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Abstract 

The planning of a communication network is 

inevitably depending on the quality of both 

the planning tool and the demand forecast 

used. In this article, we show exemplarily how 

the emerging area of Robust Optimization can 

advance the network planning by a more 

accurate mathematical description of the 

demand uncertainty. After a general 

introduction of the concept and its application 

to a basic network design problem, we 

present two applications: multi-layer and 

mixed-line-rate network design. We conclude 

with a discussion of extensions of the 

robustness concept to increase the accuracy 

of handling uncertainties. 

Introduction 

Mathematical tools play a vital role in the 

design and operation of communication 

networks as, for example, the Handbook of 

Optimization in Telecommunications [13] 

shows. The concept of (directed) graphs and 

elementary algorithms for computing a 

shortest path or a spanning tree are core 

components of communication networking 

[11]. Many new innovations in technology and 

network management are first rendered 

precisely by a mathematical model of the 

optimization problem (e.g., an integer linear 

program), that needs to be solved. The 

network planner is then assisted by 

mathematical software tools in solving such 

models. In addition, the challenges to plan 

more and more complicated communication 

networks have been one of the main driving 

forces of new solution methods in the 

mathematical optimization community. 

This interaction between theory and practice 

received a new impulse by the technical 

progress to collect large amount of historical 

data. Until recently, the most successful 

applications (in telecommunications and 

beyond) of mathematical optimization 

involved a deterministic estimation of all 

relevant parameters like traffic demand values 

between core router locations. In a time that 

traffic can be logged in very small time 

intervals, network planning based on a single 

traffic matrix seems outdated. The emerging 

branch of Robust Optimization addresses this 

issue, by taking into account the uncertainty 

of the input parameters beyond estimations. 

In this paper, we provide an introduction to 

Robust Optimization and its application to 

different communication network settings 

recently studied by the authors in the context 

of a 3-year research program supported by 

the German government and in collaboration 

with Nokia Siemens Networks and DFN-Verein 
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(the operator of the German national research 

and education network). 

Robust Optimization 

For simplicity, let us consider a single link in a 

communication network and two traffic flows 

that can use this link. Historical data for both 

flows can be represented by a (x,y)-point in 

two-dimensional space. Figure 1(a) shows the 

traffic values during 15 points in history. The 

average traffic values are 477 Mbps (x-axis) 

and 637 Mbps (y-axis) as displayed by the red 

point. Taking those values and a link capacity 

of 1024 Mbps, one observes that on average 

92% of the traffic can be routed across the 

link. Or alternatively, 100% of the first traffic 

flow and almost 86% of the second traffic 

flow. These solutions correspond to solutions 

of the following linear program: 

1x,x0

1024x637x477.t.s

xxmax

21

21

21

≤≤

≤+

+

 

where 21 x,x  define the fraction of traffic 

routed. Feasible solutions are 

( ) ( )92.0,92.0x,x 21 =  and 

( ) ( )86.0,00.1x,x 21 =  (the latter solution is 

optimal). However, if we consider the 

historical data, only 8 out of 15 traffic flows do 

not exceed the capacity in the first solution 

and, whereas in the second solution 10 out 15 

flows can be routed. Thus, the probability that 

the network link is overloaded is 46% in the 

first case and still 33% in the second case. 

If we would like to have a solution such that in 

less than 15% of the historical cases the link is 

overloaded, we have to solve a robust linear 

program. Clearly the two coefficients are 

uncertain and taking the average traffic 

volume does not suffice. Robust Optimization 

offers an adequate way to incorporate 

uncertainties into our model: The uncertain 

coefficients are considered as random 

variables drawn from an uncertainty set. This 

uncertainty set describes all possible 

interactions between the uncertain 

coefficients and might look like the polyhedra 

in Figure 1(a)—(c). In fact, the polyhedron in 

Figure 1(a) is the convex hull of 13 out of 15 

historical data points.  

The task of Robust Optimization is to find a 

solution that is feasible for all considered 

realizations of the uncertain coefficients (from 

the uncertainty set) and maximizes the 

objective among these solutions. In case of 

our example, the solution 

( ) ( )73.0,00.1x,x 21 =  satisfies the 

 

(a) convex hull of 13 out of 15 historical 

data points 

 

(b) Γ-robustness with averages as 

nominal values 

 

(c) Γ-robustness with 67% quintiles as 

nominal values 

Figure 1: Possible uncertainty sets for two traffic flows covering. 
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constraint regardless the values drawn from 

the uncertainty set and maximizes the sum 

among all robust feasible solutions. 

Accordingly, its usage would lead to a 

probability of overloading in about 13% of the 

historical cases. 

A major challenge in Robust Optimization is 

the construction of a reasonable uncertainty 

set, in our example, the set depicted in Figure 

1(a). Bertsimas and Sim [2] developed a 

generic uncertainty set that can be adjusted 

by a parameter 0≥Γ . For each uncertain 

coefficient ia  we define a nominal value ia  

and a maximum deviation 0âi ≥ . The Γ -

robust uncertainty set is now defined as 

values [ ]iii âa,0a +∈  such that the sum of 

the relative excesses 
ii

ii

âa

aa

+

−
 of the nominal 

values is at most Γ . In Figure 1(b) and 1(c), 

the average traffic volumes are taken as 

nominal values and the difference to the 

maximum values as deviations. The 

uncertainty set in Figure 1(b) corresponds to 

1=Γ , in Figure 1(c) to 5.1=Γ  (if more 

coefficients can deviate, typically integer 

values are taken for Γ ). As the graphics show, 

13 out of 15 historical data points are included 

in the uncertainty set induced by 1=Γ , 

whereas all of them are part of the set 

induced by 5.1=Γ . Here, the advantage of 

Robust Optimization comes into play: robust 

feasible solutions can be found without 

setting the input parameters to their most 

conservative estimation, i.e., the maximum 

values. By varying the Γ -value, the protection 

level against traffic fluctuations can be 

adapted to the needs of the planner. By 

comparing the network cost and the 

robustness level, network planners can exploit 

this trade-off for decision support. 

Two major advantages of the Γ -robustness 

concept of Bertsimas and Sim [2] are:  

1) as long as the uncertain coefficients are 

independently and symmetrically 

distributed, the probability that the 

constraint is violated by an optimal 

solution can be bounded by a function 

depending on the number of uncertain 

coefficients and the parameter Γ , i.e., 

given a value 0>ε , a value Γ  can be 

chosen such that the probability of 

constraint satisfaction of the actual values 

is at least ε−1  (see Bertsimas and Sim [2] 

for details); 

2) the mathematical description of robust 

feasible solutions can be reformulated so 

that the size of the linear program is 

increased moderately, yielding a compact 

model, i.e., a model that is polynomial in 

the network size. Accordingly, the 

complexity increase of solving the linear 

program is bounded. This property will be 

explained exemplarily in the next section 

for the network design problem under 

demand uncertainty. 

In the following sections, we give several ex-

amples from network design where a robust 

approach was successfully applied.  

Network Design under Demand 

Uncertainty 

The core of traffic engineering in a (backbone) 

communication network is the following 

technology-independent question: how to 

route the traffic flows from sources to 

destinations across the links, such that the 

capacity of those links is not exceeded? In the 

network design problem, this question is 

accompanied by the decision on the capacity 

granularities at the links with the aim to find a 

solution with minimum capacity installation 

cost. 

Until recently, network planning was based on 

a single traffic matrix consisting of the 

forecasted traffic demands between every 
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pair of network nodes. To avoid congestion in 

the designed network due to 

traffic fluctuations (that frequently hap

modern communication networks

in Figure 2, traffic estimates for every node

pair have to be very conservative. However, 

traffic peaks do not occur simultaneously for 

all traffic flows using the same link, and thus 

an unnecessarily high amount of 

installed by such an approach. 

The Γ -robustness concept provides a 

valuable alternative in this case. Instead of a 

single traffic forecast for every pair 

source and target nodes, a nominal demand 

std  and a deviation std̂  are defined for every 

node-pair. Let C  be the installable capacity 

batch size, 
st
ijf  be the decision variable 

determining the fraction of the 

between s  and t  via the link between nodes 

i  and j , and ijx the integer decision variable 

representing the number of

granularities to be installed. 

 

(a) 

Figure 2: Traffic fluctuations for three node

of 5 minutes during one week (publicly available via [10])

capacity for every single node pair, if capacity is reserved by the maximum traffic volume. In 

spare capacity is computed by the maximum sum of the traffic volumes. The purple line represents the 

sum of the 90% quintiles of the traffic volumes.
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pair of network nodes. To avoid congestion in 

 the dynamic 

fluctuations (that frequently happen in 

modern communication networks) as shown 

for every node-

pair have to be very conservative. However, 

peaks do not occur simultaneously for 

using the same link, and thus 

unt of resources are 

robustness concept provides a 

valuable alternative in this case. Instead of a 

single traffic forecast for every pair )t,s(  of 

, a nominal demand 

are defined for every 

be the installable capacity 

be the decision variable 

the traffic flow 

between nodes 

the integer decision variable 

representing the number of capacity 

Now, the capacity constraint for the 

between nodes i  and j  is given by

)t,s(

st
ij

st ),f(DEVfd Γ+∑

where ),f(DEV Γ  is the total capacity

has to be reserved to cope with 

traffic values above the nominal values if the 

Γ -robust uncertainty set is used. 

can be computed by the following linear 

program: 

.t.s

max),f(DEV =Γ

By linear programming duality, the term 

),f(DEV Γ  can be replaced by a linear 

function (on new variables) 

linear constraints. Accordingly, the robust 

network design problem is formulated as 

integer linear program, slightly more 

complicated than the network design problem 

for a single traffic matrix. 

 

 

(b) 

Traffic fluctuations for three node-pairs in the US Abilene Internet2 network in time intervals 

(publicly available via [10]). In (a) the light colors represent the spare 

capacity for every single node pair, if capacity is reserved by the maximum traffic volume. In 

spare capacity is computed by the maximum sum of the traffic volumes. The purple line represents the 

sum of the 90% quintiles of the traffic volumes. 
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, the capacity constraint for the link 

is given by 

ijCx) ≤ , 

is the total capacity that 

to be reserved to cope with the realized 

traffic values above the nominal values if the 

robust uncertainty set is used. ),f(DEV Γ  

can be computed by the following linear 

1y0

y

yfd

st
)t,s(

st

st

)t,s(

st
ij

st

≤≤

Γ≤∑

∑

 

By linear programming duality, the term 

can be replaced by a linear 

(on new variables) and additional 

. Accordingly, the robust 

network design problem is formulated as an 

integer linear program, slightly more 

complicated than the network design problem 

 

 

bilene Internet2 network in time intervals 

the light colors represent the spare 

capacity for every single node pair, if capacity is reserved by the maximum traffic volume. In (b) the 

spare capacity is computed by the maximum sum of the traffic volumes. The purple line represents the 
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The function of the network cost in 

dependence of the parameter Γ  is known as 

the “price of robustness” [2]. It describes the 

additional cost of increasing the protection 

(and thus reducing the violation probability) 

by increasing Γ . Figure 3 shows the price of 

robustness for a computation based on 

historical data of a 22-node network. 

What remains is the choice of the nominal and 

deviation values. Experiments with historical 

data have shown that the mean as nominal 

and the 95% quintile as peak value (nominal 

plus deviation) are good choices (Koster, 

Kutschka, Raack [7], see also [8]).  

Robust Multi-Layer Network Design 

General multilayer problem 

The design problem outlined in the previous 

section describes a single-layer network 

problem. However, many communication 

networks are nowadays consisting of two and 

more technological layers, e.g. the Internet 

Protocol (IP) layer, the Multiprotocol Label 

Switching (MPLS) or MPLS Transport Profile 

(MPLS-TP) layer, the Optical Transport 

Network (OTN) layer and the Dense 

Wavelength Division Multiplex (DWDM) layer. 

Additionally there is a logical demand layer, 

which induces traffic demand for arbitrary 

end-to-end connections. A wide range of 

technologically feasible layer configurations 

and possibilities for transporting the traffic 

demand through the layers exist, see Figure 4. 

Common layer configurations are for instance 

IP-over-DWDM or IP-over-MPLS-over-OTN-

over-DWDM. A multi-layer network 

optimization formulation has to incorporate 

all technological and logical layers that should 

be part of the potential solution space. 

Considering all constraints of a multi-layer 

network design problem in a generic 

mathematical formulation is a very 

challenging task. A too abstract layer model 

might neglect important technological 

constraints. On the other hand, a fine-grained 

formulation of the layers might lead to a huge 

computational complexity of the multi-layer 

model. 

A comprehensive multi-layer modeling should 

integrate:  

• layer model, e.g. multi-layer structure and 

feasible layer interconnections; 

• technological restrictions, e.g. capacity 

granularities of interfaces (IF) and sub-

 

Figure 3: Price of 

robustness (relative to 

0=Γ ) for robust network 

design on the basis of 

historical data for the pan-

European research 

backbone network GÉANT 

with observed means as 

nominal values and subject 

to different quintiles for the 

peak demand values 

(nominal + deviation). 

Source: Koster and 

Kutschka [6]. 
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interfaces, number of interface card slots, 

multiplexing capabilities; 

• cost model, considering e.g. capital 

expenditures (CAPEX), operational 

expenditures (OPEX), energy consumption; 

• traffic demand model (with or without 

demand uncertainty); 

• model of resilience mechanisms, e.g. 1+1, 

1:1 protection, re-routing . 

Incorporation of Robustness in Multi-Layer 

Planning 

Robustness in multi-layer networks can be 

defined in various ways. Frequently it is 

understood in the context of network 

resilience. Here the key question is which 

resilience concepts should be deployed in 

which layer and how different resilience 

mechanisms should interact. Incorporating 

resilience in multi-layer optimization requires 

a sophisticated modeling of the potential 

failure cases and the respective sequence of 

resilience mechanisms that react on these 

failures. For next generation networks 

employing IP-over-DWDM, an evaluation of 

different robust models (wrt. resilience) was 

done by Kubilinskas, Pióro and Nilsson [9].  

Another interpretation of robustness in multi-

layer network design is the ability to cope with 

uncertain traffic demand. Traffic demand 

fluctuations can occur in temporal and spatial 

manner. The temporal effects can be classified 

into short-, mid- and long-term fluctuations. In 

particular the mid- and long-term effects such 

as the daytime usage behavior as depicted in 

Figure 2 are relevant for robust network 

design. On the other hand spatial traffic 

demand fluctuations are either caused by day 

of time traffic shifts (in large networks 

spanning over multiple time zones) or by 

effects outside the own network like Border 

Gateway Protocol (BGP) route flaps or 

dynamic server selection policies of Content 

Delivery Networks (CDN). 

Concepts like the previously described Γ-

robustness can be applied in multi-layer 

network design similar to the single-layer 

case. However, the complexity, model size and 

computation time are substantially increased 

by introducing Γ-robustness in multi-layer 

network optimization as shown in Steglich et 

al. [14]. Uncertainty in traffic affects the 

capacity dimensioning of all subjacent 

technological layers. In the lower layers traffic 

demand uncertainty is smoothened by 

multiplexing traffic from higher layers. 

Layer (Technology) Selection and 

Optimization  

 

 

Figure 4: Feasible multi-layer 

interconnections and resulting 

layer configurations 

 IP/MPLS 

MPLS-TP 

OTN 

DWDM 

DEMAND Uncertain values (nominal, deviated) 
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Further potential challenges in multi-layer 

network design are the determination of the 

layers (technologies) that should be used 

given a set of potential networking 

technologies and the determination of the 

optimum connectivity (topology graph) within 

each layer. 

Regarding the first challenge, layer-skipping is 

an option to reduce the network CAPEX. 

Although interfaces for connecting higher 

layers to lower ones (e.g., IP to DWDM IFs) are 

more expensive [12], the overall CAPEX might 

be cheaper than establishing an intermediate 

layer with further interfaces. The result of the 

optimization should reveal which particular 

layers are used and which layers are omitted. 

For this, layer configurations with possible 

layer sequences have to be included into the 

multi-layer optimization model. 

To cope with the second challenge, flexible 

path sets (per layer) are included in the multi-

layer network optimization. These path sets 

contain three types of paths: opaque paths 

(calculated by a k-shortest path algorithm), 

transparent paths (with no intermediate 

nodes), and specific paths where some of the 

intermediate nodes of opaque paths might be 

omitted. As a result of the multi-layer 

optimization the cheapest (in terms of the 

optimization objective) paths are selected, 

thus leading to shortcuts in some layers. The 

inclusion of such path sets (allowing the 

determination of shortcuts) influences the size 

of the multi-layer network optimization model 

significantly. 

The well-known IP router offloading problem 

can be considered as a combination of the 

layer skipping and shortcut determination. 

Results from ROBUKOM 

In the ROBUKOM project, a multi-layer 

network design model with traffic demand 

uncertainty has been developed. This model 

applies Γ-robustness to model traffic 

uncertainty. Moreover, aspects like layer-

skipping, shortcuts and router-offloading are 

included. First computational results with off-

the-shelf solvers are provided for small-, mid- 

and large-scale networks in Steglich et al. [14]. 

The introduction of Γ-robustness increases the 

CAPEX costs. For a 5-node network without 

layer-skipping, securing at most ten demands 

(Γ=10) is 23.0% more expensive compared to a 

non-robust network design. With layer-

skipping it is 25.6% more expensive to 

consider traffic uncertainty. The uncertainty 

parameter Γ shows an even higher influence 

for the GÉANT network: CAPEX is raised here 

by 117.2% (Γ=0 vs. Γ=10). 

In our future work, we intend to apply other 

techniques (like meta-heuristics) in order to 

reduce the computation times and memory 

requirements when dealing with large-scale 

network design. 

Mixed-Line-Rate Optical Networks 

In an optical network, lightpaths are used for 

transporting traffic flows. Mixed-line-rate 

optical networks allow for a more resource-

efficient handling of small and large traffic 

volumes by the simultaneous configuration of 

lightpaths with different bitrates (e.g., 10 

Gbps, 40 Gbps, and 100 Gbps).  

Given a potential network topology and 

commodities with (uncertain) demand values, 

a cost-minimal hardware configuration (line-

rate used for each demand, installed 

transponders, amplifiers, and regenerators) 

and an optimum routing have to be 

determined. Additional survivability 

requirements may exist. 

In Duhovniko et al. [5] a mixed integer linear 

programming formulation for the design of 

mixed-line-rate networks with uncertain 

demands is given. In addition to the modeling 

of Γ-robustness, its main feature consists of 
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the computation of the nominal and peak 

demand values. In contrast to single-line-rate 

planning, the nominal and deviation values 

depend on the line-rate of the lightpath used 

for a particular demand. If small demands are 

routed on a lightpath with a high bit-rate, on 

the one hand additional lightpaths for 

absorbing traffic peaks are not needed, but on 

the other hand, the resources are not used 

efficiently. If lightpaths with a low bit-rate are 

used instead, traffic peaks might exceed the 

capacity reserved by the lightpaths for the 

nominal demand, and additional spare 

lightpaths have to be reserved to handle these 

peaks. Hence, depending on the line rate 

used, different nominal and deviation values 

have to be used. Figure 5(a) shows an example 

with a nominal demand (in 1 Gbps) of 65 and a 

deviation of 30. In case a line rate of 10 Gbps 

is chosen, 7 lightpaths have to be reserved for 

the nominal demand, and an additional 3 for 

peak values. In case 40 Gbps is chosen, 2 

lightpaths are needed for the nominal demand 

and another one for the peak. However, if 100 

Gbps is chosen, a single lightpath provides 

enough capacity for the nominal as well as the 

peak demand, and thus no further deviation 

value is needed in this case. 

Figure 5(b) shows exemplarily the cost of a 

robust mixed-line-rate optical network with 

GÉANT data, with and without 1+1 protection 

for different values of Γ . The costs are 

normalized to the case without protection and 

without robustness ( 0=Γ ). Not surprisingly 

the costs are more than doubled if 1+1 

protection is implemented, but the price of 

robustness for unprotected cases is rather 

low. For robust designs with 1+1 protection in 

particular, the transponder cost increase 

significantly with increasing Γ , which can be 

explained by the need to use more and more 

high bit rate transponders since the number of 

lightpaths per fiber is limited. 

 

 

 

(a) nominal and deviation values 

 

 
(b) price of robustness for selected cases 

Figure 5: Mixed-line-rate Optical Network Design. (a) Bandwidth requirement depending on the 

operated line rate for an example with nominal demand value of 65 Gbps and a deviation of 30 Gbps. 

(b) Cost of multi-line-rate optical networks normalized to Γ=0 and no protection. The costs are broken 

down with respect to transponder (TP) cost, amplifier (AM) cost, and regenerator (REG) cost. 
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Multiband Robust Network Design 

In the previous sections, we showed the 

benefit of adopting Robust Optimization to 

tackle traffic uncertainty in the design of 

communication networks. A Robust 

Optimization approach guarantees a 

moderate dimensioning of the installed 

capacity and of the established routing paths 

that are able to accommodate (bad) traffic 

variations with respect to expected traffic 

values. Our primary robustness tool has been 

the model proposed by Bertsimas and Sim [2], 

essentially based on adopting a single 

deviation band for each uncertain parameter 

and an upper bound on the number of data 

that can simultaneously deviate from their 

nominal value. 

The Bertsimas-Sim model has attracted high 

attention also outside the Mathematical 

Programming community and has been 

applied in many different contexts (see 

Bertsimas et al. [1] for an overview). Key 

factors of this success have been undoubtedly 

its elegant simplicity and its straightforward 

application: its use just requires fixing the 

upper bound Γ  on the number of deviating 

data. Different solutions according to this 

parameter can then be compared by the 

corresponding price of robustness allowing an 

evaluation of the trade-off between stability 

and price by the decision maker.  

However, the adoption of a single deviation 

band to represent the uncertain value of a 

coefficient may greatly limit the possibility of 

modeling uncertainty: in many real-world 

problems, the deviations distribute 

asymmetrically within often non-symmetric 

intervals. In such cases, adopting a single 

deviation band and thus focusing just on the 

extreme deviations, neglects the inner 

uncertainty behavior and may lead to over 

conservative robust solutions that 

overestimate the impact of variances. It is 

thus desirable to increase the resolution of 

the model. 

Increasing the resolution of the Bertsimas-Sim 

model can be done by a simple operation: 

partitioning the single deviation band into 

multiple bands, each with its own upper 

bound on the number of data falling into that 

band. Moreover, to further increase the 

power of modeling uncertainty, we can also 

introduce a lower bound on the number of 

deviations falling in each band: this simple 

trick allows to explicitly take into account also 

good deviations that in a Bertsimas-Sim 

approach are neglected, but that in reality are 

actually present with the effect of reducing 

the impact of bad deviations. We call an 

uncertainty set based on multiple deviation 

bands a Multiband Set and Multiband 

Robustness the resulting Robust Optimization 

model.  

Multiband Robustness looks particularly 

attractive in real-world applications, where it 

is common to have historical data that shows 

the past behavior of the uncertainty. These 

data can be used to define histograms 

representing the (discrete) distribution of the 

uncertainty in the past and form a basis to 

build Multiband Sets, which are now strongly 

data-driven. We refer to Figure 6 for a visual 

representation of the differences between a 

single and a multiband representation of the 

uncertainty. 
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Within the project ROBUKOM, we started to 

investigate the theoretical properties of 

Multiband Robustness. Here, we recall the 

main theoretical results that we have 

obtained and we refer the reader to Büsing 

and D'Andreagiovanni [3,4] for a complete 

and detailed overview of them. Given an 

uncertain Mixed-Integer Linear Program 

(MILP) and assuming that we represent 

uncertainty by a Multiband Set: 

• the robust counterpart of a MILP is 

equivalent to a compact Mixed-Integer 

Linear Program, whose size grows linearly 

with the number of deviation bands of the 

Multiband Set and quadratically by the 

number of variables and constraints; 

• verifying if a solution of MILP is robust 

w.r.t. the Multiband Set can be operated 

efficiently by solving a min-cost flow 

problem (note that this result can be used 

as basis to define an efficient cutting-plane 

solution algorithm, see [3] for details); 

• if the uncertain MILP includes only binary 

variables and the uncertainty just affects 

the objective function, then a robust 

optimal solution can be obtained by solving 

a polynomial number of original MILPs with 

modified objective coefficients. 

The application of Multiband Robustness to 

Network Design with demand uncertainty 

implies that the overall range of deviation 

]ˆ,ˆ[
stststst

dddd +−  of each demand 

associated with a source-target pair (s,t) is 

partitioned into a number K>1 of non-

overlapping sub-bands. Each of these bands is 

then associated with a lower and an upper 

bound on the number of deviations that may 

fall in it (these should be derived from the 

historical data).  

We carried out preliminary experiments about 

the adoption of Multiband Robustness in 

Network Design, referring to the well-known 

US Abilene Internet2 network instances. The 

number of deviation bands was fixed to seven 

and the extremes of the bands were defined 

according to the 50th, 70th, 75th, 80th, 85th, 

90th, 95th percentile demand values, derived 

from historical data. The used bounds of each 

band took into account the probability of 

realization of the demands in each band. In 

comparison to a single band approach using a 

comparable and optimistic Γ parameter, the 

multiband approach granted a percentage 

reduction in the price of robustness between 

1% and 5%, while maintaining the same 

computational performance (no significant 

increase in solution time). This is due to the 

refined representation of the uncertainty, 

which reduce conservatism of robust 

solutions. These preliminary results have 

encouraged ongoing investigations about a 

better tuning of the parameters of the 

 

 

Figure 6: Visual comparison of a single and a multiband uncertainty set defined over the same overall 
deviation range. (a) is the histogram of deviations built upon the historical data and (b),(c) are 
possible single and multiband representation of the histogram. 
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Multiband Set (number, bounds and width of 

the bands). 

Conclusions 

Robust optimization is an emerging 

mathematical optimization technique to deal 

with uncertain input parameters. In recent 

years, the methodology has also been applied 

to communication networks in various 

settings. Its potential has been clearly shown 

by those case studies and deserves a further 

integration in network planning tools in 

practice. Moreover, driven by the availability 

of historical data, the methodology is 

developed further as well to allow the usage 

of more accurate models. 
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