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Analysis of Micro-Macro Transformations
of Railway Networks

Marco Blanco and Thomas Schlechte

Abstract A common technique in the solution of large or complex opti-
mization problems is the use of micro-macro transformations. In this paper,
we carry out a theoretical analysis of such transformations for the track allo-
cation problem in railway networks. We prove that the cumulative rounding
technique of Schlechte et al. satisfies two of three natural optimality criteria
and that this performance cannot be improved. We also show that under
extreme circumstances, this technique can perform inconvieniently by under-
estimating the global optimal value.

1 Introduction

It is often the case in discrete optimization problems coming from applica-
tions that the data is too complex to be tractable by an efficient algorithm.
However, much of the information in this precise (also called microscopic)
model is not necessary to obtain a very good feasible solution. A common
technique is to derive a simplified macroscopic model by aggregating the
structures of the microscopic model, find a good solution to the macroscopic
model, and retranslate it to the original problem. This idea has been used
in diverse settings. In [1], an algorithm for solving linear programs exactly
solves a sequence of increasingly detailed LPs until the desired degree of pre-
cision is reached. In [2], an algorithm for solving a dynamic progam over a
large state space is described. A sequence of coarse DPs is solved, and the
complexity/level of detail increases gradually. [3] surveys aggregation and dis-
aggregation techniques for optimization problems. This research was mostly
influenced by [5], where a micro-macro transformation is used for solving
the track allocation problem for railway networks (See [4, 5] for a precise
definition), which is the problem considered in this paper. One of the main
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difficulties in developing an efficient micro-macro algorithm for this problem
is choosing a reasonable time discretization. That is, given a time unit δ in
the microscopic model, we seek to find a larger unit ∆ for the macroscopic
model and then determine the input times of the macroscopic model in mul-
tiples of ∆. It is on this last step that we will focus next. Given a microscopic
running time of some route on a macroscopic track, the most natural choice
is to round it to a close multiple of ∆. Rounding down can lead to infeasi-
bilities, while rounding up all running times leads to an unnecessary increase
in the optimal value. Therefore, a combination of both seems to be the best
strategy. In this context, we consider the cumulative rounding method in-
troduced by Schlechte et al. in [5]. This method consists of rounding up the
running times along each route in order of traversal, until the total “lost”
time accumulated is at least the time corresponding to the track currently
considered, at which point we round down this running time and iterate.

While it is possible to give upper bounds on the overestimation error of
the total time needed to traverse each route, the impact of this rounding on
the originating network optimization problem as a whole has not been stud-
ied. The paper is structured as follows. In Section 2 we describe the general
problem, the motivation and the goals of micro-macro transformations. In
Section 3 we define three optimality criteria for a rounding strategy for the
track allocation problem. We prove that the cumulative rounding strategy
is optimal with respect to two of these criteria and that no strategy satis-
fies all three of them. Finally, in Section 4 we show an instance in which
cumulative rounding yields a macroscopic value that is smaller than the mi-
croscopic optimum and whose solution is impossible to translate back to the
original model without losing a significant factor. This shows the difficulty of
acheiving global optimality or near-optimality.

2 Our Setting

We consider a general minimization1 problem Pδ based on a time discretiza-
tion δ with kδ = ∆, k ∈ Z, k > 0. The problem P∆ results from rounding all
times of Pδ to multiples of ∆ with respect to alternate rounding strategies.
Let us consider the trivial rounding down (b c) and up (d e). Then for the
optimal values v, we have:

v(P b c∆ ) ≤ v(Pδ) ≤ v(P d e∆ )

On the one hand the solution of P d e∆ can be re-transformed, i.e., we main-
tain the orders of the trains and retranslate the departure and arrivals w.r.t.
δ, to a feasible solution of Pδ retaining the same objective value or obtaining
a better one. On the other hand v(P b c∆ ) only provides in general a valid lower
1 In case of the track allocation problem we want to schedule a fixed number of trains
on a network within a minimum time horizon.
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bound. Thus, we can guarantee some solution quality provided by the lower
bound v(P b c∆ ).

3 Optimality Criteria

While the ultimate objective in the track allocation problem is to find a
microscopic solution of optimal or near-optimal value, it is in general not clear
how to obtain a feasible microscopic solution from a macroscopic solution
such that the objective value does not increase. For that reason, we will
try to judge the quality of a transformation by comparing the values of the
obtained macroscopic and microscopic solutions. There are several (often
conflicting) possibilities of defining an “optimal” rounding algorithm, and it
is not obvious which of them should be considered. Here we consider three
very natural optimality criteria:

1. Global optimality: The total time is not underestimated and the corre-
sponding (overestimating) error is minimal.

2. Route-wise optimality: The total time on each individual route is not
underestimated and the corresponding (overestimating) error is minimal.

3. Local optimality: The overestimating error on any subroute
(jm, jm+1, . . . , jm+n) of a route r is less than ∆.

The no-underestimating condition guarantees that we can obtain feasible
solutions. The first two conditions are self-explaining and the third condition
guarantees that the approximation is good on a local level, i.e., on intervals.

In this section we prove that the cumulative rounding technique satisfies
the last two properties.

Theorem 1. For the track allocation problem, a rounding strategy is route-
wise optimal if and only if on every route j it rounds up the traversal times

corresponding to exactly
⌈∑

j∈D t̂rj

∆

⌉
tracks.

Proof. In the same setting as above, let r be a route. For every track j in the
route, let trj be the time (in units of δ) needed to traverse j, and let t̂rj ≡ trj
(mod ∆). If for this track we decide to round up, the (overestimating) error
will be ∆− t̂rj , while if we round down, the (underestimating) error is t̂rj . Let
J be the set of tracks in route r, let U ⊂ J (the set of tracks for which we
round up) and D = J\U (the tracks for which we round down). Now, the
total overestimating error is

εr =
∑

j∈U

(∆− t̂rj)−
∑

j∈D

t̂rj = |U |∆−
∑

j∈J

t̂rj .

Since
∑

j∈J t̂
r
j is independent of the choice of U andD, the total error depends

only on the cardinality of U . By the non-overestimating property, we are
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looking for a set U of minimal cardinality such that εr is nonnegative and

minimal. Clearly, this is achieved by choosing U with |U | =
⌈∑

j∈D t̂rj

∆

⌉
. �

Corollary 1. The cumulative rounding strategy is route-wise optimal and
locally optimal.

Proof. The authors of [5] have proven that on each route, the total error
caused by cumulative rounding is in the interval [0, ∆). By the proof of the
previous theorem, this is a minimizer and thus the strategy is route-wise
optimal.

To prove local optimality, let us consider a subroute r1 = (jm, . . . , jm+n).
We can picture this subroute as the difference between subroutes r2 =
(j1, j2, . . . , jm+n) and r3 = (j1, j2, . . . , jm−1). As before, let us denote by
εr the overestimating error of a subroute r. By the result in [5] we just men-
tioned above, we have 0 < εr

1
< ∆ and 0 < εr

2
< ∆. Suppose εr3

> ∆. Then,
we clearly have εr2 = εr

1 + εr
3
> ∆, which is a contradiction. �

Theorem 2. There exists no rounding strategy that satisfies all three de-
scribed optimality criteria.

Proof. Let us consider the following network, with ∆ = kδ for some k ≥ 3:

A B C D
∆ + δ

2∆

2∆− δ
∆

2∆− δ
∆

∆ + δ
2∆

Fig. 1: The numbers above and below the arcs represent, respectively, the
microscopic and macroscopic times for the corresponding tracks, assuming
all trains have uniform speed.

On this network, let us consider trains 1 and 2 traveling from A to D,
and train 3 traveling from D to A. We are interested in minimizing the time
until the last train arrives at its destination. We assume that for every track,
the headway time corresponding to two trains in the same direction is ∆.
Similarly, the headway time corresponding to two trains in opposite directions
along track j is tj +∆. Suppose trains can not stop at intermediate stations
and there are no restrictions on the departure or arrival times. A feasible and
in fact optimal solution is to let trains 1, 2 and 3 leave their initial stations
at times 0, ∆ and δ, respectively. As trains 1 and 2 go from B to C in one
direction, train 3 goes from C to B in the opposite direction without violating
the headway constraints. The time until the last train (train 2) arrives is 5∆+
δ. Suppose we have a route-wise and locally optimal strategy. Let us consider
r1, the route corresponding to train 1. By route-wise optimality, we know
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description discretization rounding technique optimal value
original problem δ - 5∆ + δ
approximation ∆ 〈 〉 12∆
feasible solution δ 〈 〉 10∆ + 2δ
feasible solution ∆ d e 7∆
feasible solution δ d e 5∆ + δ
lower bound ∆ b c 4∆

Table 1 Results for transformations of the optimization problem described in the proof
of Theorem 2. We use 〈 〉 to denote any strategy that is route-wise- and locally optimal.

that exactly one traversal time is rounded down. If this time corresponds
to either track AB or track CD, we know that the remaining two tracks
form a subroute with an overestimating error of ∆, which contradicts local
optimality. Without loss of generality, the same reasoning applies to routes r2

and r3, so the resulting macroscopic network is given by the numbers below
the arcs on Figure 1.

Let tj denote the microscopic time for each train on track j and Tj the
corresponding macroscopic time. By choice of the microscopic headway times,
the macroscopic headway times are still ∆ and Tj +∆. Since now the tracks
between B and C are of time ∆, the previous solution is no longer feasible. In
fact, now the optimal solution is to let trains 1 and 2 go from A to D, and let
train 3 depart only after the other two have arrived at D. This gives a total
time of 12∆, which is more than double the time needed in the microscopic
instance.

Applying the conservative approach (rounding up all running times), we
would get a total time of 7∆ as optimum, which is more than the micro-
scopic optimal value but significantly smaller than 12∆. Since the conserva-
tive rounding gives a smaller total time we can conclude that the considered
strategy does not satisfy global optimality. �

While the previous proof shows that the conservative rounding strategy
gives a better macroscopic total time, it is not immediately clear what the
corresponding microscopic times are. If we take the solution given by cumu-
lative rounding or a similar strategy and translate it back to the microscopic
model, we obtain a total time of 10∆ + 2δ, which is exactly double of the
optimal time. We summarize these results in Table 1.

Let us also note that we can easily make the macroscopic instance infeasible
while keeping the original feasible. For example, we could require for all trains
to arrive at their destinations at time 6∆ or before.

4 A paradoxical instance

In the previous section we saw some drawbacks to the cumulative rounding
strategy, but we also proved that it is impossible to improve it to a glob-
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ally optimal strategy while keeping both of its optimality properties. In this
section, we will give an instance such that the macroscopic optimal value
is much better than the microscopic optimal value. This shows that even if
we relax the optimality requirement in the global optimality condition, the
non-underestimating condition is not necessarily satisfied. Furthermore, this
hints that guaranteeing non-underestimation on a global level in general may
be very hard. Consider the network with two trains in Figure 2.

A B C D

E F

∆ + δ
2∆

2∆− δ
∆

∆ + δ
2∆

∆∆ ∆∆

Fig. 2: The numbers above (below) and to the left (right) of the arcs represent
the microscopic (macroscopic) times for the corresponding tracks.

Here, train 1 has to go from A to F and train 2 from D to E. The only
headway times of interest are those corresponding to track BC. They are
defined as tBC +∆. Trivially, an optimal solution is to let train 1 depart at
time 0 and let train 2 depart when train 1 is about to reach C (to be precise,
at time 3∆ − δ). In this solution, train 2 arrives to its destination at time
7∆− δ.

As in the previous example, the macroscopic headway times of interest are
now TBC + ∆. Letting train 1 depart at time 0 and train 2 at time 2∆, the
last train arrives at time 6∆. Clearly, this objective value is impossible to
attain in the microscopic problem.
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