
Cutting Planes in Integer

and Mixed Integer Programming∗

Hugues Marchand Alexander Martin Robert Weismantel y

Laurence Wolsey

Introduction

This survey is devoted to cutting planes that are useful or potentially useful in solving
mixed integer programs. This topic is important because a) strengthening formula-
tions with cutting planes is of interest independently of the algorithm used to solve
the problem, and b) linear programming based branch-and-bound with cuts added,
known as branch-and-cut, is now one of the most widespread and successful tools for
solving mixed integer programs.

The paper is divided into four sections. First we discuss ways of generating cuts
for general integer programs (IPs) max{cTx : Ax = b, x ∈ �

n
+} and mixed integer

programs (MIPs) max{cTx + hT y : Ax + Gy = b, x ∈ �
n
+, y ∈ �

p
+} independently of

any problem structure. It was shown theoretically in the 70’s and 80’s that Gomory’s
mixed integer cuts, simple disjunctive cuts and mixed integer rounding cuts were
essentially equivalent. In the 90’s it has been shown, starting with lift-and-project
(disjunctive) cuts, how all three types of cuts can be successfully used computationally.

In the second section we look at IPs and MIPs with some local structure, starting
with knapsack sets. Whereas cover inequalities for 0 − 1 knapsack sets were studied
and used in the 70’s and 80’s, attention has switched to various generalizations of
0− 1 knapsack sets, in particular several mixed knapsack sets containing one or more
continuous variables. These have a richer polyhedral structure then the pure knapsack
sets, and arise very naturally in mixed integer programs. We introduce lifting, an
important technique for strengthening valid inequalities and obtaining facet-defining
inequalities. Still in the context of knapsack sets, we also introduce a new way to
derive valid inequalities based starting from feasible solutions. Knapsack constraints
arise when studying IPs whose constraint matrices have general integer coefficients.
We also need to treat problems with 0 − 1 coefficient matrices. The natural starting
point is the set packing problem. The basic inequalities for the set packing polytope

∗Research carried out with financial support of the project TMR-DONET nr. ERB FMRX-CT98-
0202 of the European Community.

†Supported by a “Gerhard-Hess-Forschungsförderpreis” (WE 1462/2-1) of the German Science
Foundation (DFG).

1

based on cliques and cycles are derived, as well as the separation problem for such
inequalities. We then briefly examine the generalizations of these inequalities to
general independence systems.

A major challenge is to produce stronger inequalities in a way that is easily char-
acterized, and potentially useful for computation. In Section 3 some steps in this
direction are examined. A procedure to mix mixed integer rounding inequalities
is presented, and also a way to extend formulations of certain combinatorial opti-
mization problems to include set packing relaxations. Though their computational
significance is still to be demonstrated, we discuss polynomial algorithms relating to
the Lovász-Schrijver lift-and-project procedure, semi-definite optimization and clique
separation.

In Section 4 we look at four important problem classes, ranging from network
design to electricity generation, and try to indicate the state-of-the-art in terms of
known strong cutting planes, and their use in computation.

We assume that readers are familiar with elementary terminology of valid inequal-
ities and polyhedra, see for instance [81, 98, 109] for an in-depth treatment.

1 General Cutting Planes

In this section we discuss methods of generating cutting planes for general mixed
integer programs without exploiting any problem structure. As we will see, in certain
cases these methods provide a complete linear description of the polyhedron under
consideration. As a warm-up we start with the pure integer case and describe the
well known Chvátal-Gomory cutting planes. We will see that this approach (based on
a rounding argument) fails if continuous variables are involved. Methods that apply
to the general mixed integer case are based on a disjunctive argument, and we will
discuss three of them.

1.1 Pure Integer Programs

Consider a pure integer program min{cTx : x ∈ X} where X = {x ∈ �
n
+ : Ax = b}

and A, b are integer. Gomory and later Chvátal found distinct but closely related
ways of finding a linear description of conv(X). We begin with

CHVÁTAL’S GEOMETRIC VIEW.

By definition a polyhedron P is integer if every (minimal) face contains an integer
point. By the integer Farkas lemma (see, for instance, [98] Corollary 4.1 a) this in turn
is equivalent to the fact that every supporting hyperplane contains an integer vector.
The idea is now to look at every supporting hyperplane of P = {x ∈ �

n
+ : Ax = b},

and shift it closer to PI = conv(X) until it contains an integer point.
Let {x ∈ �

n : hTx = ϑ} be a supporting hyperplane of P with P ⊆ {x ∈ �
n :

2

hTx ≤ ϑ} and h integer. Let

Q1 :=
⋂

(h,ϑ)∈θ

{x ∈ �
n : hTx ≤ �ϑ�}, (1)

where θ denotes the set of all supporting hyperplanes of P with integer left-hand side.
Obviously, PI ⊆ Q1. At first sight it is not obvious that Q1 is again a polyhedron,
because there are infinitely many supporting hyperplanes. However, it turns out that
Q1 is again a polyhedron. This allows us to continue the process and apply the same
procedure to Q1. With

Q0 := P and Qt+1 := (Qt)1

we have

P = Q0 ⊇ Q1 ⊇ . . . ⊇ PI .

Chvátal shows that PI is obtained this way after a finite number of iterations when
P is a polytope, and Schrijver shows the result when P is an arbitrary polyhedron.

Theorem 1.1. [30, 97] Let P be a rational polyhedron. Then

(i) Q1 is a polyhedron.

(ii) Qt = PI for some finite t.

The question remains how to generate hyperplanes on demand, i. e., how to find
(h, ϑ) ∈ θ that cuts off the current (fractional) solution of the LP relaxation min{cTx :
x ∈ P}. Gomory [49, 51] gives an answer to this question.

GOMORY’S ALGORITHMIC VIEW.

Let x∗ be an optimal solution of the LP relaxation min{cTx : x ∈ P} and B ⊆
{1, . . . , n} be a basis of A with x∗

B = A−1
B b − A−1

B ANxN and x∗
N = 0, where N =

{1, . . . , n} \B.
If x∗ is integral, we terminate with an optimal solution for min{cTx : x ∈ X}.

Otherwise, one of the values x∗
B must be fractional. Let i ∈ B be some index with

x∗
i /∈ �. Since every feasible integral solution x ∈ X satisfies xB = A−1

B b−A−1
B ANxN ,

A−1
i· b−

∑
j∈N

A−1
i· A·jxj ∈ �. (2)

The term on the left remains integral when adding integer multiples of xj , j ∈ N, or
an integer to A−1

i· b. We obtain

f(A−1
i· b)−

∑
j∈N

f(A−1
i· A·j)xj ∈ �, (3)

3

where f(α) = α− �α�, for α ∈ �. Since 0 ≤ f(·) < 1 and x ≥ 0, we conclude that

f(A−1
i· b)−

∑
j∈N

f(A−1
i· A·j)xj ≤ 0,

or equivalently, ∑
j∈N

f(A−1
i· A·j)xj ≥ f(A−1

i· b) (4)

is valid for PI . Moreover, it is violated by the current linear programming solution
x∗, since x∗

N = 0 and f(A−1
i· b) = f(x∗

i) > 0. After subtracting xi+
∑

j∈N A−1
i· A·jxj =

A−1
i· b from (4) we obtain

xi +
∑
j∈N

�A−1
i· A·j�xj ≤ �A−1

i· b�, (5)

which is, when the right-hand side is not rounded, a supporting hyperplane with
integer left-hand side, and thus a member of θ. Moreover, adding this inequality to
the system Ax = b preserves the property that all data are integral. Thus, the slack
variable that is to be introduced for the new inequality can be required to be integer
as well and the whole procedure can be iterated. In fact, Gomory [52] proves that
with a particular choice of the generating row such cuts lead to a finite algorithm,
i. e., after adding a finite number of inequalities, an integer optimal solution is found.
Thus, it provides an alternative proof for Theorem 1.1.

Given P and a general point x∗ ∈ P , the separation problem for the Chvátal-
Gomory inequalities is to determine whether x∗ ∈ P 1, and if not to find an inequality
hTx ≤ �ϑ� cutting off x∗. No efficient separation algorithm is known, but recently an
efficient procedure has been proposed when h = uA with u restricted to be a {0, 12}
vector [28].

1.2 Mixed Integer Programs

The two approaches discussed so far fail when both integer and continuous variables
are present. Chvátal’s approach fails because the right-hand side cannot be rounded
down in (1). Gomory’s approach fails since it is no longer possible to add integer
multiples to continuous variables to derive (3) from (2). For instance, 1

3+
1
3x1−2x2 ∈ �

with x1 ∈ �+, x2 ∈ �+ has a larger solution set than 1
3 +

1
3x1 ∈ �. As a consequence,

we cannot guarantee that the coefficients of the continuous variables are non-negative
and therefore show the validity of (4). Nevertheless, it is possible to derive valid
inequalities using the following disjunctive argument.

Observation 1.2. Let (ak)Tx ≤ αk be a valid inequality for a polyhedron P k for
k = 1, 2. Then,

n∑
i=1

min(a1i , a
2
i)xi ≤ max(α1, α2)

is valid for both P 1 ∪ P 2 and conv(P 1 ∪ P 2).

4

This observation applied in different ways yields valid inequalities for the mixed
integer case. We present three methods that are all more or less based on Observation
1.2.

GOMORY’S MIXED INTEGER CUTS.

Consider again the situation in (2), where xi, i ∈ B, is required to be integer. We
use the following abbreviations āj = A−1

i· A·j , b̄ = A−1
i· b, fj = f(āj), f0 = f(b̄), and

N+ = {j ∈ N : āj ≥ 0} and N− = N \ N+. Expression (2) is equivalent to∑
j∈N ājxj = f0 + k for some k ∈ �. We distinguish two cases,

∑
j∈N ājxj ≥ 0 and∑

j∈N ājxj ≤ 0. In the first case,

∑
j∈N+

ājxj ≥ f0

must hold. In the second case, we have
∑

j∈N− ājxj ≤ f0 − 1, which is equivalent to

− f0
1− f0

∑
j∈N−

ājxj ≥ f0.

Now we apply Observation 1.2 to the disjunction P 1 = P ∩{x :
∑

j∈N ājxj ≥ 0} and

P 2 = P ∩ {x :
∑

j∈N ājxj ≤ 0} and obtain the valid inequality

∑
j∈N+

ājxj − f0
1− f0

∑
j∈N−

ājxj ≥ f0. (6)

This inequality may be strengthened in the following way. Observe that the deriva-
tion of (6) remains unaffected when adding integer multiples to integer variables. By
doing this we may put each integer variable either in the set N+ or N−. If a variable
is in N+, the final coefficient in (6) is āj and thus the best possible coefficient after

adding integer multiples is fj = f(āj). In N− the final coefficient in (6) is − f0
1−f0

āj

and thus
f0(1−fj)
1−f0

is the best choice. Overall, we obtain the best possible coefficient

by using min(fj ,
f0(1−fj)
1−f0

). This yields Gomory’s mixed integer cut [50]

∑
j: fj≤f0
j integer

fjxj +
∑

j: fj>f0
j integer

f0(1−fj)
1−f0

xj +

∑
j∈N+

j non-integer

ājxj − ∑
j∈N−

j non-integer

f0
1−f0

ājxj ≥ f0.
(7)

Gomory [50] shows that an algorithm based on iteratively adding these inequalities
solves min{cTx : x ∈ X} with X = {x ∈ �

p
+× �

n−p
+ : Ax = b} in a finite number of

steps provided cTx ∈ � for all x ∈ X .

5

MIXED-INTEGER-ROUNDING CUTS.

Consider the following elementary mixed integer setX = {(x, y) ∈ �×�+ : x−y ≤ b}
with b ∈ � and the inequality

x− 1

1− f(b)
y ≤ �b�. (8)

Proposition 1.3. [73] Inequality (8) is valid for conv(X).

Proof. Consider the disjunction P 1 = X ∩ {(x, y) : x ≤ �b�} and P 2 = X ∩ {(x, y) :
x ≥ �b�+ 1}. For P 1 we immediately see that

(x− �b�)(1− f(b)) ≤ y

is valid by adding the inequalities x− �b� ≤ 0 and 0 ≤ y scaled with weights 1− f(b)
and 1. For P 2 we combine −(x − �b�) ≤ −1 and x − y ≤ b with weights f(b) and 1
to obtain

(x− �b�)(1− f(b)) ≤ y.

Thus, Observation 1.2 implies that (x−�b�)(1−f(b)) ≤ y is valid for conv(P 1∪P 2) =
conv(X).

The basic observation expressed in Proposition 1.3 can now be extended to more
general situations. Consider the following mixed integer set

X = {(x, y) ∈ �
n
+× �+ : aTx− y ≤ b},

with a ∈ �
n, b ∈ �. We take fi = f(ai) and f0 = f(b) in the sequel.

Proposition 1.4. [73] The inequality

n∑
i=1

(
�ai�+ (fi − f0)

+

1− f0

)
xi − 1

1− f0
y ≤ �b� (9)

is valid for conv(X), where v+ = max(0, v) for v ∈ �. Inequality (9) is called a mixed
integer rounding (MIR) inequality.

Proof. Relax aTx − y ≤ b to
∑

i∈N1�ai�xi +
∑

i∈N2 aixi − y ≤ b, where N1 = {i ∈
{1, . . . , n} : fi ≤ f0} andN2 = {1, . . . , n}\N1. Applying Proposition 1.3 to w−z ≤ b
with w =

∑
i∈N1�ai�xi +

∑
i∈N2�ai
xi ∈ � and z = y +

∑
i∈N2(1− fi)xi ≥ 0 yields

w − z

1− f0
≤ �b�. (10)

Substituting w and z in (10) gives (9).

6

MIR inequalities imply Gomory’s mixed integer cuts (7) when applied to the mixed
integer set X = {(x, y−, y+) ∈ �

n
+ × �

2
+ : aTx + y+ − y− = b}. To see this consider

the relaxation aTx− y− ≤ b of X . Proposition 1.4 gives

n∑
i=1

(�ai�+ (fi − f0)
+

1− f0
)xi − 1

1− f0
y− ≤ �b�.

Subtracting the original inequality aTx+ y+ − y− = b gives Gomory’s mixed integer
cut (7).

Nemhauser and Wolsey [82] discuss MIR inequalities in a more general setting.
They prove that MIR inequalities provide a complete description for any mixed 0− 1
polyhedron. Marchand and Wolsey [72, 73] show that certain strong cutting planes
for structured mixed integer programs can be derived as MIR inequalities. They also
show their computational effectiveness in solving general mixed integer programs.

LIFT-AND-PROJECT CUTS.

The idea of “lift and project” is to consider the integer programming problem, not in
the original space, but in some space of higher dimension (lifting). Then inequalities
found in this higher dimensional space are projected back to the original space re-
sulting in tighter integer programming formulations. Versions of this approach differ
in how the lifting and the projection are performed, see [11, 68, 99]. All approaches
only apply to 0 − 1 mixed integer programming problems. We explain the ideas in
[11] in more detail and show the connections and differences to [68] and [99].

The validity of the procedure is based on a trivial observation.

Observation 1.5. If c0 + cTx ≥ 0 and d0 + dTx ≥ 0 are valid inequalities for X,
then (c0 + cTx)T (d0 + dTx) ≥ 0 is valid for X.

Consider a 0−1 program min{cTx : x ∈ X} with X = {x ∈ {0, 1}p×�n−p : Ax ≤
b}, in which the system Ax ≤ b already contains the trivial inequalities 0 ≤ xi ≤ 1 for
i = 1, . . . , p. Let P = {x ∈ �

n : Ax ≤ b} and PI = conv(X). Consider the following
procedure.

Algorithm 1.6. (Lift-and-Project)

1. Select an index j ∈ {1, . . . , p}.
2. Multiply Ax ≤ b by xj and 1− xj giving

(Ax)xj ≤ bxj

(Ax)(1 − xj) ≤ b(1− xj)
(11)

and substitute yi := xixj for i = 1, . . . , n, i �= j and xj := x2
j (lifting).

Call the resulting polyhedron Lj(P).

7

3. Project Lj(P) back to the original space by eliminating variables yi. Call the
resulting polyhedron Pj .

The following theorem shows that the j-th component of each vertex of Pj is either
zero or one.

Theorem 1.7. [11] Pj = conv(P ∩ {x ∈ �
n : xj ∈ {0, 1}}).

For any sequence of indices i1, . . . , it ∈ {1, . . . , p}, t ≥ 1 let

Pi1,i2,... ,it := (. . . (Pi1)i2 . . .)it .

A repeated application of Algorithm 1.6 yields PI .

Theorem 1.8. [11] Pi1,... ,it = conv(P ∩ {x ∈ �
n : xik ∈ {0, 1}, k = 1, . . . , t}).

Theorem 1.8 shows that the result does not depend on the order in which one
applies Algorithm 1.6 to the selected variable. Thus we may write P{i1,... ,it} instead
of Pi1,... ,it and P{1,... ,p} = PI .

The problem that remains in order to implement Algorithm 1.6 is to carry out
Step 3. Let Lj(P) = {(x, y) : Dx+By ≤ d}. Then the projection of Lj(P) onto the
x-space can be described by

Pj = {x : (uTD)x ≤ uTd for all u ∈ C},

where C = {u : uTB = 0, u ≥ 0}. Thus, the problem of finding a valid inequality in
Step 3 of Algorithm 1.6 that cuts off a current (fractional) solution x∗ can be solved
by the linear program

max uT (Dx∗ − d)
u ∈ C.

(12)

This linear program is unbounded, if there is a violated inequality, since C is a poly-
hedral cone. For algorithmic convenience C is often truncated by some “normalizing
set”, see [11]. If an integer variable xj that attains a fractional value in a basic feasible
solution is used to determined the index j in Algorithm 1.6, then an optimal solution
to (12) indeed cuts off x∗.

The computational merits of lift-and-project cuts to solve real-world problems are
discussed in [11, 12].

There is a close connection between the lift-and-project method and disjunctive
programming. In fact, Theorem 1.7 states that Pj = conv(P 0 ∪ P 1) where P 0 :=
P ∩ {x ∈ �

n : xj = 0} and P 1 := P ∩ {x ∈ �
n : xj = 1}. The inequalities obtained

by projecting Lj(P) onto the x-space may be viewed as inequalities obtained from
the disjunction of P into P 0 and P 1. Thus, lift-and-project is a specialization of
disjunctive programming, see, for instance, [9, 62] for further details on this issue.

Observation 1.5 can be applied to a more general setting. For the ease of exposition
we assume that our mixed integer program is indeed a pure integer program, i. e.,

8

p = n. Sherali and Adams [99] suggest lifting the problem to a higher dimensional
space by multiplying Ax ≤ b by every product

(∏
j∈J1

xj

)(∏
j∈J2

(1 − xj)
)
such that

J1, J2 ⊆ {1, . . . , n} are disjoint and |J1 ∪ J2| = d for some fixed value d ∈ {1, . . . , n}.
They linearize the problem by setting xi = xk

i , 2 ≤ k ≤ d, and by replacing every
product

∏
j∈J xj by a single variable yJ for J ⊆ {1, . . . , n}. Thereafter the high

dimensional problem is projected to the space of x-variables. If d = n is chosen, then
this procedure directly yields a linear description of PI .

Setting d = 1, the first step of the above procedure leads to the system

(Ax)xj ≤ bxj for j = 1, . . . , n

(Ax)(1 − xj) ≤ b(1− xj) for j = 1, . . . , n.

Setting yij = xixj for 1 ≤ i < j ≤ n, and then projecting back to the original
space leads to a polyhedron N(P) ⊆n

j=1 ∩Pj . It is clear from Theorem 1.7 that this
tighter procedure must be repeated at most n times to terminate with PI . Lovász
and Schrijver [68] studied this projection in more detail. They note that if x0 = 1,
then the product of two valid inequalities

(c0 + cTx)T (d0 + dTx) = cT
(
x0

x

)
(x0, x

T)d = cTXd ≥ 0,

where X =

(
x0

x

)
(x0, x

T) is a symmetric and positive semidefinite matrix. This is

pursued in Section 3.3.

We want to emphasize here that in contrast to the pure integer case none of the
cutting plane procedures presented yields a finite algorithm for general mixed integer
programs. Gomory needs an integer restricted objective function, and the other two
provide finiteness only for 0−1 mixed integer programs. Cook, Kannan, and Schrijver
[34] present the so-called split cuts. These cuts are again based on Observation 1.2
and may be viewed as special disjunctive cuts. They turn out to be equivalent to
MIR inequalities [82]. However, Cook, Kannan, and Schrijver show that the split
cuts in combination with a certain rounding technique, which is based on the idea of
discretizing the continuous variables, suffice to generate the mixed integer hull of a
polyhedron.

2 Simple Structures

Above we have looked at valid inequalities for IPs and MIPs. If we restrict our atten-
tion to a single constraint, or a small subset of constraints, even a general problem
may exhibit some “local” structure. For example all variables appearing in a con-
straint may be 0 − 1 variables, or a small part of the MIP may be a network flow
problem. Here we look at ways to obtain stronger inequalities by using such local
structure.

9

2.1 Knapsacks and Cover Inequalities

The concept of a cover has been used extensively in the literature to derive valid
inequalities for (mixed) integer sets. In this section, we first show how to use this
concept to derive cover inequalities for the 0− 1 knapsack set. We then discuss how
to extend these inequalities to more complex mixed integer sets.

Consider the 0− 1 knapsack set

K = {x ∈ �
N :

∑
j∈N

ajxj ≤ b}

with non-negative coefficients, i. e., aj ≥ 0 for j ∈ N and b ≥ 0. The set C ⊆ N is a
cover if

λ =
∑
j∈C

aj − b > 0. (13)

In addition, the cover C is said to be minimal if aj ≥ λ for all j ∈ C. To each cover
C, we can associate a simple valid inequality which states that “not all variables xj

for j ∈ C can be set to one simultaneously”.

Proposition 2.1. [8, 59, 88, 105] Let C ⊆ N be a cover. The cover inequality

∑
j∈C

xj ≤ |C| − 1 (14)

is valid for K. Moreover, if C is minimal, then the inequality (14) defines a facet of
conv (KC) where KC = K

⋂ {x : xj = 0, j ∈ N\C}.
Example 2.2. Consider the 0− 1 knapsack set

K = {x ∈ �
6 : 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x6 ≤ 17}.

C = {1, 2, 3, 4} is a minimal cover for K and the corresponding cover inequality

x1 + x2 + x3 + x4 ≤ 3

defines a facet of conv({x ∈ �
4 : 5x1 + 5x2 + 5x3 + 5x4 ≤ 17}).

If a cover C is not minimal, then it is easily seen that the corresponding cover
inequality is redundant, i. e., it is the sum of a minimal cover inequality and some
upper bound constraints.

As described in the next subsection, lifting can be used to strengthen cover inequal-
ities and to obtain a large class of facet-defining inequalities for conv(K) called lifted
cover inequalities. Generalizations of cover inequalities can be found in [108, 101, 44]
where the polyhedral structures of respectively the 0 − 1 knapsack set with general-
ized upper bounds constraints, the 0 − 1 knapsack with precedence constraints and
the multiple 0− 1 knapsack set are studied. Lifted cover inequalities have been used
successfully in general purpose branch-and-cut algorithms to tighten the formulation

10

of 0 − 1 integer programs [37]. In [14], it is shown how minimal covers, lifting and
complementation (replacing the binary variable xj by its complement 1− xj) can be
used to obtain all the non-trivial facets of the 0 − 1 integer programming polytope
with positive coefficients.

The concept of cover is also useful in the study of the polyhedral structure of
problems containing both 0− 1 integer and continuous variables. Consider the mixed
0− 1 knapsack set

S = {(x, s) ∈ �
N × �+ :

∑
j∈N

ajxj ≤ b + s}

with non-negative coefficients, i. e., aj ≥ 0 for j ∈ N and b ≥ 0.

Proposition 2.3. [74] Let C ⊆ N be a cover, i. e., C is a subset of N satisfying
(13). The inequality

∑
j∈C

min (aj , λ) xj ≤
∑
j∈C

min (aj , λ)− λ+ s (15)

is valid for S. Moreover, the inequality (15) defines a facet of conv (SC) where SC =
S
⋂ {x : xj = 0, j ∈ N\C}.
Note here that each cover C gives rise to a cover inequality that defines a facet

of conv (SC). This is in contrast to the pure integer case where only minimal covers
induce facets.

Example 2.4. Consider the mixed 0− 1 knapsack set

S = {(x, s) ∈ �
6 × �+ : 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x6 ≤ 17 + s}.

Taking C′ = {1, 2, 3, 6} a (non-minimal) cover for S, the associated cover inequality

5x1 + 5x2 + 5x3 + 6x6 ≤ 15 + s

defines a facet of conv({(x, s) ∈ �
4 × �+ : 5x1 + 5x2 + 5x3 + 8x6 ≤ 17 + s}).

Cover inequalities of the form (15) can be used to derive valid inequalities for more
complex mixed integer sets. We illustrate this observation by showing how to derive
valid inequalities for an elementary flow model.

Consider the set

X = {(x, y) ∈ �
N × �

N
+ :

∑
j∈N

yj ≤ b, yj ≤ ajxj , j ∈ N},

and let C ⊆ N be a (flow) cover, i. e., C is a subset of N satisfying (13). In
∑

j∈N yj ≤
b, ignore yj for j ∈ N\C and replace yj by ajxj − sj for j ∈ C where sj ≥ 0 is a slack
variable. We obtain ∑

j∈C

ajxj ≤ b+
∑
j∈C

sj .

11

Using Proposition 2.3, we have that the following inequality is valid for X

∑
j∈C

min (aj , λ)xj ≤
∑
j∈C

min (aj , λ)− λ+
∑
j∈C

sj ,

or equivalently, substituting ajxj − yj for sj ,

∑
j∈C

[
yj + (aj − λ)+(1− xj)

] ≤ b.

Proposition 2.5. [89] Let C ⊆ N be a flow cover (C is a subset of N satisfying
(13)) with maxj∈C aj > λ. The flow cover inequality

∑
j∈C

[
yj + (aj − λ)+(1− xj)

] ≤ b (16)

is a facet-defining inequality for X.

Flow models have been extensively studied in the literature. Various general-
izations of the flow cover inequality (16) have been derived for more complex flow
models. In [102], a family of flow cover inequalities is described for a general single
node flow model containing variable lower and upper bounds. Generalizations of flow
cover inequalities to lot-sizing and capacitated facility location problems can also be
found respectively in [2] and [90]. Flow cover inequalities have been used successfully
in general purpose branch-and-cut algorithms to tighten formulations of mixed integer
sets [103]. Some examples are given in Section 4.

Cover inequalities appear also in other contexts. In [29] cover inequalities are
derived for the knapsack set with general integer variables. Unfortunately, in this
case, the resulting inequalities do not define facets of the convex hull of the knapsack
set restricted to the variables defining the cover. More recently, the notion of cover
has been used to define families of valid inequalities for the complementarity knapsack
set [40].

2.2 Lifting

The lifting technique is a general approach that has been used in a wide variety of
contexts to strengthen valid inequalities. For simplicity of exposition, we illustrate the
main concepts related to this technique by lifting binary variables in a 0− 1 knapsack
set. Throughout the section we point out how to extend the approach to more general
cases.

Consider the 0− 1 knapsack set

K = {x ∈ �
N :

∑
j∈N

ajxj ≤ b}

and let M be a subset of N . Suppose that we have an inequality,

12

∑
j∈M

πjxj ≤ π0, (17)

which is valid for KM = K ∩ {x : xj = 0, j ∈ N \M}. The lifting problem is to find
the lifting coefficients {πj}j∈N\M so that

∑
j∈N

πjxj ≤ π0 (18)

is valid for K. Ideally we would like inequality (18) to be “strong” (i. e., if inequality
(17) defines a face of high dimension of conv(KM), we would like the inequality (18)
to define a face of high dimension of conv(K)).

Note that without loss of generality, we investigate the lifting of a variable xj that
has been set to 0, because setting xj to 1 is equivalent to setting variable xj = 1−xj

to 0.

SEQUENTIAL LIFTING.

One way of obtaining coefficients {πj}j∈N\M is to apply sequential lifting: lifting
coefficients πj are evaluated one after another. More specifically, the coefficient πk is
computed for a given k ∈ N \M so that

πkxk +
∑
j∈M

πjxj ≤ π0 (19)

is valid for KM∪{k}. This can be done by considering the lifting function

ΦM (u) = min{π0 −
∑
j∈M

πjxj :
∑
j∈M

ajxj ≤ b− u, x ∈ �
|M|}. (20)

Proposition 2.6. Sequential Lifting [88]. Suppose KM∪{k} ∩ {x : xk = 1} �= ∅.
Inequality (19) is valid for KM∪{k} if πk ≤ ΦM (ak). Moreover if πk = ΦM (ak)
and (17) defines a face of dimension t of conv(KM), then (19) defines a face of
conv(KM∪{k}) of at least dimension t+ 1.

If one now intends to lift a second variable, then it becomes necessary to update the
function ΦM . Specifically, if k ∈ N \M was introduced first with a lifting coefficient
πk, then the lifting function becomes

ΦM∪{k}(u) = min{π0 −
∑

j∈M∪{k}
πjxj :

∑
j∈M∪{k}

ajxj ≤ b− u, x ∈ �
|M|+1},

so in general, function ΦM can decrease as more variables are lifted in. As a con-
sequence, lifting coefficients depend on the order in which variables are lifted and
therefore different lifting sequences often lead to different valid inequalities.

13

Example 2.7. Consider the 0− 1 knapsack set

K = {x ∈ �
6 : 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x6 ≤ 17}

and let M = {1, 2, 3, 4}. The inequality

x1 + x2 + x3 + x4 ≤ 3

is valid for K{1,2,3,4}. Lifting back variable x5 and then variable x6 leads to

x1 + x2 + x3 + x4 + x5 + x6 ≤ 3.

However lifting back variable x6 and then variable x5 leads to

x1 + x2 + x3 + x4 + 2x6 ≤ 3.

It can be checked that both inequalities define facets of conv(K).

One of the key questions to be dealt with when implementing such a lifting ap-
proach is how to compute lifting coefficients πj . To perform “exact” sequential lifting
(i. e., to compute at each step the lifting coefficient given by the lifting function), we
have to solve a sequence of integer programs. In the case of the lifting of variables
for the 0− 1 knapsack set this can be done efficiently using a dynamic programming
approach based on the following recursion formula,

ΦM∪{k}(u) = min[ΦM (u),ΦM (u+ ak)− ΦM (ak)].

Using such a lifting approach, facet-defining inequalities for the 0 − 1 knapsack set
have been derived [8, 59, 105] and embedded in a branch-and-bound framework to
solve to optimality particular types of 0− 1 integer programs [37].

In theory, “exact” sequential lifting can be applied to derive valid inequalities for
any kind of mixed integer set S. However, in practice, this approach is only useful
to generate valid inequalities for sets S for which one can associate a lifting function
that can be evaluated efficiently.

Lifting is applied in the context of set packing problems to obtain facets from odd-
hole inequalities [87], see Section 2.4. Other uses of sequential lifting can be found in
[29] where the lifting of continuous and integer variables is used to extend the class
of lifted cover inequalities to a mixed knapsack set with general integer variables.
In [75, 76] lifting is used to define (lifted) feasible set inequalities for an integer set
defined by multiple integer knapsack constraints, see Section 2.3.

Sequential lifting is not the only way of computing lifting coefficients. We now
discuss a general approach in which an “a priori” characterization is used to compute
lifting coefficients.

SEQUENCE INDEPENDENT LIFTING AND SUPPERADDITIVITY.

Here we show how to evaluate lifting coefficients {πj}j∈N\M when we want to lift all
variables in N \M simultaneously.

14

Because the function ΦM may decrease as more variables are lifted in, taking
{ΦM (aj)}j∈N\M as lifting coefficients does not in general lead to a valid inequality
forK. Therefore to obtain a “sequence independent lifting”, we have to find a function
Ψ : � → � with Ψ(u) ≤ ΦM (u) so that

∑
j∈N\M

Ψ(aj)xj +
∑
j∈M

πjxj ≤ π0 (21)

is valid for K. In the next proposition we characterize such a function Ψ. We first
introduce a definition.

Definition 2.8. A function F : � → � is superadditive on � if F (d1) + F (d2) ≤
F (d1 + d2) for all d1, d2 ∈ �.

Proposition 2.9. Sequence Independent Lifting [55, 106]. Let Ψ : � → � be a
function. If (i) Ψ(u) ≤ ΦM (u) for all u ∈ � and (ii) Ψ(u) is superadditive on �, then
inequality (21) is valid for K.

Condition (ii) is quite restrictive. However by considering the lifting of variables
whose coefficients in the knapsack constraint take particular values, one can relax
assumption (ii). In particular, if we suppose that all coefficients aj are positive,
condition (ii) becomes Ψ(u) is superadditive on �+ . We now illustrate this idea by
deriving particular lifted cover inequalities using a superadditive function.

Consider a 0-1 knapsack set K in which aj > 0 for all j ∈ N . If C ⊆ N is a
minimal cover, the cover inequality

∑
j∈C

xj ≤ |C| − 1

is valid for KC = K ∩ {x : xj = 0, j ∈ N \ C}. The lifting function here is

ΦC(u) = min{|C| − 1−
∑
j∈C

xj |
∑
j∈C

ajxj ≤ b− u, x ∈ �
|C|}.

Suppose C = {1, . . . , r} and aj ≥ aj+1 for all j ∈ {1, . . . , r − 1}. Let Aj =
∑j

t=1 at
and let A0 = 0. The function

Ψ(u) =

⎧⎨
⎩

j if Aj ≤ u ≤ Aj+1 − λ for j = 0, . . . , r − 1,
j + [u−Aj]/λ if Aj − λ ≤ u ≤ Aj for j = 1, . . . , r − 1,
r + [u−Ar]/λ if Ar − λ ≤ u,

is dominated by ΦC(u) and is superadditive on �+ . Therefore

∑
j∈N\C

Ψ(aj)xj +
∑
j∈C

xj ≤ |C| − 1 (22)

is valid for K.

15

151210752
u

�(u)
�C(u)

17

3

2

1

Figure 1: Functions ΦC(u) and Ψ(u)

Example 2.7 (continued) The inequality (22) associated to C = {1, 2, 3, 4} is

x1 + x2 + x3 + x4 +
1

3
x5 +

4

3
x6 ≤ 3

The functions ΦC(u) and Ψ(u) are shown in Figure 1.
Again sequence independent lifting can be extended to the lifting of valid inequal-

ities for more general mixed integer sets [55]. In [56], simultaneous lifting of pairs
of variables (included in the same variable upper bound constraint) is studied. Se-
quence independent lifted flow cover inequalities are obtained. In some of the cases
studied there, the lifting function itself is shown to be superadditive. In [74], classes
of facet-defining inequalities for the mixed knapsack set are obtained using the super-
additivity of the lifting function first on �+ and then on �− , i. e., first lifting variables
with positive coefficients, and then those with negative coefficients.

Other uses of lifting can be found in the literature. In [11, 12], lift-and-project
cuts are generated in the space of the fractional variables. The cutting planes are
then lifted in the full space of variables. Lifting in this approach plays a central role
because it reduces the computational effort required to generate lift-and-project cuts.
A similar idea is used in [3] where cutting planes for the symmetric traveling salesman
problem are generated from a polytope obtained by projection onto a small subset of
the original variables.

2.3 Knapsacks and Feasible Set Inequalities

Section 2.1 showed a way to derive an elementary inequality by forbidding an infeasible
subset of items of a 0 − 1 knapsack set. We now investigate a way of defining valid
inequalities for the 0 − 1 knapsack set starting with a feasible set and again using
sequential lifting. This yields a generalization of the cover inequalities. Consider

16

again the 0− 1 knapsack set

K = {x ∈ �
N :

∑
j∈N

ajxj ≤ b}.

with aj > 0 for j ∈ N .
Let T ⊆ N be a feasible set, i. e.,

∑
j∈T aj ≤ b and denote the slack by r = b −∑

j∈T aj ≥ 0. Clearly the inequality
∑

i∈T xi ≤ |T | is valid for K ∩ {x : xi = 0 for
i ∈ N \ T }. Then we carry out sequential lifting as in the previous section.

Proposition 2.10. [104] If T is a feasible set, the inequality

∑
i∈T

xi +
∑

j∈N\T
πjxj ≤ |T |

is valid for K, where (μ1, . . . , μn−|T |) is a permutation of N \ T , ΦT is the lifting
function (20) with πj = 1 for j ∈ T and π0 = |T |, and πμi = ΦT∪{μ1,... ,μi−1}(aμi).

We observe that ΦT (u) = min{|S| : S ⊆ T,
∑

j∈S aj ≥ u − r}. It follows imme-
diately that ΦT (u) = 0 for 0 ≤ u ≤ r, and thus πj = 0 whenever j ∈ N \ T and
aj ≤ r.

Example 2.11. Consider the knapsack polytope defined as the convex hull of all 0−1
vectors that satisfy the constraint

3x1 + 4x2 + 6x3 + 7x4 + 9x5 + 18x6 ≤ 21.

Taking the feasible set T = {1, 2, 3, 4}, we obtain a slack r = 1. Choosing the per-
mutation (5, 6), we obtain coefficients π5 = 2 and π6 = 3. The resulting feasible set
inequality

x1 + x2 + x3 + x4 + 2x5 + 3x6 ≤ 4

defines a facet of conv(K).

Feasible set inequalities subsume the family of lifted cover and (1, k)-configuration
inequalities. Specifically a set T ∪ {z} ⊆ N with

∑
i∈T ai ≤ b is called a (1, k)-

configuration, if every k-element subset of T together with the element z forms a
minimal cover. This configuration gives rise to a valid inequality for K,

∑
i∈T

xi + (|T | − k + 1)xz ≤ |T |.

It is a characteristic of feasible set inequalities that lifting coefficients can be com-
puted in polynomial time. Moreover, the exact lifting coefficient of an item either
equals a certain lower bound or equals this lower bound plus one [104]. This gener-
alizes an earlier result where this property shown to hold for the lifting of minimal
cover inequalities [15].

17

Theorem 2.12. For i ∈ N \ T with ai > r, the coefficient πi in any feasible set
inequality associated with T satisfies

ΦT (ai)− 1 ≤ πi ≤ ΦT (ai).

In fact, Theorem 2.12 extends to more general families of feasible set inequalities
where the coefficients of the items in the feasible set are not restricted to the value
one, see [104]. Another extension of feasible set inequalities in [75, 76] that applies to
general integer programs.

2.4 0− 1 Matrices and Valid Inequalities

Integer and mixed integer programs often contain some constraints with only 0 −
1 coefficients. In addition many preprocessors for integer programs automatically
generate logical inequalities of the form xi + xj ≤ 1, xi ≤ xj , cover inequalities, etc.
This naturally leads to the study of integer programs with 0− 1 matrices.

The study of such problems, and in particular the set packing and covering prob-
lems, plays a prominent role in combinatorial optimization. These problems are
among the most studied with a beautiful theory involving topics such as perfect,
ideal, or balanced matrices, perfect graphs, the theory of blocking and anti-blocking
polyhedra, independence systems and semidefinite programming.

The focus of this section is on a (partial) description of the associated polyhedra
by means of inequalities. Assuming that relaxations of various integer programs
yield set packing/covering problems, knowledge about these polyhedra can be used
to strengthen the formulation of the original problem.

Definition 2.13. Let A ∈ {0, 1}m×n be a 0−1 matrix and c ∈ �
n . The 0−1 integer

programs

max{ cTx : Ax ≤ 1l, x ∈ {0, 1}n} (23)

min { cTx : Ax ≥ 1l, x ∈ {0, 1}n} (24)

are called the set packing and set covering problems, respectively.

Each column j of A can be viewed as the incidence vector of a subset Fj of
the ground set {1, . . . ,m}, i. e., Fj := {i ∈ {1, . . . ,m} : Aij = 1}. With this
interpretation, the set packing problem consists of finding a collection of sets from
F1, . . . , Fn that are mutually disjoint and maximal with respect to the objective
function c. Analogously, the covering problem aims at finding a collection of subsets
whose union yields the ground set and is minimal with respect to c.

THE SET PACKING POLYTOPE.

Feasible solutions of the set packing problem have a nice graph theoretic interpreta-
tion. Introduce a node for each column index of A and an edge (i, j) between two
nodes i and j if their corresponding columns have a common non-zero entry in some
row. The resulting graph, denoted by G(A), is called (column) intersection graph.

18

Obviously, every feasible 0 − 1 vector x satisfying Ax ≤ 1l is the incidence vector of
a stable set (U ⊆ V is a stable set if i, j ∈ U implies (i, j) /∈ E) in the graph G(A).
Conversely, the incidence vector of any stable set in G(A) is a feasible solution of the
set packing problem Ax ≤ 1l. So a study of stable sets in graphs is equivalent to a
study of the set packing problem.

Now consider some 0− 1 matrix A and denote by

P (A) = conv{x ∈ �
N : Ax ≤ 1l}

the set packing polytope. Let G = (V,E) be the intersection graph G(A). From our
previous discussion follows that P (A) = conv{x ∈ {0, 1}n : xi + xj ≤ 1, (i, j) ∈ E},
where the latter is an integer programming formulation of the stable set problem in G.
In other words, with two matrices A and A′ one may associate the same set packing
polytope if and only if their corresponding intersection graphs coincide. It is therefore
customary to study P (A) via the graph G and denote the set packing polytope and
the stable set polytope, respectively, by P (G).

The following observations about P (G) are immediate:

(i) P (G) is full dimensional.

(ii) P (G) is down monotone, i. e., x ∈ P (G) implies y ∈ P (G) for all 0 ≤ y ≤ x. All
non-trivial facets of P (G) have non-negative coefficients.

(iii) The non-negativity constraints xj ≥ 0 induce facets of P (G).

It is also well-known that the edge and non-negativity constraints suffice to de-
scribe P (G) if and only if G is bipartite (i. e., there is a partition (V1, V2) of the nodes
such that every edge has one endpoint in V1 and the other in V2).

Non-bipartite graphs contain odd cycles. Odd cycles give rise to new valid in-
equalities that cannot be derived as linear combinations of the edge inequalities.

Proposition 2.14. [87] Let C ⊆ E be a cycle of odd cardinality in G. The odd cycle
inequality ∑

i∈V (C)

xi ≤ |V (C)| − 1

2

is valid for P (G). It defines a facet of P ((V (C), E(V (C))) if and only if C is an odd
hole, i. e., a cycle without chords.

Odd cycle inequalities can be separated in polynomial time using the algorithm
of Lemma 9.1.11 in [53] based on shortest paths. Graphs G = (V,E) for which P (G)
is completely described by the edge inequalities xi + xj ≤ 1 for ij ∈ E and the odd
cycle inequalities are called t-perfect. This notion was introduced in [31] and includes
series parallel and bipartite graphs.

Another important class of valid inequalities for the stable set polytope are clique
inequalities.

19

Proposition 2.15. [45, 87] Let (C,E(C)) be a clique in G. The inequality∑
i∈C

xi ≤ 1

is valid for P (G). It defines a facet of P (G) if and only if (C,E(C)) is maximal with
respect to node-inclusion.

Graphs G = (V,E) for which P (G) is completely described by the clique inequal-
ities are called perfect, a notion going back to Berge [19].

Unlike the class of odd cycle inequalities, the separation problem for the class of
clique inequalities is NP-hard, see Theorem 9.2.9 in [53]. Surprisingly however there
exists a larger class of inequalities, called orthonormal representation inequalities (see
Proposition 3.5), that include the clique inequalities and that can be separated in
polynomial time. See Section 3.3 for a further discussion. Besides cycle, clique and
OR-inequalities, there are many other inequalities known for the stable set polytope.
Among these are blossom, odd antihole, wheel, antiweb and web, wedge inequalities
and many more. [23] gives a survey on these inequalities including a discussion on
their separability.

THE INDEPENDENCE SYSTEM POLYTOPE.

Independence systems provide a framework in combinatorial optimization that gen-
eralizes among others the feasible sets of knapsack and set packing problems. To see
this, let N be a finite ground set. A system I of subsets of N is an independence
system if it is closed under taking subsets, i. e.,

F ∈ I and G ⊆ F implies G ∈ I.
Associated with an independence system is a second system C of subsets of N . C is
called the system of circuits. It includes all subsets of N of minimal cardinality that
do not belong to I.

¿From the definition of an independence system it is clear that, for instance, the
set of all feasible points in a 0 − 1 knapsack set forms an independence system, and
the minimal covers are the circuits. Also the set of stable sets in a graph forms an
independence system. Here the cardinality of each circuit is two, and the circuits are
precisely the edges of the graph.

More generally, let A ∈ �
m×n
+ be a non-negative matrix. The set of all 0 − 1

solutions satisfying Ax ≤ b for b ∈ �
m forms an independence system I on the

ground set N = {1, . . . , n}. Let
PI := conv{x ∈ �

n : Ax ≤ b}.
PI is called an independence system polyhedron. The following fact about the facet-
defining inequalities of PI is immediate.

Proposition 2.16. Let cTx ≤ γ be a facet-defining inequality that is not a positive
multiple of one of the non-negativity constraints −xi ≤ 0. Then c is a non-negative
vector and γ > 0.

20

Observe that for the set packing problem Proposition 2.16 was stated in (ii) on
page 2.4). An easy example of valid inequalities for the polyhedron of a general
independence system are the circuit constraints.

Proposition 2.17. Let I be an independence system and let C ⊆ N define a circuit.
The inequality ∑

i∈C

xi ≤ |C| − 1

is valid for PI .

In fact the problem of finding a maximum weight set in an independence system can
be formulated as the integer program

max{cTx :
∑
i∈C

xi ≤ |C| − 1 for all C ∈ C, x ∈ �
N }.

Except for special cases, a circuit constraint does not necessarily define a facet of
the associated independence system polyhedron. Recall that this applies in particular
to the stable set problem for which clique constraints subsume the edge constraints.
This motivates the following definition.

Definition 2.18. For T ⊆ N , the inequality

∑
i∈T

xi ≤ r(T) := max{|S| : S ⊆ T, S ∈ I}

is called a rank inequality, since the right-hand side reflects the maximal cardinality
of an independent set with support in T .

Calculating the rank of a set is typically a difficult problem. For instance for the
stable set problem, the rank inequality for an arbitrary graph G takes the form

∑
i∈V

xi ≤ α(G),

where α(G) is the size of a maximum stable set in G, and it is NP-hard to calculate
its value.

If I is an arbitrary independence system, then one cannot expect to derive a system
of inequalities that describes PI . This motivates the search for a partial description.
A natural starting point is again the stable set polyhedron. Specifically we can think
of an odd cycle on {1, . . . , 2k+1} as a set of adjacent pairs ei = (i, i+1) mod 2k+1
for i = 1, . . . , 2k + 1 such that at most one item can be chosen from each pair.

Generalizing, we now consider a set {1, . . . , n} and the set of adjacent t-tuples
N i = {i, i + 1, . . . , i + t − 1} mod n for i = 1, . . . , n. For q ≤ t, a set containing
at most q − 1 elements from each set N i is an independence system, known as an
antiweb, denoted AW(n, t, q). Thus

AW(n, t, q) := {I ⊆ N : |I ∩N j | ≤ q − 1 for all j = 1, . . . , n}.

21

For example the antiweb AW(5, 3, 3) is the set of subsets represented by the feasible
incidence vectors of the 0− 1 integer program with constraints⎛

⎜⎜⎜⎜⎝

1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1

⎞
⎟⎟⎟⎟⎠x ≤

⎛
⎜⎜⎜⎜⎝

2
2
2
2
2

⎞
⎟⎟⎟⎟⎠ .

The set C of all circuits of AW(n, t, q) is equal to

C := {C ⊆ N : |C| = q, C ⊆ N j for some j ∈ {1, . . . , n}}.

An antiweb gives rise to a valid inequality for the associated independence system
polyhedron PI . In the example of AW(5, 3, 3), the inequality reads

∑
i∈N xi ≤ 3.

More generally, one obtains

Proposition 2.19. Let AW(n, t, q) be an antiweb and PI the associated polyhedron.

The inequality
∑

i∈N xi ≤ �n(q−1)
t �, called an antiweb inequality, is valid for PI.

Proof. The sum of all constraints
∑

i∈Nj xi ≤ q − 1 for j = 0, . . . , n − 1 reads∑
i∈N txi ≤ n(q − 1). Therefore, the antiweb inequality coincides with the Chvátal-

Gomory cutting plane
∑

i∈N xi ≤ �n(q−1)
t � that is valid for PI .

No polynomial time algorithms are known for the antiweb inequalities. For an antiweb
AW(n, t, q) the associated inequality always defines a facet if n = t. Hence we may
assume that n > t. In this case a necessary condition for the antiweb inequality
to define a facet of PI is that t is not a divisor of n(q − 1). This condition is also
sufficient. This condition, the definition of an antiweb and Proposition 2.19 are taken
from Laurent [65]. The antiweb inequality in Laurent’s paper extends, in particular,
the generalized odd holes and antiholes of [43]. It also includes generalized cliques
that were introduced in [80]. There are various other families of inequalities known
for the independence system that we refrain from discussing here in detail.

Very special independence systems in which the rank inequalities and non-nega-
tivity constraints suffice to describe the convex hull PI include matroids, see [41]. A
generalization of the result to the intersection of two matroids can be found in [42].

THE SET COVERING POLYTOPE.

The feasible solutions of the set covering problem

{x ∈ �
n : Ax ≥ 1l}

are in one-to-one correspondence with the independent sets of the system I

{x̄ ∈ �
n :

∑
j∈C

x̄j ≤ |C| − 1 for C ∈ C},

22

when the rows of A correspond to the incidence vectors of circuits C ∈ C and x̄j =
1− xj for j ∈ N = {1, . . . , n}.

Note that the antiweb inequality has an equivalent counterpart for the set cov-
ering polytope that is derived by complementing every binary variable. In fact the
(q, t) roses of [96] are precisely Laurent’s antiweb inequalities, see also [83]. Further
inequalities for the set covering polytope have been derived, see [23] for a survey, but
again all separation algorithms known are of heuristic nature.

3 Extensions

So far we have tried to introduce various ways to derive cutting planes for integer and
mixed integer programs of potential computational value. There are many further
extensions that are algorithmically promising and worth further exploration. Below
we discuss three such topics: the idea of mixing MIR inequalities, the approach of
constructing discrete relaxations of integer programs, and the use of semidefinite
programming for separation issues.

3.1 Mixing MIR Inequalities

Consider the mixed integer set

X = {(x, s) ∈ �
|P |× �+ : s+ Cxi ≥ bi, i ∈ P}.

Let μi = � bi
C
 and ri = bi − (μi − 1)C. We assume that the constraints defining X

are ordered in such a way that ri ≤ ri+1.
The MIR inequality associated with each constraint i ∈ P of X is

s ≥ ri(μi − xi).

By “mixing” these inequalities, a new inequality is obtained.

Proposition 3.1. [58] Taking r0 = 0, the inequality

s ≥
∑
i∈P

(ri − ri−1)(μi − xi)

is valid for X.

We illustrate the mixing procedure on two examples.

Example 3.2. Consider an instance of a discrete constant capacity lot-sizing prob-
lem,

X = {(x, s) ∈ �
3 × �

4
+ : si−1 + Cxi = bi + si, i ∈ {1, 2, 3}}

where C = 10, b1 = 8, b2 = 7 and b3 = 6. Eliminating variables s1, s2 and s3, we
obtain the inequalities,

s0 + 10x1 + 10x2 + 10x3≥ 21,
s0 + 10x1 + 10x2 ≥ 13,
s0 + 10x1 ≥ 6,

23

to which we can associate the MIR inequalities

s0 ≥ 3− x1 − x2 − x3,
s0 ≥ 3(2− x1 − x2),
s0 ≥ 6(1− x1).

Applying Proposition 3.1, we obtain the mixed MIR inequality

s0 ≥ (3− x1 − x2 − x3) + 2(2− x1 − x2) + 3(1− x1).

In [58] it is shown that every (k, l, S, I) inequality for the constant capacity lot-sizing
problem can be obtained by mixing MIR inequalities. These inequalities suffice to
solve the constant capacity lot-sizing problem by linear programming when the ob-
jective function satisfies the Wagner-Whitin assumption [92]. See Section 4.2 for a
more extensive discussion of inequalities for lot-sizing problems.

Mixing can also be used to derive valid inequalities for general integer programs.

Example 3.3. Consider the following integer set

X = {x ∈ �
5
+ : x1 + 3x2 + 10x4 ≥ 25, x1 + 2x3 + 10x5 ≥ 37}

Defining s = x1 +3x2 +2x3, the two constraints defining set X can be relaxed to give
a set

X ′ = {(x4, x5, s) ∈ �
2
+× �

1
+ : s+ 10x4 ≥ 25, s+ 10x5 ≥ 37}.

Applying Proposition 3.1 to X ′, we obtain the mixed MIR inequality

s ≥ 5(3− x4) + 2(4− x5)

or equivalently
x1 + 3x2 + 2x3 ≥ 5(3− x4) + 2(4− x5)

a valid inequality for X.

Other examples of application of the mixing idea can be found in [58].

3.2 Set Packing Relaxations

At the beginning of this section it was mentioned that knowledge about the set packing
polytope can be used to strengthen certain integer programming formulations. Below
we show by example how, by introducing additional variables, it is possible to derive
a set packing relaxation, generate one or more valid inequalities, and then project
back into the original space of variables. We then give a formal description of the
approach.

Example 3.4. Let PI be the convex hull of all 0 − 1 vectors that satisfy the system
of inequalities

5x1+5x2+7x3+2x4 ≤ 18
8x3+x4+6x5+5x6≤ 19

7x1+2x2+ 7x5+x6 ≤ 16

24

Define variables w1 = x1x2, w2 = x3x4 and w3 = x5x6, so that x1, x2 ≥ w1, x1 + x2−
1 ≤ w1, etc. From the first constraint we have that 10w1 + 9w2 ≤ 18, w1, w2 ∈ {0, 1}
from which we obtain the valid cover inequality w1+w2 ≤ 1. Similarly from the second
and third constraints, we obtain w2 + w3 ≤ 1 and w1 + w3 ≤ 1. Now the odd cycle
(or clique) inequality w1+w2+w3 ≤ 1 is valid, leading finally to a valid inequality in

the original variables (x1 + x2− 1)+ (x3+ x4 − 1)+ (x5+ x6 − 1) ≤ 1 or
∑6

i=1 xi ≤ 4
which is valid for PI .

In general consider a 0 − 1 integer program max{ cTx : x ∈ PI} with PI =
conv{x ∈ �

n : Ax ≤ b, 0 ≤ x ≤ 1l}. We define a set of affine functions fi : �
n �→ �

for i = 1, . . . ,M with the property that fi(x) ≤ 1 and fi(x) ∈ � for x ∈ PI ∩�N. We
define a graph G, called the conflict graph, by introducing a node for each of these M
affine functions and edges (i, j) if fi(x) + fj(x) ≤ 1 for all x ∈ PI . Now it is readily
seen that any valid inequality for the stable set polytope P (G) associated with the
conflict graph G yields a valid inequality for PI .

Natural affine functions that come up are fi(x) = xj or fi(x) = 1 − xj . These
are the ones that are generally used in mixed integer programming solvers, see, for
instance, [5, 37, 63]. In the above example we have used the affine functions f1(x) =
x1 + x2 − 1, f2(x) = x3 + x4 − 1, f3(x) = x5 + x6 − 1.

More complicated affine functions have been used in Borndörfer and Weismantel
[25]. It was shown that various inequalities known for certain combinatorial opti-
mization problems can be interpreted as inequalities from a set packing relaxation.
For instance, it turns out that 2-chorded cycle inequalities for the clique partitioning
problem are odd cycle inequalities of an appropriate set packing relaxation, or that a
large class of Möbius ladder inequalities and fence inequalities for the acyclic subdi-
graph problem are cycle and clique inequalities, respectively, of suitable set packing
relaxations.

3.3 Polynomial Separation Algorithms via Matrix Cuts

Coming back to our earlier discussions on the stable set polytope, we indicated that
there are polynomial time separation algorithms for various classes of valid inequal-
ities, but that a polynomial time separation algorithm cannot be expected for the
family of clique constraints. More striking is the fact that clique constraints can be
generalized, and that this larger family can be separated in polynomial time. This
result is one of the most appealing applications of semidefinite programming in com-
binatorial optimization, see [53] and [68].

Let G = (V,E) be a graph with |V | = n and P (G) the associated stable set
polyhedron. By P we denote the fractional stable set polytope. A sequence of vectors
of unit length, v1, . . . , vn ∈ �

s , ||vi|| = 1, i = 1, . . . , n is called an orthonormal
representation of G if (i, j) �∈ E implies that (vi)T vj = 0.

An orthonormal representation of G and a vector of unit length c ∈ �
s , ||c|| = 1

lead to a valid inequality for the stable set polyhedron.

Proposition 3.5. Let v1, . . . , vn ∈ �
s be an orthonormal representation of G and

25

c ∈ �
s , ||c|| = 1. The inequality

∑
i∈V

(cT vi)2xi ≤ 1,

called an orthonormal representation (OR)-inequality, is valid for P (G), and every
clique inequality is an OR-inequality.

Proof. Let χS be the incidence vector of a stable set S in G. Then (vi)T vj = 0 for
all i, j ∈ S, i �= j. We can express c as c =

∑
j∈S λjv

j + c̃ with λ ∈ �
S and c̃ in the

orthogonal complement of the linear space induced by the vectors vj , j ∈ S. Then

∑
i∈V

(cT vi)2χS
i =

∑
i∈S

(cT vi)2 =
∑
i∈S

λ2
i ≤ 1,

because ||c|| = 1.
If Q is a clique in G we may set for all i ∈ Q, vi = c = e1 ∈ �

n and vj = ej for
all j �∈ Q. The corresponding orthonormal representation constraint is precisely the
clique constraint

∑
i∈Q xi ≤ 1.

In the following we denote

TH(G) = {x ∈ �
n
+ : x satisfies all OR-constraints}.

TH(G) is a convex set that is a relaxation of P (G). It is polyhedral if and only if
G is perfect, see [53]. However, even when G is not perfect, one can optimize linear
functions over TH(G) in polynomial time. This in turn means that we can separate
over TH(G) in polynomial time, and thus satisfy all the OR-inequalities.

To get an impression why this is true, we indicate below how TH(G) can be
characterized via positive semidefinite matrices. This result is due to Lovász and
Schrijver [68]. Let

H(G) = { Y ∈ �
V ∪{v0} × �

V ∪{v0} :
Y symmetric,
Yii = Yi0 ∀ i ∈ V,
Yij = 0 ∀ (i, j) ∈ E,
Y positive semidefinite,
eT0 Y e0 = 1

}.
Theorem 3.6.

TH(G) = {Y e0 : Y ∈ H(G) }.
It follows, for instance, from the theory of interior point algorithms that, subject

to certain conditions, linear functions can be optimized over the cone of symmet-
ric positive semidefinite matrices subject to linear constraints in polynomial time to
within a specified error. Since the constraints in Theorem 3.6 are linear in the space
of (n+ 1)× (n+ 1) matrices and the conditions are satisfied, this applies to TH(G).

26

In fact, TH(G) is the projection of a semidefinite relaxation of the stable set
problem. Notice that for any incidence vector of a stable set x we have that

xi + xj ≤ x0, ∀ (i, j) ∈ E with x0 = 1.

Therefore, the symmetric (n+ 1)× (n+ 1) matrix

X̃ =

[
x2
0 x0x

T

x0x xxT

]

satisfies the condition that

(a) X̃ij = 0 for all (i, j) ∈ E.

(b) X̃00 = 1.

(c) X̃ii = X̃i0 for all i ∈ V .

(d) vT X̃v ≥ 0 for all v ∈ �
n+1 , i. e., X̃ is positive semidefinite.

Neglecting the condition that the n × n submatrix of X̃ is of the form xxT , we
end up with a relaxation of the stable set problem in the space of the symmetric
(n + 1) × (n + 1) matrices. Projecting back to the space of x-variables (using the
standard lift-and-project approach) yields precisely TH(G). Important is the fact
that TH(G) can be strengthened by using further information in quadratic space
about the matrices associated with stable sets and projecting back to the space of
x-variables. This follows from the work of Lovász and Schrijver [68] on matrix cuts.
We also refer to [53] and [67]. The conditions to be encountered in the quadratic
space come from multiplying each constraint of the fractional stable set problem in
the original space by xi and by (1 − xi), substituting the quadratic terms by the
corresponding matrix variable and requiring that x2

i = xi.

Theorem 3.7. Let

T (G) = { Y e0 : Y ∈ H(G),
uTY ei ≥ 0 ∀ u ∈ cone({1} × P)′, i = 1, . . . , n
uTY (e0 − ei) ≥ 0 ∀u ∈ cone({1} × P)′, i = 1, . . . , n

},

where P denotes the fractional stable set polytope and cone({1}×P)′ denotes the polar
of the set cone({1} × P). Then the following is true.

T (G) ⊆ { x ≥ 0 : x satisfies all edge constraints,
x satisfies all OR-constraints,
x satisfies all odd hole constraints,
x satisfies all odd antihole constraints,
x satisfies all odd wheel constraints

}.

27

4 Valid Inequalities for Some Structured MIPs

Here we look briefly at four problem areas that provide a large variety of applications:
fixed charge network design, production planning, facility location and electricity
generator scheduling. As many of the ideas for generating inequalities for network
problems can be used in the other areas, we start with network design.

4.1 Fixed Charge Network Design

Traditionally single commodity fixed charge network problems arose in designing
transport, water and electricity networks. In the last 10 years the design of telecom-
munication networks and VLSI have provided perhaps the bulk of applications in this
area - these include both single commodity problems, such as the construction of two
or multiply connected networks, and multicommodity problems which arise because
messages/communications between two nodes A and B are distinct from messages
being sent from C to D.

Below we concentrate mainly on single commodity problems because the majority
of valid inequalities can be explained in this simpler context. We present a variety of
different ways to derive inequalities. In particular we first look at the simplest single
node model considering different variants, uncapacitated and capacitated, and with
0− 1 or integer variables as appropriate. The same single node inequalities are then
used when several nodes S are combined to form a macro-node, but the difficulty is
now how to choose the set S.

We then present four classes of inequalities that use more of the network structure,
such as the sparsity of the network, ways to combine different dicut inequalities, or
submodularity.

Finally we briefly touch on multicommodity problems with a single source and
sink for each commodity. We look at a basic single arc model with both divisible and
indivisible flows, and then again at how to choose a good macro-node set S on which
to generate a dicut or other inequality.

Single Commodity Problems

We consider a basic single commodity fixed charge network flow problem consisting
of a digraph D = (V,A) and a vector b ∈ �

n with
∑n

i=1 bi = 0, where n = |V |,
T = {i ∈ V : bi > 0} is the set of demand nodes or terminals, and U = {i ∈ V : bi < 0}
is the set of sources. Given unit flow costs pij and fixed arc capacity installation costs
fij for an amount Cij of capacity on arc (i, j) ∈ A, the problem is to find a feasible
flow minimizing the sum of the flow and capacity installation costs. Much of the
literature has been devoted to the special case of this problem without flow costs -
special cases are the Steiner tree problem or the problem of designing a two-connected
network of minimum cost, etc. [48, 54].

Below we use the notation S̄ = V \S, V −(i) = {j ∈ V : (j, i) ∈ A}, V +(i) = {j ∈
V : (i, j) ∈ A} and δ(S, S̄) = {(i, j) ∈ A : i ∈ S, j ∈ S̄}.

28

Letting yij denote the flow in arc (i, j) ∈ A and xij the number of times the
capacity Cij is installed, we obtain the natural formulation

min
∑

(i,j)∈A pijyij +
∑

(i,j)∈A fijxij (25)∑
j∈V −(i) yji −

∑
j∈V +(i) yij = bi for i ∈ V (26)

0 ≤ yij ≤ Cijxij for (i, j) ∈ A (27)

xij ∈ �
1
+ for (i, j) ∈ A. (28)

Here (26) are flow conservation constraints and (27) are variable upper bound capacity
constraints. We will denote the feasible region (26)-(28) by XFC . In practice one also
encounters many variants such as

i) xij ∈ {0, 1} in place of (28),

ii) Cij = C and also possibly fij = f for all (i, j) ∈ A when standard equipment is
installed throughout the network,

iii) Capacity C0
ij already exists on certain arcs, and two or more different types of

capacity can be installed, so we have 0 ≤ yij ≤ C0
ij + C1x1

ij + C2x2
ij in place of (27),

iv) Capacity is undirected, so we have 0 ≤ yij + yji ≤ Cexe in place of (27), where e
represents the edge (i, j).

SINGLE NODE INEQUALITIES

If we just consider the flow conservation constraint (26) for node i along with the
associated bounds on the flows (27), we obtain the situation shown in Figure 2 and
the corresponding single node flow set

XSN = {(x, y) ∈ �
p+q
+ ×�

p+q
+ :

∑
e∈P ye−

∑
e∈Q ye = b, ye ≤ Cexe for e ∈ P ∪Q}

with p = |P | and q = |Q|, and its relaxation
XSN

> = {(x, y) ∈ �
p
+× �

p
+ :

∑
e∈P ye ≥ b, ye ≤ Cexe for e ∈ P}

y C x y C x

b

eeeeeeP Q

Figure 2: Single Node Flow Set

The Uncapacitated Case. If the capacities are so large that the flow on each arc is
unrestricted, xe can be restricted to be a 0− 1 variable for all arcs e ∈ A. Now points
in XSN

> satisfy
∑

e∈P ye ≥ b, C
∑

e∈P xe ≥ b, and thus if b > 0, the cut inequality

∑
e∈P

xe ≥ 1

29

is valid for XSN
> . Note that if b < 0, a similar inequality is obtained with Q in place

of P .
More generally if F is a subset of the arcs in P , feasible points in XSN

> satisfy∑
e∈P\F ye +C

∑
e∈F xe ≥ b leading to the mixed cut inequality

∑
e∈P\F

ye + b
∑
e∈F

xe ≥ b.

The Constant Capacity Case - Integer Batches. For simplicity we assume that
the capacities Ce and demands b are integer. When b > 0 and Ce = C for all e ∈ F ,
the inequality

∑
e∈P\F ye + C

∑
e∈F xe ≥ b leads to the residual capacity or MIR

inequality (see Section 1.2) for XSN
>

∑
e∈P\F

ye + r
∑
e∈F

xe ≥ rμ, (29)

where μ = � b
C
 and r = b− (μ− 1)C.

For XSN , with G ⊆ Q,the inequality takes the more general form
∑

e∈P\F
ye + r

∑
e∈F

xe ≥ rμ+
∑
e∈G

[ye − (C − r)xe], (30)

see [4].

The Capacitated 0− 1 Case. Rewriting the simple flow cover inequalities for
single node flow sets that have been described in Section 2.1, we first present valid
inequalites for XSN

> ∩{(x, y) ∈ {0, 1}p×�
p
+}. For F a cover, (

∑
e∈F Ce−b = λ > 0),

we obtain ∑
e∈P\F

ye +
∑
e∈F

(Ce − λ)+xe ≥
∑
e∈F

(Ce − λ)+.

Generalizing to include outflows, the basic inequality obtained for XSN ∩ {(x, y) ∈
{0, 1}p+q × �

p+q
+ } is

∑
e∈P\F

ye +
∑
e∈F

(Ce − λ)+xe ≥
∑
e∈F

(Ce − λ)+ +
∑
e∈F2

(ye − Ce) +
∑
e∈L2

(ye − λxe)

where F1 ⊆ P, F2, L2 ⊆ Q,F2 ∩ L2 = ∅, and ∑
e∈F1

Ce −
∑

e∈F2
Ce − b = λ > 0.

In the constant capacity case, the inequalities for the 0− 1 case take the same form
as (29) and (30), and are known to describe the convex hull of solutions, see [89, 4].

More General Capacity Constraints. Suppose that the constraints

ye ≤ C0
e + C1

ex
1
e + C2

ex
2
e

30

describe the potential capacities. Feasible points now satisfy
∑

e∈P\F ye+C1
∑

e∈F x1
e

+C2
∑

e∈F x2
e ≥ b−∑

e∈F C0
e . Now assuming b−∑

e∈F C0
e > 0, and divisible capaci-

ties (i. e., C1 divides C2), which is often the case in telecommunications applications,
extensions of the residual capacity inequalities have been proposed in [20, 70], and
these have been generalized to handle an arbitrary number of divisible capacities in
[93].

AGGREGATE NODE INEQUALITIES

By summing the flow conservation constraints (26) for i ∈ S, we obtain the set XS:

∑
e∈δ(S̄,S) ye −

∑
e∈δ(S,S̄) ye =

∑
i∈S bi (31)

0 ≤ ye ≤ Cexe, xe ∈ {0, 1} for e ∈ δ(S̄, S) ∪ δ(S, S̄) (32)

which is precisely in the form of the single node flow set XSN . Thus if
∑

i∈S bi > 0,
all the inequalities presented above can be generalized to the set XS. In particular
in the uncapacitated case we obtain the dicut inequality

∑
e∈δ(S̄,S)

xe ≥ 1

and if F is a subset of δ(S̄, S), the mixed dicut inequality

∑
e∈δ(S̄,S)\F

ye + (
∑
i∈S

bi)
∑
e∈F

xe ≥
∑
i∈S

bi.

There is now however a major question to be answered before we can make use of
these inequalities. How should the set S of nodes be chosen, given the huge number
of possibilities?

The Separation Problem for Dicut Inequalities. Formally we wish to solve
the problem: Given a solution (x∗, y∗) satisfying the linear programming relaxation
of (25)-(28), does there exist a non-empty subset S ⊂ V with

∑
i∈S bi > 0 and∑

e∈δ(S̄,S) x
∗
e < 1?

Special Dicut Inequalities: Maximum Flow. First we restrict the choice of subsets
S. Remember the notation that T = {i : bi > 0} and U = {i : bi < 0}. Let S
= {S ⊂ V : S ∩ U = ∅, S ∩ T �= ∅}. Now if S ∈ S, we are sure that

∑
i∈S bi > 0. The

separation problem then reduces to |T | maximum flow problems.
Specifically choose s ∈ U and t ∈ T . Let ζt be the value of a maximum s− t flow

in the digraph D = (V,A) with capacities hij = ∞ if i, j ∈ U and hij = x∗
ij otherwise.

If ζt ≥ 1, there is no violated dicut inequality with s ∈ S and t ∈ T . Otherwise if
ζt < 1, the resulting minimal s− t cut gives a violated dicut inequality.

Note that for single source problems with |U | = 1, all dicuts of interest are included
in this procedure.

31

All Dicut Inequalities: Quadratic 0 − 1 Knapsack. To model the general case, let
zj = 1 if j ∈ S and zj = 0 otherwise. The resulting separation problem can now be
written as

ζ = min
∑

(i,j)∈A x∗
ij(1 − zi)zj∑

j∈V bjzj > 0

zj ∈ {0, 1} for j ∈ V.

If S is the set minimizing ζ, a violated dicut inequality has been found if ζ < 1, and in
any case we can look at the single node flow set associated with S for other violated
inequalities.

INEQUALITIES USING STRUCTURE

Uncapacitated: Inflow-Outflow Inequalities. When all arcs are present in an
uncapacitated network, flow entering the network can reach any other node. However
when the network is sparse, this is no longer true. Specifically consider the subgraph
induced by the node set S as shown in Figure 3. We will now take into account the
internal structure of DS = (S,AS). Write P = δ(S̄, S) and Q = δ(S, S̄). Also let
R ⊆ AS be a subset of the arcs in S. For an entering arc e ∈ P , let Se = {i ∈ S : bi > 0
and there exists a dipath in DS,R = (S,AS \R) from the head of arc e to node i} and
αe =

∑
i∈Se

bi. The inflow-outflow inequality

∑
e∈F

αexe +
∑

e∈(P\F)∪R

ye ≥
∑
i∈S

bi

is valid for any F ⊆ P .

Figure 3: Aggregate Node Set

Uncapacitated: Multi-Dicut Inequalities. Rather than use just a single dicut
inequality, here we show how to use several dicuts simultaneously. Suppose that for
each t ∈ T , a family of dicuts {δ(S̄k

t , S
k
t)}Kt

k=1 is given with t ∈ Sk
t and Sk

t ∩U = ∅ for

all k and t. Also take F k
t ⊆ δ(S̄k

t , S
k
t). The following multi-dicut inequality∑

e∈A

max
t∈T

αe(t)ye +
∑
e∈A

∑
t∈T

βe(t)dtxe ≥
∑
t∈T

Ktdt

32

is shown to be valid in [94], where, for e ∈ A,
αe(t) is the number of arc sets {F k

t }Kt

k=1 containing e, and

βe(t) is the number of arc sets {δ(S̄k
t , S

k
t) \ F k

t }Kt

k=1 containing e.

An example is shown in Figure 4 with T = {6, 7}, d6 = 2 and d7 = 3. Taking
K6 = K7 = 2, S1

6 = {2567}, S2
6 = S1

7 = {3567}, S2
7 = {567}, F 1

6 = {(37)}, F 2
6 = F 1

7 =
{(26)}, F 2

7 = {(26), (37)}, we have α26 = max{1, 2} = 2, α37 = 1 and we obtain the
multi-dicut inequality

y37 + 2y26 + 2x12 + 10x45 + 5x13 ≥ 10.

1

2 3

4

5

6 7

2 3

Figure 4: Network for Multicut Inequality

0− 1 Capacitated: Submodular Inequalities. An important, but rare structural
property, in discrete optimization problems, is submodularity, which is some discrete
form of non-increasing returns. Specifically f :→ P(N) is submodular if f(A)+f(B) ≥
f(A ∩ B) + f(A ∪ B) for all A,B ⊆ N . Not surprisingly, this structure is reflected
in a family of valid inequalities. Consider again Figure 3. For F ⊆ P , let v(F)
be the maximum flow that can enter DS through the arcs of F , and leave via the
demand nodes in S with bi > 0. It can be shown that v is submodular. Define
ρj(T) = v(T ∪ {j})− v(T), and let {1, 2, . . . , p} be a chosen ordering of the elements
of P . The following submodular inequality

∑
j∈P

yj ≤ v(F) +
∑

j∈P\F
ρj(F ∪ {j + 1, . . . , p})xj

−
∑
j∈F

ρj(F ∩ {j + 1, . . . , p} ∪ {1, . . . , j − 1})(1− xj) +
∑
e∈Q

ye

33

is valid, see [107].

Capacitated: Dynamic Inequalities. Here we use the idea of mixing to combine
cut inequalities from different aggregate node sets, which can be viewed as generalizing
the use of sparsity in the input-output inequalities. Suppose we have node sets S1 ⊂
S2 ⊂ . . . ⊂ St, and entering arcs P1, . . . , Pt as shown in Figure 5. Let Qpq = {(i, j) ∈
A : i ∈ Sp, j ∈ Sq}. Considering the sets S1, S2, . . . , St in turn, the inequalities based
on the inflow to Sk being at least equal to the demand give

k∑
i=1

∑
e∈Pi

Cexe +
∑

p,q:p>k≥q

∑
e∈Qpq

ye ≥
∑
i∈Sk

bi (33)

for k = 1, . . . , t.
With constant capacities, the mixing theorem can be applied to give inequalities

of the form

∑
p,q:p>q

∑
e∈Qpq

ye ≥ r[1](μ[1] −X[1]) + . . .+ (r[t] − r[t−1])(μ[t] −X[t])

where μk = �
P

i∈Sk
bi

C
, rk =
∑

i∈Sk
bi − (μk − 1)C, {[1], . . . , [t]} is a permutation of

{1, . . . , t} with r[1] ≤ . . . ≤ r[t], and X[k] =
∑[k]

i=1

∑
e∈Pi

xe.
Examples of such inequalities are given below both for lot-sizing and for facility

location problems.

Figure 5: Embedded Node Sets

Multi-Commodity Problems

In multicommodity problems feasible flows have to be determined for each of k =
1, . . . ,K commodities satisfying demands bki at each node i ∈ V , where the com-

34

modities share arc capacity. This can be formulated as

min
∑

(i,j)∈A

∑
k p

kyk(i,j) +
∑

(i,j)∈A

∑
k f

kxk
(i,j) (34)

Nyk = bk for k = 1, . . . ,K (35)

0 ≤ ∑
k y

k
ij ≤ Cijxij for (i, j) ∈ A (36)

xij ∈ Z1 for (i, j) ∈ A (37)

where N is the node-arc incidence matrix of D. In many instances each commodity k
has a single source ik and a single sink jk, in which case we write bjk = dk, bik = −dk
and bki = 0 otherwise. From now on we limit our attention to this case. We also
consider the network loading problem in which xij is integer rather than 0− 1.

SINGLE ARC INEQUALITIES

Multiple Routes. Consider flow in a single arc (i, j) ∈ A. Let yk be the flow of
commodity k in this arc, and x the associated capacity variable. The resulting set is:

XSA = {(x, y) ∈ �
1
+× �

K
+ :

K∑
k=1

yk ≤ Cx, yk ≤ dk for k = 1, . . . ,K}.

Taking an arbitrary set K ′ ⊆ {1, . . . ,K} of commodities and setting w =
∑

k∈K′ yk,
we have that w ≤ Cx and w ≤ ∑

k∈K′ dk leading to the arc residual capacity inequality

∑
k∈K′

yk ≤
∑
k∈K′

dk − r′(μ′ − x)

where μ′ = �
P

k∈K′ dk

C
 and r′ =
∑

k∈K′ dk − (μ′ − 1)C. It is shown in [70] that this
family of inequalities completely describes the convex hull of XSA.

Mono-Routing. When each commodity must flow on a single path, the flow of
commodity k in arc (i, j) is either 0 or dk, and so we obtain the knapsack set

XSAM = {(x, x0) ∈ �
1
+× {0, 1}K+ :

∑
k

dkxk ≤ Cx0}.

Valid inequalities for a more general model with capacities of the form x1+Cx2 have
been derived in [26]. See also [100].

MULTINODE INEQUALITIES

If we choose a commodity k and a set S ⊂ V with ik ∈ S̄ and jk ∈ S, flow conservation
for commodity k gives ∑

e∈δ(S̄,S)

yke −
∑

e∈δ(S,S̄)

yke = dk.

One can first check for a violated dicut inequality by finding a maximum (ik, jk) flow
with capacities x∗.

35

More generally with a constant capacity C and a subset K ′ of commodities, we
have that ∑

k∈K′

∑
e∈δ(S̄,S)

yke ≥
∑

k∈K′:ik /∈S,jk∈S

dk,

which after introduction of the capacity constraints gives

∑
e∈δ(S̄,S)

xe ≥
∑

k:ik /∈S,jk∈S dk

C
,

and then applying Gomory integer rounding gives

∑
e∈δ(S̄,S)

xe ≥ �
∑

k:ik /∈S,jk∈S dk

C

.

Consider now the relaxed version of these inequalities without the round up of
the right-hand side term (4.1) and with C = 1. They are automatically satisfied
by a point x∗ if there exists a y such that (x∗, y) satisfies the linear programming
relaxation of (34)-(37). More precisely such points satisfy the metric inequalities

∑
e

μexe ≥
∑
k

πkdk,

where μ ∈ �
|E|
+ are arbitrary edge lengths, and πk is the corresponding length of a

shortest path from ik to jk, see [61, 85]. Note that if μe = 1 for e ∈ δ(S̄, S), the
relaxed inequality above is obtained as a special case.

However separation for the special case is a max dicut problem, which is NP-hard.
Specifically it suffices to put a weight −y∗e on each arc of D, and a weight dk/C on the
arcs (ik, jk) for k = 1, . . . ,K, and find a maximum dicut. This separation procedure
has been used in [16] in a model with edge capacities and no variable flow costs.

4.2 Lot-Sizing

A single-item lot-sizing problem is a very special case of a fixed charge network flow
problem, see Figure 6.

The basic single-item lot-sizing problem is typically formulated as

min
∑

t ptyt +
∑

t htst +
∑

t ftxt (38)

st−1 + yt = dt + st for t = 1, . . . , n (39)

yt ≤ Ctxt for t = 1, . . . , n (40)

st, yt ≥ 0, xt ∈ {0, 1} for t = 1, . . . , n. (41)

Here dt is the demand in period t, and Ct is the maximum amount that can be
produced in the period. yt, st are continuous variables denoting the production and

36

1 2 3 4

0

d d dd

x x x

s s

1

1

1 2

3

2

4

x

3

3 4

s
2

Figure 6: Network for Lot-Sizing

end-stock in period t, and xt is a 0−1 set-up variable indicating whether the machine
can produce in period t. Thus yt > 0 only if xt = 1. Constraints (39) are flow
balance constraints, and (40) are capacity constraints linking the production and
set-up variables.

Much is known about the polyhedral structure of different variants of this problem.
We will see below that all the valid inequalities can be derived using procedures that
we have seen earlier either for general 0− 1 MIPs in Section 1.2 and 3.1, or for fixed
charge network problems. Later in this section we will also introduce a natural way
to derive valid inequalities for problems with start-ups. Let dkt =

∑t
j=k dj .

Uncapacitated Lot-Sizing. Let XULS denote the set of feasible solutions of (39)-
(41), where again we assume that C is very large and does not limit the amount
produced in any period. Aggregating the flow balance constraints (39) for t = k, . . . , l,
and choosing a subset S ⊆ {k, . . . , l} of periods, leads to the relaxation

sk−1 +
∑

j /∈S,k≤j≤t

yj + C
∑

j∈S,j≤t

xj ≥ dkt (42)

leading to the MIR inequalities

sk−1 +
∑

j /∈S,k≤j≤t

yj ≥ dkt(1−
∑

j∈S,j≤t

xj) (43)

and by the mixing procedure (Section 3.1) to the valid inequalities

sk−1 +
∑

j /∈S,k≤j≤t

yj ≥
∑
j∈S

dj(1−
∑

t∈S,k≤t≤j

xt). (44)

These inequalities completely describe the convex hull of XULS [17].

Constant Capacity Lot-Sizing. An identical approach leads to a large number of
facet-defining inequalities when Ct = C for t = 1, . . . , n. First from (42) we obtain

37

the MIR inequality

sk−1 +
∑

j /∈S,k≤j≤t

yj ≥ rkt(μkt −
∑

j∈S,j≤t

xj)

where μkt = �dkt/C
 and rkt = dkt − (μkt − 1)C.
Now if the rkt are placed in non-decreasing order, and written r[1] ≤ r[2] . . . ≤ r[q],

and μ[i] and XS
[i] are the corresponding terms for μ and

∑
j xj , the mixing procedure

gives

sk−1 +
∑

j /∈S,k≤j≤l

yj

≥ r[1](μ[1] −XS
[1]) + (r[2] − r[1])(μ[2] −XS

[2]) + . . .+ (r[q] − r[q−1])(μ[q] −XS
[q]).

An example of this inequality has been shown in Example 3.2.

Varying Capacity Lot-Sizing. Inequality (42) with varying capacities gives, setting
s′ = sk−1 +

∑
j /∈S,k≤j≤t yj, the relaxation

s′ +
∑

j∈S,j≤t

Cjxj ≥ dkt, s
′ ≥ 0, xj ∈ {0, 1} for j ∈ S,

for which mixed knapsack inequalities can be generated, see Section 2.1. Alternatively
aggregation of the flow balance constraints gives the inequality

∑l
j=l yj ≤ dkt+sl, the

bounds give us yj ≤ Cjxj , and the uncapacitated inequality (43) gives yj ≤ djlxj+sl.
Setting sl = 0 temporarily, we have a single node flow set:

{(x, y) ∈ {0, 1}k−l+1 × �
k−l+1
+ :

l∑
j=k

yj ≤ dkl, yj ≤ min[Cj , djl]xj for j = k, . . . , l}.

Now it suffices to add the term (+sl) to the right-hand side of any flow cover inequality
to have a valid inequality for XULS, see [90].

MODELLING START-UPS

If x1, x2, . . . , xn ∈ Zn
+ denote the number of machines set-up in periods 1, . . . , n, it is

often important to know the number max[xt − xt−1, 0] of machines that start-up in
period t. If zt is a variable representing the number of start-ups, we use the constraints

zt ≥ xt − xt−1, zt ≥ 0

to get an upper bound on the number of start-ups, and

zt ≤ xt, zt ≤ ut − xt−1

to try to make the upper bound tight, where ut is an upper bound on xt. This
provides an exact formulation if xt, xt−1 ∈ {0, 1}, but it is not tight otherwise.

38

Observation 4.1. Let χkt = max{xk, . . . , xt}, then xk + zk+1 + . . .+ zt ≥ χkt.

Lot-Sizing with Start-Ups. Let zt be defined as above to take value 1 if and
only if xt = 1 and xt−1 = 0, and let χkl denote the maximum of (xk, . . . , xl). The
uncapacitated inequality (44) says essentially that the stock at the end of period
k− 1 contains the demand dt if there is no production in periods k, . . . , t, or in other
words if χkt = 0. This gives the valid inequality sk−1 ≥ ∑l

t=k dt(1 − χkt), or using
Observation 4.1

sk−1 ≥
l∑

t=k

dt(1 − xk − zk+1 − . . .− zt).

In the constant capacity case, either χj,l = 0 and

sk−1 + C(

j−1∑
i=k

xi + χj,l) ≥ dkl = dk,j−1 + djl,

or χj,l = 1 and so

sk−1 + C(

j−1∑
i=k

xi + χj,l) ≥ dk,j−1 + C.

Thus all feasible solutions to (42) satisfy sk−1 + C(
∑j−1

i=k xi + χj,l) ≥ dk,j−1 +
min[C, djl], and from this we obtain the valid MIR inequality

sk−1 ≥ r̃kl(μ̃kl −
j−1∑
i=k

xi − xj − zj+1 − . . .− zl),

where d̃kl = dk,j−1 +min[C, djl], μ̃kl = � d̃kl

C
 and r̃kl = d̃kl − (μ̃kl − 1)C. Now varing
l and using mixing, one can obtain the left extended klSI inequalities from [32].

4.3 Facility Location Problems

The capacitated facility location problem is also a special case of the fixed charge
network flow problem. One particularity is that the fixed costs are incurred on open-
ing nodes (locations) rather than arcs. We show that both flow cover and dynamic
inequalities can be specialized for the special structure of this problem. A more com-
binatorial class of inequalities, a generalization of inequalities from the uncapacitated
case, is also presented.

The feasible region is typically described as follows:

∑
j∈N yij = ai for i ∈ M (45)∑

i∈M yij ≤ Cjxj for j ∈ N (46)

0 ≤ yij ≤ min[ai, Cj]xj for i ∈ M, j ∈ N (47)

xj ∈ {0, 1} for j ∈ N, (48)

39

where yij is the amount shipped from location j to client i, and xj = 1 indicates that
location j is in use.

Letting vj =
∑

i∈M yij and summing up all the demand constraints (45) leads to
a single node flow set X described by

{(v, x) ∈ �
n
+ × {0, 1}n :

∑
j∈N

vj =
∑
i∈M

ai, 0 ≤ vj ≤ Cjxj for j ∈ N}

for which knapsack and flow cover inequalities can be generated.
Next we consider the internal structure of the underlying digraph. Consider a

subset K ⊆ M of clients, a subset J ⊆ N of locations, and for each j ∈ J a possibly
smaller subset Kj ⊆ K of clients. Restricted to this subset, the effective capacity of
location j is C̄j = min[Cj ,

∑
i∈Kj

ai]. Now we obtain a modified flow cover set based

on the new variable ṽj =
∑

i∈Kj
yij , namely the set

XEC := {(ṽ, x) ∈ �
|J|
+ × {0, 1}|J| :

∑
j∈J

ṽj ≤
∑
i∈K

ai, ṽj ≤ C̄jxj for j ∈ J}.

Specifically if J is a cover with excess λ =
∑

j∈J C̄j −
∑

i∈K ai > 0, then we obtain
the effective capacity flow cover inequality∑

j∈J

∑
i∈Kj

yij +
∑
j∈J

(C̄j − λ)+(1 − xj) ≤
∑
i∈K

ai.

Submodular inequalities can also be defined for this model leading to very sim-
ilar inequalities. The separation problem for the effective capacity and submodular
inequalities involves a choice of the sets J,K and Kj , and is necessarily heuristic, see
[1].

Dynamic Inequalities. When Kr ⊆ Kr−1 . . . ⊆ K1, we can use the embedded set
structure to obtain dynamic inequalities, see Section 4.1. An example with 4 clients
and 4 locations is shown in Figure 7.
Specifically we have J = {1, 2, 3},K1 = {1′, 2′, 3′},K2 = {2′, 3′} and K3 = {3′}.
This corresponds to an embedded node set with S1 = {1, 1′}, S2 = {1, 2, 1′, 2′}, S1 =
{1, 2, 1′, 2′, 3, 3′} giving the surrogate capacity constraints

v21 +v31 +v41 +5x1 ≥ 1
v31 +v32 +v41 +v42 +5x1 +5x2 ≥ 3

v41 +v42 +v43 +5x1 +5x2 +5x3 ≥ 7

leading first to the standard MIR inequalities and then the dynamic inequality

v21+v31+v32+v41+v42+v43 ≥ 1(1−x1)+(2−1)(2−x1−x2−x3)+(3−2)(1−x1−x2).

Combinatorial Inequalities. With the same structure J,K and Kj of locations
and clients, let β be the minimum number of locations required to serve all the clients

40

x x x

1 2 4 b

1 2 3 4
x

1

1 '

2

2 '

3

3 '

4

4 '

555 5

Figure 7: Dynamic Location Set

in K if location j is restricted to serving clients in Kj . Then it is shown in [2] that

∑
j∈J

∑
i∈Kj

1

ai
yij −

∑
j∈J

xj ≤ |K| − β

is valid.

4.4 Unit Commitment Problems

The unit commitment problem (the problem of scheduling electricity generators to
satisfy hourly demands for a day or a week) is not a fixed charge network flow problem.
However its formulation as a mixed integer program contains several constraints and
variables that have been encountered in this chapter for which cuts can be generated,
such as single node flow models and start-up variables linking the generators between
time periods. A typical formulation involves the following variables:

xi
t is the number of generators of type i functioning at period (hour) t (often each

generator is distinct, and this is a 0− 1 variable)
zit is the increase in the number of generators of type i active in period t
yit is the amount of electricity produced by generators of type i in period t,

and as basic constraints

∑
i y

i
t = dt for all t (49)

lixi
t ≤ yit ≤ Cixi

t for all i, t (50)

zit ≥ xi
t − xi

t−1 for all i, t (51)

zit ≤ xi
t for all i, t (52)

yit ≥ 0, xi
t ≤ ui for all i, t (53)

xi
t, z

i
t ∈ Z1

+ for all i, t. (54)

41

Typical models also contain ramping and reserve constraints, see [95]. Constraints
(49), (50), (53), (54) lead to single node flow sets, or continuous knapsack sets on which
various inequalities presented in Section 2 can be generated. In contrast to lot-sizing
models, the flow balance constraints are not linked over time, as electricity cannot
be stocked. However the start-up variables provide a certain link between periods.
Specifically if we aggregate (49) for periods t = k, . . . , l and use (50), we obtain∑l

t=k

∑
iC

ixi
t ≥ dkl. Letting χi

kt = max{xi
k, . . . , x

i
t} and (I1, I2) be a partition of

the generator set, we obtain

∑
i∈I1

Ci
l∑

t=k

xi
t +

∑
i∈I2

(k − l + 1)Ciχi
kl ≥ dkl

with xi
t, χ

i
kl ∈ Z1

+. Deriving valid inequalities for such knapsack sets, and then using
Observation 4.1 to replace χi

kl by its upper bound xi
k + zik+1 + . . .+ zil leads to new

valid inequalities.

Example 4.2. [71] Consider two generator types and two periods with C1 = 4, C2 =
5, d1 = 12, d2 = 13 and u1 = u2 = 4. Taking I1 = {2} and I2 = {1}, we obtain the
set

5x2
1 + 5x2

2 + 8χ1
12 ≥ 25, 0 ≤ x2

1, x
2
2, χ

1
12 ≤ 4 and integer.

A valid inequality for this set is

χ1
12 + x2

1 + x2
2 ≥ 4.

Now using x1
1 + z12 ≥ χ1

12, we obtain the valid inequality

x1
1 + z12 + x2

1 + x2
2 ≥ 4.

This inequality cuts off the extreme point solution x1
1 = 3, x1

2 = 3, z12 = 0 and x2
1 =

0, x2
2 = 1

5 , z
2
2 = 1

5 .

5 Note on Computation with Cutting Planes

Several of the families of valid inequalities described above have been incorporated
into branch-and-bound systems in the last fifteen years. If cuts are only added at the
top node, we speak of a cut-and-branch system, while if cuts are added at other nodes
in the enumeration tree, it is a branch-and-cut system. Introductions to branch-and-
cut can be found in [109]. For a survey on branch-and-cut systems for combinatorial
optimization problems, see [27, 64].

General Mixed Integer Programming Systems
In [37] lifted cover inequalities for 0-1 knapsack inequalities were first incorporated
in a cut-and-branch system for 0-1 integer programs. Later flow cover inequalities
and an uncapacitated version of the dynamic inequalities on paths were included in

42

MPSARX [103], a cut-and-branch system for MIPs. MINTO [78] was the first branch-
and-cut system for MIPs incorporating lifted cover and flow cover inequalities, and
more recently lifted cover inequalities for knapsack constraints with generalized upper
bound constraints. More recent systems include SIP [75, 76] which also generates
feasible set inequalities, and BC-OPT [35] that includes integer knapsack inequalities
and recently also MIR inequalities. Taking a different approachMIPO [12] is a branch-
and-cut system for MIPs based on lift-and-project inequalities, where the importance
of finding the right balance between cutting and branching is clearly demonstrated.
With this system it has also been shown that Gomory mixed integer cuts can be used
effectively [13].

Two of the commercial systems, CPLEX and XPRESS, have recently started
incorporating lifted cover inequalities, and flow cover or MIR inequalities into their
systems. For those interested in testing new cuts, etc., a library of mixed integer
programming test instances is available [22].

Packing and Covering
Most set packing or covering inequalities are used in connection with the solution of
set partitioning problems, for instance, [60] exploit clique and cycle inequalities, [23]
uses aggregated cycle inequalities in addition. There seem to be virtually no efficient
separation algorithms for set covering problems. To the best of our knowledge the
only exceptions are the cutting planes from conditional bounds by [10], a class of
k-projection inequalities by [84], and the mentioned aggregated cycle inequalities by
[24], which also apply to set covering. A cutting plane algorithm for set packing
problems has been developed in [79]. Note also that clique inequalities are used in
many general mixed integer programming systems [36, 37, 78].

Network Design Problems
There is little specialized computational work on single commodity network design
problems. However the cutting planes in the general systems cited above significantly
improve performance on some instances. In contrast there has been considerable work
on multi-commodity problems arising from telecommunications networks. Among
others single arc sets [70] and MIR inequalities [26] have been used, and both heuristics
[20, 21], total enumeration [20] and max cut [16] have been used to generate good cut
sets. See also [6, 38, 39, 57].

Lot-Sizing, Facility Location and other Structured MIPs
A variety of multi-item and multi-level lot-sizing problems have been solved using the
cutting planes described above, see [32, 91, 18]. A variety of problem instances are
available at [46, 66].

Some computation on capacitated facility location problems is presented in [1].
The library [86] contains a variety of instances.

Several instances in MIPLIB3.0 are unit commitment instances. For these and
other electricity generation applications [77], using knapsack and MIR inequalities
significantly improves solution performance [73].

43

Acknowledgement. We are grateful to K. Aardal for a careful reading of the
text.

References

[1] K. Aardal, Capacitated facility location: separation algorithms and computa-
tional experience, Mathematical Programming 81, 149 – 175 (1998).

[2] K. Aardal, Y. Pochet, and L.A. Wolsey, Capacitated facility location: valid
inequalities and facets, Mathematics of Operations Research 20, 562 – 582
(1995).

[3] D. Applegate, R.E. Bixby, V. Chvátal, and W. Cook, Project-and-lift (a
paradigm for finding cuts), Draft, Aussois (1998).

[4] A. Atamturk, On network design cut-set polyhedra, Draft, Dept. of Industrial
Engineeing and Operations Research, U.C. at Berkeley, August 1999.

[5] A. Atamturk, G. L. Nemhauser, and M. W. P. Savelsbergh, Conflict graphs
in integer programming, Technical Report LEC 98-03, Georgia Institute of
Technology (1998).

[6] A. Balakrishnan, T.L. Magnanti, J. Sokol, and Y. Wang, Modeling and solving
the single facility line restoration problem, Technical report, MIT, Operations
Research Center (1998). Available at http://web.mit.edu/yiwang/www.

[7] A. Balakrishnan, T.L. Magnanti, and R.T. Wong, A decomposition algorithm
for local access telecommunications network expansion planning, Operations
Research 43, 58 – 76 (1995).

[8] E. Balas, Facets of the knapsack polytope, Mathematical Programming 8, 146
– 164 (1975).

[9] E. Balas, Disjunctive programming, Annals of Discrete Mathematics 5, 3 – 51
(1979).

[10] E. Balas and A. Ho, Set covering algorithms using cutting planes, heuristics, and
subgradient optimization: A computational study, Mathematical Programming
12, 37 – 60 (1980).

[11] E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plane algorithm
for mixed 0− 1 programs, Mathematical Programming 58 , 295 – 324 (1993).

[12] E. Balas, S. Ceria, and G. Cornuéjols, Mixed 0-1 programming by lift-and-
project in a branch-and-cut framework, Management Science 42, 1229 – 1246
(1996).

[13] E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj, Gomory cuts revisited, Op-
erations Research Letters 19, 1 – 9 (1996).

44

[14] E. Balas and E. Zemel, Lifting and complementing yields all the facets of
positive zero-One programming polytopes, Mathematical Programming, Proc.
int. Congr., Rio de Janeiro 1981, 13 – 24 (1984).

[15] E. Balas and E. Zemel, Facets of the knapsack polytope from minimal covers,
SIAM Journal on Applied Mathematics 34, 119 – 148 (1978).

[16] F. Barahona, network design using cut inequalities, SIAM Journal on Opti-
mization 6, 823 – 837 (1996).

[17] I. Barany, T.J. Van Roy, and L.A. Wolsey, Strong formulations for multi-item
capacitated lot-sizing, Management Science 30, 1255 – 1261 (1984).

[18] G. Belvaux and L.A. Wolsey, Lot-Sizing Problems: Modelling issues and a
specialized branch-and-cut system bc-prod, CORE DP 9849, Louvain-la-Neuve
(1998).

[19] C. Berge, Färbung von Graphen, deren sämtliche bzw. deren ungera-
de Kreise starr sind (Zusammenfassung), in Wissenschaftliche Zeitschrift,
Mathematisch-Naturwissenschaftliche Reihe. Martin-Luther-Universität Halle-
Wittenberg (1961).

[20] D. Bienstock and O. Günlük, Capacitated network design - polyhedral structure
and computation, ORSA Journal on Computing 8, 243 – 259 (1996).

[21] D. Bienstock, S. Chopra, O. Günlük, and C-Y. Tsai, Minimum cost capacity
installation for multicommodity network flows, Mathematical Programming 81,
177 – 199 (1998).

[22] R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh, An updated
mixed integer programming library: MIPLIB 3.0, text and problems available
at http://www.caam.rice.edu/∼bixby/miplib/miplib.html

[23] R. Borndörfer, Aspects of set packing, partitioning, and covering. PhD thesis,
Technische Universität Berlin (1998).

[24] R. Borndörfer and R. Weismantel, Relations among some combinatorial pro-
grams. Technical Report Preprint SC 97-54, Konrad-Zuse-Zentrum für Infor-
mationstechnik Berlin (1997).

[25] R. Borndörfer and R. Weismantel, Set packing relaxations of some integer
programs. Technical Report Preprint SC 97-30, Konrad-Zuse-Zentrum für In-
formationstechnik Berlin (1997).

[26] B. Brockmüller, O. Günlük, and L.A. Wolsey, designing private line networks -
polyhedral analysis and computation, Core Discussion Paper 9647, Université
Catholique de Louvain (1996), revised March 1998.

45

[27] A. Caprara and M. Fischetti, Branch-and-cut algorithms, in M. Dell’Amico,
F. Maffioli, and S. Martello (eds.) Annotated bibliographies in combinatorial
optimization, John Wiley & Sons Ltd, Chichester, 45 – 63 (1997).

[28] A. Caprara and M. Fischetti, {0, 12}-Chvátal-Gomory cuts, Mathematical Pro-
gramming 74, 221 – 236 (1996).

[29] S. Ceria, C. Cordier, H. Marchand, and L.A. Wolsey, Cutting planes for integer
programs with general integer variables, Mathematical Programming 81, 201 –
214 (1998).

[30] V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems,
Discrete Mathematics 4, 305 – 337 (1973).

[31] V. Chvátal, On certain polytopes associated with graphs, Journal on Combi-
natorial Theory B 18, 305 – 337 (1975).

[32] M. Constantino, A cutting plane approach to capacitated lot-sizing with start-
up costs, Mathematical Programming 75, 353 – 376 (1996).

[33] W. Cook, L. Lovász, and P. Seymour (eds.), Combinatorial Optimization, DI-
MACS Series in Discrete Mathematics and Computer Science, AMS (1995).

[34] W. Cook, R. Kannan, and A. Schrijver, Chvátal closures for mixed integer
programming problems, Mathematical Programming 47, 155 – 174 (1990).

[35] C. Cordier, H. Marchand, R. Laundy, and L.A. Wolsey, bc-opt: A branch-and-
cut code for mixed integer programs, CORE Discussion Paper 9778,Université
Catholique de Louvain (1997), to appear in Mathematical Programming.

[36] CPLEX, Using the CPLEX callable library, ILOG CPLEX Division, 889 Alder
Avenue, Suite 200, Incline Village, NV 89451, USA, Information available at
URL http://www.cplex.com (1998).

[37] H. Crowder, E. Johnson, and M. W. Padberg, Solving large-scale zero-one linear
programming problems, Operations Research 31, 803 – 834 (1983).

[38] G. Dahl, A. Martin, and M. Stoer, Routing through virtual paths in layered
telecommunication networks, Research Note N78/95, Telenor Research and
Development, Kjeller, Norway (1995), to appear in Operations Research.

[39] G. Dahl and M. Stoer, A cutting plane algorithm for multicommodity survivable
network design problems, INFORMS Journal on Computing 10, 1 – 11 (1998).

[40] I.R. de Farias, E.L. Johnson, and G.L. Nemhauser, Facets of the complemen-
tarity knapsack polytope, Technical Report LEC-98-08, Georgia Institute of
Technology (1998).

[41] J. Edmonds, Matroids and the greedy algorithm, Mathematical Programming
1, 127 – 136 (1971).

46

[42] J. Edmonds, Matroid intersection, Annals of Discrete Mathematics 4, 39 – 49
(1979).

[43] R. Euler, M. Jünger, and G. Reinelt, Generalizations of odd cycles and anti-
cycles and their relation to independence system polyhedra, Mathematics of
Operations Research 12, 451 – 462 (1987).

[44] C.E. Ferreira, A. Martin, and R. Weismantel, Solving multiple knapsack prob-
lems by cutting planes, SIAM Journal on Optimization 6, 858 – 877 (1996).

[45] D.R. Fulkerson, Blocking and anti-blocking pairs of polyhedra, Mathematical
Programming 1, 168 – 194 (1971).

[46] Lot-sizing instances available at http://www.eng.auburn.edu/∼gaoyubo.

[47] B. Gavish and K. Altinkemer, Backbone network design tools with economic
tradeoffs, ORSA Journal on Computing 2, 58 – 76 (1990).

[48] M.X. Goemans, The Steiner tree polytope and related polyhedra, Mathematical
Programming 63, 157-183 (1994).

[49] R.E. Gomory, Outline of an algorithm for integer solutions to linear programs,
Bulletin of the American Society 64, 275 – 278 (1958).

[50] R.E. Gomory, An algorithm for the mixed integer problem, Technical Report
RM-2597, The RAND Cooperation (1960).

[51] R.E. Gomory, Solving linear programming problems in integers, Combinatorial
analysis, in R. Bellman and M. Hall (eds.), Proceedings of Symposia in Applied
Mathematics 10, Providence RI (1960).

[52] R.E. Gomory, An algorithm for integer solutions to linear programming, in R.L.
Graves and P. Wolfe (eds.), Recent Advances in Mathematical Programming,
McGraw-Hill, New York, 269 – 302 (1969).

[53] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combina-
torial optimization, Springer, Berlin (1988).

[54] M. Grötschel, C.L. Monma, and M. Stoer, Design of survivable networks, Chap-
ter 10 in M.O. Ball et al. (eds.) Network Models, Handbooks in OR and MS 7,
Elsevier (1995).

[55] Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh, Sequence independent lifting,
Technical Report LEC-95-08, Georgia Institute of Technology (1995).

[56] Z.Gu, G.L. Nemhauser, and M.W.P. Savelsbergh, Lifted flow cover inequalities
for mixed 0-1 integer programs, Mathematical Programming A (1999)/ DOI
10.1007/ s10107990049a.

[57] O. Günlük, A branch-and-cut algorithm for capacitated network design, Tech-
nical report, Cornell University, 1996.

47

[58] O. Günlük and Y. Pochet, Mixing mixed-integer inequalities, CORE DP9811,
Université Catholique de Louvain, Louvain-la-Neuve, Belgium (1998).

[59] P.L. Hammer, E.L. Johnson, and U.N. Peled, Facets of regular 0-1 polytopes,
Mathematical Programming 8, 179 – 206 (1975).

[60] K. L. Hoffman and M. W. Padberg, Solving airline crew-scheduling problems
by branch-and-cut, Management Science 39, 657 – 682 (1993).

[61] M. Iri, On an extension of the maximum-flow minumum-cut theorem to multi-
commodity flows, J. Oper. Res. Soc. Japan 13, 129 – 135 (1970/71).

[62] R. G. Jeroslow, Cutting plane theory: disjunctive methods, Annals of Discrete
Mathematics 1, 293 – 330 (1977).

[63] E. Johnson and M. W. Padberg, Degree-two inequalities, clique facets, and
biperfect graphs, Annals of Discrete Mathematics 16, 169 – 187 (1982).

[64] M. Jünger, G. Reinelt, and S. Thienel, Practical problem solving with cutting
plane algorithms in combinatorial optimization, in [33], 11 – 152 (1995).

[65] M. Laurent, A generalization of antiwebs to independence systems and their
canonical facets, Mathematical Programming 45, 97 – 108 (1989).

[66] http://www.core.ucl.ac.be/wolsey/Lotsizeli.htm, a library of lot-sizing instances.

[67] L. Lovász, On the Shannon capacity of a graph, IEEE Transactions on Infor-
mation Theory 25, 1 – 7 (1979).

[68] L. Lovász and A. Schrijver, Cones of matrices and set-functions and 0 − 1
optimization, SIAM Journal on Optimization 1, 166 – 190 (1991).

[69] T.L. Magnanti and P. Mirchandani, Shortest paths, single origin-destination
network design and associated polyhedra, Networks 23, 103 – 121 (1993).

[70] T.L. Magnanti, P. Mirchandani, and R. Vachani, Modelling and solving the two-
facility network loading problem, Operations Research 43, 142 – 157 (1995).

[71] H. Marchand, Etude d’un problème d’optimisation lié à la gestion d’un parc
électrique, Engineering Thesis, Faculté des Sciences Appliquées (1994).

[72] H. Marchand, A polyhedral study of the mixed knapsack set and its use to
solve mixed integer programs, PhD thesis, Université Catholique de Louvain,
Louvain-la-Neuve, Belgium (1998).

[73] H. Marchand and L.A. Wolsey, Aggregation and mixed integer rounding to
solve MIPs, CORE DP9839, Université Catholique de Louvain, Louvain-la-
Neuve, Belgium (1998).

[74] H. Marchand and L.A. Wolsey, The 0 − 1 knapsack problem with a single
continuous variable, Mathematical Programming 85, 15 – 33 (1999).

48

[75] A. Martin, Integer programs with block structure, Habilitations-Schrift,
Technische Universität Berlin (1998). Available at ftp://ftp.zib.de/pub/zib-
publications/reports/SC-99-03.ps.

[76] A. Martin and R. Weismantel, The intersection of knapsack polyhedra and
extensions, in R.E. Bixby, E.A. Boyd, R.Z. Rios-Mercado (eds.), Lecture Notes
in Computer Science 1412, Springer-Verlag, 243 – 256 (1998).

[77] MEMIPS, Model enhanced solution methods for integer programming software,
Esprit Project 20118, Public Report Reference DR1.1.10 (1997).

[78] G.L. Nemhauser, M.W.P. Savelsbergh, and G.C. Sigismondi, MINTO, a Mixed
INTeger Optimizer, Operations Research Letters 15, 47 – 58 (1994).

[79] G.L. Nemhauser and G. Sigismondi, A strong cutting plane/branch-and-bound
algorithm for node packing Journal of the Operational Research Society 43, 443
– 457 (1992).

[80] G.L. Nemhauser and L. E. Trotter, J., Properties of vertex packing and inde-
pendence system polyhedra, Mathematical Programming 6, 48 – 61 (1974).

[81] G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial optimization, Wi-
ley, New York (1988).

[82] G.L. Nemhauser and L.A. Wolsey, A recursive procedure to generate all cuts
for 0 − 1 mixed integer programs, Mathematical Programming 46, 379 – 390
(1990).

[83] P. Nobili and A. Sassano, Facets and lifting procedures for the set covering
polytope, Mathematical Programming 45, 111 – 137 (1989).

[84] P. Nobili and A. Sassano, A separation routine for the set covering polytope,
in E. Balas, G. Cornuéjols, and R. Kannan (eds.), Integer Programming and
Combinatorial Optimization, Proceedings of the 2nd IPCO Conference, 201 –
219 (1992).

[85] K. Onaga and O. Kakusho, On feasibility conditions of multicommodity flows
in networks, IEEE Trans. Circuit Theory 18, 425 – 429 (1971).

[86] J.E. Beasley, OR-Library: distributing test problems by electronic mail, Jour-
nal of the Operational Research Society 41, 1069 – 1072 (1990). Available at
http://mscmga.ms.ic.ac.uk/info.html.

[87] M. W. Padberg, On the facial structure of set packing polyhedra, Mathematical
Programming 5, 199 – 215 (1973).

[88] M. W. Padberg, A note on zero-one programming, Operations Research 23, 833
– 837 (1975).

49

[89] M.W. Padberg, T.J. Van Roy, and L.A. Wolsey, Valid linear inequalities for
fixed charge problems, Operations Research 33, 842 – 861 (1985).

[90] Y. Pochet, Valid inequalities and separation for capacitated economic lot-sizing,
Operations Research Letters 7, 109 – 116 (1988).

[91] Y. Pochet and L.A. Wolsey, Solving multi-item lot-sizing problems using strong
cutting planes, Management Science 37, 53 – 67 (1991).

[92] Y. Pochet and L.A. Wolsey, Lot-sizing with constant batches: formulation and
valid inequalities, Mathematics of Operations Research 18, 767 – 785 (1993).

[93] Y. Pochet and L.A. Wolsey, Integer knapsacks and flow covers with divisible
coefficients: polyhedra, optimization and separation, Discrete Applied Mathe-
matics 59, 57 – 74 (1995).

[94] R. Rardin and L.A. Wolsey, Valid inequalities and projecting the multicommod-
ity extended formulation for uncapacitated fixed charge network flow problems,
European Journal of Operational Research 71, 95 – 109 (1993).

[95] A. Renaud, Daily generation management at electricité de France: from plan-
ning towards real time, IEEE Transactions on Automatic Control 38, 1080 –
1093 (1993).

[96] A. Sassano, On the facial structure of the set covering polytope, Mathematical
Programming 44, 181 – 202 (1989).

[97] A. Schrijver, On cutting planes, Annals of Discrete Mathematics 9, 291 – 296
(1980).

[98] A. Schrijver, Theory of linear and integer programming, Wiley, Chichester
(1986).

[99] H. Sherali and W. Adams, A hierarchy of relaxations between the continuous
and convex hull representations for zero-one programming problems, SIAM
Journal of Discrete Mathematics 3, 411 – 430 (1990).

[100] R. van de Leensel, Models and algorithms for telecommunications network de-
sign, Proefschrift, Universiteit Maastricht (1999).

[101] R. van de Leensel, C.P.M. van Hoesel, and J.J. van de Klundert, Lifting valid
inequalities for the precedence constrained knapsack problem, Mathematical
Programming A (1999)/ DOI 10.1007/ s101079900083.

[102] T.J. Van Roy and L.A. Wolsey, Valid inequalities for mixed 0-1 programs,
Discrete Applied Mathematics 4, 199 – 213 (1986).

[103] T.J. Van Roy and L.A. Wolsey, Solving mixed 0 − 1 problems by automatic
reformulation, Operations Research 35, 45 – 57 (1987).

50

[104] R. Weismantel, On the 0/1 knapsack polytope, Mathematical Programming 77,
49 – 68 (1997).

[105] L.A. Wolsey, Faces for a linear inequality in 0 − 1 variables, Mathematical
Programming 8, 165 – 178 (1975).

[106] L.A. Wolsey, Valid inequalities and superadditivity for 0/1 integer programs,
Mathematics of Operations Research 2, 66 – 77 (1977).

[107] L.A. Wolsey, Submodularity and valid inequalities in capacitated fixed charge
networks, Operations Research Letters 8, 119 – 124 (1989).

[108] L.A. Wolsey, Valid inequalities for 0− 1 knapsacks and MIPS with generalized
upper bound constraints, Discrete Applied Mathematics 29, 251 – 261 (1990).

[109] L.A. Wolsey, Integer programming, Wiley, New York (1998).

51

