
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

RALF BORNDÖRFER, JULIA BUWAYA, GUILLAUME SAGNOL, ELMAR SWARAT

Network Spot Checking Games:
Theory and Application to Toll Enforcing in

Transportation Networks

ZIB-Report 14-07 (March 2014)

Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

Network Spot Checking Games: Theory and Application to

Toll Enforcing in Transportation Networks

Ralf Borndörfer, Julia Buwaya, Guillaume Sagnol, Elmar Swarat∗

Zuse Institut Berlin (ZIB), Department Optimization, Berlin, Germany†

Abstract

We introduce the class of network spot-checking games (NSC games). These games can be used to model
many applied problems where the goal is to distribute inspection teams over a network. In contrast to the
previously introduced class of security games – which is encompassed by the present class of NSC games –
the pure strategies of a player correspond to the paths joining two vertices in a graph. Although the game
is not zero-sum, and although the number of involved strategies may grow exponentially with the size of
the graph, we show that a Nash equilibrium can be computed efficiently by Linear Programming. We next
give a Mixed Integer Programming formulation for the computation of a Stackelberg equilibrium. Finally,
experimental results based on an application to the enforcement of a truck toll on German motorways are
presented.

Keywords Game Theory; Stackelberg Equilibrium; Security Games; Mixed Integer Programming

1 Introduction

In 2005 Germany introduced a distance-based toll for trucks weighing twelve tonnes or more in order to
fund growing investments for maintenance and extensions of motorways. The enforcement of the toll is the
responsibility of the German Federal Office for Goods Transport (BAG), who has the task to carry out a
network-wide control. To this end, 300 vehicles make control tours on the entire motorway network. In this
paper, we present some theoretical work obtained in the framework of our cooperation with the BAG, whose
final goal is to develop an optimization tool to schedule the control tours of the inspectors. This real-world
problem is subject to a variety of legal constraints, which we handle by mixed integer programming [3]. In
a follow-up work, we plan to use randomized schedules generated by the game-theoretical approach of the
present paper as an input for the real-world problem.

In this paper, we study from a game-theoretic point of view the problem of allocating inspectors to spatial
locations of a transportation network, in order to enforce the payment of a transit toll. In a precedent version
of this article which appeared as a conference paper [1], we have used a Stackelberg game to represent the
applied problem evoked above. We shall extend the model of [1] by formally defining the class of network
spot-checking games in Section 2. Many practical situations can be represented by this new class of games, as
will be seen in Section 3. In particular, it is also possible to take into account the displacement of inspectors
in the network over time.
∗{borndoerfer,buwaya,sagnol,swarat}@zib.de
†This work was funded by the German federal office for Good Transport (BAG).

1

Network spot-checking games generalize the class of security games (a reduction is given in appendix), by
using a graph structure to represent the strategies of attackers and defenders. The latter has been introduced
by Kiekintveld et. al. [6] to study problems where the goal is to randomize different kind of inspections, in
a strategical way; this includes a work on the optimal selection of checkpoints and patrol routes to protect
the LA Airport towards adversaries [8], a study of the scheduling and allocation of air marshals to a list of
flights in the US [5], or the problem of optimally scheduling fare inspection patrols in LA Metro [10].

Contrary to standard security games, the players of a network spot-checking game might have a very large
number of available strategies, arising from the multitude of origin-destination paths in a network. For our
application to toll enforcement in a transportation network, this new model takes into account every possible
detour that fare evaders could take to avoid frequently inspected sections. In contrast, previous approaches
used the trivial topology of a single metro line [10], or assumed that each user takes the shortest path [2].

This article is not the first to consider a security game with a huge number of available actions, though.
In [5], this difficulty was handled with a branch-and-price algorithm. The approach used in this article is
different: if we represent user strategies by network flows, we can give a compact LP formulation for the
computation of a Nash equilibrium of the game, cf. Section 4.1. We next use some ideas of [8] to find a
Stackelberg equilibrium of the game by mixed integer programming (MIP), see Section 4.2. Experimental
results based on real traffic data (for the application to the truck toll in Germany) are given in Section 5,
and suggest that the Nash equilibrium strategy is a good trade-off between computation time and efficiency
of the controls.

2 Network Spot-Checking Games

In this section we extend the game theoretic model presented in [2], which studies the interaction between
the fare inspectors and the users of a transportation network, to handle the case where every user is free to
choose his path in the network to reach his destination.

Preliminaries We first recall some basic notions of game theory. In a game with N players where each
player may choose a strategy pi in a set ∆i, and wishes to maximize his own payoff ui(pi,p−i), we say that
pi is a best response to the set p−i ≡ {p1, . . . ,pi−1,pi+1, . . . ,pN} of strategies of the other players if

∀p′i ∈ ∆i, ui(p
′
i,p−i) ≤ ui(pi,p−i).

We denote by BRi(p−i) ⊆ ∆i the set of best responses to p−i for Player i. This allows us to define the
Nash equilibria of the game:

(p1, . . . ,pN) is a Nash equilibrium ⇐⇒
∀i ∈ {1, . . . , N}, pi ∈ BRi(p−i).

In this paper we will also study some Stackelberg equilibria, which are arguably more adapted to the
present class of spot-checking games because of the asymmetry between controllers and network users, and
have already been used in several applications [8, 5, 10]. In a Stackelberg game, it is assumed that a player
is the leader (in our case, the controller), who plays first, and the other players (called followers) react with
a best response. If the leader of the game is denoted by the index 1, a Stackelberg equilibrium is a profile of
strategies p ≡ (p1, . . . ,pN) which maximizes the leader’s payoff, among the set of all profiles such that the

2

followers’ strategies p−1 are in best response relationship to each other’s action:

peq is a Stackelberg equilibrium ⇐⇒
peq ∈ arg max u1(p1,p−1){

p∈∆1×...∆N : ∀i 6=1, pi∈BRi(p−i)
}
.

This definition is quite complicated because of the possible interactions between the players p2, . . . ,pN .
In fact, in the class of network spot-checking games that we will define hereafter, the set BRi(p−i) depends
only on the leader’s strategy p1 for every follower (i 6= 1), see Lemma 2.1. We can hence denote by
BR(p1) := BR2(p1) × . . . × BRN (p1) the set of best response profiles for the followers to a leader’s action
p1, and the problem of finding an equilibrium reduces to the following optimization problem:

max
p1∈∆1

max
p−1∈BR(p1)

u1(p1,p−1). (1)

Note that the definition implicitly implies that when a follower has several best response actions available,
he will select one that favors the leader most.

We next define the general class of network spot-checking games studied in this article. They describe the
interaction between a controller, who represents all inspectors of a transportation network, and the users of
the network, which are distributed over a set of commodities (Origin-Destination pairs of the network).

Problem definition A network spot-checking game (NSC game) G = (V,E,K,x,w,σ, P, α,β,Q) is de-
fined by the following elements:

• A directed graph G = (V,E);

• A set of commodities K ⊂ V × V representing Origin-Destination pairs (sk, dk) of the graph G;

• For all k ∈ K, the number of users xk of commodity k;

• For all e ∈ E, a cost we ≥ 0 for a user taking edge e;

• For all e ∈ E, a reward βe (resp. a penalty if βe < 0) for the controller for each user using edge e; this
βe typically corresponds to a fare for taking edge e.

• For all e ∈ E, the probability σe for an individual passing on e to be controlled, conditionally to the
presence of an inspector on e;

• The amount of the penalty P users must pay each time they are controlled;

• A fraction α ∈ [0, 1] of the penalties to be considered in the controller’s payoff;

• A set Q ⊂ [0, 1]E described by linear inequalities, representing possible distributions of the inspectors
over the edges of the graph. The quantity qe corresponds to the probability that some inspector is
present on edge e.

At first sight, it may seem odd that every controlled user gets fined and has to pay the penalty P . The
reason behind is that the strategies of the users are completely represented by their paths in the network.
Typically, to model the fact that not all users are fare evaders, we can consider artificial toll edges in the
network with the following properties: the cost we for taking a toll edge e includes a fare, and no inspection
may be conducted on e (σe = 0). In the situation where the controller’s reward on e corresponds to the
toll fare βe ≥ 0 that a network user must pay to use edge e, a fair assumption could be that βeσe = 0 for
all edges, i.e. paying a fare and getting fined exclude each other. We refer the reader to Section 3 for more
details and examples on how to model practical situations using NSC games.

3

Controller’s strategy In the simplest variant of the problem, there are γ teams of inspectors over the
network, who can each control an edge e ∈ E. The set S of pure strategies for the controller hence corresponds
to the subsets S of E of cardinality γ. The inspectors commit to a mixed strategy q̃, i.e. for all S ∈ S, q̃S
indicates the probability of allocating one team of inspectors on each of the γ edges e ∈ S. In practice, we
will see that our model only depends on the marginals qe =

∑
{S∈S:S3e} q̃S , which represent the probability

that a controller team is present on edge e. It is easy to see that the marginal strategy q satisfies∑
e∈E

qe = γ, (2)

∀e ∈ E, 0 ≤ qe ≤ 1. (3)

Conversely, if we are given a vector q satisfying Equations (2) and (3), we can find a mixed strategy q̃
whose marginal equals q. To see this, one can notice that the set of extreme points of the polyhedron Q
defined by Equations (2) and (3) coincide with the set of pure strategies S. More evolved strategy sets Q
for the controller, taking into account the displacement of the inspectors over time, will be discussed in §3.3.

User flows and payoffs We associate the users of commodity k with a single player (called Player k).
Let Rk denote the set of paths from sk to dk in G = (V,E). Player k can choose any path R ∈ Rk, so his
mixed strategy can be interpreted as the distribution of the k−users over Rk. Our model depends only on
the probabilities pke that Player k uses edge e, that must form a flow of value one through commodity k:
∀v ∈ V, ∑

e′∈δ+(v)

pke′ −
∑

e∈δ−(v)

pke =

 1 if v = sk;
−1 if v = dk;
0 otherwise.

(4)

The probability to be controlled on an edge e ∈ R is qeσe, and hence the expected number of times Player k
is subjected to a control during his trip is

∑
e∈R p

k
eqeσe. The total expected cost of Player k can now be

expressed as:

Payoffk(p, q) = −

(∑
e∈E

pkewe +
∑
e∈E

pkeqeσeP

)
, (5)

where the first term accounts for travel and toll costs, while the second is the expected fine. Note that we
do as if evaders could be fined several times; in practice, this is only a simplifying assumption, since in most
toll networks fare evaders can be fined only once (fine receipts count as a valid proof of payment). For a
reasonable number of controllers, our results show that the probability of being controlled more than once
is very small, though. A similar linear approximation has been used in [10] and [2]).

Observe that the payoff of any user does not depend on the strategy of other users. Hence the game is
equivalent to a Bayesian game where the controller plays against a random user k ∈ K, with probabilities
proportional to xk [8]. An important consequence of Equation (5) is a characterization of the best responses
of Player k to the controller’s strategy q:

Lemma 2.1. Let q ∈ Q be a strategy of the controller, and denote by λk(q) the length of the shortest path
from sk to dk in the weighted graph G = (V,E, c(q)), where the weight of edge e is ce(q) = we + qeσeP . A
strategy pk for Player k is a best response to q if and only if −Payoffk(p, q) = λk(q). In other words, best
responses for Player k are flows through commodity k supported by shortest paths of G = (V,E, c(q)).

Proof. If pk is a flow of unit value through commodity k, then −Payoffk(p, q) =
∑
e∈E p

k
e(we + qeσeP)

corresponds to the expected length for Player k from sk to dk in the weighted graph G = (V,E, c(q)). This
expression is minimized if and only if the flow pk uses only shortest paths.

4

Controller’s payoff The total payoff of the controllers is obtained by summing the collected rewards and
penalties, and depend on the parameters α and β defined above:

PayoffC(p, q) =
∑
k

xk
∑
e∈E

pke(ασeqeP + βe). (6)

The extreme values of α correspond to two important situations. If α = 1, the payoff defined in (6)
corresponds to the total revenues from rewards and penalties, a setting which we denote by MAXPROFIT.
If α = 0, the controller’s payoff comes from the fares only (assuming that the reward βe is a fare for edge e).
This setting, which we call MAXTOLL, might be well suited if the goal is solely to enforce the payment
of a fare. In contrast, with MAXPROFIT it might be advantageous to have a bit of evasion on certain
commodities, in order to earn money from fines. The parameter α may be seen as a parameter weighting
the objectives of MAXTOLL and MAXPROFIT, for the scalarization of a biobjective problem.

3 Handling Practical Situations with NSC Games

The general model introduced in the previous section can be used to model a variety of practical situations.
We next review important examples inspired from real-world applications. In addition, every security game
can be encoded as an NSC game, as shown in appendix.

3.1 A transit network model

We start by showing that the model used in the conference paper [1] at the origin of this article can be cast
as a NSC game. Here, the network users are assumed to travel over a network G0 = (V0, E0) with edge costs
we and conditional inspection risks σe. For a given commodity k = (sk, dk) ∈ K0 ⊂ V0 × V0, Player k can
either decide to pay a fare τk (and in this case he will take the shortest path from sk to dk), or he can evade
the fare and choose an arbitrary path from sk to dk in G0.

To represent the strategies corresponding to paying the fare, we create a set of additional vertices
V̄ , containing a node s̄ for every source s ∈ S = {sk : k ∈ K0} and a node ¯̄d for every destination
d ∈ D = {dk : k ∈ K0}.

We then connect these new nodes by creating a set of artificial edges Ē, that contains

• an edge s̄→ s for all s ∈ S, which corresponds to the action of evading the fare, with all weights equal
to zero: w[s̄s] = β[s̄s] = σ[s̄s] = 0;

• an edge d→ ¯̄d for all d ∈ D, with all weights equal to zero as well;

• an edge s̄k → ¯̄dk for all k ∈ K0, which corresponds to the action of paying the fare. The user cost for
taking this edge is defined by w[s̄k

¯̄dk] = lk(w) + τk, where lk(w) is the length of the shortest path from

sk to dk in the weighted graph G0 with weights w. The controller’s reward is β[s̄k
¯̄dk] = τk, and users

cannot be fined on this edge (σ[s̄k
¯̄dk] = 0).

By construction, the artificial toll edge (s̄k,
¯̄dk) can only be used by users of the commodity k. This

ensures that the artificial toll edge (s̄k,
¯̄dk) can only be used by users of the commodity k. The original edges

e ∈ E0 are taken by users evading the fare, so that the controller’s reward βe can be set to 0 on these edges;
alternatively, βe can be set to a negative value to penalize fare evasion in the controller’s payoff. (It is also

5

a b

c

d e

w1, σ1

w2, σ2

w3, σ3

w5, σ5

w4, σ4

a

ā

b

c c̄

d

¯̄d

e

¯̄e(w1, σ1, 0)

(w2, σ2, 0)

(w3, σ3, 0)

(w5, σ5, 0)

(w4, σ4, 0)

(0, 0, 0)

(0, 0, 0)(τ[ad] + l[ad](w), 0, τ[ad])

(0, 0, 0)

(τ[ce] + l[ce](w), 0, τ[ce])

(0, 0, 0)

Figure 1: Original transit network G0 (above), and extended structure G of the NSC game (below). The edges of G

are labelled with triples (we, σe, βe). The subset of commodities is K0 = {[ad], [ce]}, which becomes K = {[ā ¯̄d], [c̄¯̄e]}
in the extended graph.

possible to penalize evasion on a per-user basis, by setting a negative reward on the artificial evasion edges
s→ s̄.)

The NSC game is obtained by considering the extended graph G = (V,E), where V = V0 ∪ V̄ and

E = E0 ∪ Ē, as well as the set of extended commodities K = {(s̄k, ¯̄dk) : k ∈ K0}. An example graph G0 is
represented together with its extension G and the associated edge weights in Figure 1.

3.2 Transportation networks with a distance-based toll

With the previous model, it is not possible to consider network users who pay the fare on a portion of their
trip only. This is of particular relevance for the application mentioned in the introduction of this article,
since on the German motorways, a transit fee proportional to the distance must be paid by the truck drivers.
So crafty drivers might take the chance to pay the toll on a short portion of their trip only, where they know
that the frequency of controls is high.

To represent users’ strategies in this situation, we shall now introduce a two-layer graph structure. Let
G0 = (V0, E0) represent the physical transportation network, and K0 ⊂ V0× V0 be a subset of commodities.
For all k ∈ K0, sk and dk represent the origin and the destination of k. We denote by le the length of
edge e ∈ E0 and by f (resp. b) the toll rate (resp. the average basic costs such as e.g. fuel consumption) per
kilometer. In addition, we assume that the risk of inspection on an edge e ∈ E0 is σe (conditionally to the
presence of a team of inspectors on e).

We create a set V1, containing a vertex v′ for every v ∈ V0, as well as a set V̄ of artificial start and
destination nodes, containing a vertex s̄ for every s ∈ S = {sk : k ∈ K0} and a vertex ¯̄d for every
d ∈ D = {dk : k ∈ K0}. To connect these new vertices, we create the following sets of edges:

• E1 = {(u′, v′) : ∀(u, v) ∈ E0};

• Es = {(s̄, s), (s̄, s′) : ∀s ∈ S};

6

a

c

b

d

e

ā

¯̄e

a′

c′

b′

d′

e′
Fare compliance layer

Transition edges

Toll evasion layer

Figure 2: Example of two-layer Graph with a single commodity K = {(a, e)}. The path highlighted in blue indicates

a user paying the fare on a→ c, and evading the toll on c→ d→ e.

• Ed = {(d, ¯̄d), (d′, ¯̄d) : ∀d ∈ D};

• Et = {(v, v′), (v′, v) : ∀v ∈ V0}.

The edges of the level E1 represent portions of a trip where the toll fee has been paid, while the matching
edges in E0 correspond to fare evasion. Transition edges e ∈ Et allow the users to switch between these two
layers, at a cost θ that should be set to represent the reluctance of users to change strategy during a trip.
Artificial edges of Es and Ed ensure the connectivity of the new commodities K := {(s̄k, ¯̄dk) : k ∈ K0} with
both layers. To sum up, the different edge weights are defined by:

βe =

{
fle if e ∈ E1;
0 otherwise,

we =


ble if e ∈ E0;

(b+ f)le if e ∈ E1;
θ if e ∈ Et;
0 otherwise,

and σe = 0 for all e /∈ E0. A simple example of two-layer graph is depicted on Figure 2.

3.3 Spatio-temporal aspects

The models presented so far do not take time into account. This is an important challenge, since the
inspectors must move along edges of the networks and their duties must not exceed a certain length. In
consequence, the set Q defined by Equations (2) and (3) might not be well-suited to represent all possible
marginal strategies of the controller.

The authors of [10] have proposed to represent the duties of metro ticket inspectors by flows in an adapted
graph. Their approach provides exact schedules for each inspector. More precisely, a strategy consists in
a sequence of trains that the controller must control at a given time. However, this very fine model might
not be very robust to any kind of delays or incidents that can occur in the inspection process, so that the
inspectors might not be able to follow the prescribed schedule. To cope with this problem, planners of
the BAG (the authority in charge of fare inspections on the German motorways, cf. Section 1) allocate the
inspectors to a set of predefined control areas, on which they must patrol during a given time interval, see [3].
The graph structure which we next present combines ideas of [3] and [10].

We consider a time discretization T = {0, . . . , T − 1} of the period of interest, typically one day, and we
make the simplifying assumption that every network user starts and ends her trip within the same time

7

S1

S2

S3

S4

S5

S5

S3
Noon

Afternoon

Late

Night

Early morning

Morning

S1

S2

S3

S4

S5

Figure 3: Example for a graph C connecting the control areas (lower right corner) and its associated cyclic duty
graph D (main drawing), for a time discretization of one day with T = 6 time windows. The path highlighted in red
represents the duty of a team controlling S4 during the morning, S5 at noon and S3 during the afternoon.

window t ∈ T . We denote by G0 = (E0, V0) the graph representing the static problem (obtained e.g. by
using the construction of § 3.1 or § 3.2), and we make a time extended graph G = (V,E) which contains T
parallel copies of G0: V = V0 × T and E = E0 × T . A commodity k in G corresponds to a pair of nodes
(sk, dk) ∈ V 2, such that sk = (u, t) and dk = (v, t) for a pair of nodes (u, v) ∈ V 2

0 and a time window t ∈ T .
A control area S ∈ S consists of a subset of edges S ⊂ E0 (control areas might overlap). We create a

graph C = (S, A) which connects nearby control areas, i.e. (Si, Sj) ∈ A whenever it is possible for a team of
inspectors to control Si at time t and Sj at t+ 1. Again, we create a time extended version D = (S × T , Ā)
of C, which we call the cyclic duty graph, as follows:

Ā =
{(

(S, t), (S, t+ 1 mod T)
)

: ∀S ∈ S
}

⋃ {(
(S, t), (S′, t+ 1 mod T) : ∀(S, S′) ∈ A

)}
.

We have depicted in Figure 3 a simple example for a graph C and the corresponding cyclic duty graph D.
The inspectors’ duties can be represented by paths in D. In practice, duties have a prescribed length, for
example 8 hours, which corresponds to paths of a certain length L in D. With a simple construction, it
is possible to create a modified duty graph D̃ with start and end depot nodes ds and dt, that enjoys the
property that every (ds, dt)−path corresponds to a path of length L in D. Hence the mixed strategy of a
single inspector can be represented by a (ds, dt)−flow of value one in D̃. We refer the reader to [10] for
details about this construction.

Now, we assume that there are γ teams of inspectors, as in the paragraph preceding Equation (2). The
controller’s strategy can hence be represented by a (ds, dt)−flow q̃ of value γ in D̃ = (Ṽ , Ã):

∀v ∈ Ṽ ,
∑

a′∈δ+(v)

q̃a′ −
∑

a∈δ−(v)

q̃a =

 γ if v = ds;
−γ if v = dt;
0 otherwise.

(7)

8

The vertex set of D̃ is
Ṽ = S × T × {1, . . . , L} ∪ {ds, dt},

and similarly as in [10] it can be seen that the expected number of inspectors in the control area S ∈ S at
time t is

q̂(S,t) =

L∑
l=1

∑
a∈δ−(S,t,l)

q̃a. (8)

As a simple approximation we can assume that the inspectors are spread uniformly on all the arcs of a
control area, so that the an inspector on the control area S is present on edge e ∈ S with probability

κe|S =
le∑

e′∈S le′
,

where le denotes the length of edge e. It follows that the expected number of inspectors on e ∈ E0 at time
t is ∑

{S∈S:S3e}

κe|S q̂(S,t).

If this quantity is smaller than one, it can be interpreted as the marginal probability q(e,t) to find an inspector
team on the edge (e, t) ∈ E of the time extended graph G. To summarize, the set of marginal strategies Q
of the controller can be defined by:

Q =
{
q ∈(R+)E : ∃q̃ ∈ (R+)Ã s.t.

(i) q̃ satisfies the flow conservation (7);

(ii) ∀(e, t) ∈ E,

q(e,t) ≤
∑

{S∈S:S3e}

κe|S

L∑
l=1

∑
a∈δ−(S,t,l)

q̃a;

(iii) ∀(e, t) ∈ E, q(e,t) ≤ 1
}
.

To conclude this section, we briefly mention some simple extensions that can be plugged in this model (by
adapting the graph G or D̃ in an intuitive fashion):

• Several side constraints can be added in the above definition of Q. For example, the proportion of duties
starting at night can be bounded from above, or we can bound from below the inspection frequency of
some control areas to ensure a network-wide control.

• If not all the controllers start from the same location in the network, it is possible to consider several
start and end depot nodes in the duty graph D̃.

• The possibility for a user to advance or postpone her departure (in order to travel at a time with less
controls) could be represented by adding edges in G that link the different time copies of G0, with a
cost ς for the delay.

We shall now return to the general model of NSC games introduced in Section 2, and we study the problem
of computing some equilibria for a generic game G = (V,E,K,x,w,σ, P, 1,β,Q).

9

4 Computation of Equilibria

The notion of equilibrium is essential in game theory. Depending on the ability of the players to observe the
others’ actions, committing to a Nash or a Stackelberg equilibrium may be better suited [7]. However, there is
a natural interpretation for the Stackelberg strategies of the controller: the Stackelberg game model assumes
that every user of the network plays with a best response to the controller’s strategy q. In particular,
a Stackelberg strategy for MAXTOLL (α = 0) maximizes the (weighted) number of users who have an
incentive to pay the fares (with weights corresponding to the fares). In fact, one can expect that many
users are always honest and pay the network fares independently of the frequency of inspections. To some
extent, the Stackelberg equilibrium can hence be considered as an approach to maximize the Controller’s
payoff in the worst case. This is not truly the worst-case situation, since network users could take only
toll-free sections (in the case of a transit system for example, they could walk), thus depriving the Controller
from all sources of profit. However, there is no reason to assume that network users want to minimize the
Controller’s payoff, and the Stackelberg approach guards ourselves from crafty behaviours.

4.1 Nash equilibrium for
MAXPROFIT

We next show that in the case of MAXPROFIT (α = 1), the NSC game can be transformed into a zero-sum
game which has the same Nash equilibria. As a consequence, a Nash equilibrium strategy can be computed
by linear programming.

Proposition 4.1 (Reduction to a zero-sum game). The game G = (V,E,K,x,w,σ, P, 1,β,Q) has the same
set of Nash equilibria as the zero-sum game G′ = (V,E,K,x,w,σ, P, 1,w,Q), where the controller’s rewards
βe have been replaced by the edge costs we.

Proof. First note that the game G′ is zero-sum indeed:

PayoffC(p, q) +
∑
k

xkPayoffk(p, q) = 0.

The Nash equilibria are entirely defined by the set of best responses of every player. We are going to see
that these sets coincide for G and G′, from which the conclusion follows. The payoff of Player k is the same
in both games, so it is clear that BRk(q) is the same in these two games (for all k ∈ K). Now, observe that
the set of best responses for the controller in G is

BRGC(p) = arg max
q∈Q

∑
k

xk
∑
e∈E

pke(σeqeP + βe).

For a fixed p, let us add
∑
k xk(

∑
e∈E p

k
e(we − βe)) in the function to maximize. This does not change the

set of maximizers, since the new term does not depend on q. Hence,

BRGC(p) = arg max
q∈Q

∑
k

xk
∑
e∈E

pke(σeqeP + we)

= BRG
′

C (p)

10

It is well known that a Nash equilibrium of 2-player zero-sum games can be computed by linear program-
ming. In our case, the game G′ has more than two players, but its special structure (no interaction between
the network users) could allow us to formulate the game as a polymatrix game with an underlying star-shaped
graph, a class of games for which a Nash equilibrium can also be computed by linear programming, see [2, 4].
However, the LP that we would obtain would have a constraint for each pure strategy of the network users,
a number which might be exponentially large. To cope with this problem, we shall next exploit the flow
representation of the users’ strategies and the shortest path chcharacterization of best reponses to give a
compact LP formulation for computing a Nash equilibrium of G.

By Lemma 2.1 we know that the loss of Player k at a Nash equilibrium (p, q) is λk(q), the length of the
shortest path from sk to dk in G = (V,E, c(q)). The computation of a Nash equilibrium of G′ (and hence
of G) thus reduces to the computation of a strategy q ∈ Q maximizing

∑
k xkλk(q). This can be done by

linear programming, by introducing some node potentials ysv for every source node s ∈ S := {sk : k ∈ K}
and for all v ∈ V :

max
q,y

∑
k∈K

xky
sk
dk

(9a)

s. t. ysv − ysu ≤ we + σeqeP, ∀s ∈ S, ∀e ≡ (u, v) ∈ E; (9b)

yss = 0, ∀s ∈ S; (9c)

q ∈ Q. (9d)

The constraints (9b)-(9c) are from the classical linear programming formulation of the single-source short-
est path problem, and bound the potential ysv from above by the shortest path length from s to v in the
graph G = (V,E, c(q)). The objective function (9a) hence asks for the maximization of the weighted sum
of shortest paths

∑
k xkλk(q) over the set of feasible controller’s strategies (9d).

We point out that the optimal dual variables of constraint (9b) for a given s ∈ S define a single-source
multi-sink flow on the subset of commodities Ks := {k ∈ K : sk = s} originating in s. This flow can be
decomposed as a sum of (sk, dk)−flows, which yields the corresponding Nash equilibrium strategy pk for
every Player k.

Observe that in accordance with Proposition 4.1, the LP (9) for the computation of a Nash equilibrium
does not depend on the controller’s rewards β. The concept of Stackelberg equilibrium looks much more
suitable for our application, but as we shall see, the computation of such an equilibrium is also much harder.

4.2 Stackelberg equilibria

Using ideas similar as in [8], a mixed integer program (MIP) can be formulated for the computation of a
Stackelberg equilibrium (p, q). We reduce drastically the number of required variables, by using a single-
source multi-sink flow

ρs =
∑

{k:sk=s}

xk p
k

for each s ∈ S, instead of using a flow pk for every commodity. With the use of big-M constraints, we ensure
that this flow uses only edges belonging to a shortest path tree rooted in s in the graph G = (V,E, c(q)). By
Lemma 2.1, ρs hence corresponds to best-response strategies to q for the players whose commodity source

11

is s.

max
q,y,µ,ρ

∑
k∈K

αxky
sk
dk

+
∑
s∈S

∑
e∈E

ρse(βe − αwe) (10a)

s. t.

0 ≤ we + σeqeP − (ysv − ysu) ≤Me(1− µse),
∀s ∈ S, ∀e ≡ (u, v)∈E; (10b)

yss = 0, ∀s ∈ S; (10c)

q ∈ Q, (10d)

∑
e′∈δ+(v)

ρse′ −
∑

e∈δ−(v)

ρse =


∑
k∈Ks

xk if s = v;

−x(s,v) if (s, v) ∈ Ks;
0 otherwise,

∀s ∈ S, ∀v ∈ V ; (10e)

0 ≤ ρse ≤Msµse, ∀s ∈ S, ∀e ∈ E; (10f)

µse ∈ {0, 1}, ∀(s, e) ∈ S × E. (10g)

As in Problem (9), constraints (10b)-(10c) bound yskdk from above by the shortest path length for commodity k
in the graph G = (V,E, c(q)), and constraint (10d) forces q to be a feasible strategy for the controller. We
introduce a binary variable µse which can take the value 1 only if edge e belongs to a shortest path tree rooted
in s (second inequality in (10b)). Indeed, the first inequality in (10b) is saturated when the difference of
potential (ysv − ysu) between the extreme points of an edge e ≡ (u, v) equals the length of e, which indicates
that there is a shortest path originating in s that uses e.

Equation (10e) forces ρs to be a single-source multi-sink flow rooted in s, whose demand on the commodity
k ∈ Ks := {k ∈ K : sk = s} corresponds to the number of users xk. Constraint (10f) ensures that the flow
ρs only uses edges from a shortest path tree rooted in s (in the weighted graph with weights given by c(q)).
Now, ρs can be decomposed as

∑
k∈Ks

xkp
(s,dk), where p(s,dk) is a flow through commodity k of value one.

By construction, p(sk,dk) is a flow of minimal cost λk(q) =
∑
e∈E p

k
e(we + qeσeP), and it follows that pk is

a best response to q, see Lemma 2.1.
Finally, the objective function (10a) rewrites to the controller’s payoff (6) when replacing yskdk and ρse by

their values as a function of pke : ∑
k∈K

αxky
sk
dk

+
∑
s∈S

∑
e∈E

ρse(βe − αwe)

=
∑
k∈K

αxk
∑
e∈E

pke(we + qeσeP)+

∑
s∈S

∑
e∈E

∑
k∈Ks

xkp
k
e(βe − αwe)

=
∑
k∈K

xk
∑
e∈E

pke(αqeσeP + βe).

We point out that the big-M constants Me and Ms can all be chosen in the same order of magnitude as
the other coefficients of the problem.

4.3 Stackelberg for MAXTOLL in the transit network model

In this section, we show that the Stackelberg MIP (10) can be simplified for the case of the transit network
model introduced in §3.1 with α = 0 (MAXTOLL). In this situation indeed, the controller’s payoff can be

12

expressed as
∑
k xkτkµk, where µk is a binary variable indicating whether Player k has an incentive to pay

the toll. So the flows of network users ρs is not involved anymore:

max
q,y,µ

∑
k∈K

xkτkµk (11a)

s. t.
ysv − ysu ≤ we + σeqeP, ∀s ∈ S, ∀e ≡ (u, v) ∈ E; (11b)

yss = 0, ∀s ∈ S; (11c)

w
[s̄k

¯̄dk]
− ys̄k¯̄dk

≤Mk(1− µk), ∀k ∈ K0; (11d)

µk ∈ {0, 1}, ∀k ∈ K0; (11e)

q ∈ Q. (11f)

The binary indicator variable µk can take the value 1 if and only if the inequality corresponding to e =
(s̄k,

¯̄dk) in (11b) is saturated, i.e. when the single edge (s̄k,
¯̄dk) forms a shortest path for commodity k, which

means that Player k has an incentive to pay the toll.

5 Experimental Results on German Motorways

We have solved the models presented in this paper for several instances based on real data from the German
motorways network. We present here a brief analysis of our results.

Mobile controllers drive on the network and are able to control every truck they overtake. Hence, the
probability to be caught on a section where an inspector is driving can be approximated by (vIvT −1), where vI
and vT represent the average speeds of the inspectors and the truck drivers, respectively. In our experiments
we have set σe = 0.15 for all e ∈ E0. The amount of the fine was set to P = 200.

5.1 Static case, transit network model

We first present results for two instances in the static case (i.e., time is not taken into account), with the
simple transit network model of § 3.1. The results presented below rely on the set of strategies Q described
in (2)–(3), where a set of γ inspectors can be arbitrarily distributed over the edges of the network.

In upper part of Figure 4(a), a near-Stackelberg equilibrium strategy of the inspectors on the whole
German network is represented, for the MAXPROFIT case. Here it was assumed that γ = 50 controllers are
simultaneously present on the network, which has 319 nodes, 2948 edges and 5013 commodities. The dotted
edges on the figure represent toll-free roads, where the costs we are relatively higher than on the motorway
network, but no control can occur (σe=0).

To find this near-optimal strategy, we first computed a Nash equilibrium q with the LP (9); this took
29s on a PC with 8 cores at 3.2GHz. Then, we computed a best response strategy for the players of each
commodity. When several shortest paths existed for a commodity k in the graph G = (V,E, c(q)), we chose
a flow pk that favoured the controller most. This can be done by solving another shortest path problem,
in the directed acyclic subgraph of all shortest paths from sk to dk in G = (V,E, c(q)). This collection of
strategies yields a feasible solution for the MIP (10), that can be used for a warm start. We used CPLEX,
and an optimality gap of 1.5% was reached after 350s. We point out that the Nash equilibrium differs from
the strategy MAXPROFIT on a few edges only, and captures 99.7% of the optimal profit.

Further tests on a smaller network representing the region of Berlin-Brandenburg (45 nodes, 130 edges, 596
commodities) confirm that the Nash equilibrium strategy might be a good trade-off between the computation
time and the efficiency of the controls. This network is represented in the lower part of Figure 4(b), with

13

(a)

1 2 3 4 5 6 7

1

2

3

4

γ

R
ev

en
u

e
(×

1
0

6
)

MAXPROFIT

MAXTOLL

NASH

PROP

1 2 3 4 5 6 7
0.6

0.7

0.8

0.9

1

γ

P
ro

fi
t

(i
n

%
o
f

M
A

X
P

R
O

F
IT

)

MAXPROFIT

MAXTOLL

NASH

PROP

(b) Optimal profit vs. γ (c) Percentage of the optimal profit

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

γ

F
ra

ct
io

n
o
f

to
ll

in
p

ro
fi

t

MAXPROFIT

MAXTOLL

NASH

PROP

0 0.5 1

1

2

3

α

R
ev

en
u

e
(×

1
0

6
)

total profit

toll revenue

penalties

(d) Fraction of toll in profit (e) Toll and penalties vs. α

Figure 4: (a): Graphs of the two instances discussed in §5.1, with colors showing a near-optimal strategy for

MAXPROFIT and γ = 50 on the network of Germany (above) and an optimal Stackelberg strategy for MAXTOLL

and γ = 3 for Berlin-Brandenburg (below). (b)-(e): Experimental results for the region of Berlin-Brandenburg.

colors showing a Stackelberg strategy for MAXTOLL and γ = 3. Figures 4(b)-4(d) compare 4 strategies in
function of the number of controllers γ: the strategies MAXPROFIT and MAXTOLL, the Nash equilibrium
strategy computed by LP (9), and a strategy in which control intensities are proportional to traffic volumes
on each edge of the physical network G0 (of course, no inspector is allocated to the artificial toll edges where
σe = 0). Plot (b) shows the profit collected when committing to one of these strategies (in the Stackelberg
model, i.e. drivers select a best response which favors the controller most). We see on Plot (c) that the Nash
strategy is always near-optimal in terms of profit; we want to investigate this fact in future research. However,
we point out that the MAXTOLL strategy outperforms the others in terms of toll enforcement (Plot (d)), at
the price of a small loss in total profit (7% for γ = 2 and 2% for γ = 4). In another experiment, we have set
γ = 3 and we have played with the parameter α, which joins MAXPROFIT (α = 1) to MAXTOLL (α = 0).
Plot (e) shows that for α = 0.75, one can find a solution with almost the same profit as in MAXPROFIT,
but with a higher fraction coming from the toll, and hence less evasion.

5.2 Static case, two-layer network model

We shall now present some results for an instance constructed with the two-layer network model of §3.2.
The graph of this instance represents the federal state of Rhineland-Palatinate; the graph G0 has 37 nodes,
142 edges and 323 commodities, which yields 148 nodes and 506 edges in the two-layer graph G.

The Stackelberg strategy of the controller for MAXPROFIT and γ = 6 is indicated in Figure 5, as well

14

Figure 5: Controller’s Stackelberg strategy (above) and Driver flows (below) for the MAXPROFIT problem with

γ = 6. In the lower 3D-figure, the width of the edges is proportional to the number of network users in the two-layer

graph. The red edges represent fare evasion, the green edges fare compliance, and the yellow ones correspond to

toll-free sections.

as the flows of network users in the two-layer graph. In the northern part of the graph, the red edges in
the toll evasion level are much wider than the corresponding green edges in the fare compliance level, which
indicates that many users have no incentive to pay the toll here.

The evolution of the controller’s payoff with γ is plotted in Figure 6, for the Stackelberg, Nash, and
proportional strategies (as a percentage of the maximum, i.e. the profit reached with the Stackelberg
strategy). Here again, the Nash strategy is optimal in most cases (except for γ = 10 where it captures 98.7%
of the optimum). Curiously, the controller’s payoff sinks between γ = 7 and γ = 8 with the proportional
strategy. This is explained by the lower graph of Figure 6: when γ = 8, this strategy assigns a too high
control frequency on certain edges, which creates a situation where many drivers have an incentive to take
a toll-free trunk road, thus depriving the controller of the incomes from both fares and fines on this edge.

5.3 An example with time dynamics

We have considered an instance with the model of cyclic duty graphs presented in §3.3. The network
corresponds to a control region of Germany located around the federal state of Saxony-Anhalt and was
represented by a graph G0 with 26 nodes and 74 edges. The graph C connecting 17 control areas is depicted
in the upper part of Figure 7, with nodes whose location coincide with the barycenter of each control area
S ∈ S. We have used a time discretization of two hours, so that an inspector’s duty of 8 hours has length
L = 4 in the cyclic duty graph D.

The lower part of Figure 7 shows the marginal control rates corresponding to the Nash strategy for γ = 20
on the edges of G0, during different time windows. Interestingly, the inspection frequencies remain constant
on certain parts of the graph (the northern east-west axis and the most southern edges), where the volume
of traffic remains high all day long. The equilibrium is such that drivers using these edges have an incentive
to pay the toll at all times; the inspection frequencies depicted on the figure correspond to a point where the
users of the major commodities have the same loss if they choose fare evasion or fare compliance (so they
will break the tie in favour of the controller by paying the toll in our Stackelberg game model). Controlling
more on this northern axis would be a waste of inspection capacity, and controlling less would lead to fare

15

1 2 3 4 5 6 7 8 9 10 11
0.4

0.6

0.8

1

γ

P
ro

fi
t

(i
n

%
o
f

S
T

A
C

K
)

STACK

NASH

PROP

Figure 6: Evolution of the total profit and number of kilometers driven on the alternative toll-free trunk roads with

γ, for the Rhineland-Palatinate instance in the MAXPROFIT setting.

evasion on this axis. The remaining inspectors are allocated to sections and time windows with less traffic.

6 Conclusion and Perspectives

We have introduced the class of network spot-checking games, which generalizes the class of security games,
and can be used to represent many situations in which controls must be distributed over a network. We
have proposed a LP / MIP based approach to compute Nash and Stackelberg equilibria of this game. Users’
strategies are represented by flows in the network, which makes it possible to compute a Nash equilibrium
of the game very efficiently. Our experiments suggest that this “Nash strategy” approximates a Stackelberg
equilibrium maximizing the inspectors’ profit. This is a feature which we would like to investigate in a
follow-up work: given a class C of NSC games, how far can the payoff of the inspector for a Nash Strategy
be from the optimum payoff obtained with a Stackelberg strategy ? This question is related to the price of
anarchy PoA(C) of the class C, and we would like to bound this value from above for certain class of games
(for example, games with certain bounds on the edge weights w,β and σ).

16

Figure 7: Graph C joining the control areas for the Saxony-Anhalt instance (above); Nash strategies of the controller

during four time windows, computed for γ = 20 inspector teams (below). Red/blue indicates higher/lower inspection

frequencies.

17

References

[1] R. Borndörfer, J. Buwaya, G. Sagnol, and E. Swarat. Optimizing toll enforcement in transportation
networks: a game-theoretic approach. In Proceedings of the INOC 2013, ENDM, volume 41, pages
253–260, Tenerife, Spain, 2013.

[2] R. Borndörfer, B. Omont, G. Sagnol, and E. Swarat. A Stackelberg game to optimize the distribution of
controls in transportation networks. In Proceedings of GAMENETS 2012, LNICST, volume 105, pages
224–235, Vancouver, Canada, 2012.

[3] R. Borndörfer, G. Sagnol, and E. Swarat. An IP approach to toll enforcement optimization on german
motorways. In Operations Research Proceedings 2011, pages 317–322. Springer, 2011.

[4] C. Daskalakis and C. Papadimitriou. On a network generalization of the minmax theorem. Automata,
Languages and Programming, pages 423–434, 2009.

[5] M. Jain, E. Kardes, C. Kiekintveld, F. Ordóñez, and M. Tambe. Security games with arbitrary schedules:
A branch and price approach. In Proc. of The 24th AAAI Conference on Artificial Intelligence, pages
792–797. AAAI Press, 2010.

[6] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, F. Ordóñez, and M. Tambe. Computing optimal randomized
resource allocations for massive security games. In Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1, pages 689–696. International Foundation for
Autonomous Agents and Multiagent Systems, 2009.

[7] D. Korzhyk, Z. Yin, C. Kiekintveld, V. Conitzer, and M. Tambe. Stackelberg vs. nash in security
games: an extended investigation of interchangeability, equivalence, and uniqueness. J. Artif. Int. Res.,
41(2):297–327, May 2011.

[8] P. Paruchuri, J.P. Pearce, J. Marecki, M. Tambe, F. Ordóñez, and S. Kraus. Playing games for security:
an efficient exact algorithm for solving bayesian stackelberg games. In Proc. of the 7th AAMAS, pages
895–902. ACM, 2008.

[9] J. Pita, M. Jain, F. Ordóñez, M. Tambe, S. Kraus, and R. Magori-Cohen. Effective solutions for real-
world stackelberg games: When agents must deal with human uncertainties. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems-Volume 1, pages 369–376.
International Foundation for Autonomous Agents and Multiagent Systems, 2009.

[10] Z. Yin, A. Jiang, M. Johnson, M. Tambe, C. Kiekintveld, K. Leyton-Brown, T. Sandholm, and J. Sul-
livan. TRUSTS: Scheduling randomized patrols for fare inspection in transit systems. In Proc. of The
24th Conference on Innovative Applications of Artificial Intelligence (IAAI), 2012.

18

A Relation between Security Games and NSC Games

The class of security games has been formally introduced by Kiekintveld et. al. [6], and was at the origin of
a series of papers (see e.g. [5, 7, 9, 10]). We shall see that under a certain condition, a security game can be
cast as an NSC game. Moreover, this condition can be dropped if we use a class of extended NSC games,
whose definition relies on a vector parameter α ∈ RE instead of the scalar α ∈ [0, 1].

A security game is defined between an attacker and a defender. There is a set of targets T = {t1, . . . , tn}
which may be attacked. The mixed strategy of the attacker is a probability distribution p over {1, . . . , n}.
The pure strategies for the defender are given by a set of schedules S = {S1, . . . , Sm} (a schedule Si is
a subset of targets that can be covered by some defender’s resources), and there is a linear function ϕ
which maps a mixed strategy of the controller q̃ (i.e. a probability distribution over {1, . . . ,m}) to a vector
q = ϕ(q̃), that gives the marginal probability qt that a target t is covered by some defender’s resource. The
defender’s payoff Πd(p, q) is defined through the quantities U cd(t) and Uud (t), which represent respectively
the payoffs if t is attacked while being covered by some resource or uncovered:

Πd(p, q) =

n∑
i=1

pi[U
c
d(ti)qi + Uud (ti)(1− qi)].

Similarly, the quantity U ca(t) (resp. Uua (t)) defines the attacker’s payoff when the target t is covered (resp.
uncovered):

Πa(p, q) =

n∑
i=1

pi[U
c
a(ti)qi + Uua (ti)(1− qi)].

It is natural to assume that the quantities ∆Ua(ti) = Uua (ti) − U ca(ti) and ∆Ud(ti) = U cd(ti) − Uud (ti) are
nonnegative (cf. [7]).

We next show that if the ratio

αi =
∆Ud(ti)

∆Ua(ti)

takes the same value α ≤ 1 for every target ti, then the security game defined above can be cast as a NSC
game. This condition is related to our assumption that the factor α ≤ 1 that represents the fraction of
fines entering the controller’s payoff does not depend on the edges where evaders get fined. It would be
straightforward however to define an extended NSC game with a different factor αe ∈ R for every edge
e ∈ E.

We create the graph G = (V,E) by connecting a set of vertices {t1, . . . , tn} to a start depot node s and a
terminal node d:

V = {s, d, t1, . . . , tn}, E = {(s, t), (t, d) : t ∈ T}.

Define δ = maxt∈T U
u
a (t) and P = maxt∈T ∆Ua(t). For all t ∈ T , define w(s,t) = δ − Uua (t) ≥ 0, σ(s,t) =

P−1∆Ua(t) ∈ [0, 1], β(t,d) = Uud (t), and w(t,d) = σ(t,d) = β(s,t) = 0. We consider a single commodity
K = {(s, d)} on this graph, and we call Player 1 the unique user travelling on this commodity. His mixed
strategy can be represented by a probability vector p indicating the probability pi that he chooses the
(s, d)−path through ti. We assume that the controller inspects the section (s, ti) whenever the defender is
covering target ti in the original security game, so that the vector of marginal inspection rates lies in the

19

polyhedron

Q = {q̂ ∈ [0, 1]E : ∃(q, q̃) ∈ [0, 1]n × [0, 1]m :
m∑
j=1

q̃j = 1, q = ϕ(q̃),

q̂(s,ti) = qi, q̂(ti,d) = 0}.

The payoff of Player 1 can be written as follows, see (5):

Payoff1(p, q) = −
n∑
i=1

pi[σ(s,ti)q̂(s,ti)P + w(s,ti)]

= −
n∑
i=1

pi[∆Ua(ti)qi + δ − Uua (ti)]

= −
n∑
i=1

pi[(U
u
a (ti)− U ca(ti))qi + δ − Uua (ti)]

=

n∑
i=1

pi[U
c
a(ti)qi + Uua (ti)(1− qi)]︸ ︷︷ ︸

Πa(p,q)

−δ.

Similarly, the payoff of the controller rewrites

PayoffC(p, q) =
∑
i=1n

pi[α∆Ua(ti)qi + Uud (t)]

=
∑
i=1n

pi[∆Ud(ti)qi + Uud (t)]

=

n∑
i=1

pi[U
c
d(ti)qi + Uud (ti)(1− qi)]︸ ︷︷ ︸

Πd(p,q)

.

This shows that the present NSC game is equivalent to the generic security game presented above (up to
a constant term −δ in the Player 1’s payoff).

Conversely, we point out that every NSC game can be reformulated to a Bayesian security game, i.e. a
security game in which the defender faces simultaneously several types of attacker, see e.g. [8]. By doing
so, however, we loose the compactness of the representation of the NSC games, since all paths through the
commodities must be enumerated.

20

