
Konrad-Zuse-Zentrum für Informationstechnik Berlin

Rainer Roitzsch

KASKADE Programmer's Manual

Version 1.0

Technical Report TR 89-5 (August 1989)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbronner Strasse 10
1000 Berlin 31
Verantwortlich: Dr. Klaus Andre
Umschlagsatz und Druck: Rabe KG Buch- und Offsetdruck Berlin

ISSN 0933-789X

Contents

1 Introduction 3

1.1 C basics 4

1.2 Structure of the KASKADE program 4

1.3 Building your own version 6

2 Module documentation 6

2.1 "Command" module 6

2.1.1 Data types and procedures 6

2.1.2 File formats 8

2.1.3 Files 9

2.1.4 Examples 9

2.2 "Triangulation" module 11

2.2.1 Data Structures 11

2.2.2 Constants 15

2.2.3 Macros 15

2.2.4 Operations on triangulations 16

2.2.5 Procedures (Refinement/Deletion) 18

2.2.6 Procedures (Handling the midpoint of edges) 18

2.2.7 Procedures (Creating/Deleting a triangulation) 19

2.2.8 Global modes and variables 19

2.2.9 Files 19

2.2.10 Examples 20

2.3 "Assembling" module 20

2.3.1 The AssTriang interface 21

2.3.2 The PROBLEM-data type and related procedures 22

2.3.3 Numerical integration 22

2.3.4 Assembling of the complete stiffness matrix 25

2.3.5 Vector and matrix operations 25

2.3.6 Files 26

2.4 "Solve" module 26

2.4.1 Controlling the solution process 28

2.4.2 The direct solver 29

1

2.4.3 The error estimator 30

2.4.4 The refinement process 31

2.4.5 The iterative solver 31

2.4.6 Files 32

2.5 "Graphic" module 32

2.5.1 The GRAPHIC-data type and procedures 33

2.5.2 Driver interface 34

2.5.3 Window interface 36

2.5.4 Files 36

2.5.5 Examples 36

References 38

Index 39

2

1 Introduction

The code version KASKADE to be presented here is written in the language
C. The modules of KASKADE are designed to allow reuse and extensions.
Well known software engineering principles like

1. information hiding,

2. object oriented interfacing,

3. portability etc.

are used. Thus it is hoped to support rapid prototyping of non trivial appli­
cations.

The functionality of each module is specified by

1. a set of da ta types and

2. a collection of procedures.

If necessary the module interface is extended by

1. files to predefine the initial "state" of a module, e.g. a list of texts,

2. global actions (commands), or

3. internal/external test features.

KASKADE consists of a collection of modules (a library) and a prototype
application (main program and files to initialize the modules).

The programmer's manual includes some recipes to change and extend KASKADE
and a "complete" interface description of the modules. It tries to hide infor­
mation which might change in the near future. The program is still under
development, there will be changes.

To use the program the programmer is refered to the User's Manual which
contains the description of the KASKADE command language.

Errors, problem reports, or any comments should be forwarded to the author
at the Konrad-Zuse-Zentrum (ZIB), for an e-mail address see the Installa­
tion Guide (README).

3

1.1 C basics

The reader should know the language C, at least he should be familiar with
the concept of pointers (addresses). Reading the KASKADE sources is rec­
ommended.
In the source code some naming conventions should be used:

1. procedure names start with a capital letter,

2. variable names start with a small letter,

3. constant, type, and macro names should use only capital letters (with
some exceptions).

Some standard types are used in all KASKADE sources (in kask.h), see
Table 1.

REAL floating point numbers f l o a t
PTR pointers c h a r *
PROC integer functions i n t (*PR0C)()
REALPROC real functions REAL (*REALPR0C)()
PTRPROC functions returning a pointer PTR (*PTRPR0C)()
VOIDPROC procedures v o i d (*V0IDPR0C)()

Table 1: KASKADE standard data types

They should be used if possible like the "popular" constants in Table 2.

n i l nil pointer
t r u e t rue
f a l s e false
ZERO 0 .0
ONE 1.0

Table 2: KASKADE standard constants

1.2 Structure of the KASKADE program

KASKADE consists of the following modules:

4

Triangulation

Command !I Assembllng I Syssem]

Solve

Graphic

The module "Command" implements the command language (and in the
future the menu interface). It should be initialized by the main program. It
reads the list of command names, numbers and their parameter names from
a file. These lists have to be updated by the main program to include the
real addresses of the functions which are called by "Command" if the user
enters a command.

"Command" maintains a stack of command strings. It includes a procedure
to stack a string of commands, extract the next command, and execute a
command.

Routines to print text, which is read from a file are available too.
The modules "Triangulation" , "Assembling" , and "Solve" contain the
code to store triangulations, to use existing triangulations, to assemble stiff­
ness matrices, and to control the solution process. Each of these modules
uses special data structures to handle more than one triangulation, more
than one problem, more than one method of assembling, and more than one
solution process.

They are the framework for an adaptive (2-dimensional) finite element pro­
gram. The procedures for the linear elliptic PDE's are an example for their
usage.

The module "Graphic" could be used to draw triangulations and level lines
to an existing solution. There are some basic plot routines available at the
command language level to generate pictures for reports. The procedures
which make the graphic are using a driver through a special "primitive"
interface. The PostScript driver is an example for a driver implementing this
interface.

The interface to the real system (at the moment Mac II and SUN 0S4) is
specified in the module "System" . This module contains only few (trivial)
procedures which are not described in this manual.

5

1.3 Building your own version

Just call make, if necessary after adding your own sources to Maakeile.

2 Module documentation

2.1 "Command" module

"Command" is used to implement the interface between a user (at a termi­
nal or writing a do-command, see the User's Manual [4]) and the procedures
of the applications. The interface uses the COMMAND-data type to pass the
information to application procedures.

The list of possible commands is read from a command definition file. This
file consists of information for setting some modes of "Command" (i.e the
prompt), command names followed by the command number and short de­
scription, and lists of parameters of commands.

After initialization (reading the command definition file) the linking between
the unique command number and the address of the application procedure
has to be done.

Command strings are stacked in "Command" and single commands will
be extracted in the form of the COMMAND-data type on request. The actual
processing is done by a further procedure.

Some commands are implemented as part of "Command" itself (i.e do,
qu i t , cmdinf), see the User's Manual [4].

Furthermore procedures to read files with predefined strings and procedures
to print these messages are part of "Command" .

2.1.1 Data types and procedures

The COMMAND-data type is used to pass a representation of a command to an
application command procedure.

no in t unique procedure number

noOfPars i n t number of parameters

pars char** array of addresses of strings which rep­
resent the parameters of the command

keywords char** array of addresses of strings which de­
fine the predefined keywords read from
the command definition file

6

The "first" parameter cmd. pars [0] is always the actual command name, the
parameter lists ends with an additional n i l pointer. Therefore the length
cmd.pars is cmd.noOfPars+2.

Some information on the state of "Command" is stored in a variable of the
CMDMODES-data type .

i g n o r e C a s e s i n t t r u e if upper and lower case characters
should be identified

maxPars i n t maximal number of parameters of a
command

prompt c h a r * string to a terminal prompt

names cha r** list of command names
index i n t * list of the corresponding command

number
p r o c s CMDPROCS* command procedure addresses

sho r tDes cha r** list of short command descriptions

keywords cha r** list of keywords of command

e scape c h a r escape character

comment c h a r comment character

Furthermore information on the command stack and a character class array
are stored in this data structure.
The procedures of "Command" are:

i n t InitCommand(path,name)
reads the file /path/name. The format of the file is described in the next
section. InitCommand returns t r u e if the command file is successfully
read.

i n t DoCoomandndinneproc)
puts the string l i n e on the command stack, proc is called after the last
command from l i n e is executed. (Can be used to return the storage
for l ine .)

int ExecCommand(cmd)

executes a command by calling the procedure identified by the com­
mand number in cmd.

COMMAND *GetNext()
extracts the next command from the command stack. This procedure
does the syntax analysis under control of the CMDMODES-data type ob­
ject stdCmdModes.

7

void SetCommand(no,proc)

links the procedure address proc to the command number no.

int ParsCheck(cmd,min,max)

checks if min<=cmd->noOfPars<=max and prints an appropriate error
message.

i n t CheckName(ptAdr,kkeyordsscharClass
tests if a string is in a keyword list.

i n t InitMsg(maxList)
initializes the procedure to read strings from maxList number of mes­
sage files.

int MsgList(path,name)

reads a list of strings from the message file path/name. The list may
be identified by the returned list number. A failure is signaled by a
return code - 1 .

i n t Mssg(d,no,pl ,p2,p3,p4)
prints string number no from list id by using p r i n t f with parameters
p i , p2, p3, and p4. A newline character is appended.

i n t MssgoNL(idino,pplp2,p3,p4)
does the same as Msg without an appended newline character.

2.1.2 File formats

A command definition file consists of two parts separated by a blank line. In
the first part some modes of "Command" may be set. Each line starts with
' $ ' and the mode name followed by trie new value. The mode names are:
$Prompt 'string' command prompt

$MaxPar number maximal number of parameters

$Escape character escape character

$Comment character comment character
$Quote character additional quote character

$CmdDelim character additional command delimiting char­
acter

$ParDelim character additional parameter delimiting char­
acter

The second part
Each command

defines the command names "Command" should recognize.
name on a new line is followed by the command number and

a string which will be used as a short description of the command. After
the definition of the command names an optional list of keywords to given
command numbers follows. Each list starts with a ' $ ' and the command
number on an extra line. The next lines define the keywords. For a complete
example see 2.1.4.

The message files are just simple text files, each line can be addressed sepa­
rately by the procedures Msg and MsgNoNL.

2.1.3 Files

The files of "Command" are:
kaskcmd.h

command.msg

kaskcmd.def

header file, includes the definition of data
types and externals

message file, including all texts produced by
"Command"
command definition file; the definition of the
KASKADE command language

in i tcmd.c

commands.c

proccmd.c

msg. c

source; initialization of "Command"

source; command interpreter

source; some commands

source; string printing procedures

2.1.4 Examples

Parts of the files kaskcmd. def and command .msg together with some extracts
from KASKADE sources are reproduced to show the usage of "Command"

The command definition file kaskcmd.def begins with

$Prompt 'Kaskade: '

$MaxPars 10

quit 0 'quit Kaskade'

end 0 '"

cmdprint 1 ' p r i n t command i n t e r p r e t e r s e t t i n g s '
do 2 'execute command f i l e '
msgprint 4 ' p r i n t l i s t s of messages'

later on keywords for cmdprint are defined:

9

$1
names settings

The message file command.msg includes:

Cmd: too many active do file(s): '/,d
Cmd: no code for "*/*s'C/.d)

Cmd: nothing to do

Cmd: all done

Cmd: unknown command >*/.s'

Cmd: current settings of the command interpreter

Prompt: }*/ts'
Maximal number of parameters: */»d
Cases are ignored

Escape symbol: '/,C
Comment symbol: 'Ac'

Cmd: Can't read line from 'stdin'

In the main program of KASKADE the initialization of "Command" is
done.

i f (!Ini tMsg(20)) { ZIBPr in t f ("Stoehn\n") ; r e t u r n ; }
msgld = MsgList(kaskPath,msgFileName);
i f (msgld<0) { ZIBPrintf("0 Weh\n"); r e t u r n ; }
if (!InttCommands(kaskPath, cmdDeeFileName))

{ ZIBPrintf("Jammer\n"); r e t u r n ; }
SetCommand(0, CmdQuit);
SetCommand(1, CmdPrint);
SetCommand(2, CmdDo);
SetCommand(4 , MsgPPrnt);

The loop reading lines from s t d i n and executing the commands may be:

while (goon) /* loop reading lines and executing commands */

if(gets(line)==nil) { Msg(cmdMsg, 3); break; }

DoCommand(line,nil);

while (goon) /* loop executing commands from one line */

* •

cmd = GetNextCommandO ;

if (cmd==nil) break;

if (!ExecCommand(cmd)) cmdError - true;

10

}
}

The message 3 from the list cmdMsg is defined in the line 3 of file commands .msg.

Cmd: n o t h i n g t o do

2.2 "Triangulation" module

The triangulation module of KASKADE handles all basic operations concern­
ing the data structures for a triangulation. It includes methods to operate
sets of points, edges or triangles too. These sets are internally defined by the
module (like "all triangles of the nodal base") or may be defined by the user
through list operations or by predicate functions. Furthermore this module
contains the procedures to refine a triangulation (including the generation of
green refined triangles to preserve regularity) and the procedures to delete
triangles.

Tri angulations are described by a global data type which allows the usage of
more than one triangulation at a time. This includes the possibility to freeze
a triangulation, working on a copy, or solving with different algorithms on a
triangulation.

This document contains a description of the module, listing all relevant da ta
types, constants, operations on these data structures, and procedures to use a
triangulation. It should include all necessary information to use the module.

The data structures are developed by P. Leinen.

2 .2 .1 D a t a S t r u c t u r e s

The following basic data types are available:

PT points, including at least the (x,y)-coordinates, a boundary type de­
scriptor, some internal data, and an array of real numbers. Direct

11

access to the following components of the data type is available:

vec REAL* associated real array

x , y REAL x, y-coordinate

boundP i n t boundary type descriptor

indexP i n t number of the point

l e v e l i n t number of the refinement which gener­
ates this point

n e x t PT* pointer to next point

l a s t PT* pointer to previous point

EDG edges, including at least two pointers to the end points, a boundary
type descriptor, refinement type descriptor, data to describe curved
edges, some internal data, and an array of real numbers (see Figure 1).
Direct access to the following components of the data type is available:

ed->p2

ed->pl

Figure 1: Information directly derivable from an edge ed

vec REAL* associated real array

p l , p 2 PT* pointers to end points

pm PT* pointer to midpoint

t l , t 2 TR* pointers to neighbor triangles

boundP i n t boundary type descriptor

MidPoint PROC procedure to compute the midpoint of
an edge

"type i n t refinement type descriptor

n e x t EDG* pointer to next edge

l a s t EDG* pointer to previous edge

12

TR triangles, including at least three pointers to the edges, refinement type
descriptor, two integer numbers to specify the (KASKADE) refinement
level and the refinement depth, some internal data, and an array of real
numbers (see Figure 2). Direct access to the following components of
the data type is available:

t->p3

t->el / \t->e2

t->pl 4->e3 t->p2

Figure 2: Information directly derivable from an triangle t

vec REAL* associated real array

e l , e 2 , e 3 EDG* pointers to the edges

p l , p2 ,p3 PT* pointers to the points

"type i n t refinement type descriptor

l eve l i n t KASKADE refinement level
depth i n t refinement depth

next TR* pointer to next triangle

l a s t TR* pointer to previous triangle

son TR* pointer to first son triangle

f a the r TR* pointer to father triangle

Some assumptions on these objects are implicitly made. Their validity is
maintained throughout the refinement process.

• Triangles are oriented in the mathematical positive sense. The edge i
is opposite to the point i.

• midpoints transmit the boundary type of their edge.

• sons of edges have the same orientation, that is (ed->firs tSon)->p2
== ed->pm.

13

The TRIANGULATTON—data type contains all global data for a triangulation.

name

fieeName

cha r*

cha r*

name of the triangulation

name of the file from which the trian­

gulation was read

noOfPo in t s

noOfEdges

n o O f T r i a n g l e s

n o O f I n i t P o i n t s

noOf In i tEdges

n o O f I n i t T r i a n g l e s

r e f L e v e l
maxDepth

i n t

i n t

i n t

i n t

i n t

i n t

i n t
i n t

number of points

number of edges

number of triangles

number of points of the initial triangu­

lation

number of edges of the initial triangu­
lation
number of triangles of the initial trian­
gulation

number of refinements
max depth of refinement of a triangle

1 p roblem

assemble

s o l v e

p l o t

PTR

PTR

PTR

PTR

pointer to the data type describing the
problem

pointer to the da ta type describing the

method of assembling

pointer to the data type describing the

solution process

pointer to the da ta type describing cur­
rent graphics settings

f i r s t P o i n t

l a s t P o i n t

i n i t P o i n t s

l a s t D i r e c t P o i n t

f i r t t E d g e

l a s t E d g e

i n i t E d g e s

f i r s t T r i a n g l e

l a s t T r i a n g l e

i n i t T r i a n g l e s

PT*

PT*

PT*

PT*

EDG*

EDG*

EDG*

TR*

TR*

TR*

pointer to the first point 1

pointer to the last point

pointer to the array of initial points

pointer to the last point for which a
direct solution is available
pointer to the first edge

pointer to the last edge

pointer to the array of initial edges

pointer to the first triangle

pointer to the last triangle

pointer to the array of initial triangles

In the initial triangulation the objects (points, edges, triangles) are stored
consecutively in arrays. These arrays are accessibly by ac tTr i ang -> in i tPo in t s ,
ac tTr iang->ini tEdges , and ac tTr i ang -> in i tT r i ang le s respectively, i.e

14

the first point of edge number 10 is (a c t T r i a n g - > i n i t E d g e s) [10] .p i . Fur­
thermore all points and all edges are connected by a double linked list (fields
next and l a s t . New points and edges are always appended at the end of
this list.

For triangles, only the objects of the actual triangulation (the nodal repre­
sentation) are linked this way. New triangles always substi tute at least one
old one.

It is not possible to delete objects of the initial triangulation.

2.2.2 Cons tants

The predefined constants for boundary types (with respect to points and
edges) are:

INTERIOR inner point or edge

DIRICHLET point/edge with Dirichlet boundary condition

NEUMANN point/edge with Neumann boundary condition

The predefined constants for refinement types are:

T.WHITE edge: from initial triangulation or as refined edge, tri­
angle: not refined

T_RED edge: generated by red refinement, inner edge, triangle:
red refined

T.GREEN edge: generated by green refinement (closure), inner
edge, triangle: green refined

T.BLUE edge: generated by blue refinement, inner edge, trian­
gle: blue refined

2.2.3 M a c r o s

The working of some operations on the basic data types should be hidden to
the programmer by the use of macros (defined in k a s k t r i . h) . This might
not only reduce the amount of typing but allows the introduction of future
changes (induced by performance problems for example).

15

The following macros are defined:

RA(ptr , ind) access to the ind -component of the REAL
array associated to p t r . p t r might be a
pointer to a point, edge, or triangle

RD(obj,ind) the same for a point, edge, or triangle

GREENEDGEEt) the inner edge of a green refined triangle

INNERTRIANGLE(t) the inner triangle of a red refined triangle

NEIGHBORR(t) the neighbor triangle of t with respect to
+ _ S 0 1

NEIGHB0R22t)
1/ ' C i

the neighbor triangle of t with respect to
t ->e2

NEIGHB0R3(t) the neighbor triangle of t with respect to
t ->e3

TREDlSON(t) the first son of a red refined triangle
TRED2S0N(t) the second son of a red refined triangle

TRED3S0N(t) the third son of a red refined triangle

TRED4S0N(t) the fourth son of a red refined triangle (the
inner triangle)

2.2.4 Operations on triangulations

The basic idea in using the information stored in a triangulation is to apply
a user supplied function proc to a set of points, edges or triangles in a
predefined order, proc may stop this process by returning f a l se . All apply
procedures return t r u e if proc returns true for all selected objects, else
f a l s e .

int ApplyP(proc,selection)

The user supplied routine proc is called for each point defined by
s e l e c t i o n with a pointer to the point as a parameter, s e l ec t ion

16

is one of the following predefined selections .

a l l all points of the triangulation

i n i t i a l all points of the initial triangulation

boundary all boundary points of the triangulation

nonBound all non boundary points of the triangulation

boundlnit all boundary points of the initial triangulation

d i r i c h l e t all dirichlet boundary points of the triangulation

d i r e c t all points for which a direct solution exists

nonDirect all points for which no direct solution exists

i n t ApppyE(proocselection)
The user supplied routine proc is called for each edge defined by
s e l ec t i on with a pointer to the edge as a parameter, s e l e c t i o n
is one of the following predefined selections.

a l l all edges of the triangulation (hierarchical repre­
sentation)

allBackward all edges of the triangulation in reverse order (hi­
erarchical representation)

nodal all edges of the triangulation (nodal representation)

i n i t i a l all edges of the initial triangulation

boundHier all boundary edges of the triangulation (hierarchi­
cal representation)

boundNodal all boundary edges of the triangulation (nodal rep­
resentation)

boundlnit all boundary edges of the initial triangulation

d i r i c h l e t all dirichlet boundary edges of the triangulation

i n t ApppyT(proocselection)
The user supplied routine proc is called for each triangle defined by
s e l ec t i on with a pointer to the triangle as a parameter, s e l e c t i o n
is one of the following predefined selections.

a l l all triangles of the current triangulation (nodal rep­
resentation)

i n i t i a l all triangles of the initial triangulation

17

2.2.5 Procedures (Refinement/Deletion)

The standard way of refinement of a triangulation is the "red" (uniform)
refinement, see Figure 3.

Figure 3: Red refinement

The completion (closure) is done by "green" refinement, see Figure 4.

Figure 4: Green closure

Refinement is done by calling OpenRef () , which deletes the green closure
of the triangulation. Then triangles are marked for red refinement by the
procedures RefRed(t). The actual refinement is invoked by CloseRef ()
which adds the green closure.

Calls to DelTr(t) after OpenDelO mark triangles do be deleted. The actual
deletion is performed when CloseDelO is called. All brother triangles are
automatically deleted too.

2.2.6 Procedures (Handling the midpoint of edges)

Two procedures are available to handle the refinement of edges. They are
called by the triangulation module to compute the midpoint of an edge,
interpolating a solution value (vec[0] of the new point), and setting the
boundary value (tt vec[l]) according to the boundary type. At the moment

18

only line or arc edges are implemented. The necessary information is stored
in the data structure for an edge (ed.MidPoint).

2 .2.7 Procedures (C r e a t i n g / D e l e t i n g a tr iangulat ion)

A new triangulation is created by calling CrTr i which returns a pointer to
a new TRIANGULATION and makes this the current one. CloseTri deletes a
triangulation and returns all space used for this triangulation. The current
triangulation may be changed by Se lTri .

These procedures are called by the commands to read and maintain a trian­
gulation.

2.2.8 Global m o d e s and variables

Some modes may be changed by setting variables of the triangulation module.
A call to VecSpace(ptDim,edgDim,trDim) defines the length of the REAL-
array associated with the points, edges and triangles. A minimum of ptDim=2
and edgDim=2 is required. These elements are used for the solution and
right-side of the system.

The global variable a c t T r i a n g of type TRIANGULATION gives access to the

current triangulation, the one which is selected last.

2.2.9 F i les

The files of "Triangulation" are

kasktri .h

triang.msg

header file, includes the definition of constants, data
types, macros, and externals

message file, including all texts produced by "Trian­
gulation"

geointer .c

geobasic.c

re f ine .c

c losure.c

de l e t e . c

source; apply procedures

source; dynamic memory management of data types

source; refinement

source; generating and deleting green closure

source; deletion

tricmd.c

readtr.c

source; commands (inf tr i , etc.)

source; command for reading a triangulation

19

2.2.10 Examples

Refine all triangles of a triangulation:

OpenRef();
ApplyT(ReeTrrall);

CloseRef() ;

A procedure to set vec [index] to zero on all points with Dirichlet boundary
conditions.

s t a t i c i n t glndex;

s t a t i c i n t SetZero(p)
PT *p;
{

RA(p,glndex) = ZERO;
r e t u r n OK;

}
void SetBoundZero(index)

i n t index;
{

glndex = index;
ApplyP(SeeZeerodir ichle t) ;

}

2.3 "Assembling" module

"Assembling" can be used to assemble the stiffness matrix and right-hand
side for a triangulation. A procedure AssTriang which computes the local
stiffness matrix for a triangle is used as the central interface for the procedures
which assemble the complete matrix or do a multiplication of a vector and
the stiffness matrix.

"Assembling" contains an example for a procedure (NumAss) which uses
numerical integration on linear and quadratic finite element base functions
over a triangle. The information about the problem to solve is given by a set
of procedures to compute the functions pi, p2> <7> 9-, and dhe eoundary yalues
7 for the equation

— {jp\Ux)x - {jp2Uy)y ~\r 9U = g in Q,

u = 7 on TQ

uu = 0 on dn\r0 .

20

or the corresponding variational formulation: Find a function that minimizes

f(u) = -a(u,u) — G(u), u € Hfä

with

a(u,v) = / \p1uxvx -\- p2UyVy -\- quv\d(x,y)

G(v) = I gvd(x,y)

(The notation of [1] is used.) The procedure addresses for pi, p2, <?, g, and 7
are stored in the PROBLEM-data type .

The INTEGDATA-data type controls the numerical integration. The set of
integration points and weights may be changed. The values of the shape
functions at the integration points of the standard triangle can be precom-
puted.

On top of the AssTriang procedure routines to assemble the full matrix and
routines to do vector operations like multiplication with the stiffness matrix
are available.

2.3.1 The AssTriang interface

The AssTriang procedure is called with an address to a TR-data type . All
other control is passed by the following global data. (The external declara­
tions are part of kaskass.h.)

par tP i n t P_STIFF: compute only the local stiff-
ness matrix,

P_RHS: compute only the local right-
hand side, or
P_ALL: compute both

symP in t SYMMETRIC: compute only the lower
triangle of the local stiffness matrix,
FULL: compute the full local stiffness
matrix, or

DIAGONAL: compute the diagonal of the
local stiffness matrix

iFrom, iTo, i n t variables to select the block of the local
kFrom, kTo stiffness matrix to be computed

assA REAL** local stiffness matrix
assB REAL* local right-hand side

21

AssTriang should compute the matrix A-k to a given triangle T correspond­
ing to the shape functions <f>i.

&=IMTM^+4^r)+^n^
For an example of a set of 0; ses the eection n.2.3. The right-hand side BB
is computed in a similar fashion

BP= f g<f>id(x,y)
JT

AssTriang itself is a global variable of type PROC.

2.3.2 The PROBLEM—data type and related procedures

The PROBLEM-data type is used to define a set of model problems. It is used
by the numerical integration procedure. All REAL-functions whose addresses
are mentioned in this context get the (a;,^)-coordinates and optionally the
enclosing triangle as parameters. The fields are:

name c h a r * name of the problem

pX, pY, q, g , REALPROC the functions p1? p2, <7, $S and 7
BValue
pXConst REAL constant returned by StdpX, preset

with 1
pYConst REAL constant returned by StdpY, preset

with 1
qConst REAL constant returned by Stdq, preset with

0
constant returned by Stdg, preset with
_i

gConst REAL

constant returned by Stdq, preset with
0
constant returned by Stdg, preset with
_i

BValueConst REAL
X

constant returned by StdBValue, pre­
set with 0

The variable actProblem is preset with the standard functions defining

A = —1, 7 = 0

as the problem. Furthermore there are functions for some other model prob­
lems, see the User's Manual [4].

2.3.3 Numerical integration

The numerical integration of

I = / F(x,y)d(x,y)

22

is done by summing up

IN= ^2 w
m=0

jümF(x^m\y^)

The procedure NumAss transforms the actual triangle to a reference triangle
first (see Figure 5) and than applies the integration formula.

(0,1)

(0,0) (1,0)

Figure 5: Reference triangle

For this triangle the values of the shape functions at the integration points
are precomputed and stored in the INTEGDATA-data type , which owns the
following fields

noOfIPoints

integPointX,
integPointY

integWeight

in t

REAL*

REAL*

number of integration points n

vector of integration points x^m\ y^"1'

vector of weights w^™'

noOfShapeFunc
shape,
shapeX,
shapeY

int
REAL**

number of shape functions

matrices with precomputed values
(j>i(x{m\y{m>), •7^(l)i(xvn\y{">), and

£*(* (m,,¥ (m))
Two standard sets of shape functions are available. The first one is the linear
set extended by 3 quadratic elements. This one is used by the KASKADE
error estimator.

4>Q = 1 — x — y
4xy

(pi =
(j>4 =

x
4y(l — x — y)

<j>2 =

<f>5 =
y
4x(l — x — y)

23

The quadratic shape functions are

4>Q' = 2 (1 - x - y) <f>[= x(2x - l) (j>2 = y((2 — l)
(fü*' = 4xy <̂ 4 = 4y(l —) — y) <f>5 = 4 x (l - x - y)

The following procedures select integration parameters and precompute val­
ues.

int NumAss(type)
presets global values and precomputes values if necessary, type may
have one of the values:

N_STD select {&}-, i i =,0,2

N.QUAD select {^,- >, * = 0 , , . . , 5

N_LQ select {<^i}, i = 0, . . . , 5 , iFrom^ß, iTo=5, kFrom^O,
kTo=2

N_QQ select {(f>ii} i = 0, . . . , 5 , iFrom=3, iTo=5, kFrom=3,
kTo=5, symP=DIAGONAL

N_LQ and N_QQ are needed for the KASKADE error estimator. (In the
notation of [3] AQL and DQQ.)

void StdShape(x,y,k,f,fx,fy,fxx,fyy)
computes the values of {<f>k} and its derivates at {x^m\y^m>).

void StdQShape(x,y,yo,o,ffxfy,fxx,fyy)
computes the values of {<f)k } and its derivates at (x^m\y^m').

i n t CompShapeValssiData,ShapeF)
allocates and computes the shape, shapeX, and shapeY matrices from
iDate of type INTEGDATA with the values return by ShapeF, for the
parameters see StdShape.

INTEGDATA *NewIData(iFormula,SF,ShapeF,symP)
allocates a new instance of an INTEGDATA and presets all values. iFormula
may have the following values:

I BANKIP

LINIP

QUADIP

USERIP

I set of integration points from PLTMG [2]

set of integration points for linear elements [1]

set of integration points for quadratic elements [1]

set of user defined integration points [2]

i n t UppatelData(iData,iFormula,SF,ShapeF,symP)
update iDat a as requested by iFormula

24

2.3.4 Assembling of the complete stiffness ma t r ix

At present symmetric full matrices are handled only (no sparse packing). A
matrix set of the MATRIXSET-data type consists of the matrices s t i f f and
decomp and the vectors rhs , diagonal, and so lu t ion . This structure is
used by the direct solver and later on for preconditioning.

The procedures to handle this are

MATRIXSET *NevMatSet(length)

generates an element of the MATRIXSET-data type and allocates the
memory for the matrices and vectors.

int Assemble(mset,dim)

expands storage if necessary and assembles the global stiffness matrix
to mse t ->s t i f f and the right-hand side to mset->rhs.

Furthermore low level routines to expand, set to zero, or print matrices and
vectors are available.

2.3.5 Vector and mat r ix operat ions

The iterative solver of KASKADE uses the preconditioned conjugate gradient
method. The solver needs no explicit representation of the stiffness matrix,
but a procedure to multiply a vector by the matrix. The preconditioning
matrix is also available as a procedure doing the multiplication.

A vector is stored in the array associated with the PT-data type , or in the
case of quadratic elements with the EDG-data type . Vectors are identified
by their index. Some vectors have a predefined meaning:
I R_S0L I the solution, or the start values for the iterative solver

R_RHS the r ight-hand side of the system

R_DIAG the diagonal of the stiffness matrix

The most important procedures are

i n t axMuu(x,y)
multiplies the vector x (an integer offset to the associated arrays) by
the stiffness matrix and stores the result to y.

i n t AssRSideO
assembles the right-hand side to vector RJtHS.

25

void pcxMuu(x,y)
multiplies y by the preconditioner 57" D{Sf , see [3], and stores the
result to x.

void SetBound(x)

applies Dirichlet boundary conditions on vector x.

Furthermore low level routines to set to zero, to add vectors, to compute the
inner product, to print etc. are available.

2.3.6 Files

The files of "Assembling" are:

k a s k a s s . h

a s semble .msg

header file, includes the definition of constants, data
types and externals

message file, including all texts produced by " C o m ­
m a n d "

p r o b l e m . c

n u m i n t e g . c

s h a p e . c

a s s e m b l e . c

a s s f u l l . c

a s s m u l . c

a s scmd.c

source; definition of functions, the problem-command

source; numerical integration

source; shape functions, precomputation

source; assembling of the global stiffness matrix

source; procedures for symmetric full matrix handling

source; multiplication with the stiffness matrix precon­

ditioning, utilities

source; some commands

2.4 "Solve" module

"Solve" is a simple frame to step through a solution process and it is the
collection of the KASKADE direct solver, error estimator and iterative solver.
The solution process is controlled by the SOLVE-data type . It is possible to
"single step" through the process or to solve until certain conditions hold.
Those conditions may be

1. a certain number of steps is reached,

2. a maximal number of points is reached,

3. a global error level is achieved, or

4. a failure of one step arose.

26

The direct solver should generate a suitable decomposition of the stiffness
matrix which can be used by the preconditioned The KASKADE direct
solver implements a Cholesky decomposition.

The error estimator computes an estimation of the local errors and the global
error. This values may be used by the refinement process. The KASKADE
error estimator and refinement strategy is described in [3].

The iterative solver iterates until a given accuracy is achieved. KASKADE
uses the preconditioned conjugate gradient method.

27

2.4.1 Controlling the solution process

Most of the relevant information is stored in act Solve, a variable of the
SOLVE type, which owns the following fields:

d i r S o l P

d i r L e v e l

e s t i P

d i r F a i l

e s t i F a i l

r e f i n e F a i l

i t e F a i l

m a x I t e S t e p s

i t e S t e p s

l a s t S t e p

i n t

i n t

i n t

i n t

i n t

i n t

i n t

i n t

i n t

i n t

t r u e , if any direct solution is available

level on which a direct solution is

available

t r u e , if a error estimation on the cur­

rent tnangulat ion is available, used for

interpolation by e mi p

t r u e , 11 direct solver faned

t r u e , if the error estimator failed

t r u e , if the refinement process failed

t r u e , if the iterative solver failed

maximum of iteration steps

number of iteration steps from last call

to I t e r a t e

START: at the beginning,

DIRECT: last step was direct solution,

ESTIMATE: last step was error estima­

tion,

ITERATE: last step was iterative solu­
tion,

i t e E p s

g lobEps

REAL

REAL

last iterative error

last global error

breakDim

breakNo

b reakEps

i n t

i n t

REAL

maximum number of points

maximum number of steps

global error level to be reached

D i r e c t

E s t i m a t e

Ref ine

I t e r a t e

VOIDPROC

VOIDPROC

VOIDPROC

VOIDPROC

procedure address of the direct solver

procedure address of the error estima­

tor

procedure address of the refinement
process

procedure address of the iterative
solver

The solving process is the following calling sequence:

D i r e c t Q ;

28

while (!BreakCond())
{ E s t i m a t e O ; Ref ineO; I t e r a t e O ; }

Setting break conditions or single step mode are implemented as command
procedures, see the User's Manual [4].

2.4.2 The direct solver

The KASKADE procedure for the direct solution of the problem is called
by the Solve or Direct command with parameter verbose set to f a l s e or
t r u e respectively. The procedure should (if successful)

• store the solution in RA (p , R_S0L),

• set actSolve->drSSOLP to t rue ,

• set actSolve->dirLevel to actTriang->refLevel ,

• signal the existance of a new solution to the "Graphic"

• make a procedure MullnvDirect available, which multiplies a vector
with the inverse of the stiffness matrix. This procedure may be called
by the preconditioner.

If not successful if should set ac tSolve->di rFa i l to t r u e .

The actual KASKADE direct solver assembles the complete stiffness matrix
as a full symmetric matrix by a call of Assemble. In the next step the
stiffness matrix is factorized

A = LDL

by Cholesky decomposition. The solution of

Ax = b

is computed by "forward" substitution

Ly = b

and "backward" substitution

DL x = b .

Finally the result is stored in RA(p,R_S0L).

29

2.4.3 The error estimator

The KASKADE procedure for the estimation of the global error is called by
the Estimate or Solve command with parameter verbose set to t r u e or
f a l s e respectively.
The procedure should (if successful)

• set actSolve->globEps and

• compute the information which is necessary for the following refinement
step.

If not successful it should set a c tSo lve ->es t iFa i l to t r u e .

The actual KASKADE error estimator uses the hierarchical basis for quadratic
finite elements. The higher order system, whose solution should be compared
with the linear solution (computed by the direct or iterative solver) is

ALL ALQ \ (£/"£ \ _ _ bL

AQL AQQ J y QQ J \ bQ

The difference to the linear solution UL is given by

d^ \ / UL 1 / UL

Q) V UQ) \ 0

and satisfies

ALL ALQ \ (d-L \ = (bL - ALLUL \ f rL

AQL AQQ) d QQ) \ bn — AQLUL) V T"Q

To solve this system is too expensive, it is substituted by the simpler system

DLL 0 \ [d-L \ = (rL

0 DQQ J y dq J \ rQ

With DLL the nearly diagonal matrix

A0 0
0 D

which is used in context of the preconditioner and DQQ the diagonal part of
AQQ . To measure the size of global error the energy norm is chosen and the
error approximated by

\A ' d\ = (d,Ad) « (d,Bd) = (Dj^rLiTL) + (DnQrQQrQ)

30

The term {Djjjr^r^ is computed by the iterative solver. (In case of the
availability of a direct solution 0.0 is assumed.) The other term (DQQTQ, TQ)

is newly computed. The sum is stored to actSolve->globEps.

As an additional result a weighted residual fh — (DqQrQ,rq)nn is computed
to be used by the refinement process. The local residuals TQ are stored at
RA(ed,R_RES).

2.4.4 The refinement process

The KASKADE procedure refining the grid adaptively is called by the Refine
or Solve command with parameter verbose set to t r u e or f a l s e respec­
tively.

The procedure should (if successful)

• refine the mesh and

• signal the existence of a new mesh to "Graphic"

If not successful it should set actSolve->ref ineFa i l to t rue .

The actual strategy implemented in the KASKADE refinement process is to
refine each triangle with an edge that satisfies

(DQQ<IQ |edge) > 0.95 * m

If n the number of points of the new triangulation satisfies

n > s x nQ , s = 2.0

(n0 the number of points of the old triangulation), the refinement process
stops. If not the local error estimator is called again until enough new points
are found.

2.4.5 The i terative solver

The KASKADE iterative solver is called by the I t e r a t e or Solve command
with parameter verbose set to t r u e or f a l s e respectively.

The procedure should (if successful)

• solve the system with the requested accuracy and

• signal the existence of a new solution to "Graphic" .

31

If not successful it should set ac tSo lve -> i t eFa i l to t r u e .

The preconditioned conjugate gradient method used is the "untransformed"
one (see [1], p. 29, 49) with

C = S~ DSX1 (C-1 = SD~1S)

D~x contains the information of the Cholesky decomposition AQ and the
1detc of the stiffness matrix for the other points. The residual used to check
for the accuracy is

g C~xg with g = A(x — x) .

which corresponds with the linear part of the global error

(DllrL,rL)

used by the error estimator.

2.4.6 Files

The files of "Solve" are:
kaskso l .h

gsolve.msg

header file, includes the definition of constants, data
types and externals

message file, including all texts produced by "Solve"

so lve . c

cholesky.c

cg. c

source; command language interface of "Solve" , in­
cludes the procedures Direct , Estimate, Refine, and
I t e r a t e ,

source; Cholesky decomposition

source; conjugate gradient method

2.5 "Graphic" module

"Graphic" implements some basic capabilities like drawing the boundary of
a triangulation, the triangulation itself, the level lines of a solution, indices
of points. These features are available at the command language level (see
the User's Manual [4]). The basic settings are collected in the GRAPHIC-data
type . This code uses a special interface to a real graphic environment.

This interface consists of the DRIVER-data type and a set of basic procedure
calls to draw lines, fill polygons etc.

32

2.5.1 The GRAPPIC—data type and procedures

All coordinates in this section are in the coordinate system used when reading
the triangulation. In the variable actGraph of type GRAPHIC information
concerning the coordinates of the triangulation is stored, first the rectangle
surrounding the triangulation then the rectangle the user wanted to draw (a
zoom). Furthermore requests what to draw, how many level lines to use, etc.
can be stored. The fields are:
maxBottom,
maxLeft,
maxTop,
maxRight

bottom, l e f t ,
t o p , r i g h t

r e s o l u t i o n

fontSize
lineWidth

REAL

REAL

REAL

REAL
REAL

rectangle surrounding the actual trian­
gulation, computed by NewGraph

rectangle to draw

pixel size in user coordinates

font size in user coordinates
current line width in user coordinates

boundary

l e v e l

t r i a n g u l a t i o n

index

po in t s

i n t

i n t

i n t

i n t

i n t

t r ue , if the boundary is to be drawn

t rue , if level lines are to be drawn

t rue , if the triangulation is to be
drawn
t rue , if the point indices are to be
drawn
t rue , if points are to be drawn

l e v e l s
capt ion

i n t
char*

number of level lines to be drawn
name of the picture

The procedures (besides the command procedures) are

GRAPHIC *NewGraph()
allocates a new instance of the GRAPHIC-data type and presets the
fields.

void DrawFrameO
draws the enclosing rectangle of the triangulation.

void DrawBoundO
draws the boundary of the triangulation.

void DrawTriO
draws the triangulation.

33

void DrawPoontO
draws the points of the triangulation.

void DrawIndexO
draws the indices of the points of the triangulation.

void DrawSolO
draws the level lines of a solution.

2.5.2 Driver interface

The DRIVER-data type is used to maintain global information on the state
of a driver. Information about the selected driver is available in the variable
actDriver . The fields are:

Line

Arc

S t r i n g

F i l l

S e t t i n g s

NewPict

Show

OpenPort

C l o s e P o r t

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

PROC

procedure to draw a line

procedure to draw an arc

procedure to draw a string

procedure to fill a polygon

procedure to set pen size and font size

procedure to initialize a new picture

procedure to output a picture

opening a new port

closing a port

maxBottom,

maxLef t ,

maxTop,

maxRight

b o t t o m , l e f t ,

t o p , r i g h t

REAL

REAL

rectangle of the output frame (driver
coordinates)

rectangle to draw in (driver coordi­
nates)

f i l i i n g P

c l i p p i n g P

c o l o r s P

g r a y s P

windowNo

g r a p h

i n t

i n t

i n t

i n t

i n t

GRAPHIC*

t r u e , if filling is implemented

t r u e , if clipping is implemented

t r u e , if colors are available

t r u e , if gray scales are available

port identification

associated GRAPHIC da ta type

fontName
fieeName

c h a r *
c h a r *

name of the current font
name of the current output file, if one
exists

34

The procedures whose addresses are stored in the DRIVER-data type are
called with REAL coordinates of the triangulation coordinate system always.
The return codes are t r u e or f a l se .

i n t NewPPctO
recomputes the scaling and does some initialization.

i n t Show()
finishes the picture, e.g. generating a newpage or actually drawing to
a window.

i n t Line(plx ,ply ,p2x,p2y)
draws a line from pi to p2.

i n t Arc(plx,ply,p2x,p2yppmx,pmy)
draws an arc from pi to p2 with midpoint pm.

i n t S t r ing (px ,py , s)
draws string s starting at point p.

i n t F i l l (x a r r a y , y a r r a y , n , c o l o r)
fills the polygon defined by the array of points (xarray [k] , yarray [k]) ,
k=0, . . .n-1 with color color. Predefined colors are BLACK, YELLOW,
MAGENTA, RED, CYAN, GREEN, BLUE, and WHITE.

int Settings(type,val)

sets the pen size (type=PENSIZE) or the font size (type=FONTSIZE) to
val. val may have the value SMALLSIZE, MEDIUMSIZE, or BIGSIZE.

i n t OpenPort ()
opens a new port. The procedure is only used by the window interface.

int ClosePort ()

closes the actual drivers port. The procedure is only used by the win­
dow interface.

Furthermore for each driver a routine NameDriver should exist:

DRIVER *NameDriver()
allocates and presets a new instance of the DRIVER-data type .

35

2.5.3 Window interface

The window interface of KASKADE consists of the window command and
procedures to administrate multiple windows satisfying different graphical
requests, e.g. one window to show the triangulation and one to show the
solution.

The Window command is discussed in the User's Manual [4]. The most im­
portant procedures to handle windows are:

i n t AddDrivee(driv)
adds DRIVER *driv to the list of drivers, maximum is MAXDRIVER.

DRIVER DelDriver(driv)

deletes DRIVER *driv and returns the address of another driver.

void AutomaticRedraw(type)

selects all drivers from the drivers list which have a request for type
in their associated GRAPHIC data type. This procedure is called by
"Solve" to signal a new solution or triangulation.

2.5.4 Files

The files of "Graphic" are:

' kaskgraph.h

graphic.msg

header file, includes the definition of constants, data
types and externals

message file, including all texts produced by "Graphic"

graphcmd.c

g raph ic . c

p o s t s c r . c

source; command language interface of "Command"

source; KASKADE graphic procedures

source; PostScript driver

window.c

macwindow.c

sunwindow.c

source; window interface

source; window driver for the MacII

source; window driver for the Sun

2.5.5 Examples

The following example illustrates the use of the basic procedures:

s t a t i c i n t DrEdge(ed)
EDG *ed;

36

if ((ed->father)!=nil) return true;

(actDriver->Line)((ed->pl)->x, (ed->pl)->y,

return true;

void DrawTriO

{

(actDriver->Settings)(PENCOLOR, RED);

ApplyE(DrEdge, all))

return;

The next example shows the "lifting" of one of these basic procedures to the
command level.

int DrawLine(cmd)

Command *cmd;

REAL plx, ply, p2x, p2y;

int re;

if (ParsCheck(cmd, 2, 2)) return false;

if (actDriver==nil)

•{ MsgCgraphMsg, 10)) return false; }

re = sscanf((cmd->pars)[[1] ,(%*/5£e).e &plx, ,ply)y

if Crc!=2)

{ MsgCgraphMsg, 23, Ccmd->pars)[1]]) return false; }

re = sscanfCCcmd->pars) [2] , "('/,e,'yle)", &p2x, &p2y);

if (re!=2)

{ MsgCgraphMsg, 23, (cmd->pars) [2]]) return false; }

CactDriver->Line)Cplx, ply, p2x, p2y))

return true;

37

Acknowledgments

The author thanks P. Leinen for the helpful discussions during the develop­
ment of the program and R. Kornhuber for being the first user with many
new requirements.

References

[1] 0 . Axelsson, V.A. Barker: Finite Element Solution of Boundary Value
Problems: Theory and Computation. New York: Academic Press (1984)

[2] R.E. Bank: PLTMG Users' Guide, Edition 5.0. Technical Report, De­
partment of Mathematics, University of California at San Diego (1988)

[3] P. Deuflhard, P. Leinen, H. Yserentant: Concept of an Adaptive Hier­
archical Finite Element Code. IMPACT of Computing in Science and
Engineering, I, 3-35 (1989)

[4] R. Roitzsch: Kaskade User's Manual. Technical Report, ZIB TR 89-4,
Berlin (1989)

38

Index
Page numbers refering to the User's
Manual are in bold face.

?, 7

a c t D r i v e r , 33
ac tGraph, 31
ac tProb lem, 22
a c t S o l v e , 27-30
a c t T r i a n g , 14, 19
AddDriver, 34
ApplyE, 17
ApplyP, 16
ApplyT, 17
Arc, 34
Assemble, 24
Assemble module, 6
assembling, 21, 24
Assembling module, 6, 12
AssRSide, 25
AssTr iang , 20
AutomaticRedraw, 35
axMul, 25

batch processing, 5
boundary condition, 8
break condition, 14, 26

C language, 3
cascade, 4
CheckName, 8
CheckTri , 11
cholesky decomposition, 15, 28, 31
C l o s e D e l , 1 8
C l o s e P o r t , 34
CloseRef, 18
C l o s e T r i , 18
CmdPrint, 7
COMMAND,6

command language, 5
Command module, 5 - 7
CompShapeVals, 24
conjugate gradient method, 4
conjugated gradient method, 24, 26,

30, 31
constants, assembling, 23
constants, boundary, 15
constants, refinement, 15
constants, s tandard, 4
CrTr i , 18

De lDr ive r , 34
D e l e t e T r i , 8, 11
DelTr, 18
D i r e c t , 15
DIRICHLET, 15
Do, 7
DoCommand, 7
DrawBound, 32
DrawFrame, 32
Drawlndex, 32
DrawPoint , 32
DrawSol, 32
DrawTri, 32
DRIVER, 33

EDG,11
error estimation, 4, 16, 26, 28
E s t i m a t e , 16
example, command definition, 9
example, command language, 21
example, graphic, 35
example, message file, 9
example, refinement, 19
ExecCommand, 7

f a l s e , 4
file, command definition, 5

39

files, assembling, 25
files, graphic, 35
files, solve, 31
files, triangulation, 19
F i l l , 3 4
format, command definition file, 8
format, message file, 8

geometry, input, 8
GetNext, 7
GRAPHIC, 31
Graphic, 17, 18
Graphic module, 6, 17
GREENEDGE, 16

Help,7

InfGraphic, 17

Inf Integ, 12

InfProblem, 13

InfPS, 18

InfSolve, 14

InfTri, 10

InfWindow, 19

InitMsg, 8

INNERTRIANGLE, 16

INTEGDATA, 20, 22

integration, numerical, 12

INTERIOR, 15

Iterate, 16

Line,34

matrix, full, 20
MATRIXSET, 24
modularization, 4, 5
Msg, 8
MsgList,8
MsgNoNL, 8
MsgPrint, 8

NameDriver, 34
naming conventions, 3

NEIGHBORx, 16
NEUMANN, 15
NewGraph, 32
NewIData, 24
NewMaaSet, 24
NewPict, 33
n i l , 4
NumAss, 20, 23
numerical integration, 22

InitCommand, 7

ONE, 4

OpenDel, 18

OpenPort, 34

OpenRef, 18

ParsCheck, 7

pcxMul, 25

PostScript, 18, 19

postscript, 18
preconditioning, 4, 28, 30
PROBLEM, 20, 21
Problem, 12
problem, PDE, 3, 12, 20, 20
problem, weak formulation, 3, 20
PR0C, 4
PT, 11
PTR, 4
PTRPR0C, 4

Quit, 7
qu i t , 5

RA, 16
RD, 16
ReadTri, 8, 9
REAL, 4
REALPROC, 4
Refine, 11, 16
refinement, adaptive, 4, 16, 30
refinement, edges, 18
refinement, triangles, 17

40

RefRed,18 WriteTri, 9

selection for apply, 16, 17 ZERO, 4
Sellnteg, 12

SelTri, 8, 10

SelTri, 18

SetBound, 25

SetBreak, 14

SetCommand, 7

Settings, 34

shape functions, 21, 23
Show, 17, 18
SOLVE, 27
Solve, 14, 15
Solve module, 6, 13
solver, direct, 4, 15, 26, 28
solver, iterative, 4, 16, 26, 30
StdQShape, 24

StdShape, 23

String, 34

T.BLUE, 15

T.GREEN,15

Time, 7

TR, 12

T.RED, 15

TREDxSON, 16

TRIANGULATION,14

Triangulation module, 6, 8
t r ue , 4
T.WHITE, 15
types, standard, 4

UpdatelData, 24
UpdProblem, 13

VecSpace, 18
vector, associated, 11, 12, 25
V0IDPR0C, 4

Window, 19
window, 19, 34

41

Veröffentlichungen des Konrad-Zuse-Zentrum für Informationstechnik Berlin
Technical Reports August 1989

TR 86-1. H. J. Schuster. Tätigkettsbericht (vergriffen)

TR 87-1. Hubert Busch; Uwe Pöhle; Wolfgang Stech. CRAY-Handbuch. - Einführung in die
Benutzung der CRAY.
TR 87-2. Herbert Melenk; Winfried Neun. Portable Standard LISP Implementation for
CRAYX-MP Computers. Release of PSL 3.4 for COS.
TR 87-3. Herbert Melenk; Winfried Neun. Portable Common LISP Subset Implementation for
CRAYX-MP Computers.
TR 87-4. Herbert Melenk; Winfried Neun. REDUCE Installation Guide for CRAY 1 / X-MP
Systems Running COS Version 3.3
TR 87-5. Herbert Melenk; Winfried Neun. REDUCE Users Guide for the CRAY 1 / X-MP
Series Running COS. Version 3.3
TR 87-6. Rainer Buhtz; Jens Langendorf; Olaf Paetsch; Danuta Anna Buhtz. ZUGRIFF - Eine
vereinheitlichee Datenspezifikation für graphische Darstellungen und ihre graphische
Aufberettung.
TR 87-7. J. Langendorf; O. Paetsch. GRAZIL (Graphical ZIB Language).

TR 88-1. Rainer Buhtz; Danuta Anna Buhtz. TDLG 3.1 - Ein interaktives Programm zur
Darstellung dreidimensionaler Modelle auf Rastergraphikgeräten.
TR 88-2. Herbert Melenk; Winfried Neun. REDUCE User's Guide for the CRAY 1 / CRAY X-
MP Series Running UNICOS. Version 3.3.
TR 88-3. Herbert Melenk; Winfried Neun. REDUCE Installation Guide for CRAY 1 / CRAY X-
MP Systems Running UNICOS. Version 3.3.
TR 88-4. Danuta Anna Buhtz; Jens Langendorf; Olaf Paetsch. GRAZIL-3D. Ein graphisches
Anwendungsprogramm zur Darstellung von Kurven- und Funktionsverläufen im räumlichen
Koordina tensystem.
TR 88-5. Gerhard Maierhöfer; Georg Skorobohatyj. Parallel-TRAPEX. Ein paralleler,
adaptiver Algorithmus zur numerischen Integration ; seine Implementierung für SUPRENUM-
artige Architekturen mit SUSI.

TR 89-1. CRAY-HANDBUCH. Einführung in die Benutzung der CRAYX-MP unter UNICOS.
TR 89-2. Peter Deuflhard. Numerik von Anfangswertmethoden für gewöhnliche Differential­
gleichungen.
TR 89-3. Artur Rudolf Walter. Ein Finite-Elemen--Verfahren zur numerischen Lösung von
Erhaltungsgleichungen.
TR 89-4. Rainer Roitzsch. Kascade User's Manual. Version 1.0
TR 89-5. Rainer Roitzsch. Kascade Programmer's Manual. Version 1.0
TR 89-6. Herbert Melenk; Winfried Neun. Implementation of Portable Standard LISP for the
SPARC Processor.

