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Abstract

In this paper we discuss several ways to visualize stationary and non-
stationary quantum mechanical systems. We demonstrate an approach for
the quantitative interpretation of probability density isovalues which yields
a reasonable correlation between isosurfaces for different timesteps. As an
intuitive quantity for visualizing the momentum of a quantum system we pro-
pose the probability flow density, which can be treated by vector field visu-
alization techniques. Finally, we discuss the visualization of non-stationary
systems by a sequence of single timestep images.

1 Introduction

Quantum mechanics deals with models very different from classical mechanics
and accordingly requires specific visualization. The objects of classical mechanics
are point-like particles which are completely characterized by their positions and
momenta. A classical particle could be visualized by a point in 3-space with an
arrow attached to this point to indicate its momentum. The evolution in time, i.e.
the particle’s trajectory, could be represented by a curve in 3-space.
In contrast, quantum mechanics characterizes the state of a system statistically. The
state of a quantum mechanical N-particle system is represented by a complex val-
ued wavefunction Ψ( �x1, . . . , �xN ) defined on the 3N-dimensional position space.
Its absolute square |Ψ( �x1, . . . , �xN )|2 can be interpreted as a probability density.
For a single particle system that means we have a real scalar field yielding the
probability P (V ) for finding the particle in V :

P (V ) =

∫
V
|Ψ(�x)|2 d3x (1)

For N particles the probability density cannot be considered as a set of N single
particle densities. In classical mechanics positions of different particles can be
specified independently, and interdependence does not occur until a force acts be-
tween the particles. However, in quantum mechanics only a combined probability
density for the positions of all particles together exists.
Thus, a visualization of a quantum mechanical N-particle system has to deal with
scalar fields in 3N dimensions. In this paper we will address the single particle
case.
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There have been some approaches to visualize quantum mechanical systems. Brandt
and Dahmen [1] gave an illustrated introduction to quantum mechanics. Abramov
et al. [2] proposed to display the probability density by isosurfaces or volume ren-
dering. They treated a three particle system and represented it in different coordi-
nate systems to express its important characteristics in a suitably small number of
degrees of freedom.
Pauschenwein and Thaller [3] took stationary states of the hydrogen atom and
showed isosurfaces and slices of the probability density color coding the phase
of the wavefunction. Further, they displayed the spin structure of a zero-energy
state in a magnetic field by vector field visualization.
A special approach for quantum chemistry is to visualize the charge density ρ.
Levit [4] shows isosurfaces of Δρ while Stalling [5] visualizes the electric field
�E = −∇ρ induced by ρ. Klimenko, Nikitin et al. [6] developed tools for the
visualization of topological features of relativistic string dynamics.
In the next section we will briefly describe the two quantum mechanical example
systems used subsequently. In section 3 we will discuss the visualization of the po-
sitional probability density and then introduce a way for choosing isovalues of the
probability density which yields a quantitative interpretation of the isovalues. For
non-stationary states this interpretation defines a reasonable correlation between
isosurfaces in succeeding time steps. In sections 4 and 5 we discuss methods to
visualize the full position and momentum information contained in the wavefunc-
tion. In section 6 we demonstrate the use of the probability flow density which is
especially useful for representing the dynamics of a stationary state. Finally, we
discuss the visualization of non-stationary systems by sequences of isosurfaces and
volume renderings in section 7.

2 Quantum mechanical model systems

In the following we discuss several visualization techniques using two quantum
mechanical model systems. One system is stationary and describes a particle scat-
tered on a single point interaction described by a δ-shaped potential

V (�x) =
1

α
δ(�x) (2)

with interaction strength α. We consider a stationary state for momentum �p = h̄�k
given analytically by

ψ(�k, �x) = ei
�k·�x +

ei|�k|·|�x|

(4πα − i|�k|)|�x|. (3)

As discussed in [7] we will see that for suitably chosen |�k| this system exhibits a
vortex in its probability flow density.
The other system is non-stationary and describes the photodissociation of an HF-
molecule situated in a face centered cubic crystal of Ar-atoms [8]. An excited

2



Figure 1: Volume Rendering of the positional probability density (PPD). The
opacity has peaks distributed over the density range producing an onion-like
shell structure in the image. The color varies from red for small values over
yellow to white for large values (cf. color plates).

initial state is assumed for the HF-molecule and its time evolution is numerically
determined in a quantum classical calculation. Ar and F are described classically
while the proton is treated quantum mechanically. The positions of Ar and F are
symbolized in the pictures by green and blue spheres with arbitrary diameter.

3 Positional probability density

As the positional probability density (PPD) |Ψ(�x)|2 is a density field an obvious
approach is to visualize it by volume rendering. The advantage of this method
is the possibility to consider the whole density field in one qualitative image and
thereby to represent its fuzziness. However, with volume rendering it is difficult to
recognize the spatial structure of the displayed object. Figure 1 shows the PPD of
the photodissociation system visualized by hardware volume rendering using 3D
texture hardware [9].
Another technique giving a much better impression of the spatial structure is to
compute an isosurface of the PPD. Unfortunately, this approach disregards a great
deal of information. An isosurface only shows those points where the field’s value

3



Figure 2: Transparent isosurfaces of the PPD. By a histogram-like analysis the
isovalue is chosen such that the probability for finding the particle inside the
volume enclosed by the emerging isosurface has a prescribed value p. Here we
show three nested isosurfaces with probabilities 25% (yellow), 50% (red), and
75% (yellow) (cf. color plates).

is equal to the isovalue ignoring any other information contained in the field. As a
compromise between the two methods we use nested transparent isosurfaces with
different isovalues (Figure 2). Thereby we get a richer impression of the field
structure without the diffuseness of volume rendering.
An important aspect of using isosurfaces is to use isovalues which allow a quan-
titative interpretation of the corresponding isosurfaces. Our approach is to choose
an isovalue v(p) corresponding to a given value 0 ≤ p ≤ 1 such that the particle
is with probability p on one side of the emerging isosurface and with probability
1 − p on the other side. Therefore we first calculate a histogram-like function out
of the PPD.
In our case the PPD is given by values vijk on a uniform cartesian grid. We sub-
divide the value range of the PPD by choosing values v1 < · · · < vN+1 such that
any value of the PPD lies in the interval [v1, vN+1]. For lε{1, . . . ,N} we compute
the sum sl of all values vijk which lie in the interval [vl, vl+1). If we multiply sl
by the volume of a grid cell Vgrid, we get the probability to find the particle at a

4



position where the PPD has a value in the interval [vl, vl+1). Accordingly the sum
over all sl multiplied by Vgrid is 1.
We choose a logarithmic distribution of the v1, . . . , vN+1, i.e. the values satisfy
vl = C lv1, where C is a suitably chosen constant. This is useful, since the prob-
ability for finding a particle at a position with density v increases with decreasing
v.
In order to find the isovalue v(p) corresponding to the probability p we define

Sl = Vgrid ·
N∑

m=l

sm (4)

and search for lp with

Slp > p > Slp+1. (5)

Then the isovalue satisfies vlp < v(p) < vlp+1. We approximate v(p) by

v(p) ≈ Slp − p

slp
(vlp+1 − vlp) + vlp . (6)

Using this approach, a well defined statistical interpretation of the isovalue is pos-
sible. Moreover, we obtain a correspondence between isosurfaces for successive
timesteps, which can thus be combined into animation sequences.

4 Phase

From the mathematical point of view the complementary and up to now unconsid-
ered part of information is the phase φ (�x) of the wavefunction defined by

Ψ(�x) =
√
ρ (�x)eiφ(�x). (7)

The phase distribution of the wavefunction has no relevance for statements about
the position of the described particle but contains informations about the momen-
tum of the system. The phase is ambiguous up to a global offset Δφ, i.e. Ψ(�x) and
Ψ̃(�x) = Ψ(�x) ·ei·Δφ describe the same state of a quantum mechanical system. The
relevant part of the phase distribution are the spatial phase variations.
The phase distribution is interesting to visualize, since the ratio between phase
frequency and geometric dimensions is an indicator for the degree of quantum
mechanical behaviour.
The phase distribution in combination with the PPD can be visualized by volume
rendering mapping the PPD onto the opacity and the phase onto the color by a
color circle. Thereby we use the complete information contained in the complex
field.
In case of the photodissociation, the surfaces of equal phase are approximately
parts of concentric spheres, which makes it complicated to get a useful visual im-
pression. In the middle of Figure 3 the camera is oriented orthogonally to these
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Figure 3: Combined volume rendering of PPD and phase. The viewing direction
is partly parallel to the surfaces of equal phase and partly orthogonal, which
leads to either rainbow-like or diffuse regions (cf. color plates).

surfaces; all surfaces contribute to the color of a volume rendered pixel, and thus
no phase variation is visible. At the top the surfaces are parallel to the viewing
direction, mainly one surface contributes to a pixel’s color, and a rainbow-like dis-
tribution is visible.

5 Momentum probability density

The second part of information contained in the wavefunction, beside the positional
probability density, is the momentum probability density. To find this, we take the
Fourier transform of Ψ(�x)

Ψ̂(�p) =
1

(2πh̄)
2
3

∫
e−i �p

h̄
·�xΨ(�x)d3x (8)

Its absolute square |Ψ̂(�p)|2 represents the probability density in momentum space.
The advantage of the momentum distribution over the phase distribution is its in-
tuitive interpretation as it describes a physical quantity. On the other hand, it is
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Figure 4: Probability flow density of the photodissociation of HF visualized
with illuminated field lines. For better perception of spatial structure long field
lines are used. They should not be interpreted as trajectories because the vector
field is time dependent.

defined in momentum space and thus cannot be combined in one picture with the
positional probability density.

6 Probability flow density

An alternative, which offers both an intuitive interpretation as quantity of physical
dynamics and joined presentability with the positional probability density, is the
probability flow density (PFD), which can be deduced from the preservation of
probability. The probability density fulfills an equation of continuity,

∂

∂t
|ψ|2 +∇�j = 0, (9)

where�j is called PFD and can be computed from the wavefunction ψ:

�j =
h̄

2mi
(ψ∗∇ψ − ψ∇ψ∗) =

1

m
Re

(
ψ∗ h̄

i
∇ψ

)
. (10)
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Figure 5: Probability flow density of a particle scattered by a point interaction
visualized with illuminated field lines. The arrow indicates the incoming di-
rection of the particle and the yellow sphere marks the position of the point
interaction. The PFD exhibits a circular vortex whose core is emphasized by
the green circle. The probability flows around the circle in the incoming direc-
tion and back through the circle in the opposite direction. The color of the field
lines indicates the magnitude of the PFD varying from blue for small values
over green and yellow to red for large values (cf. color plates).

The PFD is a vector field describing the dynamics of the wavefunction. We com-
puted the PFD for the proton wavefunction at several timesteps and visualized it
by illuminated lines [10].
For a good spatial impression it is necessary to use long field lines, but regarding
the non-stationarity of the system and the vectorfield long field lines are misleading
(Figure 4). The vector field in a single timestep is just a snapshot and can strongly
change in the time that an imaginary particle would need to follow the field line.
In the stationary case the use of long field lines is reasonable and expressive. We
took a stationary state of a particle scattered by a point interaction. For a suitably
chosen momentum of the scattered particle and strength of the interaction the PFD
exhibits a circular vortex centered around the collision axis (Figure 5).
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7 Animation

So far we have only treated single timesteps. Having visualized the PPD by an
isosurface it would be desirable to define a surface enclosing a certain part of the
PPD and then to let the surface evolve driven by the probability flow density of the
wavefunction. Thereby one could observe the dynamics of the enclosed part of the
“probability fluid”.
Displaying a sequence of isosurfaces for a constant probability p we can approxi-
mate such a physically evolving surface as long as the wavefunction is compressed
or decompressed homogeneously enough. This is a basic problem of animating
isosurfaces. As soon as the wavefunction is subject to local compression and de-
compression, e.g. in case of collisions, new parts of the surface can appear unex-
pectedly out of nowhere. On the other hand choosing an isovalue which covers all
interesting parts of the wavefunction in one timestep leads to visual clutter in other
timesteps.
The left column of Figure 6 shows snapshots of such an animation sequence for
photodissociating HF. As described above we show three nested isosurfaces en-
closing 25%, 50%, and 75% of the probability.
The initial state, which is not displayed, is a rotationally excited eigenstate of HF. It
consists of six wavepackets located on the positive and negative branches of the x-,
y- and z-axis. Further, there are twelve wavepackets with lower probability density
between them. In the top image, after 5.8 fs, the wavefunction has expanded. All
wavepackets have moved away from the center. In the middle image, after 12.2 fs,
the main axis packets are colliding with the neighbor atoms. After this collision the
wavepackets are partly scattered back to the center. The 75% isosurface begins to
cover a kind of “corona” which has been invisible up to now. In the bottom image,
after 21.4 fs, the low density packets, which had nearly disappeared, are visible
again and are still moving away from the center.
Alternatively, we generated an animation sequence with volume rendering. The
right column of Figure 6 shows snapshots from this sequence at the same mo-
ments as in the isosurface case. While the images are more diffuse than those with
isosurfaces, all information is used that is available from the probability density.
Respectively we can see that the “corona” has been there all the time but with a
density too small for the used isovalue.

8 Conclusion

We have demonstrated a method for the quantitative interpretation of isovalues of
the positional probability density. Thereby we proposed a reasonable way to gen-
erate corresponding isosurfaces for different timesteps. For intuitive visualization
of quantum mechanical dynamics we have introduced the display of the probability
flow density by field lines.
For the future several tasks remain. One is the visualization of the real evolution

9



Figure 6: Snapshots from the animation sequences of the photodissociation. At
5.8 fs (top), 12.2 fs (middle), and 21.4 fs (bottom) the left column shows nested
transparent isosurfaces of the PPD covering 25% (yellow), 50% (red), and 75%
(blue) of the probability. The right column shows volume rendering of the PPD at
the same timesteps.
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of an initial volume of “probability fluid” with flow surfaces [11]. Another one is
to visualize the probability flow density of non-stationary systems by streaklines
instead of field lines.
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