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Abstract Obtaining a sufficient sampling of conformational space é®@@mmon problem in
molecular simulation. We present the implementation of arbrella-like adaptive sampling
approach based on function-based meshless discretizdtmmnformational space that is com-
patible with state of the art molecular dynamics code andititagrates an eigenvector-based
clustering approach for conformational analysis and themgation of inter-conformational
transition rates. The approach is applied to three exanyslems, namely-pentane, alanine
dipeptide, and a small synthetic host-guest system, they favo including explicitly modeled
solvent.
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1 Introduction

The dynamics of molecular systems exhibits a distinct nieltées character: Molecular systems
tend to remain within an almost invariant subset of confdiomal space for a long time — long
in relation to the step size of the numerical integrationicltior atomistic simulations is in the
order of one or two femtoseconds — while transitions betw#erent almost invariant subsets
(i.e. conformational changes) are rarely observed ev@ihiis. characteristic is due to the rough
potential energy landscape inherent to most moleculaesyst Basins of low potential energy,
grouped around local minima, are separated by high enengiets corresponding to confor-
mational changes , or changes from unbound to bound states. cBmplicates the sampling
of conformational space, as molecular dynamics (MD) ttajges tend to generate states from
within the basin of one local minimum for a long time, whilarnsitions between different local
minima are achieved only very seldom, or not at all. Thisaffeften denoted asapping
can lead to incomplete coverage of conformational spaakttars to insufficient statistics. It is
particularly severe with regard to the sampling of tranisiegions of conformational space, e.g.
in the study of ligand-receptor binding processes, as thamijcs of the system will try to avoid
the energetically unfavorable (but most interesting)dition states.

While, as of yet, thermostated long-time MD remains the pngéidant tool in the molecular
simulation community, several successful strategies f@rapming (or rather lessening) the
sampling problem have been developed, including umbrata@ting [TV77], essential dynam-
ics [ALB93] and replica exchange [SO99]. An excellent inmpéntation of various enhanced
sampling schemes is available in terms of the PLUMED plufBi&B *09] that is compatible
with various popular MD packages.

In this article, we present an enhanced version ofatBygridfree sampling algorithm [WMO05],
which is inspired by the umbrella sampling approaZiBgridfree uses an adaptive refinement
strategy in order to enable efficient and thorough samplieg @ transient regions of conforma-
tional space. The main feature DiBgridfree as presented here is that it combines an efficient
importance sampling scheme with a comprehensive and vigrakework for conformational
analysis w.r.t. both single molecules and binding processe

In the initial step of the algorithm, conformational spaegartitioned into subsets. Each subset
is sampled independently toward convergence of the cdweat distribution. More precisely,
instead of computing only one trajectory for exploring tloéemtial energy landscape, we com-
pute short trajectories which are confined to a subset of dhdoomation space by restraints.
These subsets then are defined by a partition of unity on thi®oation space. If convergence
fails (e.g. when the sampling keeps on “jumping” between kweal minima), a refinement
of the partitioning is triggered, followed by additionalnsling. In the subsequent step, each
local sampling will be weighted such that the overall hisamy yields theglobal Boltzmann
distribution, so that the identification of conformatioss@duced to a clustering problem based
on the eigenstates of the overlap matrix of the partitionignally, conformational weights
and inter-conformational transition probabilities candstermined. The extended version of
ZIBgridfree presented here broadens the scope of this sampling scheooertjning it with a
standard MD software package so as to give access to the prtstdate molecular force fields
and solvent models.



2 Theory and implementation

2.1 Conformation dynamics

As partitioning methods based on meshes or grids suffer frmri'curse of dimensionality”,
ZIBgridfree implements a meshless, function-based partitioning ambro This is motivated
by the concept of conformation dynamics [Deu03, KWQ07], véhewnformations of a molecular
system are defined in terms of soft-characteristic memigefshctions, rather than classical
sets in position space (below denoteds We are interested in a soft partitioning of the
position space, i.e. we want to have a set of functipns. ., xn.: Q — [0,1] such that

Nc

holds for allg € Q. One can regarg; as a probability distribution. For a set of position states
we say that they are distributed accordiggwhen for each collection of conformatiodswe
find j’A%q) p(q)dq percent of position states from the set in a conformatiomfdg with the
corresponding thermodynamical weights

W = [ X(a)p(q)dg @
This means the position states are distributed accordittgetpartial density functio;:
~ _ Xi(@p(q)
pi= Vi . 3

Note that for the special cagg, ..., xn.: Q — {0,1} our approach reduces to the well known
Markov State Model [SNS10, FBW12, PCPL1]. In this casevis the probability to be in set
A ={qe Q] xi(q) = 1} and the transition matriX for some fixed time step is defined such
that Ti; denotes the probability to move from sitto setA; in time 7. In generaw denotes
the probability that the molecule will be found in the comf@tion represented by; and the
transition matrixT for some time steg is given in the following way: If we have a set of
position states distributed accordiggthen after a time stepthey will be distributed according
Y1 XkTik- One new property of is that the entries do not need to be positive. A partition
into metastable conformation is given if we find a soft panmiing such that each distribution
Xi represents a metastable conformation, Tiesx 1 fori = 1,...,nc. In the following we show
how one can obtain such a soft partitioning in metastabléocorations and conclude with three
examples where we have approximatedor each. For one example we have also approximated
the transitions matrix.

To find x1,..., Xn. We start off with a function basig, ..., @ : Q — [0,1], where the initial
number of basis functionsshould be chosen larger than the anticipated number of ooafo
tionsn.. The function basis is chosen such that is has the same pegpas the membership
functions x1,..., Xn., i.€. partition of unity (cp. equation 1). Therefore, eacmformation
membership functiory; can be constructed from a convex combination of the basiifurs ¢
[WebO06]:

S
Xj = .ZIXdiSC(ia J)(n> J = 17"‘7nC> (4)
i=



where xgisc is a row-stochastic matrix containing the linear combimatiactors. Analogous to
o andwj in equations 3 and 2, each of the basis function is assoacrtach partial densityp;
and a thermodynamic weight;. In order to calculate a set of points distributed according
one can simulate a trajectory according to the modified piaieanergy functiorJ; as [Web06]

0i(0) =U (@) +Ui(@) =U(d) — 5 In (@ (). O

This fact will come in handy for calculating the corresporgiv; and the subsequent cluster
analysis which aims at identifying both the correct numteriastersnc, as well as the matrix
Xdisc Of linear combination factors, from which we obtain the sehembership functiong; by
applying equation 4.

As a precondition for the partitioning discussed above,uginoscheme of the relevant position
space has to be given. This can be delivered in terms of atloreyMD trajectory (possibly
using elevated temperature for improved coverage of posgpace), a targeted MD or pulling
trajectory, the output of certain tools for exploring camfiational space (e.gCONCOORD
[dGVAS'97] for protein structures) or even by manually preparinggusnce of geometries.
From thispresamplings selected a set of nodény, ..., ns} € Q to each of which is attached a
radial basis functioWV given by

W (q) = exp(—a &%(q,ni)), i=1,..,5, (6)

wherea is a shape parameter, add a distance measure to be specified in the next section.
As the basis functiongf do not satisfy Equation 1, we construct a partition of uniithvbasis
functionsq by following Shepard’s approach [She68]:

W

M
>i-aW,

Q= sy S. (7
The basis functiong take on their maximum at the defining nadeand decrease exponen-
tially as the distancé? of a stateq to n; increases. As a consequence, the difference betieen
(equation 5) antl is minimal within the stat@;, and increases exponentially with the distance
to n;. This ensures thorough sampling in the area belonging is hasctionq, as the sampling
process is restrained from wandering off into a lower endrgsin. The shape parameteiis
chosen in dependence on the number of n@desd the mean node distanB8eand defines the
degree of separation of the meshless discretization. aFer «, the discretization converges
to a Voronoi tessellation, i.e. the soft partitioning degtes into a hard partitioning without
overlaps between the basis functions.
In practice, the sampling of the basis functiopss run in parallel, as eadd; can be evalu-
ated at every positioq € Q independently of aIUj with j #i. Depending on the available
resources, one can either sample several basis functigrazatiel, evaluate the potentid| in
parallel (which in turn accelerates the sampling of the @iased basis function), or combine
both approaches.

2.2 Internal coordinates

ZIBgridfree uses internal coordinates (either torsion angles andétarties) as collective vari-
ables in order to define the conformation of the system unlsermation. Prior to picking a set



of nodes for discretization, a set f internal coordinates has to be specified by the user. The
distanced?(q,n;) between statg and noden; (equation 6) is measured in the space of internal
coordinates. Therefore, the outcome of the discretizasidirectly related to the choice of inter-
nal coordinates. Deciding on a meaningful set of internakdimates is not always trivial. For
conformational analysis of small molecules, picking athtable torsion angles is an obvious
choice, whereas for peptides or proteins, picking only baolk torsion angles is practical. For
complexes of multiple molecules, the set of torsion angiestb be complemented by a set of
distances in order to describe the molecules’ relativetipogng to each other.

Whereas angular internal coordinates can only take on séleveenA and 471, distance (or
linear) coordinates can in principle take on any positideeaThis leads to problems whenever
linear coordinates with a large spread or a large absolutee\are overly dominant, as other
internal coordinates with more subtle changes are rendeeddvant when the distance func-
tion &2 is evaluated. In order to tackle this problem, linear camatiés can be weighted and
normalized automatically by callinggf _cr eat e_pool with option ‘~balance-linears’.

Let k be a linear coordinate that corresponds to the Euclideaantdis between two particles in
the system under observation. The weight of this coordiisateen determined as follows:
coord_weight(K)initial

coord weight(K) = Zevar k) , (8)

wherecoord_weight(K)initia IS One, unless specified differently by the user. This mehat t
coordinates with a high spread are downgraded by dividiegritial weight by the full width

at half maximum. Furthermore, an offset fors applied by subtracting its mean value in order
to compensate for high absolute values. This leads to theniolg weighting formula:

Kpalanced= coord_weight(K) - (k—offset(k))

= coord_weight(K) - (k— (offset(K)initial +meark))), ©)

whereoffset(K)iniiai iS zero, unless specified differently by the user. This apgharealizes
an equal weighting of all internal coordinates involved.ndtheless, certain applications might
call for biased weighting of the internal coordinates, &hen the distance between ligand and
receptor (defined by linear internal coordinates) is to bessed in comparison to more subtle
conformational changes in the ligand molecule (defined tsidn angle internal coordinates).

2.3 Implementing the potential modification

Sampling theZIBgridfree basis functiong requires a modification of the potential function
U(q) (equation 5). Our aim was to change the algorithm such tharitbe run with standard
force fields and unmodified molecular dynamics (MD) packages assROMACS[HKvdSL08].
Treating the MD code as a black box has several advantagesusién can use readily available
software (pre-compiled for many Linux distributions aneé+imstalled on most computing clus-
ters), and plug in new versions as they are released. Fuibiliex regarding the choice of
force field and other simulation parameters is sustainedth&umore, internal changes to the
highly optimized MD code, possibly having a negative impactthe simulation performance,
are evaded.



AdaptingZIBgridfree to a standard MD package is a two-step procedure. Firstafdr selected
noden;, the ng-dimensionalg function is projected on a single dimension by coordinaisew
evaluation: Instead of considering the joint distaBiéé&g, n;) (involving all internal coordinates)
we now exclusively consider the distance regarding coatdik

exp(—a 5(g,1))
@.(q) == :
(9= 55 exp(—adZ(an)
The above expression yields the membership of sfatigh respect to coordinateregarding

basis functiong. The one-dimensional penalty potential acting on cootdikaf stateq can
simply be obtained as:

K=1,...,nk. (10)

Ui (q) = —% In(@,(q)). (11)

Finally, in order to approximatd);, for every internal coordinatk, a generic cubic restraint
potential (as available in many common MD packages) is fiteitie penalty potentidl;, and
added to the force field representing the unmodified potddti&Ve implemented this approach
for the GROMACS MD package, where restraint potentials of the form

Lkees (@' — AD)?, for & > AD

. (12)
0, for @ < A®

Ures(q)/) = {
are readily available (given here for a torsion angle regt@n torsion anglep’ = (dg — @)
mod 21, with rest position®gy and unrestrained regioh®, analogous for distance restraints).
The concept of fitting restraint potentials to the coordinatse projected basis function penalty

potentials ofZIBgridfree is depicted in 1.

The imperfect approximation of multi-dimensional basisdiions by harmonic restraints in-
troduces a certain error, as sampling points may be gedefaim areas ofQ that are not
covered by the basis function in question. This is espgctalie for boundary regions, where
several basis functions are overlapping. This approximadrror can be removed by giving
each sampling poirg a weightframe weight,(q) with respect to basis functiop:

frame weight;(q) = a(q) (13)

exp(—fB - Ures(q))

The effect of reweighting on the sampling distribution ipidéed in 1. Calculating the sam-
pling point weights is inexpensive in terms of computatione. Subsequently, when check-
ing for convergence of the sampling, or when calculatingeolmbles of any kind, only the
reweighted distribution is considered.

2.4 Adaptive refinement of the partitioning

In order to ascertain a sufficient sampling of the partialsiteas p;, ZIBgridfree pursues an
adaptive refinement approach. After a certain number of lsition steps, convergence of
the sampling is tested by evaluating the variance-baseth&eRubin convergence criterion
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Figure 1: Sampling of a torsion angle distribution (graytddgam) withZIBgridfree. The sam-
pling is forced to stay within the area of an exemplary basiefion (dashed gray line)
by its penalty potential (dashed black line). For use VBRROMACS, the penalty po-
tential is approximated by a harmonic restraint potensalid black line). Due to the
approximation error, the sampling is not sufficiently liedtto the area covered by its
basis function (left). After reweighting the sampling psiwith regard to the their
basis function (right), the approximation error is remaved

[GR92]. If the convergence test fails, the sampling will béeaded byn simulation steps (fol-
lowed by another convergence test) for a maximumaimes (wheren andm are user-defined
settings). If convergence has not been achieved aitextensions of the original sampling
length, a refinement of the partitioning in the area of thea#d basis function is triggered. By
default, two children nodes, andn;, are introduced, whereas the original pamaris removed
from the partitioning, along with its basis functign This principle is illustrated in 2.

Removal and addition of nodes have an impact on the overdltipaing, as with the num-
ber of nodess, the mean node distandkis bound to change. Hence, the shape paranteter
(equation 6) is recalculated following each refinement.stéfith proceeding refinement and
increasings, a will become larger, which in turn leads to a higher degreeepbsation between
basis functions. This mechanism leads to increased corwveggrates over the course of the
refinement.

Despite several cycles of refinement, the sampling of ti@nsiegions (e.g. when a node is
situated on the steep flank of a potential energy barrier) medyead to convergence according
to the Gelman-Rubin criterion. In these cases, the samphsgo be discontinued as soon as a
sufficient number of data points from the transition regias bheen collected.

2.5 Reweighting and cluster analysis
Direct free energy reweighting

The local confined samplings are distributed according to
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Figure 2: The sampling of basis function '1’ (associatechvaitnode at -6§ has come upon a
second minimum in the region around -18eft). In this case, convergence of the
sampling is not achieved in the allocated number of samdiags. A failed conver-
gence test triggers an automatic refinement of the paiiiigpfright). The parent node
"1’ is removed and replaced by two children named 7’ (:6&nd '8’ (-167). The
samplings of the associated basis functions converge lguasthey are now confined
to a single energy minimum each.

If we can calculate the term, ..., ws we can approximate the correct Boltzmann distribution
by weighting the local histogram @. The correct weighting is given through

S S
i;Wipi = i;mp =p

since the@’s sum up to one. The partition of unity assures that the pgsbatween the over-
lapping subsets is described correctly. We remark thafpiuistion of the conformation space
is for the purpose of efficiency only and has thus no real giaysir chemical meaning. In or-
der to get the "true” global distribution we thus have to agtdfor these local restraints, since
otherwise spurious effects might occur which is illustdaite 3 for the torsion angle distribution
of n-pentane. In order to arrive at a balanced joint Boltzmasiridution, we need to find
the correctw;. This is done with the free energy difference estimate imgeleted in the tool
zgf rewei ght, based on the approach of Klimm et al. [KBW11]. This approaehich is
not dependent on explicit overlap between the partial dessis outlined shortly in the follow-
ing. In principle, other methods for thermodynamic rewdigly such as the popular weighted
histogram analysis method (WHAM) [KRE®5, Rou95], can be employed as well.

choose a set of reference poir{tqp)}r:L“.R(i). A reference point is characterized by
having a potential energy value within the energy standeviation ofp;. More precisely,
with (U(") being the mean potential energy of gét,

|u@) - < %z” (Ua) - o)



2. Approximate the local density of sampling points by eaéihg expressioml,,;, which
counts the numbd‘ml,(]'e)ar of sampling points that argear, i.e. within a certain distanol;
around each reference po'mﬂ), and compute its inverse

NG
<Dv0h(qp))) N
Nnear+ 1

For our purposeyol; is chosen as large as the mean variance of the internal catedi
regarding all sets of stateg’, which is precomputed in a first iteration over the sampling
data. The variance for each set is computed in terms of thendis functiord?, dependent
on the type of the internal coordinates that are involvedhéndiscretization.

3. Compute the entropy estimate

S =kgln (R% 5 <DvolI Qr )_1> )

=1

the free energy

and the statistical weights
Wi =Wi_1-exp(—B (Gi - Gi-1)),

with w; = 1. The free energy values have to be ordered by size beforalatihg the
statistical weights. Finally, the statistical weights &&w be normalized so thgt®_; w; =
1.

Overlap weight correction

The reweighting method introduced in the previous sectiorke/best for well-separated basis
functions. Depending on the given discretization and thereaof the system under observation,
the basis functions iZIBgridfree can have a more or less pronounced overlap. We perform a
correction of the statistical weightg in order to take basis function overlap into account. The
degree of overlap between each pair of basis functigresmd ¢ is quantified in terms of the
overlap integral matrixs € RS*S:

S = [ @@pi(@)d 14)

which for large numbers is approximated as
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Figure 3: Torsion angle distribution of the two torsion @&®bfn-pentane at 300 K, assembled
from 25 individual node samplings. Before reweighting, leaartial density con-
tributes equally to the joint distribution (left). This s to disproportionately high
weights of the gauche/trans, trans/gauche and gauchbgaonformations. After
thermodynamic reweighting, the correct relative weigtftshe partial densities are
restored, which leads to an improved joint distributiolt).

Sj =27 Y @) frame weight;(gh) (15)

from the states{qﬁ{)}nzlw,\,m that represent the partial densjy. Note that the shape &
is influenced by the chosen discretization, in particulati®/number of discretization nodes
For fine discretizations (large, cp. Equations 6 and 7§will resemble a diagonal matrix. For
very coarse discretizations and snmallit will degenerate into a full matrix.

The statistical weightsv of the basis functions can be derived by solving the eigerval
problemw’S= w', which means thaiv corresponds to the unique, positive and normalized
left eigenvector ofS with regard to its eigenvaluda; = 1 [Web06]. This eigenvector-based
approach is not well-conditioned and highly dependent dficgent sampling in the overlap
regions between the basis functions [WKWDO7]. In order todfi from the advantages of
both direct free energy reweighting and the eigenvecteetbaapproach, we start a number of
power iteration steps from the original weighisvith the stochastic matrix, until the corrected
weights (again denoted &g are convergent.

The row sums of the matri$ do not correspond to the corrected weigits According to
the method of Sinkhorn[Sin64], an iterative rescaling & tbw sums to meew, followed by
a symmetrization of5, leads to a corrected overlap integral matrix that is ceesiswith the

precomputed statistical weights.

Metastability analysis with PCCA+

From the chemical perspective, metastable subsets cormggp the main conformations of
the underlying molecular system. In the presence of mdtlestiates, any matrix describing

10



the transition behavior of the system (including the maB8ixexhibits a virtual block-diagonal
structure, i.e. there exists a permutation of indices sbtlieametastable subsets of the system
are represented by (more or less) quadratic blocks alondidigenal of the matrix (see 4).

Figure 4: Schematic of a (permutated) transition matrixhie presence of metastable subsets.
Within the three conformationsg to cs, states are mixing quickly. By contrast, transi-
tions from conformation to conformation (light gray offadgjonal area) are rare events.

Every block in this matrix is associated with an eigenveciothe matrix whose eigenvalue
is almost one. The set of the eigenvalues in the vicinity @& sndenoted as the Perron cluster,
and the size of this set corresponds to the number of chewicdbrmationsnc. The linear
combinations of the eigenvectors associated with the eiees of the Perron cluster contain,
for each basis functio, the degree of membership with regard to each ofrtheonforma-
tions. Robust Perron cluster analysis (PCCA+) [DWO05, WKi85]sed to find the permutation
yielding the block-diagonal structure, and hence the maifiinear combination factorggisc
(cp. Equation 4). The result is the matpxe R"c, where the entry (i, j) € [0,1] denotes the
degree of membership of basis functigrwith regard to the-th metastable subset.

Using the weight vectow containing the thermodynamic weights of the basis funstignit
is then possible to calculate the weight®fthe conformations as = x "w.

3 Molecular simulation details

All molecular simulations were performed wiBROMACS, versions 4.54 and 4.55 (single pre-
cision, unless stated differently). All molecules weregvaetrized for the Amber-99SB force
field [HAO"06]. Residues not already included in the standard force fielre prepared using
the softwareACPYPE [dSV12] andAntechamber [WWC*04, WWKCO06] from AmberTools
[CCID*05], with charges calculated by the AM1-BCC method [JBJBO®B02].

For the vacuum simulations{pentane), van der Waals and Coulomb interactions were com-
puted without cut-off (all vs. all). For the explicit solvealanine dipeptide simulations, the
TIP4P-Ew water model [HSF04, HSPO5] was used. The solute was placed in a rhombic
dodecahedron periodic box of 4.0 nm side length. The hossigsystem structure in non-
complexed form (with the guest molecule displaced by 1.5 wag placed in a cubic periodic
box of 6.5 nm side length and solvated in a 10:1 mixture ofrdiym and methanol. The force
field parameters for chloroform and methanol were obtaimech fthe GROMACS Molecule

& Liquid Database at URIht t p: // vi rtual chem stry. org/ gnl d. php [CYMH 11,
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vdSvMC12]. To neutralize the overall charge, a single ceuitin was added to the simulation
box. In both cases, a twin range cut-off of 1.0/1.4 nm for vanWaals interactions was applied
and the smooth particle mesh Ewald algorithm [EBB] was used for Coulomb interactions,
with a switching distance of 1.0 nm.

In order to generate teV T ensemble of states for the desired temperature of 298/360Her
the velocity-rescaling thermostat [BDP07] in combinatwith an MD leap-frog integrator, or a
Langevin-type stochastic dynamics [VGB88] integrator wasd. For the explicit solve pT
simulations (alanine dipeptide), the velocity-rescalingrmostat/stochastic dynamics integrator
was supplemented by the Parrinello-Rahman barostat [PRR883], with a reference pressure
of 1 bar. For the host-guest system transition node sanmglingither thermostat nor barostat
were applied in order to realize &V E ensemble setup. The integration step was set to 1 fs for
all simulations. The error threshold for the symmetrizaiid theS matrices was set to 18 for
n-pentane, to 10* for alanine dipeptide, and to 18 for the host-guest system.

4 Results and discussion

4.1 Pentane in vacuo

Figure 5: Three-dimensional representatiom-gientane. The two backbone torsion angles cho-
sen as internal coordinates are highlighted.

In order to evaluate basic properties of the algorithm, uatsimulations oh-pentane, a
small alkane with five carbon atoms (see Figure 5), were adrdu The two backbone torsion
angles ofn-pentane were chosen as internal coordinates for the tisatien. With regard to
these internal coordinates;pentane has nine main conformations, separated by distirecgy
barriers. The presampling of conformational space wasirddain terms of a 100 ns MD
simulation at a very high (and physically unrealistic) targture of 1000 K. Reference weights
for the conformations afi-pentane were taken from the literature [Sch99] (see Table 1

Stability regarding randomness of impulse and discretizat ion

In order to monitor the impact of choosing a different disizaion (placing of nodes in confor-
mational space) on the sampling outcome, three experimétitzen runs ofZIBgridfree each
were conducted: a) Equally placed nodes, but random MDOrsgarhpulse, b) randomly placed

12



c | tr/tr | g /tr|g"/tr|tr/g” | tr/g" |g"/g" |97 /9" | 9"/9 | g /9"
We || 0.473 | 0.120| 0.132| 0.117 | 0.132| 0.013 | 0.012 | < 0.005 | < 0.005

Table 1: Conformational weights efpentane at 300 K, derived from a hybrid Monte Carlo
(HMC) simulation using the Merck molecular force field [H&]9 tr(ans): ~ +180,
g(auchey: ~ +60°, g(auche): ~ —60°. Torsion angles are given on the scale
[—180,...,180.

nodes, but equal MD starting impulse, and c) randomly plamates and random MD starting
impulse. All runs were conducted with 20 discretization emdnd a minimum sampling time
of 100 ps per node, leading to a mean overall sampling timeyeof 2.8 ns. The results are
shown in Figure 6, left.

Randomizing the MD starting impulse leads to a maximum stechdeviation of 0.025 re-
garding the weight of the most dominant conformation,.tlRandomizing the node placement
by picking different initial seeds for themeans algorithm leads to a maximum standard devi-
ation of 0.031 for conformation tr/tr. When both MD startiimypulse and node placement are
randomized at the same time (mimicking a standard sampéihgp} the maximum standard
deviation is slightly smaller (0.23 for conformation ty/twhich indicates that the uncertainty
regarding both choices is not additive.

Stability regarding fineness of discretization

Similar simulations (random MD starting impulse, randongd@glacement, 100 ps minimum
sampling time per node) were performed with varying numbiegamnpling nodes in order to

evaluate the impact of the fineness of the discretizatiom.tlit® experiment, automatic refine-
ment of the discretization was switched off. The resultsshavn in Figure 6, right. When only

ten discretization nodes are used (only one more than theceegh number of conformations),

the error becomes very large (0.128 for conformation trénd, despite a relatively large mean
overall sampling time of 3.2 ns per run, the rare confornmatig+/g- and g-/g+ are not identified
at all. For 20, 30 and 40 discretization nodes (mean oveaaipéing times 2.79, 4.45 and 5.5 ns
per run), the results are comparable, but do not improvélyisvith increasing fineness of the

discretization.

Stability regarding sampling time

Finally, it was looked into how the sampling time per nodesd®iines the quality of the results.
The outcome is shown in Figure 7. A very short minimum sangptime of 10 ps per node
produces a large error (0.099 for conformation tr/tr), lpiten the mean overall sampling time
of only 365 ps per run, the averaged conformational weighdsaaceptable. With increasing
sampling time per node, the error can be significantly redlué®r a minimum sampling time
of 1000 ps per node (mean overall sampling time 26.7 ns), taidmum standard deviation
(conformation tr/tr) is reduced to 0.016, and below one gatréor all other conformations. One
can conclude that a rough estimate of the conformationajltgican be obtained at a very low
cost, whereas precise results have to be paid for with tigbreampling of the partial densities.
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Figure 6: Conformational weights ofpentane. Error bars indicate the standard deviation w.r.t
10 runs. Deviation from the literature values is indicatedrara-bar plot. Left: 20
nodes, 100 ps minimum sampling time per node, with equalggd nodes, random
MD starting impulse (dark gray), randomly placed nodesaétdD starting impulse
(gray), and randomly placed nodes and random MD startingulisep(light gray).
Right: 100 ps minimum sampling time per node, 10, 20, 30 andat®s (dark gray
to light gray), random MD starting impulse, random node ghaent.
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Figure 7: Conformational weights ofpentane. Error bars indicate the standard deviation w.r.t
10 runs. Deviation from the literature values is indicatedsab-bar plot. 25 nodes,
with 10, 100 and 1000 ps minimum sampling time per node (dealg to light gray),
random MD starting impulse, random node placement.

The results show a perceivable deviation w.r.t. to the aonédional weights found in the lit-
erature (cp. Table 1), which most likely can be attributethtouse of a different force field and
(possibly) the different dynamics for propagating the eyst For comparison, the conforma-
tional weights obtained frordIBgridfree with 25 nodes and 1000 ps minimum sampling time
per node, averaged over ten runs, are given in Table 2.

c | tr/tr | g /tr|gt/tr|tr/g” |tr/g" |g"/g" |g /9 |g"/g |9 /9"
We || 0486 0.113 | 0.113 | 0.116 | 0.110| 0.027 | 0.029 | 0.003 | 0.004

Table 2: Averaged conformational weightsrepentane at 300 K, derived from ten runszoB-
gridfree using the Amber-99SB force field.

4.2 Alanine dipeptide in water

As a second example, the conformations of alanine dipeptigésplicit TIP4P-Ew water were
studied. Alanine dipeptide is the most basic (or “minimadlypeptide and serves as a popular
test case for evaluating biological force fields. The twokbane torsion angle® andW span
the relevant conformational space of alanine dipeptidd,ve@re hence chosen as internal co-
ordinates for the discretization. With regard to theseriraecoordinates, alanine dipeptide has
six main conformations, which however are not as well-sstear as in the previous example,
n-pentane. Obtaining correct conformational weights froqplieit solvent simulations is more
difficult compared to vacuum or implicit solvent settings,the dynamics of a solvated system
is decelerated, while the computational cost of producutficsent sampling data multiplies.
Reference weights for the conformations of alanine dige&ti300 K in theNV T and in the
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Figure 8: Three-dimensional representation of alaninemtide (ACE-ALA-NME, i.e. termi-
nally blocked alanine). The two backbone torsion anglesnd¥ chosen as internal
coordinates are highlighted.

N pT ensemble were obtained from two 200 ns MD simulations (sbeT3.

C Cs R OR op oL cY
NVT | W, || 0.2696| 0.4043| 0.1745| 0.1369| 0.0136| 0.0010
NpT | We || 0.2794| 0.4363| 0.1563| 0.1190| 0.0070| 0.0020

Table 3: Conformational weights of alanine dipeptide at B0 the NVT and in theNpT
ensemble, derived from two 200 ns MD simulations using thebAr®9SB force
field. Cs: ~ 143/ — 158, R;: =~ 70°/ — 158, ar: ~ 70°/11°, ap: ~ 136’/ — 11°,
oL: ~55/—40, andCY: ~ —60°/ £+ 180°. Torsion angles are given on the scale
[—180,...,180. Conformation labels taken from Chodeial [CSPDO06].

Explicitly modeled water also complicates the presampbfgonformational space: High
(or elevated) temperature presampling is possibly only teréain extent, and requires a re-
equilibration of the simulation boxes before the partiaisiges can be sampled at the target tem-
perature. In principle, discretization nodes can also bkaai from a vacuum or implicit solvent
trajectory of the molecule of interest, to be put in explsgtvent only before the sampling of par-
tial densities wittZIBgridfree is commenced (implemented in the toplgf _sol vat e nodes
andzgf _geni on). Again, another cycle of energy minimization and simwiatbox equilibra-
tion is needed before usable sampling data can be colleetedhis example, the presampling
consisted of a 100 ns MD trajectory at the target temperaifi@O0 K, which means that re-
equilibration after node selection was not necessary.

Stability regarding sampling time

First, it was looked into how the sampling time per node deiees the quality of the results
using random MD starting impulse and random node placenmeeahNV T ensemble. The

outcome is shown in Figure 9. In comparison to the (vacuofpgntane example, a longer
minimum sampling time per node is required in order to yieddegtable results. For a very
short minimum sampling time of 10 ps per node, the resultewet interpretable due to the
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large error (data not shown). A minimum sampling time of 1@0per node (mean overall
sampling time 2.4 ns) produces large errors of around 15 %ring of standard deviation for
the three largest conformatioRs, Cs andar. When the minimum sampling time per node is
increased to 500 ps (mean overall sampling time 7.7 ns), foe ean be reduced below 6 %
for all conformations (largest error is 0.0581 for confotima R,). Finally, with a minimum
sampling time of 1000 ps per node (mean overall sampling fifn\s), the error is in the range
of 5 %, and mainly below (largest error is 0.0533 for confatioraR, ).

An auxiliary trial with a minimum sampling time of 1000 ps pssde (mean overall sampling
time 15.56 ns) using a double precision versioG&OMACS did not lead to a further decrease
in standard deviation, contrary to what might have been&epefrom an increase in precision
of coordinates and observables.

I 100 ps/node
‘|mm 500 ps/node
[ 1000 ps/node
[ 1000 ps/node (double precision)

Py T op oy, (ot

conformation

Figure 9: Conformational weights of alanine dipeptide.oEiyars indicate the standard devia-
tion w.r.t. 10 runs. Deviation from the reference valuesidated as sub-bar plot.
15 nodes, with 100, 500 and 1000 ps minimum sampling time pée idark gray to
light gray), including an auxiliary 1000 ps double precistaal, random MD starting
impulse, random node placement.

Stability regarding choice of dynamics

Second, similar simulations (random MD starting impulderdndomly placed nodes, 1000 ps
minimum sampling time per node) were performed while exghanthe common MD integra-
tor with a stochastic dynamics (SD) integrator. Both intégrs were compared in the context
of anNV T and anN pT ensemble, the latter realized by using a Parrinello-Rahbzainstat.

All trial runs were conducted with a double precision vensid GROMACS. The results are
shown in Figure 10. In bothNV T andN pT ensemble, the SD integrator delivers better results
with regard to the standard deviation over ten runs. INNNE ensemble, the largest error ob-
tained with the SD integrator is 3.618 % (conformatfp), compared to 5.86 % when the MD
integrator is used (conformatiarg). This gap becomes somewhat closer inkhgl ensemble,
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where the largest error obtained with the SD integrator3s 86, compared to 6.3 % when the
MD integrator is used (both w.r.t. conformatiofg).

The chosen dynamics also has an impact on the mean conforralatveights. When the SD
integrator is used, the largest conformatiBj,is sampled less dominant than with the MD inte-
grator NV T: 36.18 % compared to 39.68 %, aNghT: 39.02 % compared to 44.93 %). Instead,
the conformational weight is distributed more equally awer minor conformationsgr, ap and
ag.

conformation

Figure 10: Conformational weights of alanine dipeptideroEbars indicate the standard devia-
tion w.r.t. 10 runs. Deviation from the reference values@dated as sub-bar plot. 15
nodes, 1000 ps minimum sampling time per node, random nedemplent, with MD
integrator NV T), SD integrator NV T), MD integrator \pT), and SD integrator
(N pT), dark gray to light gray.

The results show an acceptable agreement with the refevezights that were extracted from
the 200 ns MD trajectory for all runs using 500 ps or more mimmsampling time per node, at
least for the runs conducted with the MD integrator (i.e.dhme integrator that was used for the
long-time trajectories used as reference). Long-time filata the SD integrator is not available,
but it can be expected to deliver a slightly different disition. In general, the largest deviation
is found for thear conformation:ZIBgridfree tends to overweightrgr by about 4 %, a weight
that is mostly drawn from thep, and partly from thex. conformation. As the conformations
of alanine dipeptide tend to have notable overlapping regias opposed to the well-separated
conformations oh-pentane), the error might not only be due to insufficient@arg, but also
to imperfect clustering of certain states in transientargi For comparison, the conformational
weights in theNV T and theN pT ensemble, obtained froZiBgridfree with 15 nodes and 1000
ps minimum sampling time per node and averaged over ten anagyiven in Table 4.
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C Cs R OR op oL cY
NVT | W, || 0.2606| 0.3968| 0.2112| 0.1244| 0.0067| 0.0003
NpT | We || 0.2871| 0.4493| 0.1586| 0.1035| 0.0015| 0.0001

Table 4: Averaged conformational weights of alanine dijakpat 300 K in theNV T and in the
N pT ensemble, derived from ten runsZiBgridfree using the Amber-99SB force field
(MD integrator, double precisiocBROMACS).

4.3 Host-guest binding process in explicit solvent

In order to give a proof of concept for a different applicatiof the algorithm, the analysis
of a small crown ether-ammonium host-guest binding protessesented in the following.
The system consists of an 18-crown-6 dimer host moledd®, (and an ammonium ion guest
molecule incorporating a short flexible tailonoG1+H). The thermodynamics of the formation
of complex MonoG1+H)eC6 in a mixture of chloroform and methanol and in the presence of
tosylate counter ions (denoted as OTs) could be charaetkrecently, along with an analoguous
bivalent system [vK12].

The presampling for this system was obtained by free didfusiiD simulations involving the
complete explicit solvent and counter ion setup. One outvef 0 ns MD simulations starting
from the unbound state (11, left) with about 1.5 nm sepanditween host and guest molecule
captured a binding event. The relatively low yield can be@rgd by the fact that (i) both host
and guest molecule are rather small and mobile and therstdiject to rapid diffusion in the
box and (ii) the complexation of host and guest is hinderethbycounter ion associating with
the ammonium moiety, obscuring the interaction site. Cgusstly, not every close contact
between host and guest immediately induces complex foomafihe trajectory which captured
the binding event was prolonged to a total of 100 ns withootshg indications for complex
dissociation.

Discretization and metastability analysis

The conformational space discretization was based on d sgemal coordinates consisting of
three strongly correlated distances between ammoniumtynae 18-crown-6 ring (11, right).
In order to remove the abundance of unbound states notddlatbe binding process from the
presampling data, states with distances of more than 1.8istainde between the interaction
sites were discarded. A total number of 16 discretizatiodesovas placed equidistantly in the
remaining part of conformational space. For each dis@ttiz node, 5< 500 ps of MD in the
NV T ensemble were simulated at a temperature of 298 K, with e@@tp$8 run starting at the
initial position of the discretization node using a randd@arting impulse vector, leading to a
joint sampling time of 40 ns for the complete discretization

The thermodynamic reweighting of the partial distribus@ampled for the 16 discretization
nodes documents a decrease in potential energy that islgirelated to the distance of the host
to the guest molecule (12, left). A notable improvement i ititeraction energy sets in with
node 11 at an approximate host-guest distance oh7ahd culminates in the bound state (nodes
14, 15 and 16). While nodes 1-10 have similar (and low) thelymamic weights, nodes 11-16,
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Figure 11: Left: Host guest syste@6-(MonoG1+H)-OTs after 2 ns equilibration of the solvent
mixture (10:1 chloroform-methanol) in the position-ragted unbound state at 298
K (chloroform = gray, methanol = purple). Polar clusters @thanol molecules are
clearly visible. Right: Three distances between ammoniurety and binding site
form the internal coordinates for the system.
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Figure 12: Left: Mean potential energy (gray) and corredisdretization node weights (blue)
for the 16 discretization nodes of systéd®-(MonoG1+H)-OTs. Right: Overlap
integral matrixS with 16 discretization nodes. Large matrix entries (redloy®
indicate no or only minor overlap with neighboring disczation nodes and represent
isolated and/or stable regions. Discretization nodes widimy off-diagonal entries
(blueish) exhibit a significant overlap with their neighbood and thus mark transient
regions.

covering host-guest distances of A&nd nearer, represent the largest share of the distributio

TheSmatrix of the discretization (12, right) exhibits an is@dtunbound state represented by
node 1, an articulate “block” for the bound state (nodes b4arid 16 in the lower right corner)
and a large transition region in between. Accordingly, tistering with PCCA+ identifies three
metastable states, namely the unbound state (UB) with ahivefgd.58 %, the almost bound
state (AB) with a weight of 9.04 %, and the bound state (SBhwitveight of 86.38 % (13).
State UB is detached from the rest of the system except foradl siegree of communication
involving nodes 2 and 3 that leads into state AB. State ABuin,texhibits a fluent transition
into state SB. Nodes 6, 9, and in particular 10 mark the ttiangiegion between the two clusters
AB and SB. Nodes 14, 15 and 16 have the highest membershiptavstate SB, and represent
the proper bound state.

In order to look into the transition behavior on the levellt# inetastable states, additional un-
restrained short-time MD simulations in the/ E ensemble were conducted. The unrestrained
“transition nodes” (as opposed to the discretization nodesl for sampling the stationary distri-
bution) were placed in regions of conformational spacertak interfaces between the different
metastable states, and thus are prone to reveal the assbtrimtsition behavior more readily
than simulations that are started exactly within the cestarmetastable region.
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Unbound (UB): 4.58 % Almost bound (AB): 9.04 % Singly bound (SB): 86.38 %

Figure 13: They " matrix (top) of systenC6-(MonoG1+H)-OTs groups the 16 discretization
nodes into three metastable states: The unbound state ¢t the almost bound
state (AB, center), and the singly bound state (SB, rightle dolors in the¢ T matrix
indicate the degree of membership of a discretization nodaytven metastable state:
dark red = highest degree of membership, dark blue = no meshiperNodes 6, 9

and 10 represent transition regions that belong almostieterthe two metastable
states AB and SB.

UB AB SB

UB /09868 00132 0
P:(t)= AB | 0.0489 07584 01928 |, with T =100 ps (16)
SB \ 00002 00029 09969

Using a total of 45 transition nodes started for ten runs 6fd®each using a random starting
impulse (45 ns additional sampling time), the transitionlgability matrix P;(7) is obtained
(Matrix 16). Within the short time span of 100 ps, the systaas h very high probability to
remain in either state UB or state SB. Given the system isaire $iB, it is more likely to make
the transition into the bound state (L9 %) than into the unbound state 6 %).

5 Conclusion

As far as the limited number of test cases allows, it was shttwah algorithm and software
perform reasonably well in determining the conformatiowaights and inter-conformational
transition probabilities of small molecular systems intbegacuum and explicit solvent. The
performance of the method in comparison to other approashssiot evaluated explicitly, but,
given that a similar algorithmic framework is used, shoudrbthe order of available umbrella
sampling approaches. Due to the fact Bl gridfree is dependent on the availability of a pre-
sampling of conformational space from which discretizatimdes can be selected, the cost of
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obtaining the presampling would have to be added to the ymndormance balance. The cost
of generating an adequate presampling is dependent ondtensyn question. For instance, a
series of docking poses of a small molecule in a protein hipgiocket would also serve as a
valid starting point for usin@IBgridfree.
Given the efficiency of current MD code in generating everyveng trajectories, the need for
a relatively complex algorithm lik&IBgridfree can be questioned. We see the advantage of
usingZIBgridfree mainly in the more directed generation of sampling datadangient regions
of conformational space (reducing the amount of redundamiping data) and the possibility
to add another level of parallelization to the sampling pesc namely parallel sampling of the
discretization nodes (i.e. conformational space regjomb)ch can be used to complement the
parallel force field evaluation in order to increase the alleslampling efficiency. Furthermore,
the use of collective variables (i.e. internal coordinptasd the integrated clustering approach
lead to a level of abstraction that significantly faciliethe analysis of the sampling data, the
identification of relevant events and their biological oegtical interpretation.
In upcoming work, we would like to improve the usability offseare and algorithm. In partic-
ular, we would like to eliminate certain discretization graeters that currently have to be set by
the user. Ideally, for a given system, an optimal number sfrétization nodes is proposed be-
forehand. TheIBgridfree scheme is also a suitable discretization of the infinitesgaaerator
described in [Web11]. Further invesigation in this direntivill also be done in future.
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