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Abst ract

" We study the power-law type solutlons of the fourth order ﬁeld equan ',
"tions derived from a generic quadratic Lagrangian density in the ‘case of
“ntultidimensional ‘Bianchi I cosmological models. All Jhe solutions of the.
system of algebraic equations.have been found, using. computer algebra,
from a search of the Groebner bases assoma.ted to it. Whﬂe, in space di-,
mension d = 3, the Einsteinian Kasner metric is still the most general'
. power-law type sohmon for d > 3, no solution, other than the Minkowski
, space-time, is common to the three systems of equations associated with -
the three contributions to the Lagrangian density. In the case of a pure
~ Riemann-squared contribution" (suggested by a recent calculation of the
~effective action for the heterotic string), the possibility exists to realize a
splitting of the d-dimensional space into:a (d = 3)-dimensional internal
space and a physical 3-dimensional space, the latter expanding in time as
a power bjgger than 2 (about 4.5 when d = 9).
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1 Introduction

The most promising unified field theories of the four basic interactions must, in -
general, be formulated in a space-time of high dimensionality (up to 11) and their
Lagrangians contain terms which are no longer linear in the scalar' curvature.
For example, the low-energy limit field theories which are constructed from su-
perstring theory [1] are formulated in a tén-dimensional space-time and their- .
Lagrangians contain non-linear contributions in the different curvature. tensors .
up to the quartic order. . |
However, there is no general agreement on the precise form of these contribu- -
tions. The so-called Lanczos or Gauss-Bonnet terms [2] have been repeatedly-
suggested as the quadratic contributions to be.incorporated in the Lagrangians
but a recent calculation [3] of the effective action up to the quartic terms for the
heterotic string concludes that a pure R1ernann squared . contribution is “more
natural” than the Gauss-Bonnet combination [2]. Except for bosonic strings, a
cubic contribution seems to be ruled out [4] and the qua.rtxc term could also be
of pure Riemann type 3].

Therefore, in view of these uncertainties [5], it seems more interésting; not to fo- -
cus on a particular form of the non-linear contributions to the action but rather
study the most general non-linear Lagrangian, bearing in mind that most often it
will lead to fourth-order field equations. Of course such a task is hopeless unless
one suitably restricts its scope.

Here, we limit ourselves to the investigation of the generic quadratic contributions
and to consider the case of the multidimensional Bianchi I cosmological models.
More explicitly, we investigate power-law type solutions of the corresponding field
equations. The interest of ‘these solutions (which are manifestly not the _most
general solutions) is due to'the key rdle they play in the investigation of the most
general solution near a space-like sihgulari‘ty in general relativistic cosmology .
Some of the solutlons of these equatlons have already been found in {6] but the
present study is consxderably more general The Varxous systems of algebraic
equations we ha.ve considered were la.rgely solved usmg the computer algebra
package GROEBNER (7] and some 1mprovement of it which takes into account
the symmetry of the equations. . Ma,ny of the solutions which were found were
also checked by hand calculation. The role of. the‘dlmenswnyahty of the space has
been carefully investigated. The main results we get are : . -

i. Space dimension d = 3 is speciéal. The Kasner solution tirns out to be the
most general power-law type solution to the generic quadratic Lagrangian.
This solution does no longer exist for all d > 3.



ii. When d > 3, the most general solution to the generic Lagrangian is flat
Minkowski space-time.

iii. When the quadratic Lagrangian reduces to the Riemann-squared contribu-
tion, all solutions have beeri obtained from the Groebner bases calculation
done for every dimension up to d = 10. We found that some of them, in a
pure geometrical way, realize the splitting of the d-dimensional space into a
3-dimensional space and a (d—3)-dimensional (internal) space. Particularly
interesting is the fact that the exponents corresponding to the coordinates
of the 3-dimensional space systematically appear to be greater than 2.
This behaviour gives rise to a power-law inflation very popular nowadays in
the context of the extended inflation proposal [24] which is, here, of purely
geometrical origin.

2 The Field Equations for Vacuum Bianchi I
Models

We give here the algebraic field equations corresponding to the power-law type

solutions of a d-dimensional Bianchi I cosmological model whose metric is given
by o

d .

ds® = —dt® + 3 t% (dz')? (1)
. . i=1 i N

where the p;’s are constants to be determined.

Near the cosmological singularity, we choose to consider that the leading terms

are the generic quadratic La,gra,ngla.n denmty so that' the action Sg gets the ex-

pression: :

Sg = / (aRZ+ﬂR""RW+7R“""“RWpa)\/ d“ @

[

where o, and v are constants and where R,R,,, and R,,,, are the sca.la.r curva- .
ture, the Ricci and the Riemann tensors of the (d + 1)-dimensional space-time.
The corresponding field equations obtained after a variation with respect to the
metric tensor g can be written as a system of algebraic equations for the p;’s.
They have been obtained from a combined use of the computer algebra pack-
ages EXCALC [9] and COMPACT [11] (see also DERUELLE [6)). Separatmg the
contmbutlons of the three terms in the action we get

aoo’*=—§(a2+a1 — 2a,)(3a2 — ar” + 6ay), o (3)
Gif = (a2 + 01" = 201)(4pi(3 — 1) + a2 + a1 ~ 1001 +24).  (32)
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Goo#lc = '—5(122 + 5(12(112 — a? — C_lgal + 5(12 + -é—af, . - (4&)
G,’,‘RIC = 4p.(3 - a‘l)(az - 1) + a§+ya2a¥ - 2d13 —60,2(11 + 7(12 .
+11a§ —12aq,. o G ’(’4b)"

Go™? = ~3ay4 — 3a? + 4aza, — 4aza, + 6a,, (5a)

Gi™E = 8pi(3 — a1)(p} — piai + 01 + 3 —~2) + 2a4 + 20}
—8(13 + 4(12. 3

with

3 Solutions of the Polynomial Field Equations

The complete set of solutions of the three preceding systems of polynomial equa- -
tions has been infered from the calculation of the associated Groebner bases [7]. "~ -
The solutions corresponding to the pure scalar curvature contribution and those
corresponding to the pure Ricci tensor contributions have been partly discussed
[6]. The calculation of the Groebner bases as well as further hand calculations
“have allowed us to complete it. For the pure Riemann-tensor contribution noth-
ing was known up to now. The calculation of the Groebner bases shows that
there exit only a discrete set of solutions (the ideal is of dimension zero) for all
d > 3. In that case the technique is particularly helpful because the knowledge
of the Groebner bases is sufficient to find the solutions explicitly in a trivial way.
First, we present the Groebner bases method, next we discuss the three sets of
equations successively [10].



3.1 Groebner bases and Symmepries

The REDUCE package GROEBNER is based on the following consxdera,tlons
The solutions of a system of polynomial equations P; () =0,=1,...,d,z €™
are the zeros of the ideal A = (P,,...,P;) spanned by these p'olynomials. The
Buchberger algorithm [14] computes from the given polynomials P; a special
ideal basis, which has the solutions of the given system as common zeros as well.
These solutions are easier to find. In particular, if there are only finitely many
zeros, they can be computed directly from the Groebner basis [15]. If there is
a factorizing polynomial @ = Q1@ in A, then the union of the zeros of the
subideals A; = (Q;, P1,-.., Pi), 1 = 1,2 gives the zeros of A [8]. GROEBNER is
an implementation of the Buchberger algorithm combined with an algorithm for
the detection of factorizing polynomials such that the union of the determined
Groebner bases of the subideals contains all solutions of the original system.
In case of symmetries in the given problem, factorizing polynomials are com-
puted easily before using GROEBNER and computations for some subideals are
avoided. A permutation of variables in the system (16) is just a permutation
of equations. Thus one solution gives by permutation a lot of others. For a
given system P;(z) = 0,5 = 1,...,d with this property consider the polynomial
Q(z) = (P(z) — P(tz)), where P = P; for one j and t is a permutation of two
variables z;,zx. Then Q(z) = Q1(z)Q2(z) is either zero, linear or has a linear
factor (z; = ) ([16]). Several factorizing polynomials lead to subideals

Aiz( TR )Q Pla'“apd)a'lke{lz}

[

such that the union of the Zeros of the ideals A° givés the zeros of the sysfem. If
a permutation of variables in .A' gives another subideal  ontained in A4’
(this is the case, if

(tx) € span(Qh, Q) YE=1,...,m ‘ (7)

holds), then the zeros of A’ are a subset of the zeros of .A' modulo a permutation.
Thus the GROEBNER computation for A’ is not necessary. As the automatic
check (7) is time-consuming, only some factorizing polynomla.ls were taken into
account. Because the GROEBNER calculation leads to a further sphttmg of the
subsystems, there are still solutions which are equal up to permutations. But
these are only few in comparision to those permuted solutions which are avoided
by symmetry. Because of the automated process, we are sure to have computed
all solutions. The solution of (16) for d = 6,...,10 couldn’t have been done

without this approach. A general description and the details of implementation
are found in [16].




3.2

Solutions corresponding to a pure R? ¢ontribution”

The solutions can be | glven 1ndependent1y of the space—tlme dlmensmn They |
correspond of course to real p;’s.

- p; =0 for all #’s. It correépdnds to the Minkowski spgcé.-‘timé:.

- p; = 0 for all ¢’s except one (say ¢ = ig) for which 'p;p = 1. It corresponds =

3.3

- The Kasner solution

again to Minkowski space-time as a very simple-cha~ge of coordmates shows

12].

A continuum of solutions given by . '
" 012—20.1"*'0.2 =0‘ ‘ _l S (8)
with ’ e

o 0<€ap <l

A first particulaf'sélution is '
i . api= 1’ a ag =1. o (9)

This is the well-known Kasner-type solution [13] for the d-dimensional

vacuum general relativistic Bianchi I models. It is the “archetype” of
anisotropic solutions, very important in all issues concerned with the be-
haviour of a cosmological model near the smgulanty A second one is the
isotropic solution S ‘

2 : S
;=p=—— 10)
When d # 3, another isotropic solution is found
6
b= d—3 ) ‘ o . (11)

Solutions corresponding to a pure R*R,, contribu-
tion . ,

The same solutions as in the preceding case associated ‘with Minkowski
space-time.

a =1, 4y =1 Coaey



- Isotropic solutions given by

Jdd+1)£/d?—2d+9

pi=p=Vd+1 Ji@d=3) (13)
when d # 3 and .
pi=p=—35 " (14)

when d = 3.

3.4 Solutions corresponding to a pure R**°R,,,, contri-
bution

If we substitute the value of a, that we get from the expression of GEZ given

above into GEZ we get the system of equations:
8
5(3-—a1) [3pi(p? — pia; +a; +a; —2) +a; —az]=0 (15)

We consider, first of all, the case a; # 3 and solve the system
3pi(p} —piay + a1 + a2 —2) +a —as = 0. (16)

withi=1...d.

All the solutions of this system of equations have been determined with the help of
the Groebner package developed in Berlin [7] which is based on the Buchberger al-
gorithm [14], on factorization and on the exploitation of the symmetry properties
[16] of the equations. The exploitation of the symmetry properties of the system
under cyclic permutations of the p;’s and under the interchange of two of them
turned out to be essential to be able to complete the calculations for dimensions
up to d = 10. Most of the solutions are complex and, therefore must be rejected.
The number of physical solutions is small and depends on d . Again, the case
d = 3 is special. There , there are only three solutions : Minkowski space-time,
the Kasner solution (a; = 1 = a;) and the isotropic solution p; = p = 1/2. When
d > 3, the solutions are qualitatively similar. We discuss only the case d = 9 in
detail because it corresponds to the 10-dimensional space-time characteristic of
heterotic superstring theories.

1. Minkowski space-time:

1
o

Pr=p2= Po




2. Disguised Minkowski space-time:

pr=Lp= ... =p=
P1=0,p2=1,p3=---=0
= ... =p8=0,p9=1
3. Isotropic solutions:
pr=...=pg=0.1716
P1L=...=Pg = 5828

In fact, the general expression for these solutions is given by

_ 2d+ /A7 —6d + 18
p= d—3

(17)

4. All the other solutions are anisotropic. We list them

4.a Space dimensions are subdivided in a 8 + 1 way and

Py =...= pg = 0.809, ‘po = 4.272
pr=.. =ps=5692 po = 1.768

4.b Space diménsions are subdivided in a 7 + 2 way and

) 51 = . '.‘- =pr= 0952, Pgs = Po = 4.318
P =...=pr=05429, pg = po = 1.646

4 Space dimensions are subdivided in a 6 + 3 way and

pr=...=ps = 1.102, pr =pg = Po =‘4.535
p1=...=p6=5.216, D7 = Ps =p9=1.518

4.d Space dimensions a_re‘subdivided in a 5+ 4 way and

pr=...=ps = 1.248, Ps = P7r = Pr = po = 4.766
p1=...=ps = 4.996, Pe = pr = ps = po = 1.382



The numeric evaluation of the roots has been obtained using the ROOT package
of KAMENY [17]. In some cases, because the polynomials have big alternate
coefficients and some of the roots were closed to 0, it has been necessary to
further check the sign. The Kameny package exploits the Sturm algorithm to
give us the number of roots in a given interval and allowed us to verify that all
real roots are positive. In our case, the knowledge of the sign is crucial for the
physical interpretation ! ’ e
We consider next the case a; = 3. From the expression of GHE we get

S

aq —4as + az(az +2)=0 i . (18)

We can show that, in disagreement with solution (45) proposed in [6] there does
not exist any set of real p;’s which satisfy the above equation together with a; = 3.

Some special solutions of the system. (16) are easily :verified using symmetry
reduction. This well-known method works in a special case in the followmg way.
Assume a solution of type

(pl7 7p1“7"p2) ', ) e (I:dl+d2 and di “+ d2 ‘='d ) B (19) ;

Where P1,p2 occur; dy;d, times, respectlvely Substltutmn into (16) shows that
two equations are left E

0 s s e patata - Fa—a,
o 0= 3pp—partaitaa—2)+ta—ag;
a4 = dy- P1+d2 szyk—123 '

Because these two equatlons are invariant when 1nterchangmg (pi, dy) w1th (pg, da)
and since, dy, d; appear in invariant terms only, the difference of both equations .~

factors (pi — p2). ‘So the special solutions of (16) of type (19) with p; # pg were
verified for arb1trary d.

Note that this reduction method helps to find special solutions of a system

of equations with symmetry But 1t 1s not sufﬁcxent to’ compute all arbltrary
solutions.

4 The Generic Quadratic Lagrangian

As the previous anainelis shows the dimension d = 3 is extferhely parti‘eul;a,r:.b
When o, B and v are arbitrary , three solutions exist:

8



- Minkowski space-time
- Kasner solution °

- the isqtropic solution p; =p=1/2 .

Note that, in accordance with Gauss-Bonnet theorem, only two of the three
contnbutlons are independent. :

When d > 3, the only solution left is the vacuum Mmkowskx space-tlme wh1ch
is without physical interest in the present:cosmological context. In particular,
Kasner space-time is no more a solution of the generic Lagrangian.

5 Cosmoloegical Discussion of the Power-Law
Type Solutions of the Field Equations

It is clear, first of all, that the power-law solutions of the fourth-order gravity
equations for Bianchi I universes considered here are particular solutions because
they do not posses the required number of degrees!of freedom {18]: For instance,
in the case of the R? theory of gravity, the general solution of the corresponding
field equations is not of the power-law type, as shown by BUCHDAL [19] for d = 3
and by DERUELLE and SPINDEL [20] for a general value of d (d # 3). This is,
by the way, the easiest theory with a quadratic Lagrangian to study because of
its conformal equivalence with general relativity with a scalar field [21]. Most of
the cosmological studies concerned with the R? theory of gravity deal with the
possibility of generating inflation without introducing ad hoc scalar fields [22].

However, the search for power-law solutions is. not without interest-in the study - -

of the most general approach -chaotic or non~chaotic- to a space-like singularity.
The important réle of the Kasner solutions in Einsteinian gravity; in. this context, -
is well-known [23]. S :
For dimension d = 3, the Kasner solution appears as the most general amsotropzc ,
power-la,w type splutlon of the general quadratic theory of gra.v1ty for vacuum
Bianchi I models. An isotropic solution with exponents 1/2 is also found, simu-
lating the behaviour of Einsteinian gravity of a Friedmann model filled with pure
radiation.

For dimensions d # 3, the geneic. behaviour is no more of Ka,sner tyme, since the
field equations derived 'from the Rlemann-squared part of the Lagra,nglan den31ty
does not admit it any more and smce, moreover, the Gauss Bonnet theorem no
longer holds. S ’ - "

The Riemann-squared case is partlcularly mterestlng, in view of the conclusion of



a recent calculation of the effective action for the heterctic string that it should
be the natural quadratic contribution to consider (3]. '
Two characteristics of the solutions of the system (5) are worth mentioning :

(i)

For each space dimension d, all types of splitting of the exponents p; into
two distinct’ groups are possible; the values of the exponents are quite dis-
tinct and are strictly positive. Moreover, only discrete sets of solutions are
possible for each d.. Particularly interesting is the splitting into 3+ (d—-3), »
possible for any d with the highest value of the exponents pertaining to, the,
3-space . For instance, when d = 9, as described above, the 3- -space gets
expanded in time according to the law ¢+ while for the six other space
coordinates the expansion rate is much slower i.e. as t'1°2%, The mechanism
of spontaneous compactification, which ideally would consist in a splitting
of space with an expansion of 3-space and a contraction of (d 3) space is
only marginally realized.

Recent dlscussxons on theohes of inflation have focused attention on the
p0581b111ty of reahzmg the’¢ old inflation ” program in theories in which
a scalar field is implicitly present, like the Brans-Dicke theory [24]. These
models do not give rise to a phase of exponential expansion but rather to

¢ power-law ” inflation in the sense that the scale factor of the universe
grows as R(t) = t*. A value p > 2 seems sufficient to solve the cosmologi-
cal conundrums. It‘is especially worth noticing that the Riemann-squated:
contribution to the Lagrangian density gives rise for any d > 3 to a value
greater than 2 of the exponent of the power-law scalé éxpansion solution for

the physical space. However, here the origin of thls value of the exponent,
is excluswely geometmcal
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