
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

GERALD GAMRATH, THORSTEN KOCH, ALEXANDER MARTIN?,
MATTHIAS MILTENBERGER, DIETER WENINGER?

Progress in Presolving for Mixed Integer
Programming

? FAU Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany, {alexander.martin, dieter.weninger}@math.uni-erlangen.de

ZIB-Report 13-48 (August 2013)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Progress in Presolving for Mixed Integer Programming

Gerald Gamrath · Thorsten Koch · Alexander Martin

Matthias Miltenberger · Dieter Weninger

Abstract

Presolving attempts to eliminate redundant information from the problem formulation
and simultaneously tries to strengthen the formulation. It can be very effective and is often
essential for solving instances. Especially for mixed integer programming problems, fast and
effective presolving algorithms are very important. In this paper, we report on three new
presolving techniques. The first method searches for singleton continuous columns and tries
to fix the corresponding variables. Then we present a presolving technique which exploits
a partial order of the variables to induce fixings. Finally, we show an approach based on
connected components in graphs. Our computational results confirm the profitable use of
the algorithms in practice.

1 Introduction

In order to eliminate redundant information and to strengthen the formulation of an integer
program, solvers apply a number of techniques before the linear programming relaxation of an
instance is solved. This first step is referred to as presolving or preprocessing. The solvers
then work with this reduced formulation rather than the original and recover the values of
original variables afterwards. Presolving techniques are not only applied before solving the
linear programming relaxation at the root node in a branch-and-bound tree, a reduced form
called node presolving is also performed at all other nodes of the tree.

Presolving has been applied for solving linear and mixed integer programming problems for
decades. Brearly et al. [15] and Williams [28] discussed bound tightening, row elimination,
and variable fixings in mathematical programming systems, while Andersen and Andersen [6]
published presolving techniques in the context of linear programming. In addition, presolving
techniques on zero-one inequalities have been studied by Guignard and Spielberg [19], Johnson
and Suhl [22], Crowder et al. [16], and Hoffman and Padberg [20]. Williams [29] pointed out
a projection method for the elimination of integer variables and Savelsbergh [26] investigated
preprocessing and probing techniques for mixed integer programming problems. An overview of
different presolving techniques can be found in the books of Nemhauser [25] and Wolsey [30],
in Fügenschuh and Martin [18] as well as Mahajan [24]. Details on implementing presolving
techniques effectively within a mixed integer linear programming solver are discussed in Suhl
and Szymanski [27], Atamtürk and Savelsbergh [8] and Achterberg [2].

Gerald Gamrath, Thorsten Koch, Matthias Miltenberger: {gamrath, koch, miltenberger}@zib.de,
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
Alexander Martin, Dieter Weninger: {alexander.martin, dieter.weninger}@math.uni-erlangen.de,
FAU Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany

1

The impact of presolving on the entire solution process of mixed integer linear problems
was published in Bixby and Rothberg [12]. By disabling root presolving, a mean performance
degradation of about a factor of ten was detected. Only cutting planes had an even bigger
influence on the solving process. This motivated us to look for further profitable presolving
algorithms.

The paper is organized as follows. In Section 2 the notation is presented. Section 3 describes
a presolving technique we call Stuffing Singleton Columns, where continuous variables with only
one non-zero coefficient in the coefficient matrix are tried to be fixed at a suitable bound. In
Section 4, we show another column based method called Dominating Columns working on a
partial order. Through this relation, a consecutive behavior of the variable values arises of
which fixings and bounds can be derived. Then, in Section 5 a technique based on Connected
Components is presented. Such an approach is obvious, but was to the best of our knowledge
not yet published in the context of presolving. In Section 6 we show computational results for all
three illustrated presolving techniques with SCIP [3] on MIPLIB [11, 4, 23] and supply chain
management instances and close with our conclusions in Section 7.

2 Notation and Basics

Consider a mixed integer program (MIP) in the following form:

min cTx
s.t. Ax ≤ b

0 ≤ ` ≤ x ≤ u
x ∈ Zp ×Rn−p

(1)

with c ∈ Rn, ` ∈ Rn
+, u ∈ Rn

+, A ∈ Rm×n, b ∈ Rm and p ∈ {0, 1, . . . , n}.
We will use the notation A·j to select the entire column j of the matrix A. Accordingly, Ai·

extracts all coefficients of row i.
For a vector x ∈ Rn we call supp (x) = {i ∈ {1, 2, . . . , n} | xi 6= 0} the support of x.
In [15] a procedure for tightening bounds of variables can be found. Fundamental are the

maximal (2) and minimal (3) activity of a linear constraint aTr x.

Ur =
∑

∀k, ark>0

arkuk +
∑

∀k, ark<0

ark`k (2)

Lr =
∑

∀k, ark>0

ark`k +
∑

∀k, ark<0

arkuk (3)

Lr may be −∞ and Ur may be ∞. Obviously Lr ≤ aTr x ≤ Ur is satisfied. Using the minimal
activity Lr, it is possible to calculate new upper and lower bounds u∗j and `∗j for variable xj . For
all feasible solutions x it holds that

xj ≤
br − Lr + arj`j

arj
= u′rj ,∀r arj > 0 (4)

xj ≥
br − Lr + arjuj

arj
= `′rj ,∀r arj < 0 (5)

Thus we obtain potentially new bounds by

u∗j = min{uj , min
∀r arj>0

{u′rj}}

`∗j = max{`j , max
∀r arj<0

{`′rj}}

2

For integer variables we may also apply rounding

u∗j = min{uj , min
∀r arj>0

{bu′rjc}} or `∗j = max{`j , max
∀r arj<0

{d`′rje}}.

3 Stuffing Singleton Columns

A singleton column is a column of the matrix A with |supp (A·j)| = 1. The presolving technique
presented in this section works through a set of singleton columns of continuous variables xj
within a row r and tries to fix them at the relevant bound.

As an example, consider the continuous knapsack problem:

max cTx
s.t. aTx ≤ b

0 ≤ xj ≤ 1, j = 1, . . . , n
x ∈ Rn

+, c ∈ Rn
+, a ∈ Rn

+, b ∈ R+

Here, we are not forced to pack an item completely or not at all like in the binary knapsack
problem, because it is possible to pack any fraction between 0 and 1 of an item. Suppose that
we first sort the items monotonically decreasing by their ratio cj/aj . Let t be the greatest

index such that
∑t

j=1 aj ≤ b. We pack all items x1, . . . , xt entirely, fill the left capacity with

xt+1 = (b −
∑t

j=1 aj)/at+1 and all other items xt+2, . . . , xn stay completely outside of the
knapsack. Obviously, this gives us an optimal solution without solving a linear program.

Transferring the above idea to (1) evokes two difficulties. Integer variables are present and
variables usually appear in more than one row. So we cannot simply proceed like in the continuous
knapsack problem. To solve the difficulties we act as follows. We are only interested in the case
where cj/arj < 0, because duality fixing [18] already covers the case cj/arj ≥ 0. In contrast to
duality fixing, we use additional information about the rows. In the following, we will focus on
the case arj > 0 and cj < 0. For a given row r, the set of variables to be considered are:

J(r) = {j ∈ {1, . . . , n} | xj ∈ R ∧ |supp (A·j)| = 1 ∧ arj > 0 ∧ cj < 0}.

Furthermore, we use the following two activities, which are similar to the maximal (2) and
minimal activity (3) of row r except that continuous singleton columns xj with j ∈ J(r) are
considered at their lower bounds.

Ũr =
∑

j∈J(r)
`j>0

arj`j +
∑

j /∈J(r)
arj>0

arjuj +
∑

j /∈J(r)
arj<0

arj`j

L̃r =
∑

j∈J(r)
`j>0

arj`j +
∑

j /∈J(r)
arj<0

arjuj +
∑

j /∈J(r)
arj>0

arj`j

As input parameters of the algorithm there are J(r), L̃r, Ũr, the variables x, the lower bounds
`, the upper bounds u, the coefficients of row r with ar = Ar·, the corresponding right-hand side
br and the coefficients of the objective function c. Output are fixings of variables xj with j ∈ J(r).

First, we sort the ratios cj/arj < 0 and start with the smallest ratio. If α ≤ br−Ũr +β is fulfilled
(α, β ∈ R as defined in Algorithm 1 lines 3 and 4), there is enough room for setting xj to the

upper bound and the value of the objective function improves because cj < 0. If br ≤ L̃r is
satisfied, there is not sufficient space left and we can fix xj at its lower bound.

3

Algorithm 1 Stuffing Singleton Columns for arj > 0 and cj < 0

Input: J(r), L̃r, Ũr, x, `, u, ar, br, c
Output: Fixings of variables xj with j ∈ J(r)
1: Determine a sorted index list s of J(r) such that

cs1
ars1
≤ . . . ≤ c|s|

ar|s|

2: for all k = 1, . . . , |s| do
3: α = arsk · usk
4: β = arsk · `sk
5: if α ≤ br − Ũr + β then
6: xsk = usk
7: else if br ≤ L̃r then
8: xsk = `sk
9: end if

10: L̃r = L̃r + α− β
11: Ũr = Ũr + α− β
12: end for

The algorithm with arj < 0 and cj > 0 is working similarly. This time we do not try to fix
as much variables as possible at the upper bound to achieve a better objective function. Now
the point is to ensure feasibility while deteriorating the objective function as little as possible.
Therefore we begin with the greatest ratio. α ≥ br − L̃r + β indicates that we need xsj at its

upper bound even if the objective function is getting worse. If br ≥ Ũr is fulfilled we fix the
corresponding variable at the lower bound.

Both algorithms can be implemented to run very fast. Hence, they do not impact the perfor-
mance on instances, e.g. from the MIPLIB, where only few reductions are found. In practical
problems, such as supply chain management, stuffing singleton columns may, however, find fix-
ings quite often (see Section 6).

Finally, it should be mentioned that singleton continuous columns sometimes deliver valuable
dual information for linear programming problems (see [15]). This information can also be of
great interest for (1). For example, it is possible to use this dual information in conjunction with
complementary slackness to fix continuous variables at the lower bound in the primal problem,
as described in [10]. Ideally, one tries to exploit this information first and then apply stuffing.

4 Dominating Columns

This presolving technique is based on a relation between two variables. We first introduce the
corresponding relation and present an important property of it. After that, we show criteria that
often allow to derive better bounds on variables or fix variables at one bound.

4.1 Dominance Relation

Definition 1. Let (1) and two variables xj and xi be given. In addition both variables are of
the same type, i.e. binary, integer or continuous. We say xj dominates xi (xj � xi), if

(i) cj ≤ ci,

(ii) arj ≤ ari for every constraint r.

We call xj the dominating variable and xi the dominated variable.

4

Definition 1 is a reflexive, antisymmetric and transitive relation on the coefficients of the
variables and therefore a partial order (poset). Because by this relation a consecutive behavior
of the variable values arises, it can also be seen as a dominance relation.

The idea of exploiting a kind of a dominance relation between variables for presolving is not
new. Andersen and Andersen [6] used dominating columns for presolving of linear programming
problems and Borndörfer [14] in the context of set partitioning problems. In addition, Babayev
and Mardanov [9] and Zhu and Broughan [32] introduced procedures based on comparing pairs of
columns for reducing the number of integer variables mostly applied on knapsack problems. Our
method can be seen as a generalization and extension of existing dominating columns approaches
for mixed integer programming problems. In combination with a special bound analysis we are
not only able to fix variables to zero, but can also fix variables at an arbitrarily lower or upper
bound if certain properties are fulfilled.

The following two examples illustrate Definition 1.

Example 1.
min −2x1 − x2 − 2x3 − 4x4

s.t. 2x1 + 3x2 + x3 − x4 ≤ 6
x2 + 3x3 − x4 ≤ 1
x2 + 2x4 ≤ 3

0 ≤ x1, x2 ≤ 4, 0 ≤ x4 ≤ 2
x1, x2 ∈ Z, x3 ∈ {0, 1}, x4 ∈ R.

It holds x1 � x2 and the optimal solution is x1 = 3, x2 = 0, x3 = 0, x4 = 3
2 with optimal value

−12.

Example 2.
min x1 + x2 − 2x3 − 3x4

s.t. −2x1 − x2 + 2x3 − 2x4 ≤ −12
x3 + x4 ≤ 3

2
−x1 − x2 − 2x3 ≤ −6

0 ≤ x1, x2 ≤ 4, 0 ≤ x4 ≤ 2
x1, x2 ∈ Z, x3 ∈ {0, 1}, x4 ∈ R.

Again x1 � x2 and the optimal solution is x1 = 4, x2 = 2, x3 = 0, x4 = 3
2 with optimal value 3

2 .

In both examples, one of the variables involved in the dominance relation is at one of its
bounds in the optimal solution. This is a general property of the dominance relation that we will
prove in the following. In order to do that, we first show that increasing the dominating variable
and decreasing the dominated variable by the same amount preserves feasibility and optimality
as long as the variable bounds are still satisfied.

Lemma 1. Let x̄ be a feasible solution for (1) and xj � xi. For 0 < α ∈ R, we define x? with

x?k =


x̄k + α k = j,

x̄k − α k = i,

x̄k else

If x?j = x̄j +α ≤ uj and x?i = x̄i−α ≥ `i, then x? is feasible and its objective value is not worse
than the one of x̄.

5

Proof. For every constraint aTr x ≤ br, we get

n∑
k=1

arkx
?
k =

n∑
k=1
k 6=i,j

arkx̄k + arj(x̄j + α) + ari(x̄i − α)

=

n∑
k=1
k 6=i,j

arkx̄k

︸ ︷︷ ︸
≤br

+α (arj − ari)︸ ︷︷ ︸
≤0

≤ br.

Obviously, also the bounds of the variables are fulfilled, hence x? is feasible. Additionally, we
know from Definition 1 that cj ≤ ci, thus cTx? = cT x̄+α(cj− ci) ≤ cT x̄, i.e., the objective value
is not getting worse.

This leads us to the following theorem which states that the dominated variable is at its lower
bound or the dominating variable is at its upper bound in at least one optimal solution.

Theorem 1. Let xj � xi, then there always exists an optimal solution x? with

x?j = uj ∨ x?i = `i.

Proof. Let x̄ be an optimal solution with x̄j < uj ∧ x̄i > `i. We construct a feasible solution
x? with cTx? ≤ cT x̄ by defining α = min{x̄i − `i, uj − x̄j} and applying Lemma 1. Since x̄ is
optimal, cTx? = cT x̄ and x? is optimal, too. By the definition of α, also x?j = uj ∨ x?i = `i
holds.

4.2 Predictive Bound Analysis

Based on Theorem 1 we will now describe sufficient conditions which allow in combination with
Definition 1 to tighten bounds or fix variables. We first extend the maximal and minimal row
activity from (2) and (3) as a function in one variable xt.

Definition 2. Let a linear constraint aTr x ≤ br and a variable xt = ξ be given. We denote by

U t
r(ξ) =

n∑
k=1
k 6=t

ark>0

arkuk +

n∑
k=1
k 6=t

ark<0

ark`k + artξ

the conditional maximal activity of the linear constraint w.r.t. ξ and by

Lt
r(ξ) =

n∑
k=1
k 6=t

ark>0

ark`k +

n∑
k=1
k 6=t

ark<0

arkuk + artξ

the conditional minimal activity of the linear constraint w.r.t. ξ.

In case the sum is not well-defined because both positive as well as negative infinite contri-
butions occur, we define U t

r(ξ) = +∞ and Lt
r(ξ) = −∞. These cases will be excluded in the

criteria for changing bounds or fixing variables anyway.
Definition 2 will now be used to define specific functions, which predict in dependence of the

value ξ of one variable xt the bound of another variable. We call this approach predictive bound
analysis.

6

Definition 3. Let (1) and two variables xs and xt = ξ be given. We define the following
functions:

maxlts(ξ) = max
r=1,...,m

{
br − Lt

r(ξ) + arsus
ars

| ars, art < 0

}
maxut

s(ξ) = max
r=1,...,m

{
br − U t

r(ξ) + ars`s
ars

| ars, art < 0

}
minlts(ξ) = min

r=1,...,m

{
br − Lt

r(ξ) + ars`s
ars

| ars, art > 0

}
minut

s(ξ) = min
r=1,...,m

{
br − U t

r(ξ) + arsus
ars

| ars, art > 0

}

Let us have a look at the meaning of these values: minlts(ξ) takes into account all constraints
in which xs and xt have positive coefficients, i.e., a subset of the constraints that imply an upper
bound on xs. Similar to the bound tightening (see (4)), the upper bound on xs is computed
for each constraint, but instead of using the minimal activity, the conditional minimal activity
w.r.t. xt = ξ is used. Therefore, each constraint gives an upper bound for xs subject to the
value of xt and minimizing over these bounds, minlts(ξ) gives the tightest implied upper bound
on xs as a function of the value ξ of xt. Analogously, maxlts(ξ) gives the tightest implied lower
bound on xs as a function of the value ξ of xt. The other two functions maxut

s(ξ) and minut
s(ξ)

take into account the maximal instead of the minimal activity. It follows that the difference
between the right-hand side and residual activity subject to xt = ξ is minimized. This way we
may get a larger lower bound and a smaller upper bound on xs. Since the maximal activity is
the worst-case when regarding feasibility of a ≤-constraint, all values of xs which are larger than
maxut

s(ξ) or smaller than minut
s(ξ) can never lead to an infeasibility.

Next, we show that these four functions are strictly monotonically decreasing. This property
is fundamental to obtain a maximum value if we assume xt at its lower bound and vice versa.

Lemma 2. maxlts(ξ), maxut
s(ξ), minlts(ξ) and minut

s(ξ) are strictly monotonically decreasing
functions, i.e., for `t ≤ ξ′ < ξ′′ ≤ ut holds

maxlts(ξ
′) > maxlts(ξ

′′),

maxut
s(ξ
′) > maxut

s(ξ
′′),

minlts(ξ
′) > minlts(ξ

′′) and

minut
s(ξ
′) > minut

s(ξ
′′).

Proof. We only prove the first inequality, the others can be shown analogously. Let r̃ be one row
defining the maximum in the computation of maxlts(ξ

′′). Since Lt
r̃(ξ′′) − Lt

r̃(ξ′) = ar̃t(ξ
′′ − ξ′)

7

and ar̃s, ar̃t < 0 by the definition of maxlts(ξ), the following holds:

maxlts(ξ
′)−maxlts(ξ

′′) = max
r=1,...,m

{
br − Lt

r(ξ′) + arsus
ars

∣∣∣∣ars < 0

}
− max

r=1,...,m

{
br − Lt

r(ξ′′) + arsus
ars

∣∣∣∣ars < 0

}
≥ br̃ − Lt

r̃(ξ′) + ar̃sus
ar̃s

− br̃ − Lt
r̃(ξ′′) + ar̃sus
ar̃s

=
ar̃t
ar̃s

(ξ′ − ξ′′)

> 0

These functions can help us to infer bounds for the dominating or the dominated variable in
an optimal solution.

Theorem 2. Let xj � xi. Then the following holds for at least one optimal solution.

(i) xj ≤ minlij(`i).

(ii) xi ≥ maxlji (uj).

(iii)
∣∣maxlij(`i)∣∣ <∞⇒ xj ≥ min{uj ,maxlij(`i)}.

(iv)
∣∣∣minlji (uj)∣∣∣ <∞⇒ xi ≤ max{`i,minlji (uj)}.

(v)
∣∣minui

j(`i)
∣∣ <∞ and cj ≤ 0⇒ xj ≥ min{uj ,minui

j(`i)}.

(vi)
∣∣∣maxuj

i (uj)
∣∣∣ <∞ and ci ≥ 0⇒ xi ≤ max{`i,maxuj

i (uj)}.

Proof.

(i) Follows from (4), since ari is positive for all rows regarded for the computation of minlij(`i)
and therefore setting xi to `i does not change the minimal activity of the row.

(ii) Follows from (5), since arj is negative for all rows regarded for the computation of maxlji (uj)
and therefore setting xj to uj does not change the minimal activity of the row.

(iii) By Definition 3, there exists one row r with arjmaxl
i
j(`i) + Li

r(`i)− arjuj = br. Suppose

there is an optimal solution x? with α = min{uj ,maxlij(`i)} − x?j > 0. From xj � xi and
Definition 3, we know arj ≤ ari < 0, so for row r to be feasible, x?i > `i + α must hold.
By Lemma 1, we can increase x?j by α and decrease x?i by α without loosing feasibility or
optimality.

(iv) By Definition 3, there exists one row r with ariminl
j
i (uj) + Lj

r(uj) − ari`i = br. Suppose

there is an optimal solution x? with α = x?i −max{`i,minlji (uj)} > 0. From xj � xi and
Definition 3, we know 0 < arj ≤ ari, so for row r to be feasible, x?j < uj − α must hold.
By Lemma 1, we can decrease x?i by α and increase x?j by α without loosing feasibility or
optimality.

8

(v) By Definition 3, there exists one row r with arjminu
i
j(`i) + U i

r(`i) − arjuj = br. Suppose

there is an optimal solution x? with x?j < min{uj ,minui
j(`i)}.

Let αj = min{uj ,minui
j(`i)} − x?j , αi = x?i − `i, and α = min{αi, αj}. By Lemma 1,

we can increase x?j by α and decrease x?i by α without loosing feasibility or optimality.
If α = αj , then we are finished because we constructed an optimal solution with xj =
min{uj ,minui

j(`i)}. Otherwise, we get an optimal solution x? with x?i = `i. Now, we show

that x̄ with x̄j = min{uj ,minui
j(`i)} and x̄k = x?k for k 6= j is also an optimal solution.

Because x? is feasible and by definition of x̄j , x̄ fulfills all bounds. By increasing xj , we
can only loose feasibility for rows r with arj > 0. From xj � xi we know 0 < arj ≤ ari,
so these rows are exactly the rows regarded in the definition of minui

j(`i). Assume one of

these rows is violated, i.e., aTr x̄ > br, then

0 > br −
n∑

k=1

arkx̄k

= br −


n∑

k=1
k 6=i

ark>0

arkx̄k +

n∑
k=1
k 6=i

ark<0

arkx̄k + ari`i



≥ br −


n∑

k=1
k 6=i

ark>0

arkuk +

n∑
k=1
k 6=i

ark<0

ark`k + ari`i − arjuj + arj x̄j


= br − U i

r(`i) + arjuj − arj x̄j

It follows that x̄j > (br−U i
r(`i)+arjuj)/arj ≥ minui

j(`i), but this contradicts the definition

of x̄j , so all rows must still be feasible. x̄ is also optimal since we get cT x̄ ≤ cTx? from
x̄j > x?j and cj ≤ 0.

(vi) By Definition 3, there exists one row r with arimaxu
j
i (uj) +U j

r (uj)− ari`i = br. Suppose

there is an optimal solution x? with x?i > max{`i,maxuj
i (uj)}.

Let αi = x?i − max{`i,maxuj
i (uj)}, αj = uj − x?j , and α = min{αi, αj}. By Lemma 1,

we can decrease x?i by α and increase x?j by α without loosing feasibility or optimality.
If α = αi, then we are finished because we constructed an optimal solution with xi =
max{`i,maxuj

i (uj)}. Otherwise, we get an optimal solution x? with x?j = uj . Now, we show

that x̄ with x̄i = max{`i,maxuj
i (uj)} and x̄k = x?k for k 6= i is also an optimal solution.

Because x? is feasible and by definition of x̄i, x̄ fulfills all bounds. By decreasing xi, we
can only loose feasibility for rows r with ari < 0. From xj � xi we know arj ≤ ari < 0,

so these rows are exactly the rows regarded in the definition of maxuj
i (uj). Assume one of

9

these rows is violated, i.e., aTr x̄ > br, then

0 > br −
n∑

k=1

arkx̄k

= br −


n∑

k=1
k 6=j

ark>0

arkx̄k +

n∑
k=1
k 6=j

ark<0

arkx̄k + arjuj



≥ br −


n∑

k=1
k 6=j

ark>0

arkuk +

n∑
k=1
k 6=j

ark<0

ark`k + arjuj − ari`i + arix̄i


= br − U j

r (uj) + ari`i − arix̄i

Since ari < 0, it follows that x̄i < (br − U j
r (uj) + ari`i)/ari ≤ maxuj

i (uj), but this
contradicts the definition of x̄i, so all rows must still be feasible. x̄ is also optimal since we
get cT x̄ ≤ cTx? from x̄i > x?i and ci ≥ 0.

Whenever in Theorem 2, (iii) - (vi), the minimum or maximum is obtained for the first
argument, the variable can be fixed. Since this has the highest impact regarding presolving as it
reduces the problem size, we summarize the fixing criteria.

Corollary 1. Let xj � xi. In the following cases, we can fix a variable while preserving at least
one optimal solution.

(i) ∞ > maxlij(`i) ≥ uj ⇒ xj can be fixed to uj.

(ii) −∞ < minlji (uj) ≤ `i ⇒ xi can be fixed to `i.

(iii) cj ≤ 0 and ∞ > minui
j(`i) ≥ uj ⇒ xj can be fixed to uj.

(iv) ci ≥ 0 and −∞ < maxuj
i (uj) ≤ `i ⇒ xi can be fixed to `i.

These criteria rely on finite values for the predicted bounds. In particular, if the bound
which is used for the computation of the conditional minimal or maximal activity is infinite, we
typically get infinite predicted bounds. The following criteria are equivalent to the ones stated
in Corollary 1 if −∞ < `i ≤ xi ≤ ui < ∞ and −∞ < `j ≤ xj ≤ uj < ∞, but use other bounds
for the computation of conditional minimal and maximal activities, which can sometimes be
beneficial in order to get finite conditional activities.

Corollary 2. Let xj � xi. In the following cases, we can fix a variable while preserving at least
one optimal solution.

(i) ∞ > maxlji (uj) ≥ `i ⇒ xj can be fixed to uj.

(ii) −∞ < minlij(`i) ≤ uj ⇒ xi can be fixed to `i.

10

(iii) cj ≤ 0 and ∞ > minuj
i (uj) ≥ `i ⇒ xj can be fixed to uj.

(iv) ci ≥ 0 and −∞ < maxui
j(`i) ≤ uj ⇒ xi can be fixed to `i.

Proof.

(i) If maxlji (uj) ≥ `i, then by Definition 3 and Lemma 2 it follows that

maxljj(`i) ≥ maxlij(maxl
j
i (uj)) = uj .

From maxlji (uj) < `i follows

maxlij(`i) < maxlij(maxl
j
i (uj)) = uj .

This is the statement of Corollary 1(i).

(ii)-(iv) are similar to case (i).

By having two alternative criteria for each variable fixing, we can select the one that fits
better in a given situation. In particular, an infinite upper bound is more common than an
infinite lower bound since problems are typically modeled using non-negative variables.

4.3 Utilize Conflict Information for Binary Variables

For binary variables we can use information from a conflict graph [7] for fixing additional variables
in connection with the dominance relation. The use of this information has the advantage that
it was concurrently extracted in preceding presolving rounds.

An undirected graph G = (V,E) is called a conflict graph of (1), if for every binary variable
xi there are a vertex vi ∈ V and a vertex v̄i ∈ V for its complement x̄i = 1 − xi. The edge set
E consists of edges viv̄i for all binary variables xi and edges between two vertices when at most
one of the corresponding variables or complements can be equal to 1 in an optimal solution.

Theorem 3.

(i) Let xj � xi and vjvi ∈ E, then xi can be fixed to 0.

(ii) Let xj � xi and v̄j v̄i ∈ E, then xj can be fixed to 1.

Proof.

(i) With two binary variables, four variable assignments are possible. Because xj = 1∧xi = 1 is
not allowed, only the possibilities xj = 1∧xi = 0, xj = 0∧xi = 0 and xj = 0∧xi = 1 remain.
From Definition 1 and Lemma 1 we know that it is possible to increase xj and decrease
xi accordingly, thereby staying feasible and optimal. Thus, only the cases xj = 1 ∧ xi = 0
and xj = 0 ∧ xi = 0 are remaining. In both cases, xi is at its lower bound.

(ii) The case is similar to (i). Finally, the logical conjunctions xj = 1∧xi = 1 and xj = 1∧xi = 0
are left. In both cases, xj is at its upper bound.

11

4.4 Finding a Dominance Relation

The complexity of an algorithm that operates on a partial order (poset) is mainly determined by
the width. The width w of a poset is defined to be the maximum cardinality of an anti-chain,
which is a subset of mutually incomparable elements. In [17] an algorithm was published that
sorts a width-w poset of size n in O(n(w + log n)). Their representation has size O(wn) and
permits retrieval of the relation between any two elements in time O(1).

Despite the promising results in [17], we have opted for a different approach with a worse
complexity because it is easy to implement and works well in practice. It consists of two stages.
The first stage compares only variables which are present within equalities. This is done by
an algorithm developed for detecting parallel rows or columns [13]. It is also possible to follow
a procedure as in [5]. The second stage considers only those variables that have not yet been
studied and takes advantage of the sparsity of A. This can be achieved by first sorting all rows
by the number of non-zero coefficients. Then, we start with the row that contains the fewest
non-zeros and compare only columns that have a non-zero entry in this row. After one row was
executed, the processed variables therein are not compared to other variables anymore. In the
worst case, in which the matrix is dense, there is a mechanism which monitors the number of
fixings per ν paired comparisons. If no fixing by means of ν comparisons is found, then this row
will not be further investigated. In the course ν is dynamically adjusted according to the number
of found fixings. In practice, however, the matrices are usually sparse and some equalities are
present, resulting in favorable operating times (see Section 6).

5 Connected Components

The connected components presolver aims at identifying small subproblems that are independent
of the remaining part of the problem and tries to solve those to optimality during the presolving
phase. After a component is solved to optimality, the variables and constraints forming the
component can be removed from the remaining problem. This reduces the size of the problem
and the linear program to be solved at each node.

Although a well modeled problem should in general not contain independent components,
they occur regularly in practice. And even if a problem cannot be split into its components right
from the beginning, it might decompose after some rounds of presolving, e.g., because constraints
connecting independent problems are detected redundant and can be removed. Figure 1 depicts
the constraint matrices of two real-world instances at some point in presolving, reordered in a
way such that independent components can easily be identified.

We detect independent subproblems by first transferring the structure of the problem to an
undirected graph G and then searching for connected components like in [21]. The graph G is
constructed as follows: for every variable xi, we create a node vi, and for each constraint, we add
edges to G connecting the variables with non-zero coefficients in the constraint. Thereby, we do
not add an edge for each pair of these variables, but – in order to reduce the graph size – add
a single path in the graph connecting all these variables. More formally, the graph is defined as
follows: G = (V,E) with

V = {vi}i=1,...,n

E =
⋃m

k=1 {(vi, vj) | 1 ≤ i < j ≤ n : ak,i 6= 0
∧ ak,j 6= 0
∧ ak,` = 0 ∀` ∈ {i+ 1, . . . , j − 1}} .

Given this graph, we identify connected components using depth first search. By definition,

12

(a) tanglegram2 (b) scm-1-1

Figure 1: Matrix structures of one instance from MIPLIB 2010 and one supply chain management
instance: columns and rows were permuted to visualize the block structure. Dots represent non-zero
entries while gray rectangles represent the blocks, which are ordered by their size from top left to bottom
right.

each constraint contains variables of only one component and can easily be assigned to the
corresponding subproblem.

The size of the graph is linear in the number of variables and non-zeros. It has n nodes and –
due to the representation of a constraint as a path – exactly z−m edges1, where z is the number
of non-zeros in the constraint matrix. The connected components of a graph can be computed
in linear time w.r.t. the number of nodes and edges of the graph [21], which is thus also linear
in the number of variables and non-zeros of the MIP.

If we identify more than one subproblem, we try to solve the small ones immediately. In
general, we would expect a better performance by solving all subproblems to optimality one
after another rather than solving the complete original problem to optimality. However, this has
the drawback that we do not compute valid primal and dual bounds until we start solving the
last subproblem. In practical applications, we often do not need to find an optimal solution, but
a time limit is applied or the solving process is stopped when a small optimality gap is reached.
In this case, it is preferable to only solve easy components to optimality during presolving and
solve remaining larger problems together, thereby computing valid dual and primal bounds for
the complete problem.

To estimate the computational complexity of the components, we count the number of discrete
variables. In case this number is larger then a specific amount we do not solve this particular
component separately, to avoid spending too much time in this step. In particular, subproblems
containing only continuous variables are always solved, despite their dimensions.

However, the number of discrete variables is not a reliable indicator for the complexity of a
problem and the time needed to solve it to optimality.2 Therefore, we also limit the number
of branch-and-bound nodes for every single subproblem. If the node limit is hit, we merge the
component back into the remaining problem and try to transfer as much information to the
original problem as possible; however, most insight is typically lost. Therefore, it is important

1Assuming that no empty constraints exist; otherwise, the number of edges is still not larger than z.
2See, e.g., the markshare instances [1] contained in MIPLIB 2003 that are hard to solve for state-of-the-art solvers
although having only 60 variables.

13

to choose the parameters in a way such that this scenario is avoided.

6 Computational Results

In this section, we present computational results that show the impact of the new presolving
methods on the presolving performance as well as on the overall solution process.

We implemented three new presolving techniques, which were already included in the SCIP
3.0 release. The stuffing algorithm is implemented within the dominated columns presolver,
because it makes use of the same data structures. Since the new presolvers can be expensive,
they are activated very conservatively compared to the remaining presolvers.

The experiments were performed on a cluster of Intel Xeon X5672 3.20 GHz computers, with
12 MB cache and 48 GB RAM, running Linux (in 64 bit mode). We used two different test sets:
a set of real-world supply chain management instances provided by our industry partner and
the MMM test set consisting of all instances from MIPLIB 3 [11], MIPLIB 2003 [4], and the
benchmark set of MIPLIB 2010 [23]. For the experiments, we used the development version
3.0.1.2 of SCIP [3] (git hash 7e5af5b) with SoPlex [31] version 1.7.0.4 (git hash 791a5cc) as the
underlying LP solver and a time limit of two hours per instance. In the following, we distinguish
two versions of presolving: the basic and the advanced version. The basic version performs all
the presolving steps implemented in SCIP (for more details, we refer to [2]), but disables the
techniques newly introduced in this paper, which are included in the advanced presolving. This
measures the impact of the new methods within an environment that already contains various
presolving methods. Restarts were disabled to prevent further calls of presolvers during the
solving process, thereby ensuring an unbiased comparison of the methods.

Figure 2 illustrates the presolve reductions for the supply chain management instances. For
each of the instances, the percentage of remaining variables (Figure 2a) and remaining constraints
(Figure 2b) after presolving is shown, both for the basic as well as the advanced presolving. While
for every instance, the new presolving methods do some additional reductions, the amount of
reductions varies heavily. On the one hand, only little additional reductions are found for the
1- and 3-series as well as parts of the 4-series, on the other hand, the size of some instances, in
particular from the 2- and 5-series, is reduced to less than 1% of the original size. The reason for
this is that these instances decompose into up to 1000 independent subproblems most of which
the connected components presolver does easily solve to optimality during presolve. Average
results including presolving and solving time are listed in Table 1, detailed instance-wise results
can be found in Table 2 in Appendix A. This also includes statistics about the impact of the new
presolvers. On average, the advanced presolving reduces the number of variables and constraints
by about 59% and 64%, respectively, while the basic presolving only removes about 33% and
43%, respectively. The components presolver fixes on average about 18% of the variables and
16% of the constraints. 3.5% and 0.9% of the variables are fixed by dominating columns and
stuffing, respectively. This increases the shifted geometric mean of the presolving time from
2.12 to 3.18 seconds, but pays off since the solving time can be reduced by almost 50%. For a
definition and discussion of the shifted geometric mean, we refer to [2].

The structure of the supply chain management instances allows the new presolving methods
to often find many reductions. This is different for the instances from the more general MMM
test set, where on average, the advanced presolving removes about 3% more variables and 1%
more constraints. It allows to solve one more instance within the time limit and reduces the
solving time from 335 to 317 seconds in the shifted geometric mean. This slight improvement
can also be registered in the performance diagram shown in Figure 3.

However, many of the instances in the MMM test set do not contain a structure that can be

14

scm-1 scm-2 scm-3 scm-4 scm-5 scm-8
0%

20%

40%

60%

80%

100%
basic advanced presolving

(a) variables after presolve

scm-1 scm-2 scm-3 scm-4 scm-5 scm-8
0%

20%

40%

60%

80%

100%
basic advanced presolving

(b) constraints after presolve

Figure 2: Size of the presolved supply chain management instances relative to the original number of
variables and constraints.

used by the new presolving techniques: they are able to find reductions for less than every fourth
instance. On the set of instances where no additional reductions are found, the time spent in
presolving as well as the total time are almost the same, see row MMM:eq in Table 1. Slight differ-
ences are due to inaccurate time measurements. When regarding only the set of instances where
the advanced presolving does additional reductions, the effects become clearer: while increasing
the presolving time by about 50% in the shifted geometric mean, 14.1% additional variables
and 4.5% additional constraints are removed from the problem, respectively. This is depicted in
Figure 4. The majority of the variables is removed by the dominating columns presolver, which

15

40

60

80

100

120

1800 3600 5400 7200

time

n
u

m
b

er
o
f

in
st

a
n

ce
s

(o
f

1
6
8)

basic presolving
advanced presolving

Figure 3: Performance diagram for the MMM test set. The graph indicates the number of instances
solved within a certain time.

Basic Presolving Advanced Presolving

Test set Vars% Conss% PTime STime Solv. Vars% Conss% PTime STime Solv.

scm (41) 67.24 57.29 2.22 1000.8 15 40.90 35.79 3.18 527.0 17
MMM:all (168) 83.33 82.69 0.17 334.9 124 80.04 81.65 0.19 317.1 125
MMM:eq (129) 83.53 82.62 0.13 346.4 96 83.53 82.62 0.13 346.6 96
MMM:add (39) 82.66 82.90 0.42 299.4 28 68.50 78.43 0.63 235.9 29

Table 1: Comparison of basic and advanced presolving on the supply chain management test set and the
MMM test set, complete as well as divided into instances with equal presolving reductions and instances
where the new presolvers found additional reductions. We list the average percentage of variables and
constraints remaining after presolving, the shifted geometric means of presolving and solving times, and
the number of instances solved to optimality.

removes about 11% of the variables on average, the connected components presolver and the
stuffing have a smaller impact with less than 1% removed variables and constraints, respectively.
Often, the reductions found by the new techniques also allow other presolving methods to find
additional reductions. As an example, see bley xl1, where the dominating columns presolver
finds 76 reductions, which results in more than 4200 additionally removed variables and 135 000
additionally removed constraints. On this set of instances, the advanced presolving reduces the
shifted geometric mean of the solving time by 21% in the end.

7 Conclusions

In this paper, we reported on three presolving techniques for mixed integer programming which
were implemented in the state-of-the-art non-commercial MIP solver SCIP. At first, they were
developed with a focus on a set of real-world supply chain management instances. Many of these
contain independent subproblems which the connected components presolver can identify, solve,
and remove from the problem during presolving. On the other hand, the dominating columns
presolver finds reductions for all the regarded instances, removing about a quarter of the variables
from some of the problems. In addition the stuffing singleton columns presolver finds reductions,

16

0%

20%

40%

60%

80%

100%
basic advanced presolving

(a) variables after presolve

0%

20%

40%

60%

80%

100%
basic advanced presolving

(b) constraints after presolve

Figure 4: Size of the presolved instances relative to the original number of variables and constraints
for all instances from the MMM test set where the new presolving techniques find reductions.

although not as many as the dominating columns presolver. Together, they help to significantly
improve SCIP’s overall performance on this class of instances.

Besides this set of supply chain management instances, we also regarded a set of general MIP
instances from various contexts. On this set, we cannot expect the presolving steps to work
on all or a majority of the instances, because many of them miss the structure needed. As a
consequence, it is very important that the new presolvers do not cause a large overhead when
the structure is missing, a goal we obtained by our implementation. On those instances where
the new presolvers find reductions, however, they notably speed up the solution process.

Our results show that there is still a need for new presolving techniques, also in an environment

17

which already encorporates various such techniques. In spite of the maturity of MIP solvers, these
results should motivate further research in this area, especially since presolving is one of the most
important components of a MIP solver.

References

[1] K. Aardal, R. E. Bixby, C. A. J. Hurkens, A. K. Lenstra, and J. W. Smeltink. Market split
and basis reduction: Towards a solution of the Cornuéjols-Dawande instances. INFORMS
Journal on Computing, 12(3):192–202, 2000.

[2] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Universität Berlin,
2007.

[3] T. Achterberg. SCIP: Solving constraint integer programs. Mathematical Programming
Computation, 1(1):1–41, 2009.

[4] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research Letters,
34(4):1–12, 2006.

[5] E. D. Andersen. Finding all linearly dependent rows in large–scale linear programming.
Optimization Methods and Software, 6:219–227, 1995.

[6] E. D. Andersen and K. D. Andersen. Presolving in linear programming. Mathematical
Programming, 71:221–245, 1995.

[7] A. Atamtürk, G. L. Nemhauser, and M. W. P. Savelsbergh. Conflict graphs in solving integer
programming problems. European Journal of Operational Research, 121(1):40–55, 2000.

[8] A. Atamtürk and M. W. P. Savelsbergh. Integer-programming software systems. Annals of
Operations Research, 140:67–124, 2005.

[9] D. A. Babayev and S. S. Mardanov. Reducing the number of variables in integer and linear
programming problems. Computational Optimization and Applications, 3(2):99–109, 1994.

[10] R. E. Bixby. Numerical aspects of linear and integer programming. Lecture at Universität
Erlangen-Nürnberg, October 2011.

[11] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P. Savelsbergh. An updated mixed integer
programming library: MIPLIB 3.0. Optima, (58):12–15, June 1998.

[12] R. E. Bixby and E. Rothberg. Progress in computational mixed integer programming—a
look back from the other side of the tipping point. Annals of Operations Research, 149:37–41,
2007.

[13] R. E. Bixby and D. K. Wagner. A note on detecting simple redundancies in linear systems.
Operations Research Letters, 6(1):15–17, 1987.

[14] R. Borndörfer. Aspects of Set Packing, Partitioning, and Covering. PhD thesis, Technische
Universität Berlin, 1998.

[15] A. L. Brearley, G. Mitra, and H. P. Williams. Analysis of mathematical programming
problems prior to applying the simplex algorithm. Mathematical Programming, 8:54–83,
1975.

18

[16] H. Crowder, E. L. Johnson, and M. Padberg. Solving Large-Scale Zero-One Linear Pro-
gramming Problems. Operations Research, 31(5):803–834, 1983.

[17] C. Daskalakis, R. M. Karp, E. Mossel, S. Riesenfeld, and E. Verbin. Sorting and selection
in posets. In SODA ’09: Proceedings of the Nineteenth Annual ACM -SIAM Symposium
on Discrete Algorithms, pages 392–401, Philadelphia, PA, USA, 2009. Society for Industrial
and Applied Mathematics.

[18] A. Fügenschuh and A. Martin. Computational integer programming and cutting planes. In
K. Aardal, G. L. Nemhauser, and R. Weismantel, editors, Discrete Optimization, volume 12
of Handbooks in Operations Research and Management Science, chapter 2, pages 69–122.
Elsevier, 2005.

[19] M. Guignard and K. Spielberg. Logical reduction methods in zero-one programming: Min-
imal preferred variables. Operations Research, 29(1):49–74, 1981.

[20] K. L. Hoffman and M. Padberg. Improving LP-Representations of Zero-One Linear Pro-
grams for Branch-and-Cut. ORSA Journal on Computing, 3(2):121–134, 1991.

[21] J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipulation.
Commun. ACM, 16(6):372–378, 1973.

[22] E. L. Johnson and U. H. Suhl. Experiments in integer programming. Discrete Applied
Mathematics, 2(1):39–55, 1980.

[23] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna,
G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin,
D. E. Steffy, and K. Wolter. MIPLIB 2010. Mathematical Programming Computation,
3(2):103–163, 2011.

[24] A. Mahajan. Presolving mixed–integer linear programs. In J. J. Cochran, L. A. Cox,
P. Keskinocak, J. P. Kharoufeh, and J. C. Smith, editors, Wiley Encyclopedia of Operations
Research and Management Science, pages 4141–4149. John Wiley & Sons, Inc., 2011.

[25] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial optimization. Wiley-
Interscience, New York, NY, USA, 1988.

[26] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing, 6:445–454, 1994.

[27] U. Suhl and R. Szymanski. Supernode processing of mixed-integer models. Computational
Optimization and Applications, 3(4):317–331, 1994.

[28] H. Williams. A reduction procedure for linear and integer programming models. In Re-
dundancy in Mathematical Programming, volume 206 of Lecture Notes in Economics and
Mathematical Systems, pages 87–107. Springer Berlin Heidelberg, 1983.

[29] H. P. Williams. The elimination of integer variables. The Journal of the Operational Research
Society, 43(5):387–393, 1992.

[30] L. A. Wolsey. Integer programming. Wiley-Interscience, New York, NY, USA, 1998.

[31] R. Wunderling. Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Tech-
nische Universität Berlin, 1996.

19

[32] N. Zhu and K. Broughan. A note on reducing the number of variables in integer programming
problems. Computational Optimization and Applications, 8(3):263–272, 1997.

20

A Detailed Computational Results

In this appendix, we present detailed results of our computational experiments presented in
Section 6. Table 2 lists results for the supply chain management instances, while Table 3 shows
the instances from the MMM test set.

For each instance, we list the original number of variables and constraints. For both the basic
presolving as well as the advanced presolving, which includes the presolving techniques presented
in this paper, we list the number of variables and constraints after presolving, the presolving time
(PTime), and the total solving time (STime). If the time limit was reached, we list the gap at
termination instead of the time, printed in italics. As in [23], the gap for a given primal bound
pb and dual bound db is computed by the following formula:

gap(db, pb) =


0.0 pb = db

∞ pb · db ≤ 0
|pb−db|

min{|pb|;|db|} else

If the gap is infinite, we print “inf%”, if it is larger than 100 000, we replace the last three digits
by a “k”. For the advanced presolving, we additionally present the increase in the root LP dual
bound (before cutting plane separation) in column “LP ∆%”. For the dominating columns and
stuffing presolver, we show the number of calls, the time spent in the presolver, and the number
of variables fixed by dominating columns (fixed) and stuffing (stuff). Finally, for the components
presolver, we list the number of calls, the time, the number of components solved, and the total
number of components detected as well as the number of fixed variables and deleted constraints.
Whenever one variant dominates the other in one criterion significantly, we print the dominating
value in bold for the instance.

At the bottom of the table, we present aggregated results. We list the average percentage of
variables and constraints remaining after presolving, the average root LP dual bound increase,
and the shifted geometric mean of the presolving and solving time (instances hitting the time
limit account for 7200 seconds). We use a shift of 10 seconds for the solving time and 0.01
seconds for the presolving time. For the presolvers, we show the average number of presolving
calls, the shifted geometric mean of the time spent in the presolver, again with a shift of 0.01,
the average number of components solved and detected, and the average percentages of variables
and constraints fixed or deleted by the presolvers. Underneath we print the number of solved
instances for the two different presolving settings and a line which lists the same averages, but
computed for only the subset of instances solved to optimality by both variants. Moreover,
for the MMM test set, we print two rows with averages restricted to the instances where the
advanced presolving found additional reductions (“applied”) and did not find any reductions
(“not appl.”), together with the number of instances in the corresponding sets. These lines are
only printed for the MMM test set because the advanced presolving finds additional reductions
for all supply chain management instances.

21

Original Basic Presolving Advanced Presolving Domcol + Stuffing Components
Instance Vars Conss Vars Conss PTime STime Vars Conss PTime LP ∆% STime Calls Time Fixed Stuff Calls Time solv/total Fixed DelConss

snp-001-01 3314 2195 2781 1701 0.2 0.1% 1976 1306 0.2 +0.00 0.1% 3 0.01 4 0 1 0.03 4/5 800 395
snp-001-02 16001 10308 13561 8090 1.0 0.2% 11053 6746 1.2 +0.00 0.1% 5 0.06 14 0 1 0.06 10/11 2490 1341
snp-001-03 18071 10973 8839 4780 1.9 0.1% 8396 4589 2.2 +6.58 0.1% 21 0.36 62 51 1 0.03 8/9 260 125
snp-001-04 36874 22518 22213 12078 1.8 21.4% 21302 11692 3.3 +6.23 10.1% 6 0.23 27 122 1 1.28 8/9 742 372
snp-001-05 56586 34605 36175 20076 4.0 29.9% 35506 19832 20.6 +0.00 33.0% 8 0.53 49 92 1 16.12 8/10 484 209
snp-001-06 80237 50535 56138 30707 12.8 5.4% 55138 30241 21.4 +0.00 4.1% 14 1.53 134 2 1 0.06 10/12 785 395
snp-001-07 104078 66598 74787 41939 28.8 190.8% 73473 41264 15.1 -0.00 216.2% 13 1.77 119 3 1 0.09 12/14 1112 604
snp-001 139949 90739 102813 58714 82.8 288.3% 100989 57726 21.5 -0.00 197.9% 16 2.97 141 3 1 0.12 13/15 1616 930
snp-002-01 12041 6395 2681 1228 0.1 0.2 19 8 0.4 +0.00 0.4 4 0.00 584 2 1 0.22 172/173 1141 552
snp-002-02 25632 13576 10648 4438 0.4 1.4 31 10 0.8 +0.04 0.8 5 0.03 3270 574 1 0.28 355/356 2606 1201
snp-002-03 40459 21378 18192 7264 0.5 9.1 37 12 1.3 +0.03 1.4 8 0.06 6229 1195 1 0.42 480/481 3914 1705
snp-002-04 70164 37012 34435 13444 1.3 51.2 49 16 1.5 +0.01 1.6 12 0.10 14467 385 1 0.44 484/485 5003 2016
snp-002-05 115043 60685 59315 23278 15.4 0.0% 23 17 2.2 +0.02 2.4 18 0.29 26180 613 1 0.43 490/490 7000 3089
snp-002-06 149904 79517 79772 31461 32.0 0.0% 33 33 3.1 +0.02 3.3 22 0.40 35193 1658 1 0.46 529/530 8282 3679
snp-002 382553 209616 228477 93891 117.5 216.5% 1904 1375 47.7 +0.16 0.0% 44 2.76 107214 843 1 33.06 1102/1110 23303 13087
snp-003-01 2205 1238 1490 582 0.0 0.1 1484 580 0.1 +0.00 0.1 2 0.00 2 0 1 0.00 0/1 0 0
snp-003-02 3748 2435 2171 965 0.1 0.1 2157 959 0.1 +0.00 0.1 4 0.01 6 0 1 0.00 0/1 0 0
snp-003-03 9091 5052 6757 2921 0.1 0.5 6727 2907 0.3 +0.00 0.8 8 0.05 14 0 1 0.00 0/1 0 0
snp-003-04 26564 15031 17458 8454 0.4 12.8% 17380 8416 0.9 +0.00 9.7% 20 0.31 38 0 1 0.01 0/1 0 0
snp-003-05 42468 23489 28160 13666 0.4 13.7% 28146 13660 0.8 +0.00 12.0% 4 0.16 8 0 1 0.01 0/1 0 0
snp-003-06 47713 26674 31165 15289 0.5 12.1% 31141 15283 0.6 +0.00 12.5% 4 0.10 18 0 1 0.02 0/1 0 0
snp-003 87652 47907 58750 28887 1.1 14.9% 58730 28877 1.3 +0.00 17.2% 5 0.22 10 0 1 0.04 0/1 0 0
snp-004-02 26597 13130 18257 8079 0.2 1.8 156 38 0.9 +0.00 1.0 4 0.04 736 0 1 0.60 732/733 17359 8037
snp-004-03 58693 26637 43050 16703 0.4 1981.6 9785 3744 1.6 +0.01 3.1 3 0.08 738 16 1 0.90 577/578 32499 12948
snp-004-04 126553 49032 101464 32080 0.9 1728k% 100052 31912 1.4 +0.01 1727k% 3 0.23 785 55 1 0.08 4/5 604 157
snp-004-05 140535 53508 113625 35182 1.2 1729k% 112210 35014 1.6 +0.01 1729k% 3 0.28 788 55 1 0.09 4/5 604 157
snp-004-06 210279 75833 174116 50518 2.1 1735k% 172651 50340 2.6 +0.02 1735k% 4 0.59 827 48 1 0.14 5/6 618 163
snp-004 321527 111563 270488 75058 3.9 1745k% 268919 74864 4.2 +0.02 1744k% 5 1.10 852 42 1 0.20 5/6 700 179
snp-005-01 13518 5019 7177 2308 0.2 0.9 8 8 0.6 +0.00 0.7 5 0.04 65 395 1 0.34 272/273 6397 2038
snp-005-02 34933 11631 23865 7529 0.4 3.1 10 9 1.1 +0.00 1.1 6 0.07 411 907 1 0.40 248/249 21987 6989
snp-005-03 83330 25458 64265 17894 0.9 16.1 10 9 3.2 +0.00 3.4 11 0.46 1037 1477 1 1.28 314/315 61082 17258
snp-005-04 310163 71357 270763 54960 6.7 397.5 146 158 15.3 +0.00 20.6 16 3.30 2698 1372 1 4.52 279/280 265543 53974
snp-005-05 560637 121943 507447 100741 55.3 1425.5 223 231 40.6 +0.00 102.5 21 9.45 2174 1203 1 12.20 370/371 502652 99441
snp-005-06 680745 146213 620715 122807 107.6 0.0% 311220 71302 82.5 +0.00 0.0% 26 13.75 2352 1094 1 5.91 322/323 304656 50296
snp-005 1182136 255629 1097503 215672 399.4 187.5% 542064 129989 330.7 +0.00 41.4% 39 36.11 3039 1108 1 10.92 321/322 549126 83910
snp-008-01 4214 1584 1563 353 0.1 0.3 43 8 0.2 +0.00 0.2 5 0.00 54 206 1 0.11 38/39 1191 281
snp-008-02 20840 7743 12025 2968 0.4 0.0% 470 69 7.8 +0.15 0.0% 18 0.11 379 2321 1 7.13 65/68 8389 2213
snp-008-03 57707 27374 40053 17005 7.4 0.0% 36210 15293 7.8 -0.00 0.0% 16 0.72 350 591 1 0.38 21/22 2239 1310
snp-008-04 67128 33017 47555 21578 11.0 0.1% 43496 19653 10.9 -0.00 0.1% 17 1.04 359 565 1 0.44 21/22 2521 1544
snp-008-05 194751 109140 146594 80078 111.8 1044% 139365 75696 66.9 -0.00 1044% 40 9.73 341 656 1 1.50 25/26 6526 4829
snp-008 379030 210508 276023 143139 258.1 1073% 264498 136102 287.2 +0.00 1073% 58 26.82 435 965 1 2.97 25/26 10764 7883

average (41) 100% 100% 67.24% 57.29% 2.22 1000.8 40.90% 35.79% 3.18 +0.32 527.0 13.3 0.32 3.53% 0.86% 1.0 0.31 178.9/180.1 18.43% 15.89%
solved (of 41) 15 17
all opt (15) 100% 100% 60.87% 50.25% 0.39 23.6 14.52% 10.64% 0.99 +0.01 3.8 7.6 0.08 4.23% 1.24% 1.0 0.28 288.1/289.1 36.28% 32.28%

Table 2. Detailed computational results on the set of supply-chain management instances

22

Original Basic Presolving Advanced Presolving Domcol + Stuffing Components
Instance Vars Conss Vars Conss PTime STime Vars Conss PTime LP ∆% STime Calls Time Fixed Stuff Calls Time solv/total Fixed DelConss

10teams 2025 230 1600 210 0.1 34.5 1600 210 0.1 +0.00 35.9 1 0.01 0 0 1 0.00 0/1 0 0
30n20b8 18380 576 4696 403 7.3 502.8 4665 403 8.4 +0.00 681.9 137 0.77 31 0 1 0.00 0/1 0 0
a1c1s1 3648 3312 2492 2232 0.2 17.1% 2492 2232 0.3 +0.00 17.1% 2 0.02 0 0 1 0.00 0/1 0 0
acc-tight5 1339 3052 996 2257 1.1 105.0 996 2257 1.2 +0.00 105.2 10 0.03 0 0 1 0.00 0/1 0 0
aflow30a 842 479 841 478 0.2 12.6 841 478 0.2 +0.00 13.0 2 0.00 0 0 1 0.00 0/1 0 0
aflow40b 2728 1442 2726 1440 0.6 2798.4 2726 1440 0.6 +0.00 2805.0 2 0.01 0 0 1 0.00 0/1 0 0
air03 10757 124 10617 80 0.5 5.6 7148 80 0.6 +0.00 1.4 3 0.19 3469 0 1 0.01 0/1 0 0
air04 8904 823 7627 607 1.2 78.8 7586 607 1.3 +0.00 70.2 5 0.07 41 0 1 0.01 0/1 0 0
air05 7195 426 6187 343 0.2 47.9 6170 342 0.3 +0.00 38.3 4 0.04 16 0 1 0.00 0/1 0 0
app1-2 26871 53467 26265 52555 4.8 1081.5 26265 52555 5.4 +0.00 1078.7 13 0.58 0 0 1 0.03 0/1 0 0
arki001 1388 1048 998 761 0.1 0.0% 961 761 0.2 +0.00 0.0% 3 0.01 37 0 1 0.01 0/1 0 0
ash608gpia-3col 3651 24748 3651 24748 0.3 80.1 3651 24748 0.3 +0.00 80.6 1 0.03 0 0 1 0.01 0/1 0 0
atlanta-ip 48738 21732 17240 19083 1.1 8.6% 17240 19083 1.4 +0.00 8.6% 4 0.12 0 0 1 0.02 0/1 0 0
beasleyC3 2500 1750 1704 1153 0.0 14.6% 1704 1153 0.0 +0.00 14.6% 1 0.00 0 0 1 0.00 0/1 0 0
bell3a 133 123 88 70 0.0 6.2 88 70 0.0 +0.00 6.4 1 0.00 0 0 1 0.00 0/1 0 0
bell5 104 91 79 52 0.0 0.8 56 34 0.0 +0.44 0.6 4 0.00 1 0 1 0.03 1/2 22 18
bab5 21600 4964 21432 4740 4.4 1.9% 21432 4740 4.3 +0.00 1.9% 1 0.03 0 0 1 0.02 0/1 0 0
biella1 7328 1203 7311 1202 0.7 879.1 7311 1202 0.7 +0.00 876.9 1 0.02 0 0 1 0.01 0/1 0 0
bienst2 505 576 449 520 0.0 408.2 449 520 0.0 +0.00 408.9 1 0.01 0 0 1 0.00 0/1 0 0
binkar10 1 2298 1026 1443 825 0.1 184.8 1443 825 0.1 +0.00 184.2 1 0.00 0 0 1 0.00 0/1 0 0
blend2 353 274 306 156 0.0 0.7 306 156 0.0 +0.00 0.8 2 0.00 0 0 1 0.00 0/1 0 0
bley xl1 5831 175620 4958 145307 18.7 165.9% 746 9616 311.9 +5.99 425.8 90 5.28 76 0 1 0.00 0/1 0 0
bnatt350 3150 4923 1738 1767 0.7 358.0 1738 1767 0.8 +0.00 360.5 2 0.01 0 0 1 0.00 0/1 0 0
cap6000 6000 2176 5904 2081 0.2 36.1 4660 1855 0.5 +0.00 23.7 2 0.03 1216 0 1 0.01 0/1 0 0
core2536-691 15293 2539 15269 1920 0.8 723.9 11238 1894 1.1 +0.00 233.7 6 0.15 4030 0 1 0.01 0/1 0 0
cov1075 120 637 120 637 0.1 7.2% 120 637 0.1 +0.00 7.3% 1 0.00 0 0 1 0.01 0/1 0 0
csched010 1758 351 1654 295 0.1 6365.7 1654 295 0.1 +0.00 6358.6 1 0.00 0 0 1 0.00 0/1 0 0
dano3mip 13873 3202 13837 3151 0.9 21.6% 13837 3151 0.8 +0.00 21.6% 1 0.03 0 0 1 0.01 0/1 0 0
danoint 521 664 513 656 0.0 5783.3 513 656 0.0 +0.00 5794.5 1 0.00 0 0 1 0.00 0/1 0 0
dcmulti 548 290 547 271 0.0 1.9 547 271 0.0 +0.00 1.9 2 0.00 0 0 1 0.00 0/1 0 0
dfn-gwin-UUM 938 158 936 156 0.0 154.8 936 156 0.0 +0.00 153.7 1 0.00 0 0 1 0.00 0/1 0 0
disctom 10000 399 9991 394 0.1 3.2 9991 394 0.1 +0.00 3.3 1 0.01 0 0 1 0.01 0/1 0 0
ds 67732 656 67076 625 2.5 572.6% 64030 625 5.8 +0.00 600.8% 2 3.24 3046 0 1 0.12 0/2 0 0
dsbmip 1886 1182 1638 987 0.2 2.0 1638 987 0.2 +0.00 1.9 3 0.01 0 0 1 0.01 0/1 0 0
egout 141 98 49 37 0.0 0.0 49 37 0.0 +0.00 0.0 1 0.00 0 0 1 0.00 0/1 0 0
eil33-2 4516 32 4484 32 0.4 60.3 4484 32 0.5 +0.00 60.3 1 0.13 0 0 1 0.00 0/1 0 0
eilB101 2818 100 2718 100 0.2 316.8 2715 100 0.2 +0.00 405.7 2 0.02 3 0 1 0.01 0/1 0 0
enigma 100 21 100 21 0.0 0.6 100 21 0.0 +0.00 0.6 1 0.00 0 0 1 0.00 0/1 0 0
enlight13 338 169 338 169 0.0 56.0% 338 169 0.0 +0.00 56.0% 1 0.00 0 0 1 0.00 0/1 0 0
enlight14 392 196 392 196 0.0 inf% 392 196 0.0 +0.00 inf% 1 0.00 0 0 1 0.01 0/1 0 0
ex9 10404 40962 12 10 30.4 30.6 0 0 30.9 +0.00 31.0 15 0.68 4 0 0 0.00 0/0 0 0
fast0507 63009 507 62997 472 0.8 2556.3 20700 440 1.8 +0.00 300.3 5 0.83 42285 0 1 0.02 0/1 0 0
fiber 1298 363 1046 289 0.0 1.4 1043 289 0.0 +0.00 1.8 2 0.00 3 0 1 0.00 0/1 0 0
fixnet6 878 478 877 477 0.0 1.6 877 477 0.0 +0.00 1.5 1 0.00 0 0 1 0.00 0/1 0 0
flugpl 18 18 14 13 0.0 0.0 14 13 0.0 +0.00 0.1 1 0.00 0 0 1 0.00 0/1 0 0

continue next page

23

Original Basic Presolving Advanced Presolving Domcol + Stuffing Components
Instance Vars Conss Vars Conss PTime STime Vars Conss PTime LP ∆% STime Calls Time Fixed Stuff Calls Time solv/total Fixed DelConss

gen 870 780 638 464 0.0 0.1 509 384 0.0 +0.00 0.1 2 0.00 75 49 1 0.01 0/1 0 0
gesa2-o 1224 1248 1176 1200 0.1 1.2 1176 1200 0.1 +0.00 1.3 2 0.00 0 0 1 0.00 0/1 0 0
gesa2 1224 1392 1176 1344 0.1 1.2 1176 1344 0.1 +0.00 1.2 2 0.00 0 0 1 0.00 0/1 0 0
gesa3 1152 1368 1080 1296 0.1 1.6 1080 1296 0.1 +0.00 1.7 2 0.00 0 0 1 0.00 0/1 0 0
gesa3 o 1152 1224 1080 1152 0.0 1.5 1080 1152 0.0 +0.00 1.5 2 0.01 0 0 1 0.00 0/1 0 0
glass4 322 396 317 392 0.0 50.0% 317 392 0.0 +0.00 50.0% 1 0.01 0 0 1 0.00 0/1 0 0
gmu-35-40 1205 424 652 357 0.2 0.0% 652 357 0.2 +0.00 0.0% 3 0.02 0 0 1 0.00 0/1 0 0
gt2 188 29 173 28 0.0 0.1 173 28 0.0 +0.00 0.0 1 0.00 0 0 1 0.00 0/1 0 0
harp2 2993 112 999 92 0.0 1914.2 999 92 0.0 +0.00 1904.3 1 0.00 0 0 1 0.00 0/1 0 0
iis-100-0-cov 100 3831 100 3831 0.1 1914.3 100 3831 0.1 +0.00 1913.5 1 0.01 0 0 1 0.00 0/1 0 0
iis-bupa-cov 345 4803 341 4803 0.1 6533.7 341 4803 0.1 +0.00 6594.4 1 0.00 0 0 1 0.00 0/1 0 0
iis-pima-cov 768 7201 736 7201 0.1 814.1 730 7201 0.2 +0.00 862.0 2 0.02 6 0 1 0.02 0/1 0 0
khb05250 1350 101 1299 100 0.0 0.5 1299 100 0.0 +0.00 0.5 1 0.00 0 0 1 0.00 0/1 0 0
lectsched-4-obj 7901 14163 2605 4788 1.5 308.7 2605 4788 1.6 +0.00 310.0 12 0.04 0 0 1 0.00 0/1 0 0
liu 1156 2178 1154 2178 0.0 127.5% 1154 2178 0.0 +0.00 127.5% 1 0.00 0 0 1 0.00 0/1 0 0
l152lav 1989 97 1989 97 0.0 2.5 1989 97 0.0 +0.00 2.7 1 0.00 0 0 1 0.00 0/1 0 0
lseu 89 28 86 27 0.0 0.5 85 27 0.0 +0.00 0.5 2 0.00 1 0 1 0.00 0/1 0 0
m100n500k4r1 500 100 500 100 0.0 4.2% 500 100 0.0 +0.00 4.2% 1 0.01 0 0 1 0.00 0/1 0 0
macrophage 2260 3164 2260 3164 0.1 34.3% 2209 3098 0.1 +900.00 30.2% 2 0.02 0 0 1 0.06 3/4 51 66
manna81 3321 6480 3321 6480 0.1 0.9 3321 6480 0.1 +0.00 0.8 1 0.00 0 0 1 0.00 0/1 0 0
map18 164547 328818 15412 31207 2.0 405.4 15412 31207 2.1 +0.00 407.2 1 0.02 0 0 1 0.02 0/1 0 0
map20 164547 328818 15412 31207 2.0 446.9 15412 31207 2.0 +0.00 448.2 1 0.02 0 0 1 0.02 0/1 0 0
markshare1 62 6 50 6 0.0 inf% 50 6 0.0 +0.00 inf% 1 0.00 0 0 1 0.00 0/1 0 0
markshare2 74 7 60 7 0.0 inf% 60 7 0.0 +0.00 inf% 1 0.00 0 0 1 0.00 0/1 0 0
mas74 151 13 150 13 0.0 645.2 150 13 0.0 +0.00 643.0 1 0.00 0 0 1 0.00 0/1 0 0
mas76 151 12 150 12 0.0 50.9 150 12 0.0 +0.00 50.3 1 0.00 0 0 1 0.00 0/1 0 0
mcsched 1747 2107 1495 1853 0.0 163.5 1495 1853 0.1 +0.00 165.7 1 0.00 0 0 1 0.00 0/1 0 0
mik-250-1-100-1 251 151 251 100 0.0 1938.3 251 100 0.0 +0.00 1941.8 1 0.00 0 0 1 0.00 0/1 0 0
mine-166-5 830 8429 709 6698 1.6 43.5 709 6698 1.6 +0.00 43.2 4 0.03 0 0 1 0.00 0/1 0 0
mine-90-10 900 6270 867 5814 0.8 560.8 867 5814 0.7 +0.00 567.9 2 0.01 0 0 1 0.01 0/1 0 0
misc03 160 96 138 95 0.0 1.2 138 95 0.0 +0.00 1.4 2 0.00 0 0 1 0.00 0/1 0 0
misc06 1808 820 1260 517 0.0 0.6 1260 517 0.0 +0.00 0.6 1 0.00 0 0 1 0.00 0/1 0 0
misc07 260 212 232 223 0.1 11.6 232 223 0.1 +0.00 11.8 2 0.00 0 0 1 0.00 0/1 0 0
mitre 10724 2054 4941 1469 4.1 4.4 4938 1470 5.2 +0.00 5.5 157 0.85 67 0 1 0.00 0/1 0 0
mkc 5325 3411 3273 1287 0.2 1.2% 3273 1287 0.3 +0.00 1.2% 1 0.06 0 0 1 0.00 0/1 0 0
mod008 319 6 319 6 0.0 1.0 319 6 0.0 +0.00 0.9 1 0.00 0 0 1 0.00 0/1 0 0
mod010 2655 146 2572 144 0.1 0.9 2572 144 0.1 +0.00 0.7 1 0.00 0 0 1 0.00 0/1 0 0
mod011 10958 4480 6495 1954 0.3 151.9 6490 1951 0.4 +0.00 160.2 2 0.06 2 0 1 0.00 0/1 0 0
modglob 422 291 384 286 0.0 1.0 384 286 0.0 +0.00 1.1 1 0.00 0 0 1 0.00 0/1 0 0
momentum1 5174 42680 2746 13212 4.9 18.6% 2746 13212 5.0 +0.00 18.6% 12 0.12 0 0 1 0.00 0/1 0 0
momentum2 3732 24237 2774 14861 12.9 0.7% 2774 14861 13.4 +0.00 0.7% 13 0.25 0 0 1 0.01 0/1 0 0
momentum3 13532 56822 13151 49375 203.1 254.4% 13151 49375 205.3 +0.00 254.4% 6 0.42 0 0 1 0.05 0/1 0 0
msc98-ip 21143 15850 12733 14987 0.7 12.4% 12733 14987 0.9 +0.00 12.4% 3 0.07 0 0 1 0.01 0/1 0 0
mspp16 29280 561657 4065 524814 484.4 4265.7 4065 524814 484.9 +0.00 4244.1 1 3.65 0 0 1 2.26 0/1 0 0
mzzv11 10240 9499 6719 6642 20.4 259.9 6537 6333 26.2 +1.10 307.8 79 1.07 194 0 1 0.01 0/1 0 0

continue next page

24

Original Basic Presolving Advanced Presolving Domcol + Stuffing Components
Instance Vars Conss Vars Conss PTime STime Vars Conss PTime LP ∆% STime Calls Time Fixed Stuff Calls Time solv/total Fixed DelConss

mzzv42z 11717 10460 7728 7445 22.8 197.5 7446 7300 23.9 +0.00 225.7 84 1.22 162 0 1 0.03 1/2 88 71
n3div36 22120 4484 22120 4453 1.3 9.8% 20602 4453 2.0 +0.00 9.3% 2 0.08 1518 0 1 0.04 0/1 0 0
n3seq24 119856 6044 119856 5950 11.7 10.4% 119856 5950 12.8 +0.00 10.4% 1 0.72 0 0 1 0.46 0/1 0 0
n4-3 3596 1236 3360 996 0.1 775.8 3100 976 0.1 +20.90 754.5 4 0.02 230 0 1 0.01 5/6 13 5
neos-1109824 1520 28979 1520 9979 0.7 189.4 1520 9979 0.9 +0.00 189.4 1 0.01 0 0 1 0.00 0/1 0 0
neos-1337307 2840 5687 2840 2023 1.1 0.0% 2840 2023 1.2 +0.00 0.0% 2 0.14 0 0 1 0.01 0/1 0 0
neos-1396125 1161 1494 1158 1491 0.1 1486.1 1158 1491 0.1 +0.00 1479.1 1 0.00 0 0 1 0.00 0/1 0 0
neos13 1827 20852 1827 17320 1.4 32.3% 1827 17320 1.4 +0.00 32.3% 1 0.12 0 0 1 0.01 0/1 0 0
neos-1601936 4446 3131 3920 3105 0.3 33.3% 3920 3105 0.3 +0.00 33.3% 1 0.02 0 0 1 0.01 0/1 0 0
neos18 3312 11402 758 3290 0.1 30.7 758 3290 0.2 +0.00 31.0 1 0.01 0 0 1 0.00 0/1 0 0
neos-476283 11915 10015 11843 9604 18.5 256.5 11843 9604 18.9 +0.00 255.0 1 0.50 0 0 1 0.42 0/1 0 0
neos-686190 3660 3664 3660 3658 0.1 80.8 3660 3658 0.1 +0.00 79.6 1 0.00 0 0 1 0.00 0/1 0 0
neos-849702 1737 1041 1692 987 0.1 448.8 1692 987 0.1 +0.00 445.4 1 0.01 0 0 1 0.00 0/1 0 0
neos-916792 1474 1909 1361 1408 0.6 417.3 1361 1408 0.7 +0.00 416.4 1 0.02 0 0 1 0.02 0/1 0 0
neos-934278 23123 11495 8121 8123 0.8 4.0% 8121 8123 0.7 +0.00 4.0% 1 0.01 0 0 1 0.00 0/1 0 0
net12 14115 14021 12523 12767 3.6 4496.2 12523 12767 4.1 +0.00 4481.6 20 0.54 0 0 1 0.01 0/1 0 0
netdiversion 129180 119589 128968 99483 16.2 6162.8 128968 99483 16.1 +0.00 6124.6 1 0.12 0 0 1 0.12 0/1 0 0
newdano 505 576 449 520 0.0 6364.0 449 520 0.0 +0.00 6306.8 1 0.00 0 0 1 0.00 0/1 0 0
noswot 128 182 120 171 0.0 171.3 120 171 0.0 +0.00 171.2 2 0.00 0 0 1 0.00 0/1 0 0
ns1208400 2883 4289 2596 1981 0.3 1611.0 2596 1981 0.3 +0.00 1624.2 1 0.01 0 0 1 0.01 0/1 0 0
ns1688347 2685 4191 1460 3090 5.5 719.1 1460 3090 5.5 +0.00 720.8 25 0.20 0 0 1 0.00 0/1 0 0
ns1758913 17956 624166 17824 615190 24.4 527.6% 17824 615190 24.7 +0.00 527.6% 1 0.26 0 0 1 0.13 0/1 0 0
ns1766074 100 182 100 110 0.0 793.5 100 110 0.0 +0.00 785.3 1 0.00 0 0 1 0.00 0/1 0 0
ns1830653 1629 2932 673 1406 0.6 871.6 673 1406 0.6 +0.00 868.6 2 0.00 0 0 1 0.01 0/1 0 0
nsrand-ipx 6621 735 6600 535 0.7 3.3% 3798 535 1.1 +0.00 3.2% 2 0.06 2802 0 1 0.01 0/1 0 0
nw04 87482 36 87454 35 3.8 38.2 46143 35 8.3 +0.00 31.0 2 5.16 41311 0 1 0.06 0/1 0 0
opm2-z7-s2 2023 31798 1896 26691 3.2 1291.1 1896 26691 3.1 +0.00 1285.5 1 0.01 0 0 1 0.01 0/1 0 0
opt1217 769 64 759 64 0.0 0.9 759 64 0.0 +0.00 1.0 1 0.00 0 0 1 0.01 0/1 0 0
p0033 33 16 26 12 0.0 0.0 26 12 0.0 +0.00 0.0 1 0.00 0 0 1 0.00 0/1 0 0
p0201 201 133 195 107 0.0 1.3 183 107 0.0 +0.42 1.6 2 0.00 12 0 1 0.00 0/1 0 0
p0282 282 241 200 305 0.0 0.7 200 305 0.0 +0.00 0.7 1 0.00 0 0 1 0.01 0/1 0 0
p0548 548 176 388 239 0.0 0.3 362 209 0.0 +0.00 0.3 2 0.00 3 0 1 0.00 0/1 0 0
p2756 2756 755 2153 1466 0.2 1.5 2067 1416 0.3 +1.41 1.5 3 0.03 33 0 1 0.00 0/1 0 0
pg5 34 2600 225 2600 225 0.1 1374.0 2600 225 0.1 +0.00 1377.8 1 0.00 0 0 1 0.00 0/1 0 0
pigeon-10 490 931 390 525 0.0 11.1% 390 525 0.0 +0.00 11.1% 1 0.00 0 0 1 0.00 0/1 0 0
pk1 86 45 86 45 0.0 56.5 86 45 0.0 +0.00 56.3 1 0.00 0 0 1 0.00 0/1 0 0
pp08a 240 136 234 133 0.0 1.9 234 133 0.0 +0.00 1.5 1 0.00 0 0 1 0.00 0/1 0 0
pp08aCUTS 240 246 237 243 0.0 1.3 237 243 0.0 +0.00 1.5 1 0.00 0 0 1 0.00 0/1 0 0
protfold 1835 2112 1835 2112 0.1 inf% 1835 2112 0.1 +0.00 inf% 1 0.01 0 0 1 0.00 0/1 0 0
pw-myciel4 1059 8164 1013 4180 0.7 5671.5 1013 4180 0.6 +0.00 5665.0 2 0.01 0 0 1 0.00 0/1 0 0
qiu 840 1192 840 1192 0.0 70.1 840 1192 0.0 +0.00 69.9 1 0.00 0 0 1 0.00 0/1 0 0
qnet1 1541 503 1417 364 0.1 5.5 1417 364 0.1 +0.00 5.7 1 0.00 0 0 1 0.00 0/1 0 0
qnet1 o 1541 456 1330 245 0.0 3.1 1330 245 0.0 +0.00 3.1 1 0.00 0 0 1 0.00 0/1 0 0
rail507 63019 509 62997 473 1.4 1797.3 20698 441 2.7 +0.00 363.4 5 1.36 42288 0 1 0.02 0/1 0 0
ran16x16 512 288 512 288 0.0 300.1 512 288 0.0 +0.00 299.8 1 0.00 0 0 1 0.00 0/1 0 0

continue next page

25

Original Basic Presolving Advanced Presolving Domcol + Stuffing Components
Instance Vars Conss Vars Conss PTime STime Vars Conss PTime LP ∆% STime Calls Time Fixed Stuff Calls Time solv/total Fixed DelConss

reblock67 670 2523 627 2271 0.8 372.1 627 2271 0.8 +0.00 367.3 3 0.00 0 0 1 0.00 0/1 0 0
rd-rplusc-21 622 125899 522 25272 36.1 171k% 522 25272 36.5 +0.00 171k% 4 0.12 0 0 1 0.02 0/1 0 0
rentacar 9557 6803 3105 1325 0.3 1.9 3081 1303 0.3 +0.00 2.1 5 0.03 3 0 1 0.01 2/3 23 22
rgn 180 24 175 24 0.0 0.2 175 24 0.0 +0.00 0.2 1 0.00 0 0 1 0.00 0/1 0 0
rmatr100-p10 7359 7260 7359 7260 0.9 142.6 7359 7260 0.8 +0.00 141.8 2 0.02 0 0 1 0.00 0/1 0 0
rmatr100-p5 8784 8685 8784 8685 1.0 292.3 8784 8685 0.9 +0.00 292.0 2 0.00 0 0 1 0.00 0/1 0 0
rmine6 1096 7078 1084 7066 0.9 2563.6 1084 7066 0.9 +0.00 2573.9 1 0.00 0 0 1 0.01 0/1 0 0
rocII-4-11 9234 21738 1266 3449 5.9 438.1 1266 3449 5.8 +0.00 434.6 20 0.10 0 0 1 0.00 0/1 0 0
rococoC10-001000 3117 1293 2442 576 0.1 1.6% 2442 576 0.1 +0.00 1.7% 1 0.00 0 0 1 0.01 0/1 0 0
roll3000 1166 2295 832 1219 0.5 1.2% 832 1219 0.5 +0.00 1.2% 2 0.01 0 0 1 0.00 0/1 0 0
rout 556 291 555 290 0.1 35.7 555 290 0.1 +0.00 35.7 1 0.00 0 0 1 0.00 0/1 0 0
satellites1-25 9013 5996 7091 4158 9.2 4038.7 7102 4160 9.5 +0.00 1515.6 18 0.23 220 0 1 0.00 0/1 0 0
set1ch 712 492 646 426 0.0 0.8 646 426 0.0 +0.00 1.1 1 0.00 0 0 1 0.00 0/1 0 0
seymour 1372 4944 1140 4656 0.1 2.2% 924 4446 0.4 +0.00 1.9% 5 0.01 190 0 1 0.01 0/1 0 0
sp97ar 14101 1761 14099 1637 0.9 7.3% 14067 1636 1.4 -0.03 6.9% 3 0.15 31 0 1 0.05 0/1 0 0
sp98ic 10894 825 10894 797 0.8 2.5% 10877 797 1.2 +0.00 2.0% 2 0.12 17 0 1 0.05 0/1 0 0
sp98ir 1680 1531 1557 1375 1.0 122.7 1557 1375 0.9 +0.00 123.6 1 0.01 0 0 1 0.01 0/1 0 0
stein27 27 118 27 118 0.0 1.1 27 118 0.0 +0.00 1.2 1 0.00 0 0 1 0.01 0/1 0 0
stein45 45 331 45 331 0.0 14.4 45 331 0.0 +0.00 14.1 1 0.00 0 0 1 0.00 0/1 0 0
stp3d 204880 159488 136241 96985 32.6 inf% 136241 96985 32.9 +0.00 inf% 4 0.67 0 0 1 0.14 0/1 0 0
swath 6805 884 6320 482 0.1 15.6% 6260 482 0.2 +0.00 22.1% 2 0.02 60 0 1 0.01 0/1 0 0
t1717 73885 551 67716 551 0.9 41.2% 16102 551 1.2 +0.00 38.5% 2 0.27 51614 0 1 0.01 0/1 0 0
tanglegram1 34759 68342 34759 68342 0.7 907.7 34099 67614 0.8 +0.00 683.0 2 0.08 0 0 1 0.07 137/138 660 728
tanglegram2 4714 8980 4714 8980 0.1 8.3 4417 8538 0.2 +0.00 6.9 2 0.02 0 0 1 0.04 36/37 297 442
timtab1 397 171 201 166 0.0 449.4 201 166 0.0 +0.00 446.4 2 0.00 0 0 1 0.00 0/1 0 0
timtab2 675 294 341 289 0.0 46.8% 341 289 0.0 +0.00 46.8% 2 0.00 0 0 1 0.00 0/1 0 0
tr12-30 1080 750 1040 722 0.1 1100.8 1040 722 0.1 +0.00 1103.2 1 0.00 0 0 1 0.00 0/1 0 0
triptim1 30055 15706 25446 15574 10.2 2945.4 25446 15574 10.1 +0.00 2944.6 3 0.15 0 0 1 0.05 0/1 0 0
unitcal 7 25755 48939 20297 38656 15.3 2412.0 20297 38656 16.1 +0.00 2426.8 27 0.70 0 0 1 0.02 0/1 0 0
vpm1 378 234 182 129 0.0 0.0 182 129 0.0 +0.00 0.0 1 0.00 0 0 1 0.00 0/1 0 0
vpm2 378 234 181 128 0.0 1.1 181 128 0.0 +0.00 1.0 3 0.00 0 0 1 0.00 0/1 0 0
vpphard 51471 47280 27488 23418 2.1 inf% 27488 23418 2.1 +0.00 inf% 1 0.03 0 0 1 0.04 0/1 0 0
zib54-UUE 5150 1809 5069 1761 0.1 1997.4 5069 1761 0.1 +0.00 2002.7 1 0.01 0 0 1 0.00 0/1 0 0

average (168) 100% 100% 83.33% 82.69% 0.17 334.9 80.04% 81.65% 0.19 +5.54 317.1 5.9 0.02 2.60% 0.03% 1.0 0.01 1.1/2.1 0.20% 0.17%
solved (of 168) 124 125
all opt (124) 100% 100% 83.38% 83.49% 0.12 107.3 80.68% 82.76% 0.14 +0.20 101.7 6.5 0.02 2.37% 0.05% 1.0 0.00 1.5/2.5 0.25% 0.22%
applied (39) 100% 100% 82.66% 82.90% 0.42 299.4 68.50% 78.43% 0.63 +23.85 235.9 17.3 0.10 11.18% 0.14% 1.0 0.01 4.7/5.7 0.85% 0.75%
not applied (129) 100% 100% 83.53% 82.62% 0.13 346.4 83.53% 82.62% 0.13 +0.00 346.6 2.5 0.01 0.00% 0.00% 1.0 0.00 0.0/1.0 0.00% 0.00%

Table 3. Detailed computational results on the MMM set

26

	Introduction
	Notation and Basics
	Stuffing Singleton Columns
	Dominating Columns
	Dominance Relation
	Predictive Bound Analysis
	Utilize Conflict Information for Binary Variables
	Finding a Dominance Relation

	Connected Components
	Computational Results
	Conclusions
	Detailed Computational Results

