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Abstract Obtaining a sufficient sampling of conformational space is acommon problem in
molecular simulation. We present the implementation of an umbrella-like adaptive sampling
approach based on function-based meshless discretizationof conformational space that is com-
patible with state of the art molecular dynamics code and that integrates an eigenvector-based
clustering approach for conformational analysis and the computation of inter-conformational
transition rates. The approach is applied to three example systems, namelyn-pentane, alanine
dipeptide, and a small synthetic host-guest system, the latter two including explicitly modeled
solvent.
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1 Introduction

The dynamics of molecular systems exhibits a distinct metastable character: Molecular systems
tend to remain within an almost invariant subset of conformational space for a long time – long
in relation to the step size of the numerical integration, which for atomistic simulations is in the
order of one or two femtoseconds – while transitions betweendifferent almost invariant subsets
(i.e. conformational changes) are rarely observed events.This characteristic is due to the rough
potential energy landscape inherent to most molecular systems. Basins of low potential energy,
grouped around local minima, are separated by high energy barriers, corresponding to confor-
mational changes , or changes from unbound to bound state. This complicates the sampling
of conformational space, as molecular dynamics (MD) trajectories tend to generate states from
within the basin of one local minimum for a long time, while transitions between different local
minima are achieved only very seldom, or not at all. This effect, often denoted astrapping,
can lead to incomplete coverage of conformational space, and thus to insufficient statistics. It is
particularly severe with regard to the sampling of transient regions of conformational space, e.g.
in the study of ligand-receptor binding processes, as the dynamics of the system will try to avoid
the energetically unfavorable (but most interesting) transition states.
While, as of yet, thermostated long-time MD remains the predominant tool in the molecular
simulation community, several successful strategies for overcoming (or rather lessening) the
sampling problem have been developed, including umbrella sampling [TV77], essential dynam-
ics [ALB93] and replica exchange [SO99]. An excellent implementation of various enhanced
sampling schemes is available in terms of the PLUMED plug-in[BBB+09] that is compatible
with various popular MD packages.
In this article, we present an enhanced version of theZIBgridfree sampling algorithm [WM05],
which is inspired by the umbrella sampling approach.ZIBgridfree uses an adaptive refinement
strategy in order to enable efficient and thorough sampling even in transient regions of conforma-
tional space. The main feature ofZIBgridfree as presented here is that it combines an efficient
importance sampling scheme with a comprehensive and visualframework for conformational
analysis w.r.t. both single molecules and binding processes.
In the initial step of the algorithm, conformational space is partitioned into subsets. Each subset
is sampled independently toward convergence of the correctlocal distribution. More precisely,
instead of computing only one trajectory for exploring the potential energy landscape, we com-
pute short trajectories which are confined to a subset of the conformation space by restraints.
These subsets then are defined by a partition of unity on the conformation space. If convergence
fails (e.g. when the sampling keeps on “jumping” between twolocal minima), a refinement
of the partitioning is triggered, followed by additional sampling. In the subsequent step, each
local sampling will be weighted such that the overall histogram yields theglobal Boltzmann
distribution, so that the identification of conformations is reduced to a clustering problem based
on the eigenstates of the overlap matrix of the partitioning. Finally, conformational weights
and inter-conformational transition probabilities can bedetermined. The extended version of
ZIBgridfree presented here broadens the scope of this sampling scheme bycombining it with a
standard MD software package so as to give access to the most up-to-date molecular force fields
and solvent models.
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2 Theory and implementation

2.1 Conformation dynamics

As partitioning methods based on meshes or grids suffer fromthe “curse of dimensionality”,
ZIBgridfree implements a meshless, function-based partitioning approach. This is motivated
by the concept of conformation dynamics [Deu03, KW07], where conformations of a molecular
system are defined in terms of soft-characteristic membership functions, rather than classical
sets in position space (below denoted asΩ). We are interested in a soft partitioning of the
position space, i.e. we want to have a set of functionsχ1, . . . ,χnc : Ω → [0,1] such that

nC

∑
i=1

χi(q) = 1, (1)

holds for allq∈ Ω. One can regardχi as a probability distribution. For a set of position states
we say that they are distributed accordingχi when for each collection of conformationsA we
find

∫

A
χi(q)

w̃i
ρ(q)dq percent of position states from the set in a conformation from A, with the

corresponding thermodynamical weights

w̃i :=
∫

Ω
χi(q)ρ(q)dq. (2)

This means the position states are distributed according tothe partial density functioñρi:

ρ̃i =
χi(q)ρ(q)

w̃i
. (3)

Note that for the special caseχ1, . . . ,χnc : Ω → {0,1} our approach reduces to the well known
Markov State Model [SNS10, FBW12, PCP+11]. In this case ˜wi is the probability to be in set
Ai := {q∈ Ω | χi(q) = 1} and the transition matrixT for some fixed time stepτ is defined such
that Ti j denotes the probability to move from setAi to setA j in time τ . In general ˜wi denotes
the probability that the molecule will be found in the conformation represented byχi and the
transition matrixT for some time stepτ is given in the following way: If we have a set of
position states distributed accordingχi then after a time stepτ they will be distributed according
∑n

k=1 χkTik. One new property ofT is that the entries do not need to be positive. A partition
into metastable conformation is given if we find a soft partitioning such that each distribution
χi represents a metastable conformation, i.e.Tii ≈ 1 for i = 1, . . . ,nc. In the following we show
how one can obtain such a soft partitioning in metastable conformations and conclude with three
examples where we have approximated ˜wi for each. For one example we have also approximated
the transitions matrix.

To find χ1, . . . ,χnC we start off with a function basisφ1, ...,φs : Ω → [0,1], where the initial
number of basis functionss should be chosen larger than the anticipated number of conforma-
tions nc. The function basis is chosen such that is has the same properties as the membership
functions χ1, ...,χnC , i.e. partition of unity (cp. equation 1). Therefore, each conformation
membership functionχ j can be constructed from a convex combination of the basis functionsφi

[Web06]:

χ j =
s

∑
i=1

χdisc(i, j)φi , j = 1, ...,nC, (4)
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whereχdisc is a row-stochastic matrix containing the linear combination factors. Analogous to
ρ̃i andw̃i in equations 3 and 2, each of the basis function is associatedwith a partial densityρi

and a thermodynamic weightwi. In order to calculate a set of points distributed accordingφi

one can simulate a trajectory according to the modified potential energy functionŨi as [Web06]

Ũi(q) =U(q)+Ûi(q) =U(q)−
1
β

ln(φi(q)). (5)

This fact will come in handy for calculating the corresponding wi and the subsequent cluster
analysis which aims at identifying both the correct number of clustersnC, as well as the matrix
χdisc of linear combination factors, from which we obtain the set of membership functionsχ j by
applying equation 4.
As a precondition for the partitioning discussed above, a rough scheme of the relevant position
space has to be given. This can be delivered in terms of a long-time MD trajectory (possibly
using elevated temperature for improved coverage of position space), a targeted MD or pulling
trajectory, the output of certain tools for exploring conformational space (e.g.CONCOORD
[dGvAS+97] for protein structures) or even by manually preparing a sequence of geometries.
From thispresamplingis selected a set of nodes{n1, . . . ,ns} ∈ Ω to each of which is attached a
radial basis functionWi given by

Wi(q) = exp(−α δ 2(q,ni)), i = 1, ...,s, (6)

whereα is a shape parameter, andδ 2 a distance measure to be specified in the next section.
As the basis functionsWi do not satisfy Equation 1, we construct a partition of unity with basis
functionsφi by following Shepard’s approach [She68]:

φi :=
Wi

∑s
j=1Wj

, i = 1, ...,s. (7)

The basis functionsφi take on their maximum at the defining nodeni , and decrease exponen-
tially as the distanceδ 2 of a stateq to ni increases. As a consequence, the difference betweenŨi

(equation 5) andU is minimal within the stateni , and increases exponentially with the distance
to ni . This ensures thorough sampling in the area belonging to basis functionφi , as the sampling
process is restrained from wandering off into a lower energybasin. The shape parameterα is
chosen in dependence on the number of nodess and the mean node distanceθ , and defines the
degree of separation of the meshless discretization. Forα → ∞, the discretization converges
to a Voronoi tessellation, i.e. the soft partitioning degenerates into a hard partitioning without
overlaps between the basis functions.
In practice, the sampling of the basis functionsφi is run in parallel, as each̃Ui can be evalu-
ated at every positionq ∈ Ω independently of allŨ j with j 6= i. Depending on the available
resources, one can either sample several basis functions inparallel, evaluate the potentialŨi in
parallel (which in turn accelerates the sampling of the associated basis function), or combine
both approaches.

2.2 Internal coordinates

ZIBgridfree uses internal coordinates (either torsion angles and/or distances) as collective vari-
ables in order to define the conformation of the system under observation. Prior to picking a set
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of nodes for discretization, a set ofnK internal coordinates has to be specified by the user. The
distanceδ 2(q,ni) between stateq and nodeni (equation 6) is measured in the space of internal
coordinates. Therefore, the outcome of the discretizationis directly related to the choice of inter-
nal coordinates. Deciding on a meaningful set of internal coordinates is not always trivial. For
conformational analysis of small molecules, picking all rotatable torsion angles is an obvious
choice, whereas for peptides or proteins, picking only backbone torsion angles is practical. For
complexes of multiple molecules, the set of torsion angles has to be complemented by a set of
distances in order to describe the molecules’ relative positioning to each other.

Whereas angular internal coordinates can only take on values between -π and +π, distance (or
linear) coordinates can in principle take on any positive value. This leads to problems whenever
linear coordinates with a large spread or a large absolute value are overly dominant, as other
internal coordinates with more subtle changes are renderedirrelevant when the distance func-
tion δ 2 is evaluated. In order to tackle this problem, linear coordinates can be weighted and
normalized automatically by callingzgf create pool with option ‘–balance-linears’.
Let k be a linear coordinate that corresponds to the Euclidean distance between two particles in
the system under observation. The weight of this coordinateis then determined as follows:

coord weight(k) =
coord weight(k)initial

√

2∗var(k)
, (8)

wherecoord weight(k)initial is one, unless specified differently by the user. This means that
coordinates with a high spread are downgraded by dividing the initial weight by the full width
at half maximum. Furthermore, an offset fork is applied by subtracting its mean value in order
to compensate for high absolute values. This leads to the following weighting formula:

kbalanced= coord weight(k) · (k−offset(k))

= coord weight(k) · (k− (offset(k)initial +mean(k))),
(9)

whereoffset(k)initial is zero, unless specified differently by the user. This approach realizes
an equal weighting of all internal coordinates involved. Nonetheless, certain applications might
call for biased weighting of the internal coordinates, e.g.when the distance between ligand and
receptor (defined by linear internal coordinates) is to be stressed in comparison to more subtle
conformational changes in the ligand molecule (defined by torsion angle internal coordinates).

2.3 Implementing the potential modification

Sampling theZIBgridfree basis functionφi requires a modification of the potential function
U(q) (equation 5). Our aim was to change the algorithm such that itcan be run with standard
force fields and unmodified molecular dynamics (MD) packagessuch asGROMACS[HKvdSL08].
Treating the MD code as a black box has several advantages: The user can use readily available
software (pre-compiled for many Linux distributions and pre-installed on most computing clus-
ters), and plug in new versions as they are released. Full flexibility regarding the choice of
force field and other simulation parameters is sustained. Furthermore, internal changes to the
highly optimized MD code, possibly having a negative impacton the simulation performance,
are evaded.
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AdaptingZIBgridfree to a standard MD package is a two-step procedure. First, for each selected
nodeni , thenK-dimensionalφi function is projected on a single dimension by coordinate-wise
evaluation: Instead of considering the joint distanceδ 2(q,ni) (involving all internal coordinates)
we now exclusively consider the distance regarding coordinatek:

φik(q) :=
exp(−α δ 2

k (q,ni))

∑s
j=1exp(−α δ 2

k (q,n j ))
, k= 1, ...,nK . (10)

The above expression yields the membership of stateq with respect to coordinatek regarding
basis functionφi . The one-dimensional penalty potential acting on coordinate k of stateq can
simply be obtained as:

Ûik(q) =−
1
β

ln(φik(q)). (11)

Finally, in order to approximatêUi, for every internal coordinatek, a generic cubic restraint
potential (as available in many common MD packages) is fittedto the penalty potential̂Uik and
added to the force field representing the unmodified potential U . We implemented this approach
for theGROMACS MD package, where restraint potentials of the form

Ures(Φ′) =

{

1
2kres(Φ′−∆Φ)2 , for Φ′ > ∆Φ
0, for Φ′ ≤ ∆Φ

(12)

are readily available (given here for a torsion angle restraint on torsion angleΦ′ = (Φ0−Φ)
mod 2π, with rest positionΦ0 and unrestrained region∆Φ, analogous for distance restraints).
The concept of fitting restraint potentials to the coordinate-wise projected basis function penalty
potentials ofZIBgridfree is depicted in 1.

The imperfect approximation of multi-dimensional basis functions by harmonic restraints in-
troduces a certain error, as sampling points may be generated from areas ofΩ that are not
covered by the basis function in question. This is especially true for boundary regions, where
several basis functions are overlapping. This approximation error can be removed by giving
each sampling pointq a weightframe weighti(q) with respect to basis functionφi :

frame weighti(q) =
φi(q)

exp(−β ·Ures(q))
. (13)

The effect of reweighting on the sampling distribution is depicted in 1. Calculating the sam-
pling point weights is inexpensive in terms of computation time. Subsequently, when check-
ing for convergence of the sampling, or when calculating observables of any kind, only the
reweighted distribution is considered.

2.4 Adaptive refinement of the partitioning

In order to ascertain a sufficient sampling of the partial densities ρi , ZIBgridfree pursues an
adaptive refinement approach. After a certain number of simulation steps, convergence of
the sampling is tested by evaluating the variance-based Gelman-Rubin convergence criterion
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Figure 1: Sampling of a torsion angle distribution (gray histogram) withZIBgridfree. The sam-
pling is forced to stay within the area of an exemplary basis function (dashed gray line)
by its penalty potential (dashed black line). For use withGROMACS, the penalty po-
tential is approximated by a harmonic restraint potential (solid black line). Due to the
approximation error, the sampling is not sufficiently limited to the area covered by its
basis function (left). After reweighting the sampling points with regard to the their
basis function (right), the approximation error is removed.

[GR92]. If the convergence test fails, the sampling will be extended byn simulation steps (fol-
lowed by another convergence test) for a maximum ofm times (wheren andm are user-defined
settings). If convergence has not been achieved afterm extensions of the original sampling
length, a refinement of the partitioning in the area of the affected basis function is triggered. By
default, two children nodesni1 andni2 are introduced, whereas the original parentni is removed
from the partitioning, along with its basis functionφi . This principle is illustrated in 2.

Removal and addition of nodes have an impact on the overall partitioning, as with the num-
ber of nodess, the mean node distanceθ is bound to change. Hence, the shape parameterα
(equation 6) is recalculated following each refinement step. With proceeding refinement and
increasings, α will become larger, which in turn leads to a higher degree of separation between
basis functions. This mechanism leads to increased convergence rates over the course of the
refinement.

Despite several cycles of refinement, the sampling of transition regions (e.g. when a node is
situated on the steep flank of a potential energy barrier) maynot lead to convergence according
to the Gelman-Rubin criterion. In these cases, the samplinghas to be discontinued as soon as a
sufficient number of data points from the transition region has been collected.

2.5 Reweighting and cluster analysis

Direct free energy reweighting

The local confined samplings are distributed according to

ρi =
φi ·ρ
wi

.
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Figure 2: The sampling of basis function ’1’ (associated with a node at -68◦) has come upon a
second minimum in the region around -180◦ (left). In this case, convergence of the
sampling is not achieved in the allocated number of samplingsteps. A failed conver-
gence test triggers an automatic refinement of the partitioning (right). The parent node
’1’ is removed and replaced by two children named ’7’ (-65◦) and ’8’ (-167◦). The
samplings of the associated basis functions converge quickly, as they are now confined
to a single energy minimum each.

If we can calculate the termsw1, . . . ,ws we can approximate the correct Boltzmann distribution
by weighting the local histogram ofρi . The correct weighting is given through

s

∑
i=1

wiρi =
s

∑
i=1

φiρ = ρ

since theφi ’s sum up to one. The partition of unity assures that the passage between the over-
lapping subsets is described correctly. We remark that thispartition of the conformation space
is for the purpose of efficiency only and has thus no real physical or chemical meaning. In or-
der to get the ”true” global distribution we thus have to account for these local restraints, since
otherwise spurious effects might occur which is illustrated in 3 for the torsion angle distribution
of n-pentane. In order to arrive at a balanced joint Boltzmann distribution, we need to find
the correctwi . This is done with the free energy difference estimate implemented in the tool
zgf reweight, based on the approach of Klimm et al. [KBW11]. This approach, which is
not dependent on explicit overlap between the partial densities, is outlined shortly in the follow-
ing. In principle, other methods for thermodynamic reweighting, such as the popular weighted
histogram analysis method (WHAM) [KRB+95, Rou95], can be employed as well.

1. From each set of states{q(i)n }n=1,...,N(i) ∈ Ω representing the partial densityρi, i = 1, . . . ,s,

choose a set of reference points{q(i)r }r=1,...,R(i) . A reference point is characterized by
having a potential energy value within the energy standard deviation ofρi . More precisely,
with 〈U (i)〉 being the mean potential energy of setq(i),

∥

∥

∥
U(q(i)r )−〈U (i)〉

∥

∥

∥
≤

√

√

√

√

1

N(i)

N(i)

∑
n

(

U(q(i)n )−〈U (i)〉
)2

.
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2. Approximate the local density of sampling points by evaluating expressionDvoli , which

counts the numberN(i)
near of sampling points that arenear, i.e. within a certain distancevoli

around each reference pointq(i)r , and compute its inverse

(

Dvoli (q
(i)
r )
)−1

≈
N(i)

N(i)
near+1

.

For our purpose,voli is chosen as large as the mean variance of the internal coordinates
regarding all sets of statesq(i), which is precomputed in a first iteration over the sampling
data. The variance for each set is computed in terms of the distance functionδ 2, dependent
on the type of the internal coordinates that are involved in the discretization.

3. Compute the entropy estimate

Si = kB ln

(

1

R(i)

R(i)

∑
l=1

(

Dvoli (q
(i)
r )
)−1

)

,

the free energy

Gi = 〈U (i)〉−T ·Si ,

and the statistical weights

wi = wi−1 ·exp(−β (Gi −Gi−1)) ,

with w1 = 1. The free energy values have to be ordered by size before calculating the
statistical weights. Finally, the statistical weights have to be normalized so that∑s

i=1 wi =
1.

Overlap weight correction

The reweighting method introduced in the previous section works best for well-separated basis
functions. Depending on the given discretization and the nature of the system under observation,
the basis functions inZIBgridfree can have a more or less pronounced overlap. We perform a
correction of the statistical weightswi in order to take basis function overlap into account. The
degree of overlap between each pair of basis functionsφi andφ j is quantified in terms of the
overlap integral matrixS∈ R

s×s:

Si j =
∫

Ω
φi(q)ρ j(q)dq, (14)

which for large numbers is approximated as
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Figure 3: Torsion angle distribution of the two torsion angles ofn-pentane at 300 K, assembled
from 25 individual node samplings. Before reweighting, each partial density con-
tributes equally to the joint distribution (left). This leads to disproportionately high
weights of the gauche/trans, trans/gauche and gauche/gauche conformations. After
thermodynamic reweighting, the correct relative weights of the partial densities are
restored, which leads to an improved joint distribution (right).

Si j =
1

N(i)

N(i)

∑
n=1

φ j(q
(i)
n ) ·frame weighti(q

(i)
n ) (15)

from the states{q(i)n }n=1,...,N(i) that represent the partial densityρi . Note that the shape ofS
is influenced by the chosen discretization, in particular bythe number of discretization nodess.
For fine discretizations (largeα , cp. Equations 6 and 7),Swill resemble a diagonal matrix. For
very coarse discretizations and smallα , it will degenerate into a full matrix.

The statistical weightsw of the basis functions can be derived by solving the eigenvalue
problemw⊤S= w⊤, which means thatw corresponds to the unique, positive and normalized
left eigenvector ofS with regard to its eigenvalueλ1 = 1 [Web06]. This eigenvector-based
approach is not well-conditioned and highly dependent on sufficient sampling in the overlap
regions between the basis functions [WKWD07]. In order to benefit from the advantages of
both direct free energy reweighting and the eigenvector-based approach, we start a number of
power iteration steps from the original weightsw with the stochastic matrix, until the corrected
weights (again denoted asw) are convergent.

The row sums of the matrixS do not correspond to the corrected weightsw. According to
the method of Sinkhorn[Sin64], an iterative rescaling of the row sums to meetw, followed by
a symmetrization ofS, leads to a corrected overlap integral matrix that is consistent with the
precomputed statistical weights.

Metastability analysis with PCCA+

From the chemical perspective, metastable subsets correspond to the main conformations of
the underlying molecular system. In the presence of metastable states, any matrix describing
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the transition behavior of the system (including the matrixS) exhibits a virtual block-diagonal
structure, i.e. there exists a permutation of indices so that the metastable subsets of the system
are represented by (more or less) quadratic blocks along thediagonal of the matrix (see 4).

Figure 4: Schematic of a (permutated) transition matrix in the presence of metastable subsets.
Within the three conformationsc1 to c3, states are mixing quickly. By contrast, transi-
tions from conformation to conformation (light gray off-diagonal area) are rare events.

Every block in this matrix is associated with an eigenvectorof the matrix whose eigenvalue
is almost one. The set of the eigenvalues in the vicinity of one is denoted as the Perron cluster,
and the size of this set corresponds to the number of chemicalconformationsnC. The linear
combinations of the eigenvectors associated with the eigenvalues of the Perron cluster contain,
for each basis functionφi , the degree of membership with regard to each of thenC conforma-
tions. Robust Perron cluster analysis (PCCA+) [DW05, WK05]is used to find the permutation
yielding the block-diagonal structure, and hence the matrix of linear combination factorsχdisc

(cp. Equation 4). The result is the matrixχ ∈ R
s×nC, where the entryχ(i, j) ∈ [0,1] denotes the

degree of membership of basis functionφi with regard to thej-th metastable subset.
Using the weight vectorw containing the thermodynamic weights of the basis functions φi , it

is then possible to calculate the weights ˜w of the conformations as ˜w= χ⊤w.

3 Molecular simulation details

All molecular simulations were performed withGROMACS, versions 4.54 and 4.55 (single pre-
cision, unless stated differently). All molecules were parametrized for the Amber-99SB force
field [HAO+06]. Residues not already included in the standard force field were prepared using
the softwareACPYPE [dSV12] andAntechamber [WWC+04, WWKC06] from AmberTools
[CCID+05], with charges calculated by the AM1-BCC method [JBJB00,JJB02].
For the vacuum simulations (n-pentane), van der Waals and Coulomb interactions were com-
puted without cut-off (all vs. all). For the explicit solvent alanine dipeptide simulations, the
TIP4P-Ew water model [HSP+04, HSP05] was used. The solute was placed in a rhombic
dodecahedron periodic box of 4.0 nm side length. The host-guest system structure in non-
complexed form (with the guest molecule displaced by 1.5 nm)was placed in a cubic periodic
box of 6.5 nm side length and solvated in a 10:1 mixture of chloroform and methanol. The force
field parameters for chloroform and methanol were obtained from theGROMACS Molecule
& Liquid Database at URLhttp://virtualchemistry.org/gmld.php [CvMH+11,
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vdSvMC12]. To neutralize the overall charge, a single counter ion was added to the simulation
box. In both cases, a twin range cut-off of 1.0/1.4 nm for van der Waals interactions was applied
and the smooth particle mesh Ewald algorithm [EPB+95] was used for Coulomb interactions,
with a switching distance of 1.0 nm.
In order to generate theNVT ensemble of states for the desired temperature of 298/300 K,either
the velocity-rescaling thermostat [BDP07] in combinationwith an MD leap-frog integrator, or a
Langevin-type stochastic dynamics [VGB88] integrator wasused. For the explicit solventN pT
simulations (alanine dipeptide), the velocity-rescalingthermostat/stochastic dynamics integrator
was supplemented by the Parrinello-Rahman barostat [PR81,NK83], with a reference pressure
of 1 bar. For the host-guest system transition node samplings, neither thermostat nor barostat
were applied in order to realize anNVE ensemble setup. The integration step was set to 1 fs for
all simulations. The error threshold for the symmetrization of theSmatrices was set to 10−2 for
n-pentane, to 10−4 for alanine dipeptide, and to 10−3 for the host-guest system.

4 Results and discussion

4.1 Pentane in vacuo

Figure 5: Three-dimensional representation ofn-pentane. The two backbone torsion angles cho-
sen as internal coordinates are highlighted.

In order to evaluate basic properties of the algorithm, vacuum simulations ofn-pentane, a
small alkane with five carbon atoms (see Figure 5), were conducted. The two backbone torsion
angles ofn-pentane were chosen as internal coordinates for the discretization. With regard to
these internal coordinates,n-pentane has nine main conformations, separated by distinct energy
barriers. The presampling of conformational space was obtained in terms of a 100 ns MD
simulation at a very high (and physically unrealistic) temperature of 1000 K. Reference weights
for the conformations ofn-pentane were taken from the literature [Sch99] (see Table 1).

Stability regarding randomness of impulse and discretizat ion

In order to monitor the impact of choosing a different discretization (placing of nodes in confor-
mational space) on the sampling outcome, three experimentswith ten runs ofZIBgridfree each
were conducted: a) Equally placed nodes, but random MD starting impulse, b) randomly placed

12



c tr/tr g−/tr g+/tr tr/g− tr/g+ g+/g+ g−/g− g+/g− g−/g+

w̃c 0.473 0.120 0.132 0.117 0.132 0.013 0.012 < 0.005 < 0.005

Table 1: Conformational weights ofn-pentane at 300 K, derived from a hybrid Monte Carlo
(HMC) simulation using the Merck molecular force field [Hal96]. tr(ans):≈ ±180◦,
g(auche)+: ≈ +60◦, g(auche)−: ≈ −60◦. Torsion angles are given on the scale
[−180, . . . ,180].

nodes, but equal MD starting impulse, and c) randomly placednodes and random MD starting
impulse. All runs were conducted with 20 discretization nodes and a minimum sampling time
of 100 ps per node, leading to a mean overall sampling time perrun of 2.8 ns. The results are
shown in Figure 6, left.

Randomizing the MD starting impulse leads to a maximum standard deviation of 0.025 re-
garding the weight of the most dominant conformation, tr/tr. Randomizing the node placement
by picking different initial seeds for thek-means algorithm leads to a maximum standard devi-
ation of 0.031 for conformation tr/tr. When both MD startingimpulse and node placement are
randomized at the same time (mimicking a standard sampling setup), the maximum standard
deviation is slightly smaller (0.23 for conformation tr/tr), which indicates that the uncertainty
regarding both choices is not additive.

Stability regarding fineness of discretization

Similar simulations (random MD starting impulse, random node placement, 100 ps minimum
sampling time per node) were performed with varying number of sampling nodes in order to
evaluate the impact of the fineness of the discretization. For this experiment, automatic refine-
ment of the discretization was switched off. The results areshown in Figure 6, right. When only
ten discretization nodes are used (only one more than the expected number of conformations),
the error becomes very large (0.128 for conformation tr/tr), and, despite a relatively large mean
overall sampling time of 3.2 ns per run, the rare conformations g+/g- and g-/g+ are not identified
at all. For 20, 30 and 40 discretization nodes (mean overall sampling times 2.79, 4.45 and 5.5 ns
per run), the results are comparable, but do not improve visibly with increasing fineness of the
discretization.

Stability regarding sampling time

Finally, it was looked into how the sampling time per node determines the quality of the results.
The outcome is shown in Figure 7. A very short minimum sampling time of 10 ps per node
produces a large error (0.099 for conformation tr/tr), but,given the mean overall sampling time
of only 365 ps per run, the averaged conformational weights are acceptable. With increasing
sampling time per node, the error can be significantly reduced. For a minimum sampling time
of 1000 ps per node (mean overall sampling time 26.7 ns), the maximum standard deviation
(conformation tr/tr) is reduced to 0.016, and below one percent for all other conformations. One
can conclude that a rough estimate of the conformational weights can be obtained at a very low
cost, whereas precise results have to be paid for with thorough sampling of the partial densities.
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Figure 6: Conformational weights ofn-pentane. Error bars indicate the standard deviation w.r.t.
10 runs. Deviation from the literature values is indicated as intra-bar plot. Left: 20
nodes, 100 ps minimum sampling time per node, with equally placed nodes, random
MD starting impulse (dark gray), randomly placed nodes, equal MD starting impulse
(gray), and randomly placed nodes and random MD starting impulse (light gray).
Right: 100 ps minimum sampling time per node, 10, 20, 30 and 40nodes (dark gray
to light gray), random MD starting impulse, random node placement.
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Figure 7: Conformational weights ofn-pentane. Error bars indicate the standard deviation w.r.t.
10 runs. Deviation from the literature values is indicated as sub-bar plot. 25 nodes,
with 10, 100 and 1000 ps minimum sampling time per node (dark gray to light gray),
random MD starting impulse, random node placement.

The results show a perceivable deviation w.r.t. to the conformational weights found in the lit-
erature (cp. Table 1), which most likely can be attributed tothe use of a different force field and
(possibly) the different dynamics for propagating the system. For comparison, the conforma-
tional weights obtained fromZIBgridfree with 25 nodes and 1000 ps minimum sampling time
per node, averaged over ten runs, are given in Table 2.

c tr/tr g−/tr g+/tr tr/g− tr/g+ g+/g+ g−/g− g+/g− g−/g+

w̃c 0.486 0.113 0.113 0.116 0.110 0.027 0.029 0.003 0.004

Table 2: Averaged conformational weights ofn-pentane at 300 K, derived from ten runs ofZIB-
gridfree using the Amber-99SB force field.

4.2 Alanine dipeptide in water

As a second example, the conformations of alanine dipeptidein explicit TIP4P-Ew water were
studied. Alanine dipeptide is the most basic (or “minimal”)polypeptide and serves as a popular
test case for evaluating biological force fields. The two backbone torsion anglesΦ andΨ span
the relevant conformational space of alanine dipeptide, and were hence chosen as internal co-
ordinates for the discretization. With regard to these internal coordinates, alanine dipeptide has
six main conformations, which however are not as well-separated as in the previous example,
n-pentane. Obtaining correct conformational weights from explicit solvent simulations is more
difficult compared to vacuum or implicit solvent settings, as the dynamics of a solvated system
is decelerated, while the computational cost of producing sufficient sampling data multiplies.

Reference weights for the conformations of alanine dipetide at 300 K in theNVT and in the
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Figure 8: Three-dimensional representation of alanine dipeptide (ACE-ALA-NME, i.e. termi-
nally blocked alanine). The two backbone torsion anglesΦ andΨ chosen as internal
coordinates are highlighted.

N pT ensemble were obtained from two 200 ns MD simulations (see Table 3).

c C5 PII αR αP αL Cα
7

NVT w̃c 0.2696 0.4043 0.1745 0.1369 0.0136 0.0010
N pT w̃c 0.2794 0.4363 0.1563 0.1190 0.0070 0.0020

Table 3: Conformational weights of alanine dipeptide at 300K in the NVT and in theN pT
ensemble, derived from two 200 ns MD simulations using the Amber-99SB force
field. C5: ≈ 143◦/− 158◦, PII : ≈ 70◦/− 158◦, αR: ≈ 70◦/11◦, αP: ≈ 136◦/− 11◦,
αL: ≈ 55◦/− 40◦, andCα

7 : ≈ −60◦/± 180◦. Torsion angles are given on the scale
[−180, . . . ,180]. Conformation labels taken from Choderaet al. [CSPD06].

Explicitly modeled water also complicates the presamplingof conformational space: High
(or elevated) temperature presampling is possibly only to acertain extent, and requires a re-
equilibration of the simulation boxes before the partial densities can be sampled at the target tem-
perature. In principle, discretization nodes can also be picked from a vacuum or implicit solvent
trajectory of the molecule of interest, to be put in explicitsolvent only before the sampling of par-
tial densities withZIBgridfree is commenced (implemented in the toolszgf solvate nodes
andzgf genion). Again, another cycle of energy minimization and simulation box equilibra-
tion is needed before usable sampling data can be collected.For this example, the presampling
consisted of a 100 ns MD trajectory at the target temperatureof 300 K, which means that re-
equilibration after node selection was not necessary.

Stability regarding sampling time

First, it was looked into how the sampling time per node determines the quality of the results
using random MD starting impulse and random node placement in an NVT ensemble. The
outcome is shown in Figure 9. In comparison to the (vacuum)n-pentane example, a longer
minimum sampling time per node is required in order to yield acceptable results. For a very
short minimum sampling time of 10 ps per node, the results were not interpretable due to the
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large error (data not shown). A minimum sampling time of 100 ps per node (mean overall
sampling time 2.4 ns) produces large errors of around 15 % in terms of standard deviation for
the three largest conformationsPII , C5 andαR. When the minimum sampling time per node is
increased to 500 ps (mean overall sampling time 7.7 ns), the error can be reduced below 6 %
for all conformations (largest error is 0.0581 for conformation PII ). Finally, with a minimum
sampling time of 1000 ps per node (mean overall sampling time15 ns), the error is in the range
of 5 %, and mainly below (largest error is 0.0533 for conformation PII ).
An auxiliary trial with a minimum sampling time of 1000 ps pernode (mean overall sampling
time 15.56 ns) using a double precision version ofGROMACS did not lead to a further decrease
in standard deviation, contrary to what might have been expected from an increase in precision
of coordinates and observables.

Figure 9: Conformational weights of alanine dipeptide. Error bars indicate the standard devia-
tion w.r.t. 10 runs. Deviation from the reference values is indicated as sub-bar plot.
15 nodes, with 100, 500 and 1000 ps minimum sampling time per node (dark gray to
light gray), including an auxiliary 1000 ps double precision trial, random MD starting
impulse, random node placement.

Stability regarding choice of dynamics

Second, similar simulations (random MD starting impulse, 15 randomly placed nodes, 1000 ps
minimum sampling time per node) were performed while exchanging the common MD integra-
tor with a stochastic dynamics (SD) integrator. Both integrators were compared in the context
of an NVT and anN pT ensemble, the latter realized by using a Parrinello-Rahmanbarostat.
All trial runs were conducted with a double precision version of GROMACS. The results are
shown in Figure 10. In bothNVT andN pT ensemble, the SD integrator delivers better results
with regard to the standard deviation over ten runs. In theNVT ensemble, the largest error ob-
tained with the SD integrator is 3.618 % (conformationPII ), compared to 5.86 % when the MD
integrator is used (conformationαR). This gap becomes somewhat closer in theN pT ensemble,
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where the largest error obtained with the SD integrator is 5.35 %, compared to 6.3 % when the
MD integrator is used (both w.r.t. conformationαR).
The chosen dynamics also has an impact on the mean conformational weights. When the SD
integrator is used, the largest conformation,PII is sampled less dominant than with the MD inte-
grator (NVT: 36.18 % compared to 39.68 %, andN pT: 39.02 % compared to 44.93 %). Instead,
the conformational weight is distributed more equally overthe minor conformationsαR, αP and
αL.

Figure 10: Conformational weights of alanine dipeptide. Error bars indicate the standard devia-
tion w.r.t. 10 runs. Deviation from the reference values is indicated as sub-bar plot. 15
nodes, 1000 ps minimum sampling time per node, random node placement, with MD
integrator (NVT), SD integrator (NVT), MD integrator (N pT), and SD integrator
(N pT), dark gray to light gray.

The results show an acceptable agreement with the referenceweights that were extracted from
the 200 ns MD trajectory for all runs using 500 ps or more minimum sampling time per node, at
least for the runs conducted with the MD integrator (i.e. thesame integrator that was used for the
long-time trajectories used as reference). Long-time datafrom the SD integrator is not available,
but it can be expected to deliver a slightly different distribution. In general, the largest deviation
is found for theαR conformation:ZIBgridfree tends to overweightαR by about 4 %, a weight
that is mostly drawn from theαP, and partly from theαL conformation. As the conformations
of alanine dipeptide tend to have notable overlapping regions (as opposed to the well-separated
conformations ofn-pentane), the error might not only be due to insufficient sampling, but also
to imperfect clustering of certain states in transient regions. For comparison, the conformational
weights in theNVT and theN pT ensemble, obtained fromZIBgridfree with 15 nodes and 1000
ps minimum sampling time per node and averaged over ten runs,are given in Table 4.
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c C5 PII αR αP αL Cα
7

NVT w̃c 0.2606 0.3968 0.2112 0.1244 0.0067 0.0003
N pT w̃c 0.2871 0.4493 0.1586 0.1035 0.0015 0.0001

Table 4: Averaged conformational weights of alanine dipeptide at 300 K in theNVT and in the
N pT ensemble, derived from ten runs ofZIBgridfree using the Amber-99SB force field
(MD integrator, double precisionGROMACS).

4.3 Host-guest binding process in explicit solvent

In order to give a proof of concept for a different application of the algorithm, the analysis
of a small crown ether-ammonium host-guest binding processis presented in the following.
The system consists of an 18-crown-6 dimer host molecule (C6), and an ammonium ion guest
molecule incorporating a short flexible tail (MonoG1+H). The thermodynamics of the formation
of complex (MonoG1+H)•C6 in a mixture of chloroform and methanol and in the presence of
tosylate counter ions (denoted as OTs) could be characterized recently, along with an analoguous
bivalent system [vK12].
The presampling for this system was obtained by free diffusion MD simulations involving the
complete explicit solvent and counter ion setup. One out of five 10 ns MD simulations starting
from the unbound state (11, left) with about 1.5 nm separation between host and guest molecule
captured a binding event. The relatively low yield can be explained by the fact that (i) both host
and guest molecule are rather small and mobile and thereforesubject to rapid diffusion in the
box and (ii) the complexation of host and guest is hindered bythe counter ion associating with
the ammonium moiety, obscuring the interaction site. Consequently, not every close contact
between host and guest immediately induces complex formation. The trajectory which captured
the binding event was prolonged to a total of 100 ns without showing indications for complex
dissociation.

Discretization and metastability analysis

The conformational space discretization was based on a set of internal coordinates consisting of
three strongly correlated distances between ammonium moiety and 18-crown-6 ring (11, right).
In order to remove the abundance of unbound states not related to the binding process from the
presampling data, states with distances of more than 1.8 nm distance between the interaction
sites were discarded. A total number of 16 discretization nodes was placed equidistantly in the
remaining part of conformational space. For each discretization node, 5× 500 ps of MD in the
NVT ensemble were simulated at a temperature of 298 K, with each 500 ps run starting at the
initial position of the discretization node using a random starting impulse vector, leading to a
joint sampling time of 40 ns for the complete discretization.

The thermodynamic reweighting of the partial distributions sampled for the 16 discretization
nodes documents a decrease in potential energy that is directly related to the distance of the host
to the guest molecule (12, left). A notable improvement in the interaction energy sets in with
node 11 at an approximate host-guest distance of 7.5Å, and culminates in the bound state (nodes
14, 15 and 16). While nodes 1–10 have similar (and low) thermodynamic weights, nodes 11–16,
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Figure 11: Left: Host guest systemC6-(MonoG1+H)-OTs after 2 ns equilibration of the solvent
mixture (10:1 chloroform-methanol) in the position-restrained unbound state at 298
K (chloroform = gray, methanol = purple). Polar clusters of methanol molecules are
clearly visible. Right: Three distances between ammonium moiety and binding site
form the internal coordinates for the system.
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Figure 12: Left: Mean potential energy (gray) and correcteddiscretization node weights (blue)
for the 16 discretization nodes of systemC6-(MonoG1+H)-OTs. Right: Overlap
integral matrixS with 16 discretization nodes. Large matrix entries (red, yellow)
indicate no or only minor overlap with neighboring discretization nodes and represent
isolated and/or stable regions. Discretization nodes withmany off-diagonal entries
(blueish) exhibit a significant overlap with their neighborhood and thus mark transient
regions.

covering host-guest distances of 7.5Å and nearer, represent the largest share of the distribution.
TheSmatrix of the discretization (12, right) exhibits an isolated unbound state represented by

node 1, an articulate “block” for the bound state (nodes 14, 15 and 16 in the lower right corner)
and a large transition region in between. Accordingly, the clustering with PCCA+ identifies three
metastable states, namely the unbound state (UB) with a weight of 4.58 %, the almost bound
state (AB) with a weight of 9.04 %, and the bound state (SB) with a weight of 86.38 % (13).
State UB is detached from the rest of the system except for a small degree of communication
involving nodes 2 and 3 that leads into state AB. State AB, in turn, exhibits a fluent transition
into state SB. Nodes 6, 9, and in particular 10 mark the transition region between the two clusters
AB and SB. Nodes 14, 15 and 16 have the highest membership w.r.t. to state SB, and represent
the proper bound state.

In order to look into the transition behavior on the level of the metastable states, additional un-
restrained short-time MD simulations in theNVE ensemble were conducted. The unrestrained
“transition nodes” (as opposed to the discretization nodesused for sampling the stationary distri-
bution) were placed in regions of conformational space thatmark interfaces between the different
metastable states, and thus are prone to reveal the associated transition behavior more readily
than simulations that are started exactly within the centerof a metastable region.
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Figure 13: Theχ⊤ matrix (top) of systemC6-(MonoG1+H)-OTs groups the 16 discretization
nodes into three metastable states: The unbound state (UB, left), the almost bound
state (AB, center), and the singly bound state (SB, right). The colors in theχ⊤ matrix
indicate the degree of membership of a discretization node to a given metastable state:
dark red = highest degree of membership, dark blue = no membership. Nodes 6, 9
and 10 represent transition regions that belong almost evenly to the two metastable
states AB and SB.

Pc(τ) =





UB AB SB

UB 0.9868 0.0132 0.
AB 0.0489 0.7584 0.1928
SB 0.0002 0.0029 0.9969



, with τ = 100 ps (16)

Using a total of 45 transition nodes started for ten runs of 100 ps each using a random starting
impulse (45 ns additional sampling time), the transition probability matrix Pc(τ) is obtained
(Matrix 16). Within the short time span of 100 ps, the system has a very high probability to
remain in either state UB or state SB. Given the system is in state AB, it is more likely to make
the transition into the bound state (≈ 19 %) than into the unbound state (≈ 5 %).

5 Conclusion

As far as the limited number of test cases allows, it was shownthat algorithm and software
perform reasonably well in determining the conformationalweights and inter-conformational
transition probabilities of small molecular systems in both vacuum and explicit solvent. The
performance of the method in comparison to other approacheswas not evaluated explicitly, but,
given that a similar algorithmic framework is used, should be in the order of available umbrella
sampling approaches. Due to the fact thatZIBgridfree is dependent on the availability of a pre-
sampling of conformational space from which discretization nodes can be selected, the cost of
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obtaining the presampling would have to be added to the overall performance balance. The cost
of generating an adequate presampling is dependent on the system in question. For instance, a
series of docking poses of a small molecule in a protein binding pocket would also serve as a
valid starting point for usingZIBgridfree.
Given the efficiency of current MD code in generating even very long trajectories, the need for
a relatively complex algorithm likeZIBgridfree can be questioned. We see the advantage of
usingZIBgridfree mainly in the more directed generation of sampling data in transient regions
of conformational space (reducing the amount of redundant sampling data) and the possibility
to add another level of parallelization to the sampling process, namely parallel sampling of the
discretization nodes (i.e. conformational space regions), which can be used to complement the
parallel force field evaluation in order to increase the overall sampling efficiency. Furthermore,
the use of collective variables (i.e. internal coordinates) and the integrated clustering approach
lead to a level of abstraction that significantly facilitates the analysis of the sampling data, the
identification of relevant events and their biological or chemical interpretation.
In upcoming work, we would like to improve the usability of software and algorithm. In partic-
ular, we would like to eliminate certain discretization parameters that currently have to be set by
the user. Ideally, for a given system, an optimal number of discretization nodes is proposed be-
forehand. TheZIBgridfree scheme is also a suitable discretization of the infinitesimal generator
described in [Web11]. Further invesigation in this direction will also be done in future.
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