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Abstract 

We study the power-law type solutions of the fourth order field equa-.' . 
'tions derived from a generic quadratic Lagrangian density in the case of 
rriultidimensional Bianchi I cosmological models. All vhe solutions of the 
system of algebraic equations have been found, using computer algebra, 
from a search of the Groebner bases associated to it. While, in space di-, 
mension d = 3, the. Einsteinian Kasner metric is still the most general" 
power-law type solution, for d > 3, no solution, other than the Minkowski 
space-time, is common to the three systems of equations associated with 
the three contributions to the Lagrangian density. In the case of a pure 
Riemann-squared contribution! (suggested by a recent calculation of the 
effective action for the heterotic string), the possibility exists to realize a 
splitting of the d-dimensional space into a (d r- 3)-dimensional internal 
space and a physical 3-dimensional space, the latter expanding in time as 
a power bjgger than 2 (about 4.5 when d = 9). 



1 Introduction 

The most promising unified field theories of the four basic interactions must, in 
general, be formulated in a space-time of high dimensipnahty (up to 11) and their 
Lagrangians contain terms which are no longer linear in the "scalar'Curvature. 
For example, the low-energy limit field theories which are constructed from su-
perstring theory [1] are formulated in a ten-dimensional space-time and their 
Lagrangians contain non-linear contributions in the different curvature tensors 
up to the quartic order. 
However, there is no general agreement on the precise form of these contribu­
tions. The so-called Lanczos or Gauss-Bonnet terms [2] have been repeatedly 
suggested as the quadratic contributions to be incorporated in the Lagrangians 
but a recent calculation [3] of the effective action up to the quartic terms for the 
heterotic string concludes that a pure Riemann-squared contribution is "more 
natural" than the Gauss-Bonnet combination [2]. Except for bosonic strings, a 
cubic contribution seems to be ruled out [4] and the quartic term could also be 
of pure Riemann type [3]. 
Therefore, in view of these uncertainties [5], it seems more interesting not to fo­
cus on a particular form of the non-linear contributions to the action but rather 
study the most general non-linear Lagrangian, bearing in mind that most often it 
will lead to fourth-order field equations. Of course such a task is hopeless unless 
one suitably restricts its scope. 
Here, we limit ourselves to the investigation of the generic quadratic contributions 
and to consider the case of the multidimensional Bianchi I cosmological models. 
More explicitly, we investigate power-law type,solutions of the corresponding field 
equations. The interest of these solutions (which are manifestly not the most 
general solutions) is due to the key röle they play in the investigation of the most 
general solution near, a Space-like singularity in general relativistic cosmology . 
Some of the solutions of these equations have already been found in [6] but the 
present study is considerably more general. The various systems of algebraic 
equations we have considered were largely solved using the computer algebra 
package GROEBNER [7] and some improvement of it which takes into account 
the symmetry of the equations. Many of the solutions which were found were 
also checked by hand calculation^ The role of the dimensionality of the space has 
been carefully investigated. The main results we get are : . 

i. Space dimension d = 3 is special. The Kasner solution turns out to be the 
most general power-law type solution to the generic quadratic Lagrangian. 
This solution does no longer exist for all d > 3. 
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ii. When d > 3, the most general solution to the generic Lagrangian is flat 
Minkowski space-time. 

iii. When the quadratic Lagrangian reduces to the Riemann-squared contribu­
tion, all solutions have been obtained from the Groebner bases calculation 
done for every dimension up to d = 10. We found that some of them, in a 
pure geometrical way, realize the splitting of the d-dimensional space into a 
3-dimensional space and a (d—3)-dimensional (internal) space. Particularly 
interesting is the fact that the exponents corresponding to the coordinates 
of the 3-dimensional space systematically appear to be greater than 2. 
This behaviour gives rise to a power-law inflation very popular nowadays in 
the context of the extended inflation proposal [24] which is, here, of purely 
geometrical origin. 

2 The Field Equations for Vacuum Bianchi I 
Models 

We give here the algebraic field equations corresponding to the power-law type 
solutions of a d-dimensional Bianchi I cosmological model whose metric is given 
by 

d 

ds2 = -dt2 + J2t2pi(dxi)2 (1) 
i = i 

where the p,'s are constants to be determined. 
Near the cosmological singularity, we choose to consider that the leading terms 
are the generic quadratic Lagrangian density so that the action SQ gets the ex­
pression: , . . , . . , . . - . . 

SG = J(aR2 + ßRTR^ + fR^R^) y/=$d4x ' (2) 

where a,ß and 7 are constants and where R^R^ and R^p« are the scalar curva-: 

ture, the Ricci and the Riemann tensors of the (d + l)-dimensional space-time. 
The corresponding field equations obtained after a variation with respect to the 
metric tensor g can be written as a system of algebraic equations for the p.'s. 
They have been obtained from a combined use of the computer algebra pack­
ages EXCALC [9] and COMPACT [11] (see also DERUELLE [6]). Separating the 
contributions of the three terms in the action we get 

GooR = -^(a2 + a1
2-2a1)(3a2-al

2 + 6a1), (3) 

GuR = (a2 + ax
2 - 2ax)(4p,(3 - ax) + a2 + a,2 - lOaj. + 24). (3a) 
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Goo = - ^ + 2 a2 f l i - « i - ° 2 a i + 2 a2 + 2^ i ' < ( 4 a ) 

G,-,H/C = 4p,(3 - ai)(a2 - 1 j + a\ + ^ a ? ^ 2ax
3 - ' ( j a , ^ + 7a2 , 

+ l l o ? - 1 2 a x . (4b)' 

Goo = —3a4 — 3a j+ 4a3a! — 4a2ax + 6a2, (5a) 

GiiR/£; = 8p,(3 - ai){pj - Pidi + ax '-f'W-'^) + 2a4 + 2a* 

- 8 a 3 + 4a2. (5b)/ 

with 

a* = £p* (6) 
t = i 

3 Solutions of the Polynomial Field Equations 

The complete set of solutions of the three preceding systems of polynomial equa­
tions has been infered from the calculation of the associated Groebner bases [7]. 
The solutions corresponding to the pure scalar curvature contribution and those 
corresponding to the pure Ricci tensor contributions have been partly discussed 
[6]. The calculation of the Groebner bases as well as further hand calculations 
have allowed us to complete it. For the pure Riemann-tensor contribution noth­
ing was known up to now. The calculation of the Groebner bases shows that 
there exit only a discrete set of solutions (the ideal is of dimension zero) for all 
d > 3. In that case the technique is particularly helpful because the knowledge 
of the Groebner bases is sufficient to find the solutions explicitly in a trivial way. 
First, we present the Groebner bases method, next we discuss the three sets of 
equations successively [10]. 
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3.1 Groebner bases and Symmetries 

The REDUCE package GROEBNER is based on the following considerations. 
The solutions of a system of polynomial equations Pj(x) = 0 j ' = l , . . . , ( l , i 6 Cn 

are the zeros of the ideal A = ( P i , . . . ,Pd) spanned by these polynomials. The 
Buchberger algorithm [14] computes from the given polynomials Pj a special 
ideal basis, which has the solutions of the given system as common zeros as well. 
These solutions are easier to find. In particular, if tr^ere are only finitely many 
zeros, they can be computed directly, from the Groebntr basis [15]. If there is 
a factorizing polynomial Q = Q1Q2 in A, then the union of the zeros of the 
subideals Ai = (Q,-, Pu...,Pd), » = 1,2 gives the zeros of A [8]. GROEBNER is 
an implementation of the Buchberger algorithm combined with' an algorithm for 
the detection of factorizing polynomials such that the union of the determined 
Groebner bases of the subideals contains all solutions of the original system. 
In case of symmetries in the given problem, factorizing polynomials are com­
puted easily before using GROEBNER and computations for some subideals are 
avoided. A permutation of variables in the system (16) is just a permutation 
of equations. Thus one solution gives by permutation a lot of others. For a 
given system Pj(x) = Q,j =• 1,... ,d with this property consider the polynomial 
Q(x) = (P(x) — P(tx)), where P — Pj for one j and t is a permutation of two 
variables x,-,Xfc. Then Q(x) = Qi(x)Q2{x) is either zero, linear or has a linear 
factor (a;,- -^Xk) ([16]). Several factorizing polynomials lead to subideals 

Ai = (Q}1,...,QTm,Pi,...,P<i), : . i * e { l , 2 } , 

such that the union of the zeros of the ideals Ax gives the zeros of jthe system. If 
a permutation of variables in A1 gives another subideal < ontained in A-' 
(this is the case, if 

Q ^ G s p a n ^ , . . . ^ ) V* = l , : . . ; m (7) 

holds), then the zeros of A3 are a subset of the zeros of A1 modulo a permutation. 
Thus the GROEBNER computation for A1 is not necessary. As the automatic 
check (7) is time-consuming, only some factorizing polynomials were taken into 
account. Because the GROEBNER calculation leads to a further splitting of the 
subsystems, there are still solutions which are equal up to permutations. But 
these are only few in comparision to those permuted solutions which are avoided 
by symmetry/Because of the automated process, we aire sure to have computed 
all solutions. The solution of (16) for d = 6, . . . , 10 couldn't have been done 
without this approach. A general description and the details of implementation 
are found in [16]. 
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3.2 Solutions corresponding to a pure .R2 contribution 

The solutions can be given independently of the space-time dimension. They 
correspond of course to real p;'s. 

- pi = 0 for all z's. It corresponds to the Minkowski, space-time. 

- pi = 0 for all Vs except one (say i = i0) for which p,o = 1. It corresponds 
again to Minkowski space-time as a very simple change of coordinates shows 
[ 1 2 ] - - ••! . • 

- A continuum of solutions given by 

ax
2 - 2ax + a2 = 0 ' ' (8) 

with j ' 
' 0 < a 2 < 1 . / ; 

A first particular solution is 

' ' * avt= 1, o3 = 1." (9) 

This is the well-known Kasner-type solution [13] for the d-idimensional 
vacuum general relativistic Bianchi I models. It is the "archetype" of 
anisotropic solutions, very important in all issues concerned with the be­
haviour of a cosmological model near the singularity. A second one is the 
isotropic solution 

*=? = ITT ( 1 0 > 
- When d ^ 3, another isotropic solution is found 

• » = 7 ^ 3 <n> 

3.3 Solutions corresponding to a pure R^R^ contribu­
tion 

- The same solutions as in the preceding case associated with Minkowski 
space-time. 

- The Kasner solution 
a1 = l, a2 = l ; (12) 
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- Isotropie solutions given by 

B =p =vf f+T ^ y ^ (13) 

when d j£ 3 and 

when d = 3. 

P » = P = - 2 (14) 

3.4 Solutions corresponding to a pure R^P*Rßl/p<T contri­
but ion 

If we substitute the value of a4 that we get from the expression of G§fE given 
above into G^IE, we get the system of equations: 

- ( 3 - ai) [3p,-(p? ~Piai + ai + a2 - 2) + a2 - a3] = 0 (15) 

We consider, first of all, the case a^ ^ 3 and solve the system 

3Pi(Pi - Piai,.+ fli + °2 - 2) -f a2 - a3 = 0. (16) 

with i = 1 . . . d. 
All the solutions of this system of equations have been determined with the help of 
the Groebner package developed in Berlin [7] which is based on the Buchberger al­
gorithm [14], on factorization and on the exploitation of the symmetry properties 
[16] of the equations. The exploitation of the symmetry properties of the system 
under cyclic permutations of the p,'s and under the interchange of two of them 
turned out to be essential to be able to complete the calculations for dimensions 
up to d = 10. Most of the solutions are complex and, therefore must be rejected. 
The number of physical solutions is small and depends on d . Again, the case 
d = 3 is special. There , there are only three solutions : Minkowski space-time, 
the Kasner solution (ai = 1 = a2) and the isotropic solution p, = p = 1/2. When 
d > 3, the solutions are qualitatively similar. We discuss only the case d = 9 in 
detail because it corresponds to the 10-dimensional space-time characteristic of 
heterotic superstring theories. 

1. Minkowski space-time: 

Pi = p2 = . . . = p9 = 0 
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2. Disguised Minkowski space-time: 

Pi = l,Pa = •••• =P9 = 0 

Pi = 0,p2 = 1,P3 = . . . = 0 

Pl = . . . = p8 = 0,p9 = 1 

3. Isotropic solutions: 

Pl = . . . = p 9 = 0.1716 

P l = . . . = p9 = 5.828 

In fact, the general expression for these solutions is given by 

2d±y/\<P- 6 d + 1 8 ,_, . 
P = —3 ( 1 7 ) 

4. All the other solutions are anisotropic. We list them 

4.a Space dimensions are subdivided in a 8 + 1 way and 

P l = . . . = p8 = 0.809, > 9 = 4.272 

Pi = . . . = p8 = 5.692, p9 = 1-768 

4.b Space dimensions are subdivided in a 7 + 2 way and 

Pl = . . . = p7 ='0.952, p 8 = P 9 = 4.318 

px = . . . = p7 = 5.429, Ps=P9 = 1-646 

4.c Space dimensions are subdivided in a 6 + 3 way and 

p-i = . . . = p6 = 1.102, p7 = p8 = P9 = 4.535 

Pl = . . . = p 6 = 5.216, p7 = Ps =P9 = 1-518 

4.d Space dimensions are subdivided in a 5 + 4 way and 

px = . . . = p5 = 1.248, p6 = P7 = P« = P9 = 4.766 

Pi = . . . = p5 = 4.996, pe = P7 = Ps = P9 = 1-382 
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The numeric evaluation of the roots has been obtained using the ROOT package 
of KAMENY [17]. In some cases, because the polynomials have big alternate 
coefficients and some of the roots were closed to 0, it has been, necessary to 
further check the sign. The Kameny package exploits the Sturm algorithm to 
give us the number of roots in a given interval and allowed us to verify that all 
real roots are positive. In our case, the knowledge of the sign is crucial for the 
physical interpretation ! ' 
We consider next the case ax = 3. From the expression of G$IE we get 

a4 - 4a3 + a2(a2 + 2) = 0 (18) 

We can show that, in disagreement with solution (45) proposed in [6] there does 
not exist any set of real p,'s which satisfy the above equation together with a\ = 3. 

Some special solutions of "the system (16) are easily; verified using symmetry 
reduction. This well-known method wx>rks in a special case in the following way. 
Assume a solution of type 

fp 1 , . . . , p l V p 2 , . , . , p 2 )€ ( i : d l + d 2 and di'+di^d, • (19) 

where pi,p2 occur; dx]d2 times, respectively. Substitution into (16) shows,that 
two equatipns are left , 

0 = 3pi(pj - p^ai + aj + a2 - 2) -I- a2 - a3 , 

> 0 = 3 p 2 ( p 2 - p 2 a i + a i + a 2 — 2 ) + a 2 -C5 3 l 

• • • • < w i t f a ' - • • • : • : ' . ' , - ' , . ; . r 

dfc = dx -p\+di -p\, fc = l , 2 , 3 . ' ; 

Because these two equations are invariant when interchanging (pi, c^) with (p2 , d2) 
and since, di^d2 appear in invariant terms only, the difference of both equations 
factors (pi — p2): So the special solutions of (16) of type (19). with p\ =£• p2 were 
verified for arbitrary d. 

Note that this reduction method helps to find special solutions of a system 
of equations with symmetry. But it is not sufficient to compute all arbitrary 
solutions. 

4 The Generic Quadratic Lagrangian 

As the previous analysis shows the dimension d = 3 is extremely particular. 
When, a, ß and 7 are arbitrary , three solutions exist: 
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- Minkowski space-time 

- Kasner solution ' ''•• 

- the isqtropic solution pi = p = 1/2 

Note that, in accordance with Gauss-Bonnet theorem, only two of the three 
contributions are independent. 
When d > 3, the only solution left is the vacuum Minkowski space-time which 
is without physical interest in the present cosmological context. In particular, 
Kasner space-time is no more a solution of the generic Lagrangian. 

5 Cosmological Discussion of the Power-Law 
Type Solutions of the Field Equations 

It is clear, first of all, that the power^law solutions of the.fourth-order gravity 
equations for Bianchi I universes considered here are particular solutions because 
they do not posses the required number of degrees!of freedom {lS]y For instance, 
in the case of the R? theory of gravity, the general solution of the corresponding 
field equations is not of the power-law type, as shown by BUCHDAL [19] for d = 3 
and by DERUELLE arid SPINDEL [20] for'a general value of d (d ^ 3). This is, 
by the way, the easiest theory with a quadratic Lagrangian to study because of 
its conformal equivalence with general relativity with a scalar field [21]. Most of 
the cosmological studies concerned, with the R2 theory of gravity deal with the 
possibility of generating inflation without introducing ad hoc scalar fields [22]. 
However, the search for power-law •solutionis is.not without interest in the study 
of the most general approach -chaotic or, non-chaotic- to a space-like singularity. 
The important role of the Kasner solutions in Einsteinian gravity; inthjs context, 
is well-known [23]. 

For dimension d = 3, the Kasner solution appears as the most general anisotropic 
power-law, type splution of the general quadratic theory of gravity for vacuum 
Bianchi I models. An isotropic solution with exponents 1/2 is also found, simu­
lating the behaviour of Einsteinian gravity of a Friedmann model filled with pure 
radiation. 
For dimensions d ^ 3, the generic behaviour is. no-more of Kasner type, since the 
field equations derived from the Riemann-squared part of the Lagrangian density 
does not admit it any more and since, moreover, the Gauss-Bonnet theorem no 
longer holds. 
The Riemann-squared case is particularly interesting, in view of the conclusion of 
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a recent calculation of the effective action for the heterotic string that it should 
be the natural quadratic contribution to consider [3]. 
Two characteristics of the solutions of the system (5) are worth mentioning : 

(i) For each space dimension d, all types of splitting of the exponents pi into 
two distinct groups are possible; the values of the exponents are quite dis­
tinct and are strictly positive. Moreover, only discrete sets of solutions are 
possible for each d. Particularly interesting is the splitting into 3 + (d — 3),* 
possible for any d with the highest value of the exponents pertaining to. the 
3-space . For instance, when d = 9, as described above, the 3-space gets 
expanded in time according to the law i4-535 while1 for the six other space 
coordinates the expansion rate is much slower i.e. as i1-1024. The mechanism 
of spontaneous compactification, which ideally would consist in a splitting 
of space with an expansion of 3-space and a contraction of (d — 3) space is 
only marginally realized. 

(ii) ReCent discussions on theories of inflation have focused attention on the 
possibility of realizing the ; " old inflation " program in theories in which 
a scalar field is implicitly present, like the Brans-Dicke theory [24]. These 
models do not give rise to a phase of exponential expansion but rather to 
a " power-law " inflation in the. sense that the scale factor of the universe 
grows as R(t) = tp. A value p > 2 seems sufficient to solve the cosmologi-
cal conundrums. It is especially worth noticing that the Riemainn-squared: 
contribution to the Lagrangian density gives rise for any d > 3 to a value 
greater than 2 of the exponent of the power-law scale expansion solution for 
the physical space. However, here, the origin of this value of the exponent 
is exclusively geometrical. 
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