
Herbert Melenk Winfried Neun 

REDUCE User's Guide 

for CRAY Computers Running UNICOS 

(Version 3.3) 

Technical Report TR 88-2 (February 1988) 

Konrad-Zuse-Zentrum für Informationstechnik: 

Heilbrunner Straße 10; D-1000 Berlin 31 





Herbert Melenk Winfried Neun 

R E D U C E User's Guide 

for CRAY Computers Running UNICOS 

(Version 3.3) 

A b s t r a c t 

This document describes operating procedures for running REDUCE specific to 
the CRAY-1, CRAY X-MP, CRAY Y-MP and CRAY-2 computers running the 
Operating System UNICOS. The document was derived from the corresponding 
document for Vax/UNIX prepared by Dr. A. C. Hearn and L. R. Seward, The 
Rand Corporation, Santa Monica, (CP85). 

Copyright ©1988 by Konrad-Zuse-Zentrum für Informationstechnik Berlin. 
All rights reserved. 

Registered system holders may reproduce all or any part of this publication for 
internal purposes, provided that all source of the material is clearly acknow­
ledged, and the copyright notice is retained. 





Contents 

1. Preliminary 

2. Reduce Documentation 

4. Resource Requirements 

5. File Handling 

6. Internal Parameters 

6.1 Object Sizes 

1 

2 

3. An Introduction to Reduce 2 

2 

4 

5 

5 

6.2 Special Characters and Interrupts 5 

6.3 Miscellaneous 6 

7. Customizing the REDUCE Environment 7 

8. Implementation Dependent Messages 7 

9. Further Help 8 





1. Preliminary 

This document describes operating procedures for running REDUCE specific 
to the CRAY-1, CRAY X-MP, CRAY Y-MP and CRAY-2 computers with the 
UNICOS operating system. It supplements the REDUCE User's Manual, de­
scribing features, extensions and limitations specific to this implementation of 
REDUCE. 

The character ! (exclamation mark) is used in this document to represent the 
REDUCE syntax escape character. By using REDUCE on a CRAY computer 
via a station computer this character (and others too) may have a different 
representation due to local code conversions. Please look at the special character 
table in the REDUCE User's Manual. 

The modules that form the REDUCE system are stored in a number of files. 
The main entry to REDUCE is the executable file named "reduce". Maybe you 
must adapt your environment's access path. At runtime the system needs access 
to REDUCE and LISP libraries. This access is achieved in an automatic and for 
the user invisible manner. To start REDUCE, simply use the command 

reduce 

in your batch job or interactive session, after which REDUCE will respond with 
a banner line. The system then expects its input via the standard input file and 
writes to standard output file. 

Examples for batch REDUCE jobs: 

reduce <CEOF reduce < reducein > reduceout 

p := (x + y) * *10; (where reducein contains 2 lines: 

bye; p := (x + y) * *10; 

EOF bye;) 

N o t e : the lower characters are converted to capital characters on input auto­
matically by default (raise is on). 

1 



2. Reduce Documentation 

For proper usage of REDUCE, the document 

A.C. Hearn: 

REDUCE User's Manual 

should be consulted. As an addendum' to the User's Manual, a number of mo­
dules first introduced by REDUCE 3.3 are described separately. If features of 
the underlying LISP system are to be used, the documents 

Utah Symbolic Computation Group: 

The Portable Standard LISP Users Manual 

and 

H. Melenk, W. Neun: 

Portable Standard LISP Implementation for CRAY X-MP computers 

may be needed. All these documents are distributed by Konrad-Zuse-Zentrum 
für Informationstechnik Berlin. There is no on-line documentation available. 

3. An Introduction to Reduce 

New users of REDUCE are advised to process the seven REDUCE Lessons, which 
should be used via a REDUCE implementation on a timesharing computer or 
a workstation (e.g. a VAX or a SUN). They are not available on-line with CRAY 
computers. 

4. Resource Requirements 

The minimum field length of a job running REDUCE is approximately 500 k 
words. In this field length the basic REDUCE features can be loaded; it includes 
a heap of total length 50000 words with about 40000 words available as free 
working memory. If additional modules of REDUCE are loaded at runtime or if 
due to the problem size a larger heap is needed, more memory can be allocated 
and the memory parameter has to be modified (in case of a batch job). 

o 



The areas for heap (data memory), bps (area for compiled code), stack and 
binding stack (BNDSTK) can be enlarged up to the limit defined by the memory 
parameter. 

The enlargement of binary program space while loading additional modules or 
compiling user programs is done automatically (the action is protocoled via stan­
dard output). 

At the end of a REDUCE run you will get a statistic from the underlying PSL 
which looks like: 

PSL 3.4 22.08.88 12:50:51 

Total cpu time: 9710 ms heapsize: 200000 

Garbage collections: 8 bpssize: 150000 

Time for gc: 1224 ms stacksize: 5000 

Ratio: gc / total: 12 % bndstksize: 500 

The block on the left side summarizes the cpu time needed to run the REDUCE 
application, the time for garbage collection, which is included in this total cpu 
time, the number of garbage collections and the percentage of cpu time spend 
for garbage collection are printed below. A greater heapsize will normally result 
in a better cpu/gc time percentage. The block on the left contains the memory 
requirements for the LISP memory areas that can be adjusted at runtime. 

If a larger heap is needed because the number of garbage collections is too high, 
the LISP function SET-HEAP-SIZE has to be called. This function expects the 
desired TOTAL heap length as parameter. It is called from REDUCE e.g. by 

LISP SET!-HEAP!-SIZE 100000; 

(Note the exclamation marks in front of special characters inside the name.) The 
heap size is adjusted in case of a lack of data area too, but this will happen if the 
heap is almost full, after many garbage collections. So we recommend to adjust 
heapsize when big data areas are needed. 

The actual total heap size can be seen as value of the LISP variable heapsize via 
the REDUCE command: LISP heapsize; 

The PSL parameters set by REDUCE normally condemn the garbage collector 
to do his work in total silence. This is necessary because asynchronous messages 
can destroy a handsome output image. In order to learn the amount of occupied 
heap space or in order to see at which points of execution the garbage collector 
is involved, simply turn on the switch: ON GC; 

3 



With GC on the garbage collector will be verbose. If you only want to know the 
number of garbage collections during your calculation you ask for the value of 
the LISP variable 

LISP GCKNT!*; % number of garbage collections since start; 

It would be a good strategy to inspect this variable after a large computation has 
been done the first time and to adjust the heap size so that this value remains in 
a reasonable range. For memory estimates: the underlying PSL uses two words 
to store one list element (=two pointers). 

In case of stack overflow the stack size can be modified in a corresponding manner 
by calling the function SET!-STACK!-SIZE. The actual size of the stack is the 
value of the LISP variable StackSize. A similar function SET!-BNDSTK!-SIZE 
is supplied for BNDSTK. 

There is no way to resume a calculation that lead to an overflow of stack or 
bndstk after enlarging the memory areas. 

5. File Handling 

REDUCE file handling is adapted to the UNICOS environment, such that the 
user has all possibilities to 'navigate' in the file system. For simple applications 
the following notes may be sufficient: 

• Usage of files in the current working directory: 

Most easy access is to files whose names that consist of lowercase letters and 
digits only. Other filenames containing capital letters or special characters 
have to be included in quotation marks, e.g.: in myfile; or IN MyFile; 
will read myfile in current directory but in "HUGO"; or in "input.dat"; 
will read files HUGO or input.dat respectively. (Note that IN HUGO; 
will read file hugo.) 

• Access to files in other directories or on a frontend system 
There are different ways to access files that are not in the current directory: 

- Absolute addressing via full path. e.g. in "/tmp/input.red"; 

- Relative addressing using environment variables; e.g. 
in " "hugo/input.red"; or in "SHOME/data"; 

- Changing pwd via the command LISP UNICOSI-CHDIR "~hugo"'; 
before file is opened. 

4 



- Staging a file from a frontend machine before opening it, e.g.: 

system "rep sn4711:kuno/file.red newinput.red"; 

(Note: system is an alias for LISP SHELLCMD, which invokes csh to 
handle the command given as parameter string.) 

• Usage of Libraries 
Libraries contain binary files, which can be loaded into REDUCE at run­
time to provide features which are not included in the REDUCE main 
program, e.g. the PSL compiler. The REDUCE load module library is 
opened at startup time automatically. Additional libraries can be accessed 
using the commands: 

LISP setl-libpath "dirstring"; 

Libopen lib; 

Where dirstring is the name of the directory containing lib. Default for 
dirstring is " " i.e. the current working directory is assumed to contain the 
library. 

6. Internal Parameters 

6.1 Objec t Sizes 

The maximum string and identifier lengths are limited only by the underlying 
PSL base. The current implementation allows several hundred characters in both 
identifiers and strings. However, we recommend that such names be limited to 
24 characters or less for compatibility with other versions of REDUCE. 

All fixed precision floating point numbers are printed in FORTRAN'S "G23.8E4" 
format by default. This format may be changed as described in the PSL docu­
mentation. 

Arbitrary precision integer and real arithmetic is supported. 

6.2 Special Characters and Interrupts 

Lower case input is permitted, but converted to upper case unless the switch 
RAISE is off. 
A may be used as an alternative to ** in expressions. This character is represented 
by the character "not" with some front-end computers. 

5 



The end-of-file is supplied by the control-D cha.ra.cttT (hex 04) in interactive 
mode. 

If an interrupt occurs (e.g. by entering control-C (hex 03)), the current calcula­
tion is cancelled and a little diagnosis of the problem is printed by the underlying 
PSL system. REDUCE immediately prompts for the next command. There is 
no means to continue the interrupted calculation. The LISP function USER!-
ERRORI-FUNCTION is called in recovery procedure. It may be redefined for 
own diagnostics. The signal number is the only parameter, e.g. 2 for terminal 
interrupt. 

} is used to terminate strings in the REDUCE interactive editor, because ESC 
as in other implementations will not be handled via all stations. 

6.3 Misce l laneous 

Several UNICOS funtion can be invoked from REDUCE to alter the REDUCE 
environment in contrary to a shell invocation via SYSTEM command, which 
does not alter the REDUCE environment. These functions are: 

Unicos!-pwd(), Unicos'-getenv "var", Unicosl-putenv "var=value", and Unicos!-
chdir "directory". 

There is no link currently to an external editor. The internal ordering on alpha­
betic characters is from A through Z followed by a through z. 

Times (as reported by ON TIME or SHOWTIME) are given in milliseconds, and 
measure execution time including garbage collection time. They do not include 
operating system overhead. 

To exit REDUCE use "bye;" . 

Per default there is echoing of input in batch jobs only. Echoing is controlled by 
the switch 

on echo: 

With echo turned on, the input is echoed to the output and a mixed protocol of 
incoming commands and outgoing results of their execution is produced. 

In batch jobs the switch int is set to off by default. This switch indicates the 
batch/interactive state to the REDUCE system. 

With int turned off REDUCE will generate no interactive requests and will stop 
algebraic execution when the first error occurs. To avoid this, you can use ON 

6 

cha.ra.cttT


ERRCONT; even in batch jobs. 

7. Customizing the REDUCE Environment 

Implementation deferred. Datasets needed at startup time have to be processed 
explicitly. 

8. Implementation Dependent Messages 

A number of messages from the underlying PSL system and the CRAY machine 
interface may be seen from time to time. These include error messages and 
informative messages. 

• Signal 8 invoked: Floating point exception 
Probably means a division by zero has been attempted. 

• BPS will be automatically enlarged ... (Information) 
BPS size is increased because a load module was needed by your applica­
tion, e.g. the PSL compiler. 

• Heap space will be automatically enlarged... (Warning) 
Your problem is too large in its present form for the available workspace; 
either change your problem formulation or enlarge your heap (see above) 

• Non-numeric argument in arithmetic 
This means that a LISP arithmetic routine has been called with an invalid 
argument. 
Hint: If you do not know what happened use 

TR CONTINUABLEERROR; and run again. 

• Signal 11 invoked: Operand range error 
This indicates an illegal memory reference. It can arise from applying the 
LISP function CAR to an atom in compiled code. 

• Signal 26 invoked: cpu time limit exceeded 
The time parameter was too small for your batch job. 

• Stack overflow 
The PSL stack has overflown. If your application needs a larger stack, 
please enlarge it via a LISP Set!-Stack!-size <Size>; call. 

• Binding stack overflow 
The PSL stack for special variables has overflown. If your application needs 
a larger BNDSTK, please use a LISP Set!-Bndstki-size <size>; call. 



A hin t : if you want a backtrace in case of an "signal xx\ type 

SYMBOLIC PROCEDURE USER!-ERROR!-FUNCTION(x); 
INTERPBACKTRACEO; 

and run again. 

9. Further Help 

For further help with the CRAY implementation of REDUCE, please contact: 

Konrad-Zuse-Zentrum für Informationstechnik Berlin 
email: zb6260 @ db0zib21 • bitnet 

8 






