C by the average over the diagonal, eT diag(C)/n, does not change

the problem. With Ĉ := C + Diag( e
T diag(C)

n
e − diag(C)), Ī = {1, . . . , n}, and I =
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Table 6.1: Max-cut on graphs with 800 nodes and 1600 triangle inequalities

Problem f∗ rel acc time λ % k inner descent ‖∇f+‖
G1 12049.28 2.0·10−5 3600 32 297 321 31 0.08
G2 12053.88 1.0·10−5 3603 34 290 313 27 0.08
G3 12048.46 1.8·10−5 3605 34 284 313 28 0.09
G4 12071.50 1.3·10−5 2797 35 220 235 27 0.12
G5 12059.66 1.7·10−5 3613 33 295 316 29 0.11
G6 2615.542 8.1·10−5 3601 27 306 350 27 0.08
G7 2451.593 2.9·10−5 3605 29 294 353 30 0.07
G8 2463.678 3.8·10−5 3609 30 297 339 37 0.06
G9 2493.495 5.4·10−5 3609 29 301 341 34 0.08
G10 2447.766 1.6·10−5 3423 27 249 410 29 0.04
G11 623.4910 3.7·10−5 3602 12 436 2354 50 0.10
G12 613.0154 2.3·10−5 3600 19 636 3067 52 0.05
G13 636.4489 1.4·10−5 3600 22 578 3158 58 0.05
G14 3181.331 9.6·10−6 3086 33 265 294 43 0.09
G15 3161.874 1.1·10−5 2392 32 210 251 41 0.12
G16 3164.930 1.2·10−5 2981 33 260 283 41 0.09
G17 3161.765 1.1·10−5 3304 31 287 330 39 0.08
G18 1147.605 9.9·10−6 2677 27 150 475 41 0.03
G19 1064.577 8.7·10−6 2614 27 142 487 40 0.04
G20 1095.452 1.4·10−5 1819 32 111 322 40 0.05
G21 1087.888 1.3·10−5 1193 40 89 228 40 0.07

{n+ 1, . . . , 3n}, the eigenvalue problem (1.1) corresponding to the dual of (6.1) reads

min
y∈IR3n,yI≤0

nλmax(Ĉ − Diag(yĪ)−ATyI) + eTy.

This is the problem we actually solve. In each case our starting point is y0 = 0.
The results for εopt = 10−5 are given in Table 6.1 and for εopt = 10−3 in Table 6.2.

The first column in the tables is the problem name. The second column (f ∗) displays our
reference values for judging a posteriori the quality of the final solutions. These values are
lower bounds obtained from primal objective values of the interior point code [15]; they
should match the true optima in the first 5 digits. The third column (rel acc) gives the
relative precision [f(ŷk) − f ∗]/(|f ∗| + 1) of the final objective value f(ŷk) with respect
to the reference value f ∗. The fourth and fifth columns (time and λ % ) show the total
time in CPU-seconds and its percentage spent in the Lanczos code for computing maximal
eigenvalues and Lanczos vectors. The sixth column (k) lists the final iteration numbers.
Column inner gives the number of executions of Step 1(a); the difference between inner
and k + 1 accounts for additional inner loops due to Step 1(d). The last but one column
(descent) displays the number of descent steps. The final column (‖∇f+‖) gives the norm
of the gradient of the linear model fW+,η+ at termination.

The results of Table 6.1 show that the numbers of additional inner iterations for up-
dating η are usually acceptable. They are rather high only for examples G10–G12 (these
are instances of grid graphs). A closer inspection of these problems reveals that about 900
out of the 1600 primal inequality constraints are active (have η i > 0) for instances G1–G10,
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Table 6.2: Instances of Table 6.1 for εopt = 10−3

Problem f∗ rel acc time λ % k inner descent ‖∇f+‖
G1 12049.28 6.9·10−4 104 54 13 14 10 2.60
G2 12053.88 7.7·10−4 176 46 19 20 9 1.71
G3 12048.46 1.0·10−3 96 52 13 14 9 2.79
G4 12071.50 8.4·10−4 111 48 14 15 8 2.16
G5 12059.66 8.1·10−4 190 44 20 23 10 1.43
G6 2615.542 8.6·10−4 540 31 53 58 15 0.54
G7 2451.593 9.2·10−4 538 32 53 56 17 0.42
G8 2463.678 8.8·10−4 618 32 59 62 20 0.42
G9 2493.495 8.5·10−4 548 33 53 56 21 0.42
G10 2447.766 7.8·10−4 502 31 50 54 16 0.39
G11 623.4910 9.6·10−4 496 17 85 162 30 1.03
G12 613.0154 8.5·10−4 474 31 127 182 31 0.68
G13 636.4489 9.2·10−4 408 33 120 163 32 0.61
G14 3181.331 8.6·10−4 192 41 35 36 22 1.85
G15 3161.874 9.5·10−4 203 41 36 37 23 1.84
G16 3164.930 7.7·10−4 174 41 32 33 21 2.08
G17 3161.765 6.8·10−4 185 38 34 36 21 1.86
G18 1147.605 8.0·10−4 322 36 47 51 23 0.77
G19 1064.577 9.1·10−4 301 42 46 54 23 0.88
G20 1095.452 8.6·10−4 322 34 48 58 23 0.54
G21 1087.888 6.2·10−4 268 39 44 52 24 0.66

around 1300 are active for G11–G12, and roughly 1000 are active for G13–G21. Since inner
iterations approximate an optimal η in a sequence of bundle steps, the difficulty of this
process strongly depends on the number of positive coordinates of η.

The spectral bundle method slows down as it approaches the optimal solution. This,
however, need not be an obstacle in applications where one is not interested in the exact
optimum, but prefers getting a rough estimate rapidly. In particular, this applies to
relaxations of combinatorial optimization problems and, even more so, to cutting plane
methods, where much faster progress can be achieved by adding new inequalities at an
early stage. Within this framework it makes sense to look at the results presented in Table
6.2 that were obtained for a less stringent optimality tolerance εopt = 10−3.

Acknowledgment. We thank Franz Rendl for many fruitful discussions and two
anonymous referees for their constructive criticism.
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A Notation

IR, IRm real numbers, real column vector of dimension m
IRm

+ , Y nonnegative real column vector of dimension m
Sn n× n symmetric real matrices
Sn
+, A � 0 n× n symmetric positive semidefinite matrices
I, In identity of appropriate size or of size n
e vector of all ones of appropriate dimension
ei i-th column of I
Aj j-th column of A
AT transpose of A
svec(A) vector obtained by stacking the columns of the lower triangle

of A ∈ Sn with offdiagonals multiplied by
√
2

Diag(v) diagonal matrix with v on its main diagonal
diag(A) the diagonal of A ∈ IRn×n as a column vector
tr(A) trace of A ∈ IRn×n, tr(A) =

∑n
i=1 aii =

∑n
i=1 λi(A)

〈A,B〉 inner product in IRm×n, 〈A,B〉 = tr(BTA)
‖v‖ Euclidean norm of v ∈ IRm, ‖v‖ =

√〈v, v〉
ıY (·) indicator function, ıY (y) = 0 for y ∈ Y = IRm

+ , ∞ otherwise
λi(A) i-th eigenvalue of an n× n matrix A, usually λ1 ≥ λ2 ≥ . . . ≥ λn
λmin(A), λmax(A) minimal and maximal eigenvalue of A
ΛA diagonal matrix with (ΛA)ii = λi(A)
conv(S) convex hull of a set S
argmin/argmax (unique) minimizing/maximizing argument of a function
Argmin /Argmax set of minimizing/maximizing arguments of a function
y design variables in IRm, feasible for y ∈ IRm

+ = Y
η ∈ IRm

+ Lagrange multipliers for y ≥ 0
W, W ∈ W positive semidefinite matrices of trace 1, W = {W � 0 : trW = 1 }
A,AT constraint matrix and adjoint, [AX]i = 〈Ai,X〉, ATy =

∑m
i=1 yiAi

C −ATy affine matrix function, C is a given “cost matrix”
b given “right hand side” vector
f objective function, f(y) = λmax(C −ATy) + bT y + ıY (y)
fW,η affine minorant of f , fW,η = 〈C,W 〉 + 〈b− η −AW,y〉
fŴ,Ŷ

model of f for Ŵ ⊆ W, Ŷ ⊆ IRm
+ , fŴ,Ŷ

(y) = sup
(W,η)∈Ŵ×Ŷ

fW,η(y)

∇fW,η first derivative with respect y, ∇fW,η = b− η −AW
ŷ center of bundle subproblem min fŴ,Y

(·) + u
2‖ · −ŷ‖2

ŷ∗ (unique) minimizer of bundle subproblem
L(y;W,η) Lagrange function, L(y;W,η) = fW,η(y) +

u
2‖y − ŷ‖2

yW,η (unique) minimizer of L for fixed (W,η), yW,η = minL(·;W,η)
ψ(W,η) dual function to the bundle subproblem, ψ(W,η) = L(yW,η;W,η)

W+ (W k+1) maximizer (i.g. not unique) of ψ(·, η̂) over Ŵ for fixed η̂ ∈ IRm
+

η+ (ηk+1) (unique) maximizer of ψ(W+, ·) for fixed W+ ∈ Ŵ
y+

1
2 , y+ (yk+

1
2 , yk+1) minimizer yW+,η̂ of L(·,W+, η̂) and yW+,η+ of L(·,W+, η+)

W k+1
S matrix ∈ W giving rise to a new subgradient in iteration k
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