
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

Herbert Melenk Winfried Neun

Portable Standard LISP Implementation
for CRAY X+MP Computers.
Release of PSL 3.4 for COS.

Technical Report 87-2

Portable Standard Lisp

Implementation for Cray X-MP Computers

Release of PSL 3.4 for COS

Herbert Melenk
Winfried Neun

Konrad-Zuse-Zentrum für Informationstechnik
Berli n

September 1986

Technical Report TR 8 7-2

Cooperative Project of ZIB Berlin and Cray Research

Portable Standard Lisp (PSL) is a portable implementation of the
programming language LISP constructed at the University of Utah. The
version 3.4 of PSL was implemented for Cray X-MP computers by -Konrad-
Zuse-Zentrum Berlin; this implementation is based to an important part
on the earlier implementation of PSL 3.2 at Salt Lake City, Los Alamos
and Mendota Heights.

1

Table of Contents

0. I rvtroduction

1. Usage of COS PSL 3.4
1.1 Getting Started
1.2 Dataset Handling
1.3 Memory Management
1.4 Compiler and Disassembler
1.5 Libraries
1.6 Calling COS Commands
1.7 Reprieve Mechanism
1.8 I/O Functions for Word Addressable Files
1.9 Counting
1.10 List of Available Utilities

2. Installation Guide
2.1 Distribution Tape
2.2 Description of the file PSLINST
2.3 Presetting System Variables and Memory Sizes
2.4 Lists of Modules

3. Implementation Details
3.1 COS Specific Features
3.2 Mapping of PSL to the Cray X-MP Architecture
3.3 Memory Layout
3.4 I/O Operations
3.5 Batch Processing
3.6 Arithmetic
3.7 Cray Specific Compiler Features
3.8 Test Assistance

2

0. Introduction

The work of implementing Portable Standard Lisp (PSD version 3.4 for
Cray 1 and Cray X-MP computers has led to a first distributable release,
named "Release 5". The present implementation is a continuation of the
work started at Utah and Los Alamos implementing PSL 3.2 for Cray
computers. Apart from the general difference between versions 3.2 and
3.4 it differs from its predecessor by the following aspects:

Security

Provisions were taken to protect the running system against overflow of
one of the stacks. The reprieve handling was enlarged in order to
continue LISP after system interrupts whenever possible (exception: time
overflow in batch mode). Some diagnostic features giving information
about problem cause and location and for analysing a running system are
incorporated.

usability

A dynamic memory management, was incorporated into PSL; all relevant
portions of the memory can be enlarged and shrinked on request; the
target area for compiled code is enlarged automatically in case of lack.'
The access path scheme for files was enlarged: local files can be
processed as well as permanent datasets residing under the own or a
foreign owner id. Because of the wide spread usage of batch operation in
the Cray world a batch adapted behaviour was implemented for PSL if
running in batch mode (e.g. generating standard answers for system
questions, including a bracket counter into the echo printing of input).
Because of the absence of a directory hierarchy in COS and in order to
increase speed when loading compiled modules a library facility based on
word addressable files was integrated into PSL. The COS command language
statements for dataset access and dataset staging control are available
in PSL via the dataset management subprograms of the COS library and a
LISP specific interface: a LISP user in batch or interactive mode can
invoke a COS command in its original syntax as a string or in a format
open to LISP calculations.

Completeness

All LISP language features and most utilities described in the PSL
manual are available for Cray PSL. The tools for enlarging a local PSL
version are included. PSL is completely self bootstrapping on a Cray
computer without need for foreign machine execution.

Execution Speed

The execution speed was augmented by several means: the function cons is
compiled inline, many global control variables are held in registers,
the stack frame technique was refined, unnecessary memory access
operations are deleted in many cases, on system level vector
instructions are used by handcoded routines (LAP level), FORTRAN calls
were removed from arithmetic completely, the loading of modules was

3

speeded up by the library concept (reduction of system overhead when
opening and closing files), some system routines heavily used were
reformulated adapted to the code production strategy of the compiler or
were coded by hand using the LAP language level.

The following document includes three parts describing usage,
installation and implementation specifics of this version.

1. Usage of COS PSL 3.4

The following description assumes PSL to be installed due to our instal­
lation guide (cf. chapter 2).

1.1 Getting Started

PSL 3.4 resides in a file on disk as absolute binary program. The
program is started by the following commands:

ACCESS,DN=PSL34,ID=PSL,OWN=ask your computing center.
PSL34.

PSL expects input from $IN and produces output on $OUT.

Remark: In batch mode the modes of operation are set automatically:
(on echo) % echo of input to $OUT
(off usermode) % system functions may be redefined without

% extra confirmation
(on parens) % parenthesis depth counter printed

Sample job:

JOB,...
ACCOUNT,...
ACCESS,DN=PSL34,ID=PSL,OWN=ask your computing center.
PSL34.
/EOF
(load big) % yes, big numbers do work'
(expt 2 100)
(quit)

4

1.2 Dataset. Handling

A COS-userjob may use several types of datasets and modes to process
a dataset, e.g.'.

- datasets which are local to the job (the DN has up to 7
uppercase characters and is alphanumeric) either saved or not,

- permanent datasets which are not local to the job (the DN has up
to 15 arbitrary characters, including non alphanumeric
characters, an ID is optional and the Ownership-value can be
different from the jobs default OWN),

- datasets which reside on frontend-systems and must be acquired
before use and/or must be saved after use.

An access to a permanent dataset may not be possible because the file is
locked by another UQ access. In this case it will be nice to wait if a
batchjob tries the access, otherwise it wont be so nice to hang up
terminal session.
Messages about files accessed or saved are very useful if you are
debugging the system, but the running system dontneed to show every
file accessed to the user.

PSL 3.4 (CRAY) is able to use the above three types of datasets. The
standard open processing is:

(OPEN name 'INPUT) :
PSL checks whether the DN is up to 7 uppercase
characters long and alphanumeric. If so, it is
inquired whether the dataset is already local. If
this i3 true, the dataset is opened.

Otherwise, an ACCESS-command is issued for the filename
as PDN with an generated DN (FTnnPSL), an user-supplied
ID field (default 'PSL'D and the jobs default OWN. If
the ACCESS is successful, the file is opened. Otherwise
a second ACCESS command is issued with an user-
suppliable OWN-field. If this second ACCESS succeeds,
the file is opened, otherwise LISP function conterror is
called.

(OPEN name 'OUTPUT) :
A new dataset is created with generated DN
(FTnnPSL) in any case.

(CLOSE filedescriptor) :
If the dataset was opened for write access, the dataset
is closed and saved. Otherwise the dataset is closed.
The dataset is released, if it was non local before
open processing.

5

Setting the ID or OWN field is managed via call to

(COS-Set-Id string) resp.
(COS-Set-Own string) before OPEN.

Note : the variable owner-of-psl* is bound to a string containing the
installation default, so a user must not know that default
value, (cos-set-own owner-of-psl*) resets the ownership value.

The parameters remain valid until a new setting takes place.

Waiting for file access and messages:

The default for access operation is :
no message
wait iff batchmode.

To alter this, use:

(cos-waitio T) or (cos-waitio NIL) resp.
(cos-msgio T) or (cos-msgio NIL)

cos-waitio is called as side-effect by function batch? to preset the
value after system startup (for (batch?) see batch processing).

1.3 Memory Management

The CRAY-1/X-MP systems are real memory computers, and from there
results the necessity to save memory whereever it i3 possible and not
too expensive. The biggest parts of LISP memory are Heap, Bps, Stack
and Bindingstack, each of an individual size depending on the LISP
application running. The initial size of heap, bps, stack and binding
stack can't be too big, because in this case any COS/LISP-Job would
behave like an "elephant" in the COS-scheduler causing a very bad
priority and disturbing the other participants.

Bytheway: another big part of memory is the hash table, which is
implemented as quarter words (parcels) in CRAY PSL. So
memory requirements for the hash table was reduced.

On the other hand many LISP applications need large memory portions for
Stack, Bps, Heap or Bindingstack. For example running an interactive job
you cant really predict which options must be loaded.

The PSL/COS Interface offers dynamic allocation for Stack, Heap, Bps and
Bindingstack via calls to COS heap-manager.

Memory for bps, heap, binding stack and stack is allocated in one
portion with the size of (Plus initial-bpssize initial-heapsize initial-
stacksize initial-bndstksize 30). Bpssize, Stacksize Bndstksize and
Heapsize are fluids with an appropriate initial value to satisfy the
memory requirements during system startup.

6

When any memory portion needs to be enlarged (or shrinked) the memory
block is enlarged (shrinked) via call to the COS heap manager. Then the
memory layout is redone, memory portions are moved (for this purpose a
vector copy has been incorporated) and pointers are updated.

The memory layout is as follows:

A 0
first allocation with default value when kernel is starting

A_/ 0
a very small stack is allocated to let LISP act

ft-/ / / /_o
BPS HEAP STACK BNDSTK

the initial memory layout is done in LISP a3 first effort

LISP-functions are supplied to enlarge /shrink current allocation
for Bps, Heap, Bndstk or Stack:

(Set-Stack-size new-value)
(Set-Heap-size new-value)
(Set-Bps-size new-value)
(Set-Bndstk-size new-value)

The current values are values of the fluids stacksize, heapsize,
bndstksize and bpssize.

When the user wants to enlarge e.g. BPS the following operations will
happen: (Set-Bps-size (plus Bpssize 2Ö000)) or loading fails because of
the lack of BPS and enlarging of BPS is done automatically:

A_/ / / / — 0
BPS (Warrays) HEAP STACK BNDSTK

1. Memory is enlarged by COS heap manager, if memory is available:

ft-/ / / / 0
BPS (Warrays) HEAP STACK BNDSTK

2. Movement of Bndstk, update of CatchStack:

ft-/ / / / / 0
BPS (Warrays) HEAP STACK BNDSTK

7

3. Movement of Stack, update of CatchStack:

A-/ / / / /—o
BPS (Warrays) HEAP STACK BNDSTK

4. Relink of Heap and Warrays via garbage-collector techniques, movement
of heap:

A-/ / / / /—o
BPS (Warrays) HEAP STACK BNDSTK

5. Movement of Warrays, update of register pointers into Warray space:

A_/ / / / o
BPS (Warrays) HEAP STACK BNDSTK

Everything is fine again.

No abnormal situation should occur while memory is moved, because any
pointer can be damaged in the moment.

There is a special utility called counting in the compiler, which counts
memory references to fluids and globals and function calls. It allocates
an array called SYMCNT for counting located above the BNDSTK. This makes
the situation described above a bit more complicated because another
memory portion has to be moved.

1.4 Compiler and Disassembler

The Cray PSL compiler has an additional final LAP ("LISP Assembly
Program") path for code optimization on instruction basis. This path can
be influenced by the value of the variable

*LapOpt

Possible values are:

T full LAP optimization

NIL no LAP optimization

(optl opt2 ...) list of selected optimization options.

Note that the values T and NIL can be set by using the forms (ON LapOpt)
and (OFF LapOpt).

8

A trace of the lapopt changes on the code can be achieved by turning on
the switch

Lapopttrace.

At the moment the following options are implemented:

LapOptLoadsl first package of Load optimization: redundant load
and move instructions are removed from the code.

Lap0ptLoads2 second package of load optimization: instructions
for loading from memory and instructions using
loaded information are moved in the code in order
to use the loading time for other independant
instructions whenever possible.

At the moment only the scalar instructions of the CRAY X-MP computers
are produced by the compiler. An experimental upgrade of the compiler
for the usage of vector instructions is included in the PSL library. If
the vector instructions are to be used an additional module has to be
loaded explicitly:

(load vector-instructions)

The code generated by the compiler can be inspected by setting one of
the PSL standard list variables or by using the disassembler. The
function "disassemble" converts compiled and system functions from
machine code back to a form similar to Cray assembly language. The text
is produced for the standard output- file OUT*. The assembly form
contains references to LISP wherever possible, e.g. explicit names of
fluid variables, functions called, names of system registers etc. This
code can be understood only if the Cray assembly language is known. The
program "disassemble" resides in a load module with the same name. It
can be invoked by

(load disassemble)
(disassemble 'myFirstFunction)
(disassemble 'mySecondFunction)
• * «

If "disassemble" is used to learn about the PSL implementation itself,
it is recommended to turn off the lap optimization because it is rather
difficult to find the connection to a source program if the code has
been rearranged by the optimizer.

1.5 Libraries

A group of precompiled functions and data structures can be collected to
a load module within PSL. A load module can be loaded into a runhing
PSL; this loading is much faster than the compilation of its
constituents from the sources. A load module is constructed by computing
definitions (function definitions, puts, setqs etc.) between a starting
call to FASLOUT and an ending call to FASLEND.

9

A load module resides in a sequential file the name of which is given in
the FASLOUT call (it will be suffixed by ",b" automatically). Normally
each of these files will be an individual dataset to the operating
system. Whithout regarding user applications the PSL system itself
contains already some hundred load modules, which will be loaded to a
running PSL in part. In order to reduce the number of datasets and the
number of open calls a library concept has been introduced to PSL. A
library is a named collection of load modules in one dataset which can
be opened as a whole. Libraries and individual datasets are fully
compatible: a load module can be part of a library and it can be an
individual dataset; the dynamic selection of the source for the loading
is done due to precedence rules.

1.5.1 Definition of a Library

A library is a dataset, which contains a number of sequential binary
files. The library contains at any time an actual directory, which
describes the files by name and word position within the dataset. There
are no restrictions to the file names (they have to be simply PSL
strings), but only names with respect to the naming conventions of load
modules make sense.

The directory resides always at the end of a library and the head of a
library holds a pointer to the actual directory. When the library is
opened the directory is read into memory as a LISP structure and it will
be interpreted for load and update purposes. In case of update all new
information is written behind the actual directory. The new directory
will be written as the last action; so the library remains logically
unchangend during the whole update process and an intermediate abort
will not affect the integrity of the library.

1.5.2 Open and Close of Libraries

A library is opened by a call to the macro

(LIBOPEN name mod)

with mod = INPUT / UPDATE / NEW
or

(LIBOPEN name)

with implicit mod = INPUT

The parameters are quoted automatically by the macro. The same effect
can be formulated by a call to the expr function

(LIB0PEN1 name mod)

which expects evaluated parameters (e.g. QUOTE-forms).

If a library is opened for INPUT or UPDATE, it must contain a valid
directory; in this case modules can be loaded from this library. The
value of CurrentInputLib* is set to the library name. If a library is
opened UPDATE or NEW, new files can be added to the library. The name of

10

the library is placed in front of CurrentOutputLib*. In the case of NEW
an existing library will be overwritten totally. NEW is the only
possible value for a non existing library.

A library is closed by a call to the macro

(LIBCLOSE name)

or the EXPR function

(LIBCL0SE1 name)

In the case of library modifications the directory is updated in memory.
It will be written to the file at close time. By a close call all
connections to the library are given up.

Special case: A call

(LIBCLOSE T)

causes all currently open libraries to be closed. The library software
maintains a variable *AllLibraries*, which contains the names of all
currently open libraries. This variable should not be modified.

1.5.3 Loading from Libraries

The loading of modules is done by explicit or implicit (autoload) calls
to LOAD. LOAD looks for the value of the PSL variable

LoadDirectories*

which is a list of strings; LOAD takes these strings as prefixes for the
filename.- The concept of LoadDirectories* has been enlarged for the
libraries: Additional to strings the special list form

(LIB name)

can be member of the' list LoadDirectories*. In this case the library
with the given name is inserted to the LOAD search path. The variable
LoadDirectories* is updated automatically by LIBOPEN and LIBCLOSE calls:
an open for an INPUT or UPDATE library places the new element in front
of LoadDirectories* (highest priority) and a close deletes the library
reference from the variable. Besides this automatic feature the variable
can be manipulated "by hand",

e.g.:
(LIBOPEN MINE)
(LIBOPEN UTLIB)
(setq LoadDirectories* (cons "" LoadDirectories*))

% value of LoadDirectories: ("" (LIB UTLIB) (LIB MINE))
(LOAD CALCU)

The first element of LoadDirectories* is the empty string and so the
filename "calcu.b" is tried first as individual dataset. If not found,
the library UTLIB is looked up for the file and the library MINE
afterwards. The first occurence of the load module is accepted. If the

11

load module is not, found anywhere the loading stops with error. If one
of the libraries in LoadDirectories* is not open, it is simply ignored.

(setq LoadDirectories* '((LIB UTLIB) ""))

In this case the library is searched first and the single file dataset
second.

1.5.4 Standard Libraries

Two standard libraries are part of a COS PSL installation. The library
NONKERNELLIB contains modules being part of the PSL main program.
Normally they are loaded during the installation phase and the user of
PSL does not need a reference to this library. The second library with
the name UTLIB contains those parts of PSL which are loaded to an
application program on explicit or implicit request at runtime. UTLIB
contains the PSL compiler and the important utilities. The library UTLIB
must be open at PSL run time. Otherwise the compiler and the utilities
cannot be used.

If COS PSL is installed in the standard manner, the library UTLIB is
opened automatically at start time of PSL. So if the user does not use
additional private libraries with complicated loading hierarchies he can
ignore the presence of UTLIB. UTLIB is installed with a central owner id
in a shareble manner. If due to a complicated situation UTLIB has to be
opened "by hand" (e.g. in a private SAVESYSTEM context), the user has to
make shure, that the correct owner id for UTLIB is known to the system.
The owner id is passed to the system by the function COS-SET-OWN. The
name of the PSL owner id is value of the variable OWNER-OF-PSL* which is
set to the necessary value by the normal installation job, which does a
COS-SET-OWN for this value too.

1.5.5 Libraries at SAVESYSTEM Time

It is very important to close all libraries (the lib UTLIB too!) at
SAVESYSTEM time. Otherwise the directory in memory would be saved with
the application but the file connection is lost. This closing should be
performed explicitly. If not done savesystem forces a closing itself. In
the third parameter of SAVESYSTEM a list of expressions is fixed which
will be performed when the saved application will be started again.
Typically the reopen calls for the closed libraries can be part of this
list.

e.g.
(libclose T)
(savesystem "new algebra" "NEWALG"

((cos-set-own OWNER-OF-PSL*)
(libopen UTLIB)
(cos-set-own nfliKiAiL»)
(libopen MATRIXLIB)
(cos-set-own OWNER-OF-PSL*)))

1.5.6 Producing New Library Elements

If the list CurrentOutputLib* is not empty (that means a library has
been opened NEW or UPDATE) a FASLOUT-FASLEND sequence automatically

12

% close all libs

% owner for UTLIB

% another owner

% reset to standard value

produces a new file in the first element of CurrentOutputLib*. If
CurrentOutputLib* contains no library name, an individual dataset is
produced as is done in other PSL implementations.

Besides producing new load modules library members can be produced by
copying existing modules:

(FaslCopy modi mod2)
or

(FaslCopy modi) with mod2 = modi

copies the module with the name modi (string) to become a module with
the name mod2 (string). Modi is taken from the CurrentInputLib* library
or from the individual dataset (if not in the library). Mod2 is
produced in the first CurrentOutputLib* or (if that is not present) as
an individual dataset. So three types of copies are possible:

library to library
indiv. dataset to library
library to indiv. dataset.

Warnings:

- A copy from a library to itself is prohibited.
- For FaslCopy the full filename has to be specified (including the
suffix .b which indicates that the object contains binary
information in fasl format) in the correct spelling regarding
uppercase / lowercase letters (normally lowercase letters only).

- The value of CurrentInputLib* is manipulated by LOAD directly. So
this value should be set explicitly in front of any FaslCopy
operation.

1.5.7 Deleting and Renaming of Members

A call to the expr function

(LibDeleteMember lib memb)

deletes the element with the name memb from the currently open library
lib. If the library has been opened for INPUT, the element is discarded
from the current execution. If the library has been opened for UPDATE or
NEW, the reference to the member is removed from the library permanently
at LibClose time. Please note the rules for module names mentioned
above.

A call to the expr function

(LibRenameMember. lib oldname newname)

renames the member with the name "oldname" to be named by "newname". If
the library is open for input only, the renaming i3 only local to 'the
PSL run. A» renaming in a library opened for update or new will be
local to the PSL run and permanent after libclose.

1.5.8 Member List

13

If a library is open the directory is connected to the library id via
the property Lib-membs. If printed this directory is understandable
although only sorted by history, e.g.

(mapc (get 'MATRIXLIB 'Lib-membs) (function Prin2T))

With the same technique a total copy from a complete library to another
can be taken by using

(function (lambda(x) (FaslCopy (car x)))

instead. This technique is needed if a library has grown by updating
modules in the library; only the living members are copied and unused
space is ignored.

1.5.9 Library Files

The open handling for library files corresponds to the handling of the
permanent datasets with two exceptions:

Libraries cannot be opened when they are already local, they are always
accessed with a generated name.

A new library is saved once when close processing takes place. Otherwise
it is closed and COS will extend the allocation automatically if the
file has been updated (to the end-of-file).

Note that library files are wordaddressable files and that they must
have uppercase names.

1.5.10 COS Operations on Libraries

A library is a word addressable dataset. This has to be taken into
account if the dataset is handled by command language. A copy of a
library is possible by the following jcl

ACCESS,DN=lll,PDN=mmm,ID=PSL.
ASSIGN,DN=111,U.
COPYU,1=111,0=nnn,NS.
SAVE,DN=nnn,PDN=ooo,ID=PSL,PAM=R.

A library dataset can be processed by FORTRAN wordaddressable io. For
distribution purposes a library can be unloaded to an ASCII file by a
FORTRAN program PSLLUNL. A FORTRAN program PSLLRST restores a library
from an ASCII file. PSL itself is distributed with the kernel as CAL and
FORTRAN sources and the libraries NONKERNELLIB and UTLIB in unloaded
form.

1.5.11 LISP Implementation of Libraries

The internal operation of LOAD leads in the case of binary files to a
call of FASLIN which does the actual loading. FASLIN has been modified
to use a FASL-io instead of the former binary io. The FASL-io switches

14

between the conventional binary io and the library access during the
opening of the load file: if the file is member of the CurrentInputLib*,
this lib member is taken. The variable CurrentInputLib* itself is
triggered by LOAD, when it tests the library membership of a given name
due to the load directories. The contacting functions used by LOAD are

(LibP name) test if name i3 an open library and
set CurrentInputLib* to this name

(LibMembp name) test if name is member of the
CurrentInputLib*

FASLOUT is modified in a quite similar (but simpler) manner.

The libraries are constructed as word addressable files. The first words
of these files have the following meaning:

1. address of the directory
2. high address of the dataset (first word to write)
3. magic number in order to test libraryship

The directory has the following structure:

first word: number of entries
following the entries in sequence:

length of the entry name in bytes minus 1 (PSL conv.)
entry name as byte string on word boundary (PSL conv.)
starting address of member (word number m dataset)
end address of member (last word number in dataset).

During processing of a library an id with the library name as printname
is used to contact the library. This id has the properties:

Lib-fid file id of the lib for io-operations via the
word addressable io

Lib-op operation type of the lib:
0 input
1 update but not yet changed
2 new or update with change (directory to
be written at close time)

Lib-Membs List of members; one element is a three element
list with

name (string)
starting word
ending word.

During a current i/o stream to a library the operations are controlled
by a file identifier. The identifier is produced during opening of the
member and is the sole reference during the io process. It is a list
with the following elements:

15

1. Id "LIB" distinction between lib-io and binary io
2. current position
3. name of the library
4. file id of the library
5. first position of the member
6. last position of the member
7. member name (only in case of write access)

The new member is put to the member list only by member close (FASLEND).
An old member reference with the same name is overwritten. An aborted
write access to the library does not cause a logical modification (some
additional but unused space may be allocated for the file; this will be
used by a later successful write operation).

1.6 Calling COS Commands

Several routines have been written to interface with COS. In order to
give the user of PSL great flexibility in dataset processing, e.g. a
dataset must be acquired before usage or should be saved on a frontend
system after usage, or a permanent dataset management command is to be
executed while PSL is running.

The following functions can be called:

ACCESS, ADJUST, DELETE, MODIFY, SAVE, PERMIT
ACQUIRE, DISPOSE, FETCH, SUBMIT
ASSIGN , RELEASE

The parameters for these functions are similar to those of COS Jcl.

The result of the function will be the status code returned from the
operation, e.g

DISPOSE,DN=MYFILE,DF=TR,TEXT='station-dependent text',NOWAIT.

corresponds to

(COS-DISPOSE '(DN MYFILE DF TR TEXT "station-dependent text" NOWAIT))

or alternatively'.

(COS-CMD "DISPOSE,DN=MYFILE,DF=TR,TEXT='station-dependent text',NOWAIT.")

Parameters for the first form including lowercase letters or dots must
be enclosed in string quotes.

With some of the above commands an interrupt AB025 will be caused if the
staging command fails. In this case an "expected interrupt" occurs with
no dump printed in reprieve processing. Only a short message will be
printed.

16

1.7 Reprieve Mechanism

The PSL/COS reprieve mechanism is designed to keep PSL alive and well as
long as possible. There are several causes for an interrupt and various
situations in which the interrupt occurs, which have to be treated in
different ways:

- (CAR -1) etc
- Interrupt while garbage-collector is running
- Interrupt while FORTRAN-code is running
- Terminal interrupt
- Timelimit in a batch-job
- Attention interrupt while I/O is running
- Abort by dataset staging routines (nasty, because there is an
error output-parameter m the subroutine!)

The reprieve-processing is a nonkernel object with connected routines in
the kernel (e.g. the reprieve address) and therefore it is extensible
without kernel changes.

There are several indicators for reprieve processing:

*emsgp tells whether an error message should be printed.
*dump tells whether a register- and centerdump is to be printed
*cft-mode tells whether or not CFT-code was running
*noreprieve tells whether reprieve is possible, if non-NIL it is

expected to be bound to a string containing reason for
no reprieve.

•^expected-interrupt is for staging routines

Only *emsgp, *dump and *norepneve should be set by the user !

Another problem arises when an interrupt occurs while an I/O operation
takes place. In this case the COS IOLIB routine may recognize an CALL
OUT OF SEQUENCE error when the system tries to reuse the file. This
error may occur with time limit or attention interrupt, it is tried to
resolve this problem by a continuation mechanism in reprieve processing,
which allows special functions like I/O and garbage collection to get
ready before error processing starts working. Any function forcing
continuation is responsible for calling function Lisprpv when its
operation is complete.

User interface for reprieve processing:

A user exit USER-ERROR-FUNCTION is called after a successful reprieve
with one parameter (the abort-code) and preset by a dummy.

17

Processing is as follows '.

If an interrupt occurs , COS gives control to the function COSRPV after
filling the exchange package with the contents described in COS
reference Manual. This function will decide now whether operation must
continue or the LISP routine Lisprpv is called to start recovery.
Lisprpv must reside in kernel, it calls nonkernel function LISP-reprieve
immediately. Then:

*noreprieve is non-NIL : finish printing *noreprieve
^expected-interrupt is non-NIL : continue without dump

reset indicators
*cft-mode is non-NIL : if batch finish (this is most

probably a system-error)
else continue

timelimit : finish
otherwise : continue (try to)

"continue" stands for:

- reloading registers (e.g. reestablish NIL if damaged by CFT-code)
- print a message with abort-code and the abortcode explanation as
described in the COS message manual

- try to analyse which function caused the error
- print a dump if *dump is non-NIL
- reset indicators (e.g. *cft-mode)
- set new reprieve address and
- call user-error-function.

After that reprieve processing is done, (THROW '$ERROR$ NIL) is called.
All printing is done only if *emsgp is non NIL.

"finish" stands for:

- closing of all open files and
- (CALL ABORT). Abort will abort the job step so that an EXIT jcl
statement can be used for processing afterwards. Sorry, we havnt yet
found any possibility to suppress the COS backtrace.

1.8 I/O Functions for Word Addressable Files

Most of those functions simply pass arguments to CFT library routines.
For error codes returned eventually, see COS Library Reference Manual.
An exeption are the open and close routines. Their processing is
described above for library files.

(WOpenread <string>) opens file for read , returns fid

(WOpenwrite <string>) opens file for write, returns fid

18

(WReadWord <fid> <index>) returns word with index <index>
if an error occurs, -1 is returned,
a message is printed.

(WReadBlock <fid> <index> <bufferaddress> <number of words>)
read number of words from file indexed by
<index> to buffer, returns 0 or an error code

(WWriteWord <fid> <index> <wordtowrite>)
writes 1 word to file indexed by <mdex>.
returns 0 or an errorcode.

(WWriteBlock <fid> <index> <bufferaddress> <numberofwords>)
writes numberofwords from buffer to file
indexed by <index>. returns 0 or an errorcode.

(WWClose <fid>) closes the file (the double W is no
misspelling!).

If you are calling SAVESYSTEM with an open wordaddressable file your COS
job is damaged afterwards.

1.9 Counting

A special compiler option called COUNTING can be loaded, that modifies
the compiler to produce code that will count memory references to fluids
and globals-and external function calls.- This option must be loaded when
the compiler is already loaded. Counting uses a memory portion called
SYMCNT (of size maxsymbols) as data area. The code produced is very
expensive in runtime. The code produced by the compiler using the
counting option is of course larger in size than the code without
counting option, please regard this when you are doing memory allocation
for compiling.

Functions involved with counting:

(allocate-symcnt) allocates symcnt vector
(beyond bndstk, for the curious)

(deallocate-symcnt) deallocates symcnt vector. Be sure that no code
with counting option is still running.

(reset-counts) resets the counting fields to zeroes.

(list-counts) produces a list of counted memory references and
called functions sorted in descending order.
About one page (60 items) will be printed in
each list.

19

Globals involved with counting option:

^counting flags whether to produce counting code or not

*symcnt-allocated flags whether memory is already allocated

alreadylisted* page counts

numbertolist* page limit

1.10 List of Available utilities

General PSL utilities (only main entries listed):

COMMON these three modules belong
CLCOMP to an outmoded COMMON LISP
CLTRANS compatibility package
DEBUG
FAST-CHARS
FAST-EVECTORE
FAST-INT
FAST-STRINGS
FAST-VECTORS
IF-SYSTEM
INUM
MATHLIB
MERGE-SORT
MINI
BIG
PACKAGE
NSTRUCT
OBJECTS
PP
SLOW-STRING
SLOW-VECTORS
SYS-MACROS
STRINGS
STRINGX
USEFUL
UTIL
WSTACK
PROFILE
WRAPPERS

Note: RLISP is not supported. SYSLISP is only a dummy object for
compatibility reasons.

COS specific utilities:

DISASSEMBLE
PRINT-ABCODE

20

2. Installation Guide

2.1 Distribution Tape

The PSL 3.4 distribution tape for CRAY / COS is written on the tape
drive of the IO-Subsystem (800 bpi), because this is (we hope) a way to
be independent of various combinations of station softwares and frontend
systems. The distribution tape contains 17 files, binaries and update-
pl's in Cray internal format.

NOTE: Although in most cases (non EMA machines) the absolute binary will
run, we strongly recommend to reassemble the PSL kernel modules
(files 12 and 13 using PSLTXT file 10 s.b.) and link them together
with the precompiled FORTRAN and CAL modules (file 11 s.b.). For
EMA machines this procedure is mandatory, otherwise the system is
unable to use memory beyond the 4 M word boundary.

NOTE: A special ownership value is knwon to PSL3.4 as "standard-LISP-
ownership". (LISP variable Owner-of-Psl*) All files on the
distribution tape should be undumped to this ownership.
Therefore:
Choose your installation's standard-LISP-ownership.
The installation process should be performed using the account
data of the standard-LISP-ownership, or the files must be copied
to the appropriate ownership. The standard-LISP-ownership is used
when the access to a file with - job-standard-ownership fails. The
actual ownership value must be installed with "savesystem".

The LISP variable cos-version* should be set to 115 (or higher) if
you are running COS version 1.15 or higher, defaultvalue is 114.

See Job SAVESYSTEM in PSLINST.

When undumping the tape, please follow the installation procedure:

ACQUIRE,DN=FILEO,PDN=PSLINST,ID=PSL,MF=AP,DC=MT,TEXT=PSL34:0:NR,PAM=R.
ACQUIRE,DN=FILE1,PDN=UTLIB,ID=PSL,MF=AP,DC=MT,TEXT=PSL34:1:NR,PAM=R.
ACQUIRE,DN=FILE2,PDN=BAREPSL34,1D=PSL,MF=AP,DC=MT TEXT=PSL34:2:NR PAM=R.
ACQUIRE DN=FILE3 PDN=PSL34MANUAL ID=PC1I MF=AP DC=MT TFXT=PC>I 14'VNR PAM-R
*
* If you want the executable system only, stop here
*

ACQUIRE,DN=FILE4,PDN=NONKERNELLIB,ID=PSL,MF=AP,DC=MT,TEXT=PSL3 4:4:NR,PAM=R.
*
* LISP , CFT and CAL sources in Update PLs
*

ACQUIRE,DN=FILE5,PDN=NONKERNELPL,ID=PSL,MF=AP,DC=MT,TEXT=PSL34:5:NR,PAM=R.
ACQUIRE,DN=FILE6,PDN=UTILITYPL,ID=PSL,MF=AP,DC=MT,TEXT=PXT=PSL:NR,PAM,'P
ACQUIRE,DN=FILE7,PDN=C0MPILERPL,ID=PSL,MF=AP,DC=MT TEXT=PSL3 4:7:NR PAM=R.
ACQUIRE,DN=FILE8,PDN=KERNELPL ID=PSL MF=AP DC=MT TEXT=PSL34:8:NR PAM=R
ACQUIRE,DN=FILE9 PDN=CFTCALPL ID=PSL MF=AP DC=MT TEXT=PSL34'9"NR PAM=R

21

* binaries
*
ACQUIRE, DN=FILEI 0, PDN=PSLTXT, ID=PSL, MF=AP, DC=MT, TEXT=PSL34:10: NR, PAM=R.
ACQUIRE,DN=FILEI1,PDN=CFTCALBIN,ID=PSL,MF=AP,DC=MT,TEXT=PSL3 4:11:NR,PAM=R.
*

* the sources of the kernel-modules (CAL)

ACQUIRE,DN=FILE12,PDN=KERNL,ID=PSL,MF=AP,DC=MT,TEXT=PSL34 '.12', NR,PAM=R.
ACQUIRE, DN=FILEI 3, PDN=KERNLD, ID=PSL, MF=AP, DC=MT, TEXT=PSL3 4:13'. NR. PAM=R.
*

*** THE FOLLOWING 3 FILES SHOULD NOT BE NEEDED !!!!
* finally the dumped contents of UTLIB and NONKERNELLIB
* and the program to reinstall them.(hope you never will have to use
* them)
*
ACQUIRE,DN=FILE14,PDN=UTLIBDMP,ID=PSL,MF=AP,DC=MT,TEXT=PSL34: 14'. NR,PAM=R.
ACQUIRE,DN=FILEI5,PDN=NKLIBDMP,ID=PSL,MF=AP,DC=MT,TEXT=PSL3 4:15:NR,PAM=R.
ACQUIRE,DN=FILEI6,PDN=PSLLRST,ID=PSL,HF=AP,DC=MT,TEXT=PSL34:16:NR,PAM=R.

The PSL34 Manual (file 3) is ready for printing with ASCII control
characters, 11 inches of paper per page assumed.

Now, after undumping the tape you may test the installation with
following data:

FILE3.
/EOF or type on terminal
(LOAD BIG)
(EXPT 2 100)
(QUIT)

The job described above tests the access and function of PSL34 and the
UTLIB library.

Some messages will be printed:

- Dayfile message "WA-FILE OPENED " (with COS 1.14 or below)
- A welcome banner " Portable Standard Lisp ..."
- the result of the computation 2**100 (full precision)
- "WA-FILE closed ..."
- and "STOP in COSQUIT"

If any of these messages fail to occur, please check the installation
procedure. Hopefully an error message will be printed indicating the
type of error.

If, unfortunately, an error-loop occurs, please drop the job TWICE,
second break shortly after the first one, because of PSL34s reprieve
processing.

If anything looks fine now, please look at job SAVESYSTEM in PSLINST
(next chapter) and run it with the appropriate substitution. After that
the installation is done.

22

2.2 Description of the File PSLINST

The file PSLINST is a poor indirect file. It contains several specimens
of useful jobs to maintain PSL34. The dataset contains many files
separated by a line *** xxx ***, where xxx stands for the mam purpose
of the job resp. list.

Please fill in the appropriate accounting data into the jobs.

Jobs for rebuilding the kernel , nonkemel and utilities (e.g. the
compiler), saving the workspace "savesystem" and lists of Update decks
of source files are supplied.

Short Description of Jobs:

The whole bootstrap sequence for a new PSL:

0. Get the sources you intend to change from PL's and read them
carefully.

NOTE Use NS parameter in UPDATE, otherwise the identifiers will
cause compilation errors.

1. Save a running compiler and build a cross-compiler by altering the
compiler and make a savesystem with the cross-compiler already
loaded.

2. Produce a new NONKERNELLIB (specimen job NONKERN).

3. Compile the CFT and CAL modules (Job CFTCAL).

4. Compile the Kernel modules (Job KERNEL).

5. Link the results of step 2 and 3.(Job KERNEL)

6. Run the new kernel. If system comes up, do a savesytem
(Job NEWSYSTEM).

7. Check utilities for compiler dependencies. Utilities are sometimes
sensative to special compiler constructs. A dependency known is
contained in the big utility. If you have to recompile a utility
you can use job UTILITY.

8. Good luck.

Of course you need not run the whole sequence to make little changes in
any cases. The whole sequence is used when the compiler is changed in
some basic features such as alloc-sequence.

23

2.3 Presetting System Variables and Memory Sizes

The job SAVESYSTEM must be used after the tape has been undumped,
because useful presetting can be done, specially variables like owner-
of-psl* can be set or memory sizes for heap, bps, stack and bndstk can
be adapted to the needs of the installation. Defaults for the file
access are ID = PSL and OWN = PSL34 when system is undumped. Change them
by (cos-set-own "oooo") resp. (cos-set-id "iiii").
If you are running COS 1.15 or higher, please set the LISP variable
COS-version* to 115 or higher

2.4 Lists of Modules

The following chapter is for those users who want to recompile parts
of the PSL34 system.

Not all utilities or compiler modules are compiled to UTLIB, mostly
because they have not been needed up to now, you will get a list of
compiled load modules by (GET 'UTLIB 'LIB-MEMBS). If you changed the
name UTLIB, please use your name instead.

Unfortunately, there is no way to keep the bootstrapping jobs frontend
independent .

A problem that will arise at recompiling is the naming convention of
PSL. The names of PSL load modules are derived from VAX where 15 chars
(including lowercase chars) plus an appendix of 3 chars are allowed.
Other frontend systems (e.g. the MVS, where this version was build) or
UPDATE dont allow so many chars in a filename or membemame of an
indirect file. So a mapping has to be done from PSL names to membemames
(or UpdatePl names). The lists describing this mapping are supplied
also.

These lists have the following structure (e.g.):

'PASS1DEC 'pass-1-decls' needs dskin of other files

this means: the deck PASS1DEC (max 8 chars) must be compiled to pas3-l-
decls (note the lowercase letters, they are needed!). A suffix ".b" is
appended by PSL3.4 automatically!! The compilation of PASS1DEC needs two
other files present on CRAY.

If you compile to datasets rather than to libraries, make sure that your
computing-center is able to handle dataset names containing lowercase
letters and dots.

All decknames are contained in: ALLCOMPDECKS resp. ALLUTILDECKS
the already useable objects
in the above form in: COMPDECKS resp. UTILDECKS
Nonkemelobjects have all been
compiled. A list of them is m NONKERNDECKS

NOTE Use NS parameter in UPDATE, otherwise the identifiers will
cause compilation errors.

24

3. Implementation Details

3.1 COS Specific Features

Additional to the PSL documentation the following variables and
functions are present in Cray PSL and are not described explicitly in
other parts of this document:

Switch variables:
»DUMP T: print octal dump in error case
SHOW-NEW-IDS T: print names of new interned ids

Other variables:
*BATCH T if PSL has started nonmteractively
COS-Version* the actual COS version (as integer , default 114)

Dump of memory:
(CENTER-DUMP adr)

dump the memory around location adr

3.2 Happing of PSL to the Cray X-MP Architecture

The basic.element of PSL is the ITEM. An item is a 64 bit quantity or a
word. The 64 bits are divided into parts

Bit 1-5 tag
Bit 6-27 gc
Bit 28-64 inf

The tag describes how the inf has to be interpreted. If situated in
memory some, tags describe how the following words are to be interpreted.
The special tags 0 (no bit set) and 31 (all bits set) describe the whole
word to be a positive or negative integer value; in these cases tagged
information and normal machine representation are compatible, an
important fact for efficiency. The tags 1 to 10 say, that inf holds a
pointer and give information on the data type pointed to. The tags 23 to
30 are used to describe memory areas and special value references (e.g.
identifiers, unbound values).

The gc field is used by the garbage collector. The garbage collector has
the task to compact the heap in order to eliminate unused areas.
Therefore in a first phase all items in use have to be marked: a special
mark is placed into the gc field. In a second phase a relocation takes
place: a calculated offset is placed in the gc field of every item in
the heap. During the last phase the items are compacted and the gc field
is cleared (in the case of negative integers to all ones) again.

Because of the usage of the gc field the size of direct integer values
is restricted to 37 bits. Bigger integers are represented by boxed
values: a tagged pointer to a two word quantity is held; the two words
(in memory) contain a tagged length field and one word with the value
itself. In the same manner float values are stored. Vectors and strings
are stored with a leading length word too and pairs in memory are two
word quantities with two items.

25

Interned identifiers are represented by a small integer number tagged by
30. The 128 ASCII characters are represented by their tagged numeric
equivalent 0 to 127 and the NIL is represented by a tagged 128 (that is
in octal representation a 8#200). Due to the tag technique type tests
are very fast in PSL: only the tag has to be inspected.

Four cells are associated to each identifier: a pointer to the print
name (string), a pointer to the property list, a cell for the value if
the identifier is used as non local variable and a cell with a jump
instruction to the code for the evaluation of the identifier as function
name. PSL uses a shallow binding scheme: A variable value is stored in
the value cell directly and by recursive usage the old value is pushed
to the binding stack (s. b..)

The total number of identifiers is limited to 8000.

3.3 Memory Layout

The memory contains

- the kernel (assembled and linked basic parts of PSL)
including the identifier cells

- the BPS (binary program space) which holds loaded and compiled
programs

- the heap as major working area
- the stack
- the binding stack
- the catch stack

The "stack" controls recursion. During function evaluation the living
top of the stack (the actual "frame") is interfaced by a section of the
T-registers. By alteration of the recursion level this block of T-
registers is written to / read from the memory allocated to the stack.

The "binding stack" is used for the recursive redefinition of special
(PSL: "fluid" or "global") variables in LAMBDA or PROG lists.

The "catch stack" controls the non local exits CATCH-THROW or ERRORSET-
ERROR. It is fixed in size (400 words).

The following memory portions can be altered in size at runtime. They
are initialized to the values (sequence as allocated in memory)

BPS 80000 Words
Heap 50000 Words
Stack 5000 Words
Binding stack 50ll Words

Note, that an important part of BPS is used by PSL itself: some parts of
PSL are implemented as loadable modules and they are preloaded into BPS
at installation time of PSL. Additional parts of BPS are used if the
compiler or other autoloading features (e.g. like trace) are used or if
additional parts of PSL or private applications are loaded explicitly.

On EMA machines it is possible to enlarge heapsize above 4 million
words. A special garbage collector is loaded automatically in this case.

26

3.4 I/O-operations

The PSL3.4 SYSIO uses FORTRAN-calls to do I/0-Operations. Because the
buffering is done in "LISP-buffers" except for emergency printouts the
foreigncall overhead is acceptable.

There are three types of I/O operations:

- character I/O for textfiles including I/O to a terminal
or to $IN/$OUT. This is done via READC/WRITEC-calls (full
record mode , see COS Library Reference Manual). For $OUT and
terminal-out the line is shifted by 1 blank.

- binary I/O for loadfiles. This is done via READ/WRITE-calls
(see COS Library Reference Manual).

- binary I/O for PSL-libraries using WOPEN, WCLOSE, PUTWA
and GETWA calls to wordaddressable files (see COS Library
Reference Manual). The functions for management of word
addressable files are open for users(see above).

3.5 Batch Processing

Because batch jobs are standard at most CRAY/COS installations, batch
processing in PSL has been improved for the COS version.

The LISP variable *batch indicates the mode of operation.

The function (batch?) return T if in batch mode and NIL otherwise. As a
sideeffect the function cos-waitio is called.

Counting o.f parens simplifies the search for errors in parenthesis
structure (toggle with ON/OFF parens).

3.6 Arithmetic

The arithmetic of PSL is implemented with the objective of high speed
execution. Some typical restrictions are involved with that.

3.6.1 Integers

PSL knows three types of integer representations:

INUMS (up to 37 Bit , the whole information residing in the item,
the rest of word must be either all 0 or 1)

FIXNUMS (up to 64 bits, or 1 word)

BIGNUMS (arbitrary length, PSL internal representation)

Of course inums are the easiest and fastest integer type. Because the 37
bit reside in the inf field of the LISP-item, no extra load has to be
done.

As you certainly know, there is a curious situation with integers on
Cray machines. There is no hardware to do 64 bit integer multiplication

27

or division; there is a way to multiply integers in address units when
they dont exceed the 24 bit range, and you can do integer multiplication
and division via floating point units if the operands and the result
dont exceed 46 bits (as CFTs FASTMD).

Standard LISP integer arithmetic uses instructions for 46 bit
represented numbers. If the low level arithmetic functions are to be
used, the 24 bit integer artihmetic is available as well:

function WTIMES2 uses 24-bit arithmetic
L0NGTIMES2 uses 46-bit arithmetic via float

WQUOTIENT uses 24-bit arithmetic
LONGQUOTIENT uses 46-bit arithmetic via float

WREMAINDER uses L0NGTIMES2 and LONGQUOTIENT, because
wremainder is merely used in hash function
and has to operate 46-bit integers.

All functions above expect inums as arguments, no typechecking is
done. These functions should not be invoked by the user directly. This
can damage the system badly, if one operand turns out to be not an inum.
Generic arithmetic including the big arithmetic uses LONG... operations.
No 64 bit integer arithmetic is implemented because of the enormous
overhead.

Consequences are the following:

First of all : use generic arithmetic!

Fixnums cannot be multiplied or divided, and therefore not printed or
read correctly, if the result or the operands exceeds 46 bits (use: big
load-module).

If big arithmetic must be avoided, numeric values exceeding 46 bits must
be partitioned by logical operations before they can be manipulated by
standard LISP operations. (So does the CRAYASM module). Take care that
no "inum" greater than 37 bits gets into heap.

Note: Inums are recognized by the system if the item has an inum tag and
not by the size as in generic arithmetic.

3.6.2 Floats

PSL3.4 (CRAY) uses normal 64 bit float arithmetic, double precision is
not implemented.

3.6.3 Complex

No complex arithmetic

28

3.7 Cray Specific Compiler Features

Cray specific compiler features have been build to assist the PSL user,
optimize the system resp. to make CFT linkage possible •.(foreignlink).

3.7.1 LISP Variables in Bregs and Tregs

Beside the stack frame (containing the local variables of a LISP
function) which resides in T-Registers T26 to T70 resp T71 to T76, the
room left in Tregs and Bregs has been filled up almost completely.

Many LISP variables often used are located in Bregs or Tregs, because
there is a much faster access. This is done automatically for FLUIDS if
the register allocation is set in the property list of a LISP-id.

The mapping of variables to registers is done by

(put '<LISP-id> 'registername "xxx") where xxx stands for Bnn or Tnn
and
(put '<LISP-id> 'breg mm) resp. (put '<LISP-id> 'treg mm)

where mm is a numerical value in the range of 0 - 6.3. The actual
setting is done in the compiler modules Cmacs3 and Crforms.

and
(flag '(<LISP-id>) '*user-variable)

This last flag is used for security, because many fluid system variables
should not be destroyed. This flag is riot necessary if *sysLISP is not
NIL (not recommended]), because then all fluid to register conversions
will take place.

(Please take care that mm=nn, the value of registername is used by
CRAYASM the one of breg or treg property by CRAYLAP).

Caution:
The way described above does not ensure that these register values
are updated by garbage collector or when portions of memory are moved.
There are special flags:

*warray-pointer, *user-variable (for correct setting from
interpreted code), and the *known-to-gc property

which must be set in an appropriate way(look at in Crforms).
Any new register allocation needs a recompilation of (at least) the
nonkernel objects BINDING, COMPACTING-GC and SYMBOL-VALUES.

Please remember that values residing in a Breg are untagged in the PSL
sense. So Bregs are good for variables which are "hard" addresses (e.g.
kernel structures) or variables which are always positve integers (e.g.
in* or out*). Pointers to warrays are also put into Bregs, but they myst
be flagged.

29

3.7.2 Foreignlink

CFT functions can be called from the kernel modules only, because there
is no dynamic linkage in COS. Therefore any new FORTRAN call needs a
recompilation of kernel modules.

CFT functions are restricted to a maximum of 4 parameters.

CFT functions are called in a quite normal way with Register A6
pointing to the parameter block. This parameter block contains
pointers to LISP items. Therefore only integers can be passed directly
to a CFT subroutine, other types must be declared as POINTER in CFT
code.

The value of a CFT function is the value placed into the first
parameter.

Example:

(flag '(mycosfnc) 'foreignfunction)

(de myveryspecial (x y) (mycosfnc x y))

(myveryspecial "a string" 7)

% returns the value 15 if :
SUBROUTINE MYCOSFNC(IPTR,INUM)
POINTER(IPRT,ISTRING)
DIMENSION ISTRING(5)

C
C inum is 7. iptr points to a block with the length-1
C of string in the first word and the chars in the
C second(...) word.

IPTR=15
END

Registers A3 and A4 all Bregs and Tregs are saved. Especially the Breg
and Treg saving is expensive, but without that you have no chance to
recover from an error where CFT code is involved, because various LISP
variables reside in Bregs and Tregs.

A little grain of salt: the backtrace information for CFT is not setup
correctly, so COS-backtrace will give up when invoked (which should not
happen anyway).

3.7.3 Counting

Cray computers with pipeline architecture are slowed down a lot by too
many jump instructions (especially if the instruction stack must be
loaded). Therefore it is a good optimization effort to do small but
often used functions (such as cons, putbyte and byte) as inline
functions. (See compiler module opencoded-fns for examples.)

30

References to memory are very slow in comparison with register
operations. So memory references will force the instruction issue unit
to wait until operands are ready. A first effort was taken to improve
the code by an final pass called lapopt of the compiler,' but there is a
simple way to put often used variables into registers (see 2.) This can
be done for fluid variables but of course not for indirect memory
operations such as Car or Cdr of a fluid variable.

In general memory references will slow down the overall performance
because "memory is not quiet" and block transfer (in alloc sequence)
must wait.

For the recognition of very often called functions and often used fluid
variables it is useful to count references automatically. This can be
done by the load module COUNTING.

Counting must be loaded after the compiler modules and modifies the
compiler to produce counting code. For details see the description of
counting. The running system was optimized using results of counting.

3.7.4 cons cmacro

The compiler will generate a call to *cons cmacro from a call to cons
function. In this way a call to cons wont produce a *link cmacro and a
function calling only cons may be alloc-free. There is a problem with
the usage of *cons cmacro because the heap may get exhausted. Then the
garbage collector must be invoked (without a *link cmacro) saving the
complete environment of the function for continuation after .garbage
collection. A very special function Cons-reclaim was coded to ensure
this. This function is invoked by a ^reclaim cmacro (or LISP function
!%!%reclaim).

3.7.5 Vector Instructions

A first effort is done towards the usage of vector registers in LISP
functions (e.g. the LISP functions list7 - listl5). See the special
documentation to appear.

3.7.6 Miscellaneous

Several compiler functions and optimizations have been altered to
produce a better code for Cray's instruction set. Most of them are
contained in PASS3CR compiler module.

The compiler produces calls for functions listl - listlS instead of
listl - list5. This reduces overhead for longer lists. Listl up to
listlB have no external function calls.

31

3.8 Test. Assistance

Some useful functions have been written during the PSL migration. They
helped us to analyse some strange situations, for instance in which the
LISP I/O is unable to operate. These functions may be important for a
PSL user too.

3.8.1 Dump Routines

A dump of (scalar-)register contents and code area is done automatically
if an interrupt occurs and the variable *dump is non NIL. This can be
invoked by /ATT input in interactive mode. The B and T registers are
used to hold values of many often used variables. The names of these
variables are found in Crforms in the compilerpl for a check whether any
register contents is destroyed. The garbage collector also dumps some
heap contents if an illegal item is found and *dump is non NIL.

3.8.2 Emergency I/O

In some situations the LISP I/O is unable to operate, e.g. an illegal
item has been produced, or the I/O is not yet initialized. An
independent Mini-I/O has been written to do printouts in such
situations. This I/O may be called by following functions:

console-print-string <string> : 10

console-newline <>: 10

terminalwritechar<ignore char> : char

putoct <item> : 0

putint < number > '. 0

prints a string and
the buffer
flushes the buffer

flushes

puts a char into buffer

prints any item in octal
representation with 22 digits
into buffer

prints an integer into buffer

Note that this I/O uses independent buffers, so that the printout may
be intermixed with LISP printouts.

3.8.3 Load map

In some situations , especially when an interrupt has occured or an
undefined function has been called, a function mapping binary addresses
to names of LISP functions is useful. This can be invoked by:

(map-at <word-address>)

which prints a string containing the load module involved and the names
of external LISP functions located next to the given word address.
Because of internal functions which are unknown at runtime the mapping
cant be precise.

32

Bibliography

/l/ M. L. Griss, A. C. Hearn, A Portable LISP Compiler, Software
Practice and Experience, Vol 11, 1981

/2/ The Utah Symbolic Computation Group: The Portable Standard LISP
Users Manual. Department of Computer Science, University of Utah,
Version 3.2'.- March 1984

/3/ Guy L. Steele et al.: COMMON LISP: The Language. Digital Press, 1984

/4/ Cray-1 Computer Systems, M Series Mainframe Reference Manual, Cray
Research Inc, Mendota Heights, 1983

33

