
Konrad-Zuse-Zentrum für Informationstechnik Berlin 

Herbert Melenk Winfried Neun 

Implementation of Portable Standard LISP 
for the SPARC Processor 

Technical Report TR 89-6 (July 1989) 



Herbert Melenk Winfried Neun 

Implementation of Portable Standard LISP 

for the SPARC Processor 

Abstract 

The SPARC processor is a RISC (Reduced Instruction Set Computer) micro­
computer, built into the SUN4 workstations. Since RISC processors are very 
well-suited for LISP processing, the implementation of a dialect of LISP (Portable 
Standard LISP, PSL) boded well for a great speed-up in comparison with other 
types of microcomputers. A first approach was done at The RAND Corporation 
in Santa Monica, which was derived from classical processor types like MC68000 
or VAX. At the Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) that 
initial implementation was redesigned in order to adapt PSL to the specific features 
of the SPARC processor. The present implementation, in some parts, is very close 
to the Cray PSL version also done in ZIB. Some timing informations are given in 
the appendix. 



Contents 

1. Introduction 1 

2. SPARC Processor Features of Special Interest for LISP Perfor­
mance 3 

2.1 Register Windowing for Integer Unit 3 

2.2 SPARC Logic and Arithmetic Instructions 4 

2.3 Delay Slots after Branch or Call Instructions 4 

2.4 Memory Access 5 

3. PSL Model for the SPARC 6 

3.1 Allocation of PSL Data Structures 6 

3.1.1 The LISP Items 6 

3.1.2 A Short Discussion on "high or low" Tags 7 

3.1.3 Registers 7 

3.1.4 Usage of the Register File 8 

3.2 SPARC Specific Optimization Pass for the Assembly Phase . . . . 9 

3.3 Pseudo Registers 12 

3.4 Miscellaneous 12 

4. Further Developments 13 

Appendix 14 

Acknowledgement 16 

References 17 



1. Introduction 

The Scalable Processor Architecture (SPARC) processor is a Reduced Instruction 
Set Computer (RISC) designed by SUN microsystems and was introduced on the 
market with the SUN4 workstations in 1987 [4]. The development of RISC systems 
started with the IBM 801 in 1979. One may even look at the Cray-1 or CDC 6x00 
series as early RISC machines. 

The general characteristics of RISC processors are: 

• It uses only few "simple" instructions. 

• Almost all instructions last the same number of cpu cycles. 

• Limitation of addressing modes to (one or two) simple types. 

• Presence of lots of registers as intermediate (fast) memory. 

• Same length for all instruction formats. 

The high number of registers is said to be a side effect of the reduction of instruc­
tions, since now chip surface was free. This feature is of great value for many 
compilers, since it allows to put local variables in fast storage instead of stack 
memory. For highly recursive languages like LISP the impact is extraordinary [5]. 

Because of the reduced number and complexity of the instructions, the processor 
is able to issue more instructions per time unit than a usual microprocessor with 
the same clock rate. 

On the other hand, the compilation of complex constructs, which can benefit from 
a more complex instruction set, will use significantly more instructions on a RISC 
processor, since the complex instruction must be emulated, e.g. the MVCL or 
BCTR instructions on IBM 370 architecture. The compilation of complex con­
structs will cost a lot more compilation and optimization efforts. This will make a 
RISC processor less attractive for many applications. 

For implementations of LISP the situation is quite different, since (classic) LISP 
programs are based mainly on two operation types which have to be implemented 
fast, namely: 

• Operations on lists, which need fast access to the first element of a list (CAR) 
and the rest of the list (CDR), which are very simple memory addressing 
modes. 

• The function call, since LISP programs normally use recursion in extensive 
manner and the functions themselves are very small. 

1 



'J'hese two operations need very primitive instructions only, namely non-indirect 
load and store from/to memory and a call instruction with an efficient parameter 
protocol. More complex instructions, if present, could not be used. 

f^n example for that is one of the workhorses of PSL: 
'J'he function memq (search an identifier in a list) is defined as: 

(de memq (x l i s t ) 
(cond ((atom l i s t ) n i l ) 

((eq (car l i s t ) x) l i s t ) 
( t (memq x (cdr l i s t ) ) ) ) ) 

*fhe equivalent in RLISP (a dialect of LISP, written ALGOL like): 

procedure memq ( x . l i s t ) ; 
begin; 

if a tom(lis t) then return NIL 
else if car ( l i s t ) eq x then return l i s t 

else return memq(x,cdr l i s t ) ; 
end; 

J£ven the reader not familiar with LISP will see that the execution of that code 
jg dominated by the two memory operations (Car l i s t ) and (cdr l i s t ) and the 
recursive call to memq (atom and eq are in line tests). 

'fhe code produced by the compilation of this function and its optimization will be 
ghown in Section 3.4. 

In Konrad-Zuse-Zentrum für Informationstechnik Berlin, the implementation of 
portable Standard LISP (PSL) for Cray processors was started in 1986 [3], [1]. 
pSL is used mostly as underlying LISP system for the Computer Algebra system 
REDUCE [2]. The REDUCE implementation on Cray systems based on PSL is 

0ne of the world's fastest (measured by REDUCE's Standard Test sequence), and 
vvas the first one that ever ran the test sequence in less than 1 second. 

gince many characteristics of the RISC processors are common with Cray processors 
{oo, the idea for the SPARC processor implementation was to follow the same 
guidelines. 

2 



2. SPARC Processor Features of Special Interest for 
LISP Performance 

In this section we will describe features of the SPARC processor, which are not 
common to all RISC architectures and which influenced our LISP (compiler) im­
plementation. 

2.1 Register Windowing for Integer Unit 

The registers of the integer unit, which supports program logic and integer arith­
metic, are divided into 8 global registers and a register file. The register file is 
windowed, i.e. at one moment the application has access to a small fixed sized 
portion of that register file, the "window". There are machine instructions SAVE 
and RESTORE that move the window up and down within that file. Two neighbour 
windows share 8 registers, which can be used for passing of parameters. If the 
callee saves, i.e. the function called starts with a SAVE instruction and ends with a 
RESTORE instruction, the contents of the registers in the (safe part of) the window is 
saved across a call. The register file is organized in a circular manner, see e.g. [4]. 
If the register file is exhausted, a trap is generated and the operating system will 
save the contents of old windows to the stack and restore them from there if the 
register file underflows, invisible for the user. At runtime, one can use the register 
file as if it were almost infinite. 

Another view of the same thing is that the top of stack is held in fast memory, i.e. 
the top of stack is cached. 

i i 

| current window ' 

8 global 
registers 

'//y//y/////^//y/y//> 

16 safe 
registers 

previous window i 

8 
unsafe 

//////////////////// register 
file 

I 
next window 

Figure 1: Generalized register layout for the SPARC processor integer unit. 

! 

3 



2.2 SPARC Logic and Arithmetic Instructions 

On SPARC, most instructions operate on three registers or two registers plus one 
immediate operand, e.g: 

add r l , r 2 , r 3 resp add r l , 1 7 , r 2 

or r l , r 2 , r 3 resp or r l , 255 , r2 

Many logical operations are provided, including operation which negate the second 
argument, e.g. andn r l , r 2 , r 3 which 'and's the contents of register r l and the 
1-complement of r2 to r3 . There is an arithmetic shift but no circular shift. All 
shift operations are end off. 

The integer arithmetic provides add and subtract, but not multiply or divide. 
These have to be emulated in software. This will slow down SPARC performance, 
if an application uses the integer multiplication or division heavily (e.g. from 
Computer Algebra). 

SPARC architecture includes a tag scheme, which is interpreted by special arith­
metic instructions t a d d . . . and t s u b . . . for add and subtract. This tag scheme uses 
two low value bits and identifies an integer by two zero bits in the tag field; other 
types can be defined by the application program. The instructions for 'tagged' add 
and subtract ensure that the operands and the result are integers in the sense of 
this tag scheme. The Processor Status Register is changed if the source operands 
are not integers or if the result overflows, and the application program can handle 
this case. This way it is possible to handle the generic add and subtract operations 
for small integers completely in line using two instructions. Unfortunately, the 
tag scheme of this PSL implementation does not allow to use these tagged integer 
instructions. The tag scheme is described in Section 3.1. 

2.3 Delay Slots after Branch or Call Instructions 

Because of pipelined instruction issue, the instruction after a branch instruction 
is already ready to issue and will be executed if not prevented. The slot behind 
a control transfer instruction is called delay slot. For example, in the instruction 
sequence 

ConditionalBranch label 
next inst 1 

label next inst n 

4 



the instruction nex t ins t l will be issued regardless whether the Conditionalbranch 
is taken or not. A "naive" compiler has to put in no-op instructions into the delay 
slots. There are alternative conditional jump instructions with ",a" added to the 
original name, which annul the delay slot instruction if the jump is not taken. For 
example, in the instruction sequence 

ConditionalBranch.a label 
next ins t 1 

label next inst n 

nex t i n s t l is evaluated only if the branch to label is taken. However, in this form 
at least one cycle is lost. 

2.4 M e m o r y Access 

The instructions for data transfer between memory and registers have two formats: 

Id [ r l + r2 ] , r3 

Id [ r l + simml3] , r3 r l may be g0(= 0) 

Here simml3 is a sign extended 13 bit immediate value, i.e. when addressing mem­
ory, the offset is limited to 4k bytes. To load or store constant memory locations 
requires that a (temporary) register must be filled with the constant address. Such 
a constant memory access takes at least two instructions. Sacrificing one global 
register (as recommended by the Architecture Manual [8]), allows a memory area 
of 8k bytes to be addressed by one instruction. This can be used for fast access 
to often used data. As these variables are often referenced this area will most 
probably reside in memory cache. 

E x a m p l e . Loading from 123450 (assume */,g7 as constant pointer = 123400) 

normal code: improved: 

se th i '/.hi (123450) , r 10 Id C7.g7 + 50] , r l 0 
Id [rlO + */,lo(123445)] ]r l0 

'/.hi and '/,lo are assembler macros, which separate the high and the low part of an 
address. 

5 



3. PSL Model for the SPARC 

In this section, the actual mapping of PSL structures to the components of the 
SPARC processor is decribed. It can be expected that this mapping needs further 
refinement, e.g. if the ratio between memory access time and cycle time will change 
for newer SPARC systems. 

3.1 Allocation of PSL Data Structures 

The mapping of PSL structures to the system hardware must define the LISP item, 
the locations for PSL's 'real registers', the temporary register and the frame (local 
variables of a function). 

3.1.1 The LISP Items 

The basis data structure of LISP is the item. In the actual SPARC PSL implemen­
tation, the item consists of a tag part and an inf part. The tag part consists of 5 
bits in the most significant part of a word and the inf part of 27 bits. The tag field 
defines the interpretation of an item. The tag field size allows 31 different data 
types immediately discriminated by tag inspection. The inf part contains either a 
direct operand, e.g. a small number, or an address. The size of the inf field restricts 
the address space for LISP data to 128 M bytes. 

tag j inf 

5 27 bits 

Examples : 

tag = 0 , inf — nn represents a positive small integer 

tag = 4 , inf = addr points to a string starting in addr 

tag = 9 , inf = addr points to a pair of items in addr 

tag =31 , inf — nn represents a negative small integer 

The importance of the logical and shift instructions for LISP implementations 
follows from the need to have fast access to tag and inf part. The fast construction 
of items may also be important, dependent on the application. 

6 



3.1.2 A Short Discussion on "high or low" Tags 

With "high tags", we do not mean high tags in the PSL sense, but the fact that 
tags are allocated in the high value bits of a word. Other LISP implementations 
for the SPARC use low tags instead of PSL's high tags. "Low tags" means that 
the tag area within an item is in the lowvalue bits. Advantages on the SPARC 
are obviously the ability to use the tagged integer instructions and the easy tag 
stripping operation (which is simply a right shift, if tag stripping is needed at all) 
and some technical fascinating things that NIL and T may be direct operands in 
operations and so no register with the value n i l is needed. 

What held us back was the great overhead involved by a more complicated access 
to the tag information. An implementation with low tags implies that the tag 
information must be splitted into 3 low tag bits in the items least significant bits 
and additional information elsewhere. The tag information is used for such pro­
cesses like garbage collection and arithmetic. The fast access to tags is of greatest 
importance for fast discrimination of LISP items and for the 'bread and butter' 
predicates like pairp (consp), atom, idp and so on. 

Nevertheless, the technical interesting features of low tags will keep the process of 
discussion on that topic open for a while. 

3.1.3 Registers 

PSL uses up to 15 'logical registers' for parameter passing between caller and 
callee. These PSL registers do not need to be real hardware registers, but it is 
recommendable to have the Registers 1-5 as real registers. Since SPARC has so 
many real registers, PSL's registers 1-5 are allocated as real registers, namely in the 
global registers g\.. .^5, because the PSL registers must be identical for caller and 
callee. Thus the passing of parameters is different from the usual calling sequence 
of the SPARC operating system, which passes parameter through the overlapped 
register windows (see Section 2.1). The PSL registers 6-15 are allocated in memory. 
They are used when a function has more than 5 parameters, which is a rare case 
in LISP. The 'logical registers' Reg 6 . . . Reg 15 are located such that they can be 
loaded with one instruction (see 3 below). 

There are some special register allocations for global registers: 

• Register #0 is a NULL register by hardware. 

• Register g6 is Reg NIL, i.e. it contains the most often needed value . 

• Register gl points into a special area where often used values are kept, e.g. 
Reg 6 . . . Reg 15, for memory management and the pointers to PSL's main 
structures, as described in Section 3.4. 

7 



3.1.4 Usage of the Regis te r File 

As explained in Section 2.1, the view of a function to the register file is limited to a 
window of 24 Registers (14 safe + 6 unsafe + linkage information and stackpoint-
ers). 

It is a natural approach to put local variables (up to 12) into the safe registers. The 
first safe register will keep the length of the frame. Since the windows are pushed 
down to memory in multiples of 16 words, the information about the length of a 
frame is essential for functions that have to inspect the stack. Such a function, 
e.g. the garbage collector, has to discriminate between 'living' items which belong 
to the dumped frame and superfluous (random) information that is not used as 
frame in a register. Since LISP relies on the interpretation of tagged items, a 
'dirty' item picked randomly may produce a fatal error. Therefore, the stack has 
to be inspected with extreme care. Moreover, in some cases, standard PSL does 
not preset all frame items, this way it was possible to pick random items from 
the frame. For the Sparc PSL implementation a pass on the generated code was 
added, which inserts instruction that preset the undefined frame locations. When 
the window is dumped to stack, a frame with up to 12 elements looks like: 

Ing F r a m e e 1 e m e n t s inf mask f.p retaddr 
x 1 2 3 4 5 6 7 8 9 10 11 12 X x X 

f.p. = old stack pointer, retaddr = return address 

inf mask = special mask for (inf operation 

A frame with more than 12 elements is a rare case in LISP. The frame items past 
the twelfth are allocated conventionally on the stack. 

For comparison, the frame structure for Cray PSL: The top frame is held in a block of T-registers, 
which can be swapped into memory by a Blockstore/Blockload instruction by the user program. 
The usage of T-registers as fast intermediate memory is of great impact on the performance, 
especially for the Cray, since the ratio between memory access and register access is about 15 
versus approx. 2 on the SPARC. 

Ing retaddr F r a m e e e e m e n t s 
x x 1 2 4 . . . . . . . 3 3 34 

The temporary registers are allocated in the 6 unsafe registers, (in special T-Registers on a Cray). 

The T-register on the Cray cannot be used as operands for logical or arithmetic operations, so 

we have to put the frame items into a 'real' register ffrst. 

8 



Since the frame registers are not specialized, they can be used for arithmetic and 
logical operations directly. 

This implies that the often used constructs: 

(prog (x cnt l i s t ) ) */. generated cmacros 

(setq x (car l i s t ) ) (*More (car (framel)) (frame 3)) 
(setq cnt (+ cnt 1)) (*WPLUS2 (frame 2)) (wconst 1)) 

(setq l i s t (cdr l i s t ) ) (*More (cdr (frame 3)) (frame 3)) 

may work directly with the frame registers as operands without using an additional 
register. 

3.2 S P A R C Specific Opt imiza t ion Pass for t h e Assembly P h a s e 

The special behaviour of the SPARC instructions, especially the delay slots in 
conditional jumps, caused the need for an additional optimization pass for the PSL 
compiler. Conditional jumps are very often used in LISP code. The delay slots 
of the conditional jumps must be filled with no-op instructions by the compiler 
first. These no-op instructions will slow down the performance, if they cannot be 
filled with useful instructions. The fill of the delay slot must be the very last phase 
before the instructions are generated by the PSL compiler. 

For example, the LISP code 

(hugo NIL) % call hugo with one parameter = NIL 

will first be generated as 

(mov (reg NIL) (reg 1)) 
(ca l l hugo) 
(nop) */, delay s lo t 

and is then rearranged as: 

( ca l l hugo) 
(mov (reg NIL) (reg 1)) */, delay s lo t 

since the (mov (reg NIL) (reg 1)) can be issued in the delay slot of the call 
instruction. This optimization cannot be done on cmacro level already, since the 
cmacro *link does not have any insight into the surrounding cmacros. This is a 
typical context sensitive peephole transformation. 

Another case: the conditional code 

9 



(when (> a b) 
(hugo n i l n i l ) 

is assembled and optimized as: 

original improved 

(bg,a label) (bg,a newlabel) 

(nop) (mov (reg nil) (reg 1)) 

label (mov (reg nil) (reg 1)) label (mov (reg nil) (reg 1)) 

(mov (reg 1) (reg 2)) newlabel (mov (reg 1) (reg 2)) 

(call hugo) (call hugo) 

( bg.a is branch on greater and annul the delay slot instruction, if jump is not 
taken). 

The insertion of a new label allows to copy the instruction at target 'label' to the 
delay slot, in case that the instruction is movable, i.e. is not a control transfer 
itself. It may turn out that the instruction at label is unreachable because an 
unconditional jump is situated just before the address label. In order to save code 
space, this instruction is deleted in this case. 

As example, we look at the code of the function memq from the introduction in 
original and optimized form. 

(de memq (u v) 
'/. EQ version of Member 
(cond ((not (pairp v)) n i l ) 

((eq u (car v)) v) 
( t (memq u (cdr v ) ) ) ) ) 

This function is naively compiled into the following (19) instructions: 

9930A01B 
80A32009 
22800005 
01000000 
82100006 
81C3E008 
01000000 

L0003: 
srl 
subcc 
be,a 
nop 
or 

jmpl 
nop 

r2,x'lB,rl2 
rl2,9,r0 

L0004 

r0,r6,rl 
rl5+8,r0 

pair test 

return 

) 

10 



962880ID 
D802E000 
80A0400C 
32800005 
01000000 
82100002 
81C3E008 
01000000 

922880ID 
C4026004 
10BFFFEF 
01000000 

L0004: 

andn 
Id 
subcc 
bne.a 

nop 
or 
jmpl 

nop 
L0005: 
andn 
Id 

ba 
nop 

r2,r29,rll 
[rll+0],rl2 

rl,rl2,r0 
L0005 

r0,r2,rl 
rl5+8,r0 

r2,r29,r9 
[r9+4],r2 
L0003 

(car operation 

(eq test 

return 

(cdr operation 

recursive call 

The code is optimized on instruction level to the following (15) instructions: 

9930A01B 

80A32009 
22800004 
922880ID 
81C3E008 
82100006 

D8026000 
80A0400C 
32800004 
942880ID 
81C3E008 
82100002 

C402A004 

10BFFFF4 

9930A01B 

srl 
LO00l: 

subcc 
be,a 
andn 

J m P 
or 

L0002: 
Id 
subcc 
bne.a 
andn 
jmpl 

or 
L0003: 

Id 

ba 

srl 

r2,x'lB,rl2 

rl2,9,r0 
L0002 
r2,r29,r9 
rl5+8,r0 
r0,r6,rl 

Cr9+0],rl2 
rl,rl2,r0 
L0003 
r2,r29,rl0 
rl5+8,r0 

r0,r2,rl 

CrlO+4],r2 
LOOOl 
r2,x'lB,rl2 

To demonstate the improvement, we run a little test series: 

Testcasel : 100000 times 

2 : 100000 times 

original 

Testcasel : 70 ms 

2 : 340 ms 

(memq 17 '(17 20 21)) 

(memq 22 '(17 20 21)) 

optimized 

70 ms 

255 ms 

'I, find dimeddattel ycas 

'I, not tounn dcas 

11 



f 

As one may expect, the difference in the "immediate found" case is below the 
measurement tolerance, but the "not found" case is significantly faster (about 25 % 
less cpu time) 

3.3 P s e u d o Regis te r s 

The Pseudo Registers are an implementation corresponding to the hint in Architec­
ture Manual [8]. The global register gl is used as a pointer into a pseudo register 
area, whose elements are special heavy used value cells e.g. SYMFNC, SYMVAL 
etc. Those variables are held in B and T registers (or Local Memory) in the Cray 
implementations to guarantee fast access. On the SPARC architecture these cells 
are accessible with one instruction and because the memory is cached on SPARC 
such a pseudo register, it is most probably contained in cache. 

3.4 Miscel laneous 

While porting PSL to the Cray, we learned a lot about what one can optimize 
in PSL with a great profit rendered, and we also developed tools for analysing 
behaviour and performance of PSL. We, therefore, tried to adapt useful features 
from the Cray implementation to the SPARC version: 

• The functions cons, neons and xcons (the basic constructors for LISP) are 
compiled in line. 

• The functions equal, eval, listl .. Iist5 and parts of the garbage collector have 
been (partially) handcoded. 

• Speed-up for get operations for REDUCE's most often used properties. 

• Redesign of the dispatch for generic arithmetic. 

• Disassembler for SPARC code. 

• Overall cpu-time analyse using the UNIX profil feature. 

• Tools for determination of the number of calls and the time consumption of 
a LISP function. 

12 



4. Further Developments 

One can think of some further things to improve for SPARC: 

• The discussion on high tags vs. low tags is still open. It may turn out that 
low tags are of importance to achieve a next speed-up. 

• Based on the standard PSL version an improved bignum package is under 
development in ZIB. It will be usable on 32 bit systems like SUN3 or SUN4 
and will speed-up the bignum computation. 

• Not all optimizations that are in effect on the Cray (i.e. the lap optimization 
passes) are ported to the SPARC yet. 

13 



Appendix 

Actual Timings (May 1989) 

The results achieved with the current SPARC PSL are compared with another LISP 
implementation (Allegro CL), which were published by Franz Inc. [7] and the Cray 
PSL version. It is noteworthy that the Cray version reaches its peak performance 
when bignums (infinte precision integers) are involved, which is not true in any of 
the following tests except for the Groebner Test Suite from REDUCE Netlib. PSL 
Timings were taken on SUN4-260 in ZIB and for Cray X-MP at Cray Research Inc. 
in Mendota Heights. Franz Inc. ran the tests on a SUN4-260. 

Some tests from the Computer Algebra system REDUCE: 

REDUCE standard test sequence: 

SPARC PSL 

5.3 sec 

Cray X-MP PSL 

1.0 sec 

Excalc package test: 

Groebner package test: 

SPARC PSL Cray X-MP PSL 

40 sec 10 sec 

SPARC PSL Cray X-MP PSL 

20 sec 3.5 sec 

14 



Gabriel's benchmarks [6]: 

Benchmark SUN4 (PSL) CRAY X-MP(PSL) SUN4 (Allegro CL) 

boyer 2567 708 3316 

browse 5525 1066 4100 

ctak 782 213 450 

dderiv 918 289 1050 

deriv 765 259 667 

destruc 374 100 366 

div2-iter 306 73 250 

div2-recur 1428 105 1316 

fft 3757 2421 800 

fprint 731 58 283 

fread 391 121 867 

puzzle 1462 680 1400 

stak 527 110 817 

tak 885 330 750 

takl 799 196 583 

takr 119 65 133 

tprint 153 40 400 

trav-init 1581 692 1066 

trav-run 6290 3043 5400 

triang 21641 9769 21416 

All Times in Milliseconds 

Computer Descriptions: 

SUN4/260, 32 MB Main Memory, 50 MB Heap Space 
Portable Standard LISP Version 3.4. 

CRAY X-MP/416 UNICOS 5.0, Dedicated Mode, 1 CPU, 
Portable Standard LISP Version 3.4, 8MW PSL Heapsize. 

SUN4/260, 16 MB Main Memory, 45 MB Swap Space, Allegro Common LISP 3.0 
Data Source: Franz Inc., Publication 

15 



Acknowledgement 

We like to thank Anthony C. Hearn, Tsuyoshi Yamamoto, Chris Burdorf (The 
RAND Corporation, Santa Monica) and Julian Padget (University of Bath) for 
starting the migration of PSL to the SPARC and for making their results available 
for us. Denton Olson (CRAY Research Inc.) ran the tests for the Cray-XMP. 

16 



References 

[1] J. W. Anderson, W. F. Galway, R. R. Kessler, H. Melenk, W. Neun: Imple­
menting and Optimizing LISP for the Cray. IEEE Software (July 1987) 

[2] A. C. Hearn: REDUCE User's Manual, Version 3.3. The RAND Corporation 
(1987). 

[3] M. L. Griss & A. C. Hearn: A Portable LISP Compiler. Software Practice and 
Experience, Vol. 11 (1981) 

[4] R. B. Garner: Scalable RISC Architecture in SunTechnology. Sun Micro­
systems Inc., Vol. 1, No. 3 (1988). 

[5] S. S. Muchnick: Optimizing SPARC Compilers in SunTechnology. Sun Micro­
systems Inc., Vol. 1, No. 3 (1988). 

[6] R. P. Gabriel: Performanee and Evaluation of LISP system.. MIT press 
(1985). 

[7] Franz Inc.: Common LISP Benchmarks on a SUN4/26.. Franz Inc., Berkeley, 
California. 

[8] Sun Microsystems Inc.: The SPARC Architecture Manua.. SUN Inc., Mountain 
View (1987). 

17 



Veröffentlichungen des Konrad-Zuse-Zentrum für Informationstechnik Berlin 
Technical Reports j u | j 1939 

TR 87-1. Hubert Busch; Uwe Pöhle; Wolfgang Stech. CRAY-Handbuch. - Einführung in die Benutzung der 
CRAY.. 

TR 87-2. Herbert Melenk; Winfried Neun. Portable Standard LISP Implementation for CRAYX-MP 
Computers. Release of PSL 3.4 for COS. 

TR 87-3. Herbert Melenk; Winfried Neun. Portable Common LISP Subset Implementaiion for CRAY X-MP 
Computers. 

TR 87-4. Herbert Melenk; Winfried Neun. REDUCE Installation Guide for CRAY 1 / X-MP Systems 
Running COS Version 3.2. 

TR 87-5. Herbert Melenk; Winfried Neun. REDUCE Users Guide for the CRAY 1 /X-MP Series Running 
COS. Version 3.2. 

TR 87-6. Rainer Buhtz; Jens Langendorf; Olaf Paetsch; Danuta Anna Buhtz. ZUGRIFF - Eine 
vereinheitlichte Datenspezifikaiion für graphische Darstellungen und ihre graphische Aufbereitung. 

TR 87-7. J- Langendorf; O. Paetsch. GRAZIL (Graphical ZIB Language). 

TR 88-1. Rainer Buhtz; Danuta Anna Buhtz. TDLG 3.1 - Ein interaktives Programm zur Darstellung 
dreidimensionaler Modelle auf Rastergraphikgeräten. 

TR 88-2. Herbert Melenk; Winfried Neun. REDUCE User's Guide for the CRAY 1 / CRAY X-MP Series 
Running UNICOS. Version 3.3. 

TR 88-3. Herbert Melenk; Winfried Neun. REDUCE Installation Guide for CRAY 1 / X-MP Systems 
Running UNICOS. Version 3.3. 

TR 88-4. Danuta Anna Buhtz; Jens Langendorf; Olaf Paetsch. GRAZIL-3D. Ein graphisches 
Anwendungsprogramm zur Darstellung von Kurven- und Funktionsverläufen im räumlichen 
Koordinatensystem. 

TR 88-5. Gerhard Maierhöfer; Georg Skorobohatyj. Ein paralleler, adaptiver Algorithmus zur 
numerischen Integration ; seine Implementierung für SUPRENUM-artige Architekturen mit SUSI. 

TR 89-1. CRAY-HANDBUCH. Einführung in die Benutzung der CRAY X-MP unter UNICOS. 

TR 89-2. P- Deuflhard. Numerik von Anfangswettmethoden für gewöhniiche Differential-
gleichungen-

TR 89-3- Artur Rudolf Walter. Ein Finite-Element-Verfahren zur numerischen Lösung von 
Erhaltungsgleichungen. 

TR 89-4. Rainer Roitzsch. Kascade User's Manual. 

TR 89-5. Rainer Roitzsch. Kascade Programmerss Manual. 



Veröffentlichungen des Konrad-Zuse-Zentrum für Informationstechnik Berlin 
Preprints Juli 1989 

SC 86-2. H. Melenk; W. Neun. Portable Standard LISP for CRAY X-MP Computers. 

SC 87-1. J. Anderson; W. Galway; R. Kessler; H. Melenk; W. Neun. The Implementaiion and Optimization 
of Portable Standard LISP for the CRAY. 

SC 87-3. Peter Deuflhard. Uniqueness Theorems for Stiff ODE Initial Value Problems. 

SC 87-4. Rainer Buhtz. CGM-Concepts and their Realization. 

SC 87-5. P. Deuflhard. A Note on Extrapolation Methods for Second Order ODE Systems. 

SC 87-6. Harry Yserentant. Preconditioning Indefintte Discretization Matrices. 

SC 88-1. Winfried Neun; Herbert Melenk. Implementation of the LISP-Arbitrary Precision Arithmeiic for 
a Vector Processor. 

SC 88-2. H. Melenk; H. M. Möller; W. Neun. On Grobner Bases Computation on a Supercomputer Using 
REDUCE, (vergriffen) 

SC 88-3. J. C. Alexander; B. Fiedler. Global Decoupling of Coupled Symmetric Oscillators. 

SC 88-4. Herbert Melenk; Winfried Neun. Parallel Polynomial Operations in the Buchberger Algorithm. 

SC 88-5. P. Deuflhard; P. Leinen; H. Yserentant. Concepts of an Adaptive Hierarchical Finite Element 
Code. 

SC 88-6. P. Deuflhard; M. Wulkow. Computational Treatment of Polyreaciion Kinetics by Orthogonal 
Polynomials of a Discrete Variable, (vergriffen) 

SC 88-7. H. Melenk; H. M. Möller; W. Neun. Symbolic Solution of Large Stationary Chemical Kinetics 
Problems. 

SC 88-8. Ronald H. W. Hoppe; Ralf Kornhuber. Multi-Grid Solution of Two Coupled Stefan Equations 
Arising in Induction Heating of Large Steel Slabs. 

SC 88-9. Ralf Kornhuber; Rainer Roitzsch. Adaptive Finite-Element-Methoden für konvektions-
dominierte Randwertprobleme bei partiellen Differentialgleichungen. 

SC 88-10. C. -N. Chow; B. Deng; B. Fiedler. Homoclinic Bifurcation at Resonant Eigenvalues. 

SC 89-1. Hongyuan Zha. A Numerical Algorithm for Computing the Restricted Singular Value 
Decomposition of Matrix Triplets. 

SC 89-2. Hongyuan Zha. Restricted Singular Value Decomposition of Matrix Triplets. 

SC 89-3. Wu Huamo. On the possible Accuracy of TVD Schemes. 

SC 89-4. H. Michael Möller. Multivariate Rational Interpolation Reconstruciion of Rational Functions. 

SC 89-5. Ralf Kornhuber. On Adaptive Grid Refinement Close to Internal or Boundary Layers. 


