
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

GARY POWELL, MARTIN WEISER

Container Adaptors

Preprint SC 99-41 (December 1999)



Container Adaptors

Gary Powell
Sierra On-Line

3380 146th Pl SE �300 Bellevue, WA 98007, USA
e-mail: gary.powell@sierra.com

Martin Weiser
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Takustr. 7, 14195 Berlin, Germany.
e-mail: weiser@zib.de

Abstract

The C++ standard template library has many useful containers for
data. The standard library includes two adpators, queue, and stack. The
authors have extended this model along the lines of relational database
semantics. Sometimes the analogy is striking, and we will point it out
occasionally. An adaptor allows the standard algorithms to be used on
a subset or modification of the data without having to copy the data
elements into a new container. The authors provide many useful adaptors
which can be used together to produce interesting views of data in a
container.
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1 Introduction

When manipulating large containers of data, it would be handy to be able to
use the algorithms in the standard template library. By using an adaptor a
container can be made to appear to the algorithm as if it contained only the
elements of interest.

Although all the standard algorithms work on ranges instead of containers,
there may be algorithms that rely on begin() and end(), perhaps rbegin() and
rend() as well as the typedefs for iterators and perhaps something like size() or
swap(). In these cases, smart iterators are not powerful enough. Smart iterators
(see [1]) are adpators of iterators instead of adpators of containers.

Views are a natural way to write smart iterator factories. In fact, most of
the algorithmic intelligence of views is encapsulated in their iterators.

From a more theoretical point of view, the views provide a layer of ab-
straction that is compatible with the STL. These container adaptors are thus a
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natural way of extending the STL container concept in the same way as smart
iterators do with the iterator concept.

Views can simplify writing class interfaces. Assume you have a class that
contains nodes, edges, and patches (perhaps a graph package or a finite element
mesh – the latter is something we use views for). If you want to provide some
restricted access to the graph data, how do you do this? You could make the
node, edge, and patch containers public (shock!). Maybe the node container
is a polymorphic container of interior nodes and boundary nodes. Users of
the mesh would then have to deal with a container of pointers. Alternatively
you could provide beginNodes(), endNodes(), beginEdges(), . . . methods.
And don’t forget the numNodes(), numEdges(), . . . and perhaps the node(),
edge(), . . . random access methods. Still like it? We didn’t. Our solution:
Present apropriately adapted views that reference the internal containers. Writ-
ing nodes.begin() or edges.size() is better and easier to remember than
numEdges (or was ist num_edges? or size_edges? or ...) Views present the
standard interface people are used to when dealing with STL containers. �

2 Usage Examples

As an example, if we have a container of employees, and we want to find the
oldest one, we can create a functor with a operator()(Employee&) which re-
turns the age of the employee. Then we can create a transformed view of the
container and call max_element and get the employee record which we desire.

// A really minimal Employee Record

struct Employee {

Date dateOfBirth;

Height currHeight;

Weight currWeight;

Salary currSalary;

Name currName;

};

typedef container<Employee> EmployeeContainerType;

EmployeeContainerType AllEmployees;

Time getAge(Employee const& e) const

{ return today() - e.dateOfBirth; }

typedef transform_view< EmployeeContainerType,

Time (*)(Employee const&) >

DateOfBirthView;

1Before we go too far, we will be using algorithms from the standard template library,
hereafter known as STL. The STL code is in the namespace std, rather than clutter up our
examples with std::this and std::that, we have ommitted specifing the namespace. In
actual code you will have to either open the namespace std, or list the algorithms with using
statements, or specify the namespace at the actual call. Also we will be creating classes whose
only method is the operator()(). These classes are known as functors.
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// Search global Employee Container.

Employee& getOldestEmployee()

{

DateOfBirthView dobv(AllEmployees, getAge):

DateOfBirthView::iterator OldestAge = max_element(dobv.begin(),

dobv.end() );

Employee& OldestEmployee = *(OldestAge.get());

return OldestEmployee;

}

Here we use the type container to represent any STL compliant container,
which is not a collection of pairs like map or set. We have also provided a get()
function in the transform iterator class to return the underlying container itera-
tor. You could use a map or set but that would require another transformation
so we’ll get to that later.

The DateOfBirthView resembles a projection in relational algebra followed
by a simple transformation, as realized by the SQL statement

SELECT age(DateOfBirth) FROM AllEmployees.

Most of the work done by the view is in the transform_view class which
maintains a reference to the original container, and a functor (which actu-
ally may or may not be a function pointer). The functor is passed to the
transform_iterator class and then is applied to the data the iterator points
to whenever operator*() is called. This transformation iterator makes the
data appear as if it were something else. In this case it makes an Employee

reference appear as a Date to the algorithm max_element. We then retrieve an
iterator in the original domain container by calling get().

Now if we only wanted to print a list of employees who were born after a
certain date, we could apply a filtering view to the EmployeeContainer. First
we need to specify the functor to tell us which employees we want.

struct GetOldEmployees {

Date ofInterest;

GetOldEmployee(Date const& rhs) : ofInterest(rhs) {}

bool operator()(Employee const& e) const

{ return e.dateOfBirth < ofInterest; }

};

// Create a global ostream operator<< for Employee Records.

// (Left as an exercise to the reader.)

// Create the filter_view type specific to our need.

typedef filter_view< EmployeeContainerType, GetOldEmployees >

OldEmployeeViewType;

// Create the view.

OldEmployeeViewType oev(AllEmployees,
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GetOldEmployees(ThirtyYearsAgoToday));

// Print the employees who were born before Thirty Years Ago.

// (Our date of interest.)

copy(oev.begin(), oev.end(), ostream_iterator<int>(cout,"\n" ));

The filter_view implements the analogy of the relational algebra select
operation, as realized by the SQL WHERE clause:

SELECT * FROM AllEmployees

WHERE dateOfBirth < ThirtyYearsAgoToday

If we wanted to find the maximum salaried employee who is older than thirty
years we can combine the filter view with the transform view to create a view of
just those employees we are interested in and make max_element only see their
salary using the transform function.

// Create a global Salary comparison operator.

bool operator>(Salary const& lhs, Salary const& rhs)

{

// do some real salary comparison.

return lhs.salary_data > rhs.salary_data;

}

// Create a function to retrieve the Salary data.

Salary& getSalary()(Employee const& e) const

{ return e.currSalary; }

typedef transform_view<OldEmployeeViewType,

Salary (*)(Employee const&)>

OldSalaryViewType;

OldSalaryViewType osvt(oev, getSalary );

OldSalaryViewType::iterator iter;

iter = max_element(osvt.begin(), osvt.end() );

*iter == the maximum salary data.

Employee& DesiredEmployee = *(*(iter.get() ).get();

Notice how we can build increasingly complex views of our data by layering
these adaptors together�. The corresponding SQL statement to the osvt view
would be:

SELECT currSalary FROM AllEmployees

WHERE dateOfBirth < ThirtyYearsAgoToday

2Our views concept is based on the ideas of Jon Seymour [4] from 1996. He constructed a
view that contained a transformation as well as a filter and thus resembled the SQL statements
even closer than our current approach. But since transformation and filtering are useful in
their own right, we decided to decouple these tasks and to create a lean, orthogonal interface.
Of course, the functionality offered by both approaches is the same.
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Now suppose we have sorted our collection of employees by some criteria say
salary. And now we’d like to print out a list of the middle of the collection. We
could make a range_view of this collection.

EmployeeContainerType::iterator start = AllEmployees.begin();

EmployeeContainerType::iterator end = start;

advance(start, AllEmployees.size()/4);

advance(end, AllEmployees.size() * 3/4);

typedef range_view<EmployeeContainterType::iterator>

RangeViewEmployeesType;

RangeViewEmployeesType rve(start, end);

copy(rve.begin(),rve.end(),

ostream_iterator<Employee>(cout,"\n"));

Now you may ask why did we bother creating another container from two
iterators? When we could have just as easily written the for loop with the
original iterators. Good question, in this case no good reason at all. However
if you had written a template which relied on a container having the standard
functions, begin(), and end() (e.g. most of the views rely on referencing a
container instead of a range) it would not have worked to pass in two iterators.
In this way we make the sub range look like the whole container.

If you would like to view this data in reverse order you could apply a
reverse_view. The reverse_view does what you would expect by having
begin() return the rbegin() iterator. Thus unlike the standard algorithm it
requires a bidirectional container. The advantage to using a view is that a copy
of the data is not required.

typedef reverse_view<RangeViewEmployeesType> ReverseEmployeeView;

ReverseEmployeeView rrve(rve);

copy(rrve.begin(), rrve.end(),

ostream_iterator<Employee>(cout, "\n"));

Again we could use the filter view and/or the transform view, to make this
sub range appear as a container of a different type, or set of elements. We’ll
leave this as an exercise to the reader.

3 Views Survey

In this section we will give a short survey of most of the views contained in the
library.

First, is map_keys. This view uses the transform select_1st to make a map
appear as a collection of keys. We also have coded its counterpart map_values,
where the transform function is select_2nd. These views work on all pair
associative containers. This may be more than maps. map_values is useful
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when you want to view a map as an unordered container, perhaps to apply a
transform or filter to search for a subset of the data. An example would be
a map of football players stored by their NFL ID, to find the rookie running
back of the year, filter for rookies, then transform for yards rushed, then call
max_element on the resulting view.

Secondly, downcast_view. This view calls dynamic_cast on a container
of pointers, it then filters out the elements which return zero from the call to
dynamic_cast, and then converts the pointers to references. With this view
you can take a container of heterogenous objects, all inheriting from some base
class and view them as a collection of derived objects.

This sounds way more complicated than it is. We are using two trans-

form views and one filter_view. The first transform does the dynamic_cast,
then we use the filter_view to skip the elements that return a zero. Then
we use a transform_view to promote the pointers to references. In fact we
realized that for containers of pointers to heterogenious objects promotion of
a pointer to a reference would be useful on its own. We therefore created the
polymorphic_view and used it as part of the the downcast_view.

The friction between generic programming and object oriented program-
ming shows up in the problems you have to face when representing polymorphic
collections with STL containers. The only possibility is to use a container of
pointers to the objects. But then it is unsatisfactory to present a pointer to
base class interface when conceptually we have a container of base class objects.
The polymorphic view just puts a dereferencing layer on top of the pointer to
base class interface and presents an interface that matches the concept.

The authors have a number of other useful views which we will discuss in
brief. We have a union_view which concatinates two containers head to tail. A
merge_view which uses a sorting predicate to select the element of two contain-
ers to use next. A set_intersection_view which given two sorted containers
will return the elements which are in both containers. A set_difference_view

which returns the elements which are in one set and not the other. A set sym-

metrical difference view which returns the elements which are in one or the
other set but not in both. A set_union_view which returns the elements in
two containers less the elements which overlap. A unique_view, which for a
sorted container returns the elements which are not duplicates. We also have
a intersection_view, difference_view and symmetric_difference_view

which do not require the elements to be sorted. These views will use the find()
member function of either container if it exists. While this is not efficient if you
had to do it anyway, your alternative is to copy the data into a sorted con-
tainer, or do this comparison manually. The view at least provides an efficent
implementation of an inefficent process.

How were we able to make all these views without writing code for the last
few years? We applied the age old technique of divide and conquer. For the
sorted views we created a group of utility views which could be applied in layers.
The lowest layer is the equal_range_view applied to each of the two contain-
ers. equal_range_view returns a range_view for each group of elements in
a container marking the beginning and end of runs of equal elements. Next
we use a pair_merge_view which merges a pair of equal_equal_range itera-
tors, where each pair element has either a element from the equal_range_view,
or a range_view of end() from each container. Then the pairs are choosen
from the elements which satisfy a conditional. We default to using the stan-
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dard functor equal_to. To create the set_*_views we then applied a trans-
form to select the elements from the pair we wanted. For instance to make a
set_intersection_viewwe only return the elements from a pair_merge_view
which have elements in both the pair.first and pair.second. We then apply
a concatenation_view which returns the elements one by one from the trans-
formed view. We have extracted a common base which is really just a template
of typedefs for the sorted views and then wrote 5 transform functors. Since
each layer could be tested independently it was remarkably easy to do. Ok, it
took us a while to decypher the error messages but once we were done we could
be confident that the other views would work as well and in fact that was the
case�.

A: 1,1,3,3,4,4

B: 1,2,3,3

set_intersection_view: 1,3,3 set_difference_view

defines transform

pair_merge_view: ((1,1),(1)),((),(2)),((3,3),(3,3)),((4,4),())

concatenation_view: 1,3,3

equal_range_view: (1,1),(3,3),(4,4)

equal_range_view: (1),(2),(3,3)

references

inherits

transform_view: (1),(),(3,3),()

set_union_view

Figure 1: Sorted views composition. Values are examples for the intersection of
containers A and B.

We have also created the filtered_map_keys, the transformed filtered -

map keys and their cousins for map_values. These views are templates with the
proper inheritence applied of filter_view and transform_view to the basic
map_keys, and map_values.

Another interesting view which demonstrates the power of views over copying
the elements is the crossproduct_view. For two random access containers we
apply a operation and return the result for each [i,j] of the containers. The
default operation is a pair of references to the elements, however any functor
which takes two elements is allowed. This allows for delayed evaluation and
sparse storage of a matrix made by (a op b). We did create a proxy template
so that crossproduct_view[i][j] returns the correct (i op j) result. Thus,
the crossproduct_view is the analogon of the cross join operation in relational
algebra, as realized by the SQL statement SELECT * FROM Table1, Table2. In

3We didn’t start out with a layered approach to the sorted container views. We first tried
the ”each container does all the work” approach and ended up with a very complex set of
code which was difficult to debug and may still, not have all the bugs removed. We have
abandoned this code. The curious can find it on our web site under the abandoned directory.
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general this is only interesting in combination with a filter_view eliminating
nonmatching rows, and of course the views performance will not match that of
sophisticated database engines in this case.

4 Flexible Code

The advanced template mechanisms of C++ like template template parameters
and default template parameters facilitate the construction of highly config-
urable yet easy to use code. In this section we will explain some of the aspects
that make the views code that flexible.

Ownership. Views can own the underlying container or merely reference it.
We did this by specifing an argument to the view’s template. The tag view_ref

references the container, and view_own has ownership properties. This allows
you to nest views together. The innermost view can be specified by the user of
the view, the next layers require ownership.

Mutability. Views can be constant or mutable. We provided two tag classes
const_view_tag, and mutable_view_tag to allow specification. We default to
const_view_tag because in our practice we have found that to be the most
useful. A const_view_tag uses only the const_iterator from the underlying
container.

Sensible defaults. One of the techniques we use extensively to increase the
flexibility of the code while keeping ease of use and a relatively small code
base are traits classes [2]. Traits are used to add or remove reference/pointer
indirection and const specifiers to or from types, and to select sensible iterator
category defaults for the view’s iterators. The latter we will describe in some
detail.

Some views limit their iterator categories. A filter_view e.g. is at most
bidirectional. Views combining two containers, e.g. union_view, are limited by
the less powerful of the containers involved. The common denominator in both
cases is the less powerful iterator category. To be easy to use while keeping flex-
ibility, the views compute the apropriate iterator category as a default template
parameter at compile time, thus adapting themselves to the given container(s).

In order to identify the maximum iterator category for a view, we imple-
mented a very interesting set of trait templates. The algorithm is simple: Map
the two iterator category tags to integers, choose the smaller one and map it
back to the corresponding iterator category tag. Note that this has to be done
at compile time. This kind of technique was invented by Veldhuizen [5].

First we set up a template to give us the minimum value of two integers.
Since this is a compile time determination we could not use the standard li-
brary min<> template, instead we use the ?: operator in an enumeration. Next
we created the combine_traits template that encapsulates the whole algo-
rithm. Notice that two of the template arguments to combine_traits are
templates, map mapping categories to integers, and inv it’s inverse. Accord-
ingly, the map template provides an enum x, and inv provides a type named
type. Then we created the integer mapping for iterator category tags, special-
izing each type with a different value in ascending order of their inclusiveness.
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The random_access_iterator_tag’s has the highest value, and input itera-

tor tag’s, the lowest reflecting their priority for our purpose. Now when we call
combine iterator categorieswith two iterator category tags, we end up with
the two specializations for those categories, the combine_traits specializes on
the minimum value, and sets the typedef type to the correct type. This is a
very powerful use of the traits technique. It allows us to at compile time select
the correct minimum iterator_trait_tag from the container or view speci-
fied. For example, if a view is at best bidirectional, but the underlying container
is random access, we will set the view’s iterator catagory to bidirectional. We
have used this technique to simplify the encoding of the views templates in a
lot of places.

//

// Combine traits computing the common denominator of two types.

// This works via a mapping to integers, taking the minimum and

// mapping back to corresponding types.

//

template<int a, int b>

struct min_traits { enum { x = a<b? a: b }; };

template <class A, class B,

template<class T> class map,

template<class T, int x> class inv>

struct combine_traits {

typedef typename

inv<A,min_traits<map<A>::x,map<B>::x>::x>::type type;

};

// Combine traits for iterator tags.

template <class T>

struct iterator_tag_mapping

{ enum { x = 0 }; };

template<>

struct iterator_tag_mapping<std::input_iterator_tag>

{ enum { x = 1 }; };

template<>

struct iterator_tag_mapping<std::forward_iterator_tag>

{ enum { x = 2 }; };

template<>

struct iterator_tag_mapping<std::bidirectional_iterator_tag>

{ enum { x = 3 }; };

template<>

struct iterator_tag_mapping<std::random_access_iterator_tag>

{ enum { x = 4 }; };

template<class T, int x> struct mapping_iterator_tag

{ typedef void type; };

template<class T> struct mapping_iterator_tag<T,1>

{ typedef std::input_iterator_tag type; };
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template<class T> struct mapping_iterator_tag<T,2>

{ typedef std::forward_iterator_tag type; };

template<class T> struct mapping_iterator_tag<T,3>

{ typedef std::bidirectional_iterator_tag type; };

template<class T> struct mapping_iterator_tag<T,4>

{ typedef std::random_access_iterator_tag type; };

template <class cat_a, class cat_b>

struct combine_iterator_categories

: public combine_traits<cat_a,cat_b,iterator_tag_mapping,

mapping_iterator_tag> {};

template<class A, class B>

struct combine_iterator_tags

: public combine_traits<

std::iterator_traits<A>::iterator_category,

std::iterator_traits<B>::iterator_category,

std::iterator_tag_mapping,

mapping_iterator_tag> {};

Comparisons. All of the views provide the two basic comparison functions,
operator==(), and operator<(), we also provided the generic relational com-
parison functions !=, >, <=, and >= which can be expressed by combining the
first two comparisons. We also provided the conversion operators so that as-
signment to a const_view from a mutable_view is possible, as is comparison.
The swap specializations were also provided so that swaping of two containers
would be the most efficient. These comparison operators are also provided for
the view iterators.

Views with these interfaces appear to act just like any other STL container
and can be used with STL algorithms. Views are a thin layer on top of their
conatiners therefore the overhead of using them is minimal.

A note about the code. We use the ISO C++ template features excessively.
In general this can lead to code bloat since for every set of template parameters
a corresponding variant of the code is instantiated. This can become a major
headache especially for many template paramters. In the views library, this is a
non-issue because it is an extremely thin software layer. Very few methods are
more than six lines long. Thus, nearly all the methods will be inlined by a good
optimizing compiler.

In our implementation we have chosen to use the most advanced template
features of their compiler. This code will not compile on many compilers. The
reason we did this was simplicity of code and clean design. An early imple-
mentation was requrired to duplicate every view for both const and non const
domain containers. The amount of code was growing out of control. The au-
thors have this old code, and will be glad to share it but we are not going to
do any more maintaince on it. We anticipate that more complier vendors will
be able to handle our code soon. The compiler we used was GCC 2.95 which is
available at the GNU web page for many systems.

The current code base is still in development and available free of charge
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at [3]. The design architecture appears to have become stable in late ’99. New
views seem to occur occasionally as our work projects expand. Contributions
and suggestions for the library are welcome.

5 Conclusion

The standard template library containers can be easily adapted to act as sub
containers of their data using these adaptors. The adaptors have been used
to help simplify the coding of several projects by the authors and we consider
them very useful tools. With the adaptors provided, programmers can build
interesting views of their own data, and can easily extend and/or combine these
adaptors to view any STL compliant container in other more interesting ways.
These views are not meant to replace the standard algorithms which generate
copies of the containers, but rather as an alternative which may be appropriate
for the problem at hand.

The code is available at the VTL homepage [3]
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