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Abstract 

For adaptive solution of convection-diffusion problems with the streamline-dfffusion finite el
ement method, an error estimator based on interpolation techniques is developed. It can be 
shown that for correctness of this error estimator a restriction of the maximum angle is to be 
sufficient. Compared to usual methods, the adaptive process leads to more accurate solutions 
at much less computational cost. Numerical tests are enclosed. 

Keywords: Adaptive finite elements, convection-diffusion equation, 
internal and boundary layers, streamline-diffusion 

Subject Classifications: AMS(MOS): 65N15, 65N30 

The author would like to thank Erlinda Cadano-Körnig for her excellent TffpC-typing of the 
manuscript and my colleagues at the Konrad-Zuse-Zentrum for stimulating discussions. 



0. Introduction 

In the last years adaptive strategies in solving partial differential equations more and more enter 
into applications. Still more, efficient adaptivity is often the only way to compute accurate 
solutions to complex "real life" problems, such as problems in fluid mechanics with boundary 
and internal layers. Following the first step of applications to complicated flows, one can observe 
that adaptive methods open fascinating new possibilities using locally refined meshes. 
For quantitative error control a posteriori error estimates of the form 

||u — tx̂ D ~ ERROR(/i, Uh) (0.1) 

in a suitable error norm are needed. Here, u is the exact solution and Uh is the finite element 
solution on the mesh T described through the mesh parameter h. Now the goal is to reduce 
the error constructing an algorithm for the mesh T, such that the number of degrees of freedom 
is nearly optimal. It means that a sequence of meshes should be generated which realize an 
approximation solution of the complex nonlinear problem 

II« — Uhh\ => mi i (0-2) 

for all T with a fixed number of degrees of freedom. Note that the minimization process based 
on seeking the equidistribution of all element errors to the global quantity in (0.1). 
In the recent paper of ERIKSSON/JOHNSON [3] adaptive streamline-dfffusion finite element 
methods for convection-diffusion problems are discussed. Therein the error estimates are based 
on a representation of the error in terms of the solution of a certain dual problem. For their 
discretization they use triangulations which satisfy the minimal angle condition. In some sense 
this condition is very restrictive, especially in the case where functions change more rapidly 
in one direction than in another direction. Therefore, it is of interest to develop methods 
for computational fluid problems where the mesh can be stretched, more preciously, the mesh 
orientation should be adjusted to the flux direction. That mean- in (0.1) 

ERROR(/i, UhC < C (0.3) 

if one angle tends to zero with C independent of that angle. 

An anisotropic refinement strategy which can be used if some information about the appearance 
of layers is known in advance is introduced in K O R N H U B E R / R O I T Z S C H [8]. Therein, the mesh 
control is based on the gradient of the numerical solution and therefore mesh refinement takes 
place only in regions where the numerical solution rapidly changes. 

Here, an error estimator is obtained by using the standard local finite element interpolation 
estimates. Together with the main result of B A B U S K A / A Z I S [1] it can be shown that for cor
rectness of the error estimator a restriction of the maximum angle is to be sufficient. For a 
one-dimensional convection-diffusion problem with dominated convection, a theoretical founda
tion of the equidistribution of such an error estimator over all elements was developed in LANG 
[9]. 

This paper consists of six sections. In Section 1 the model convection-diffusion type problem 
is considered. The transformation from the standard triangle to a general triangle is studied in 
Section 2. The choice of the local parameter of the streamline-dfffusion method is motivated 
in Section 3. A priori interpolation error estimates are developed in Section 4 and the adaptive 
process is described in Section 5 . Finally, in Section 6, the results of some numerical experiments 
are given. 

2 



1. The Model Problem 

In this paper we consider the model problem 

-eAu + /?Vui = / in Q 
u = u0 on To (jj\ 

du ^ ' ' 
^j— = 0 on Ti . 

Here, Q is a bounded polygonal domain in IR with boundary T = To U Ti, To n Ti = 0, 
ß : Q —*• IR is a given smooth vector field with 

— div ? > 0 in Q , (1.2) 

0 < e -C 1 is a given small diffusion coefficient. The part T0 of T includes all inflow boundary, 
that means 

ß n n > 0 on Ti . (1.3) 

It is well known that internal or boundary layer may occur in the solution of (1.1). 

Let Th = {K} be a partition of the domain Q into triangular elements K, such that 

C(/Q < Co < TT , V/C 6 T), (1.4) 

where C(K) denotes the maximum angle of K. 

Given D C IR we define the usual norm and seminorm in the Sobolev spaces H (D), I > 1, with 

\V\J,D = \\D"v\\o,D , M = / 

and 

\\v\\l,D = IMIo.D + 2 ^ Mm.* . 
K m < / 

— l 

at/i+1/2 

= / f i QJ/2 > ^ = ^ 1 ' , » ^ 2 / , k l = ^1 "t" ^2 

where || • ||o,x> stand for the usual norm in L<2{D). 

Denoting by S(Th) the set of all continuous functions on Q, which are linear on each K E Th, 
we define the finite element solution space by 

Sh '•— {VH G S(Th) | vh = wo on To} 

and the special spaces 
Hi := {v e H (Q.) I v = 0 on r0} , 
V/i := \Vh € S'(Tft) I t;̂  = 0 on T0} . 

For the solution of (1.1) we use the following streamline-dfffusion method: 
Find Uh G Sh such that 

e(V«/i, Vüfc) + (^Vw/ih v/j -+- SßVvh) = (/,h>/j + 6ßvh,, Vi>/, G V/i . (1.5) 

Here 8 : Q —»• IR is a positive, piecewise constant function which will be specified later, and (•, •) 
denotes the Z^-inner product. 

For the method (1.5), we introduce the bilinear form 

Be(w, v) := e(Ww, Vi>) + (ßVwvv + 6ßVv,, v,w(zH (Cl) (1.6) 

such that we can rewrite (1.5) as 

Beuuhh )h) = (/, V,) , V Vh £ .h • (1.7) 

Further, for an error estimate in Section 4 we introduce the special norm 

\\v\\? := e | |Vv| | o n + S\|PVi>||0jQ + ± | | |divpl ^Ho.r "̂ " Ilulo,ri \*--°) 

for all v £ HQ where 

Mo,rx
 : = J «2ß-n ds • (1.9) 
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2. Local Interpolation Error Bounds 

Let K denote a typical triangle of Th. Since the norms of H (D) are invariant with respect to 
the rotation of the coordinates, we can restrict ourselves to the case when one side of the triangle 
is along a coordinate axis (see Fig. 2.1). 

F i g u r e 2 .1 : Triangles 

Without any restriction of the general validity we have 0 < a < 1 and \w\ < 7r/2. Further 
let 7 := tan tu. Denoting by A the unit triangle with the vertices Pi = (0,0), P2 = (1,0) and 
P3 = (1,0) the affine-linear mapping F : A —• K is provided by 

(2.1) 

where (£r rj) £ A. 

For the Jacobian matrix J of this mapping we have \J\ = ah?K. The inverse mapping F~l : 
K —•• A is given by 

£ = 

77 = 

1 7 
- — - — -—y 

IK 

for (x, y) £ K. 

We define for D = K and D = A the special spaces 

£D '•= {v £ H (D) I v(x,y) = 0 in the vertices of D} . 

For our further investigation it is necessary to use the following 

Lemma 2.1 ( B A B U S K A / A Z I Z (1976) [1]) 

Let for v £ £A 

A L 

dv\ 
d^dt] 

and 

d£dr) 

TAen there exist A2 > 0, suc/i //jat for a// a with 0 < a < 1 

yl < mi — M«*) 
Z^i(a) 

(2.2) 
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Proof. See [1]. 

Now we can formulate the main result of this section. 

L e m m a 2.2 Let v 6 £K- Then 

IMIO.Ä" S. 0.2587(1 + |7l + 7 ) ^/fl^b K 

and 

\v\lK<A-2(l + \l\ + 72fh2
K\v\lK\. 

(2.3) 

(2.4) 

Proof. To prove this lemma we shall employ the standard technique using transformations of 
K G Th into A. However, all estimates are to be done more finely than usually. Transforming 
the integrals over K to A by means of (2.1) we obtain with 

for all a with 0 < a < 1 

v(€,r)) :=v(x(£iT])(y(£jr})] € £>K 

\\v\fcK — I |-D(̂ \ 77) |2 \J\d£drj = ah2
K \V\Q l (2.5) 

and 

'\l,K = \J Tjyv(S,r))\2 \J\dtdr) 
A 

- / / (i + lTl + T2)!^-2 +^(2(l + ITI) ) -r| d$dri 
(2.6) 

< «a + w+,2)/f(S) +a- 2g d£dr] . 

Due to Lemma 2.1 there exist A2 > 0 such that in (2.6) 

\v\i,K 5: ( I l + |7I + T )A h(«) . 

In (2.5) we get 

(2.7) 

(2.8) IMlo.K" 5- 0.2587ahKIV^K < 0.2bS7ah^l2(cx) . 

The first inequality is a result of W E I S S [11] obtained by solving an eigenvalue problem. Re
maining the back transformation of I-2{a) to the triangle A', we have by (2.2) 

h(a) • /[(S)2+2a"2(S) +a~iS) 
J \OX2 J 

dtdr, 

= ht -\-„a~'1 ( ay2 + a - ^ - V — h ^ I I I V I I „(\-2 U"Y  
KJ \\dx2 J \ dx2 + QcxdyJ 

d2v 
*2 . -\-a ( a V "Ö-2 + 2c*) 

dh 
dxdy 

+ a' 
:0 v 
dp2 \J l\dxdy . 

Squaring the three expressions and applying the inequality 2ab < a2 + b2 to the mixed terms, 
we easily found that 

/2(a) < (l + l7l + 7) a ÄK\v\2j{ • (2-9) 

Combining the inequalities (2.7), (2.8) and (2.3) we arrive at the lemma. • 
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R e m a r k 2 .1 : An immediate consequence of Lemma 2.2 is the inequality 

IMIo.K" + h"k\v\ltK < C(C(^))^k\v\2,K (2.10) 

for all K G Ty, where C(£(K)) is an increasing finite function of the maximum angle £ of 
triangle K. Note that there is an essential difference to the analogous theorems in the literature, 
where the minimum angle must be bounded below. Here, to obtain a uniform estimate only the 
inequality (1.4) is needed. This fact is useful for adaptive mesh refinement. 

For the interpolation function, which belongs to SK, SYNGE [10] was probably the first who 
suggested that it is better to pay attention to angles that tend to ir rather than those that tend 
to zero. After that there are several approaches to this problem, for instance see B A B U S K A / A Z I Z 
[1] and J A M E T [5]. 

R e m a r k 2.2: The unknown constant A2 in Lemma 2.1 was specified in B A B U S K A / A Z I Z [1] as 

A = inf 
v IU 

»e© |MIO.A 

where 0 := {v G / /^(A)! f0 v(Q,r))dr] = 0}/{0}. For practical computation one can estimate A2 

in the following way 

2 • \V\l,A 2 

u £ 0 ll^llO.A 

Q = {v £ H1(A)\v ^ const.}. The inequality is a direct consequence of 0 C 0 . The minimiza
tion of the new Rayleigh quotient is equivalent to seeking for the minimal positive eigenvalue of 
the Neumannn problem for the Laplacian over the standard triangle A (cf. I W A N O W / K O R N E E W / -
LANG [4]). 

3. A Geometric Motivation for 6 

In the following we use the well-known inverse estimate 

l|Vv||g j-i < Cj/i ||v||0in (3.1) 

for all v G H (Q) which are piece wise linear over each K G T/,. To prove a standard stability 
estimate the inequality 

6<CCJ — (3.2) 

is to be satisfied. Therefore, in the streamline-dfffusion method by e < h one has to choose 
Ö ~ ch with arbitrary small c. For more details see JOHNSON [6]. 

Now we would give a geometric motivation for the choice of 6 in the context of adaptive tech
niques. With the help of the results from section 2 we are able to specified the constant Ci in 
(3.1) more precisely. Let us again consider the triangle from Fig. 2.1. 

Lemma 3.1 Let v G Pi(K). Then 

\V\\,K — (-l + |TI "T T 2j~|0 I2*llt;llo,Ä' \A»V 

where C/(A) is the inverse constant for the standard triangle. 
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Proof. The proof directly follows from the relations (2.5) and (2.6) and the fact that 

M2 s r< (AMI„I|2 
IA - U A ^ ; l F l l o , A 

holds for all v£ Pi (A). • 

Lemma 3.1 shows that according to (3.1) locally holds 

6K < C{ah,K) — . (3.4) 

From the view-point that the adaptive algorithm should lead to resolution of the layers, one 
has e ~ othx for boundary layers and yfi ~ OCKK for internal layers. That means in (3.4) 
SK ~ C{^K) and 6K ~ c respectively. So we can identify the paramater SK with the desired 
mesh size in flux direction. Denoting by hflux(K) the maximal diameter of K E T), in flux 
direction, we get 

6K ~ C hflux{K) , K G T/, . (3.5) 

R e m a r k 3 .1: The characterization of SK in (3.2) according to £ < h is typical for nonadaptive 
techniques. All sides of the triangle have the same rights. In contrast to this we associate with 
any triangle two real numbers (oc,h,K) and get (3.5) for adaptive strategies. 

4. A Priori Error Estimates 

In this section we will give a priori error estimates based on local interpolation error estimates. 
For this we assume the regularity u E H2(Q). 

Let us denote by ü^tt the usual Lagrange interpolation of the exact solution u over the nodal 
points of TV Then UhU satisfies the well-known approximation property 

||w - Ilfttzllo^ +h.K\u — ri/,u|>,K < ChK\u\2tK (4.1) 

for all K E Tj». Note that according to (u — Uhu)\K E SK for the more detailed description of 
the constant C in the right-hand side we can use the results of Section 2. 

Now we would give for the used streamline-dfffusion method (1.5) the natural connection be
tween the global discretization error and the global interpolation error. 

L e m m a 4.1 Let u and w/, be the solutions o/ (1.1) and (1.5) repectively. Then 

\\u - iihl\£ < e\\V(ut - Il/,w)||0 fi + 2<§\|/?V(u - II/i*)||S fi + 26" ||M - n/,tt||>jn . (4.2) 

Proof. At first we note that for v E HQ(^) Greens-formula supplies in (1.6) 

(/?Vv, t>) = \ / v ß s n ds - ±(div/3 • v,v) . 

We let the discretization error be e := u — Uh and define rj )— u — Il^it. Thii smplies s G H0(Q) 
and the equality 

||e||j = Be(ee)) = B,(eirj) - B£(euhh - U^w) . (4.3) 

Following (uh — 11/,u) E Vh the second term of the right-hand side vanishes. Now applying the 
Cauchy-Schwarz-inequality and the inequality 2ab < vo? + ^6 for any v > 0 we get 

Bc(e,t]) = ^(Vc. Vr/) + ^(ßVe/ J^7rj) + (/?Ve,7/) 

< § ( | | V e | | 0 ^ + ||Vr//|of l) + f ( j | l / ^ ^ | 2 ) n "T" 'A 

+ \{l\\ßVe\\l,n + l\\,n\\l,n) 
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and finally 
llell? < ^ll^^llo.n + 2«||/?V77||0|fi -f 2d ||^||o,n 

which proves the desired estimate. • 

According to (u — Il/ju)K £ £K for a further estimation of (4.2) we can use Lemma 2.2. 

Theorem 4.2 Let u and Uh be the solutions o/(1.1) and (1.5) respectively. Then holds 

\\U-Uh\\%< J2 (Ci(e,S,ß,y)+ C2(6,7)h2
K)h2

K\u\lK (4.4) 

where 

and 

KeTh. 

C1(£,<,p,T) = 7r (£ + 2öx niax(|pi1| |p2|))(l + |7 | + 7 ) 

C2(^,)) = 0.5174 6f( (1 + ITI + T ) -

Proof. Splitting up the norm in the right-hand side of (4.2) and using directly Lemma 2.2 to 
v = (u — Uhu)\K £ £-K we obtain the inequality (4.4). • 

Now the error control will be based on this optimal a priori estimate. 

5. The Adaptive Algorithm 

Given now a tolerance TOL > 0 our aim is to find a finite element solution UH satisfying 

| p - uh\\t < TOL . (5.1) 

The obvious idea is to improve Uh in an adaptive process through equidistribution of all element 
errors. Thus, Theorem 4.2 leads us to the following choice of the local mesh size hx'-

((Ci-\-C2hKhhK\u\2 x) ~ .. —: ETOL (5.2) 

where Ne denotes the number of elements. To give this guideline a practical meaning, the 
approximation of the second derivatives of the exact solution u is needed. It can be done by 
using certain local difference quotients of computed gradients of the numerical solution it/,. 
Thus, our adaptive algorithm is based on a optimal a posteriori error estimate of the form (4.4) 
replacing |it|2 x by a function of u^. 

To compute approximations of the seminorm |u\^ K locally we shall apply the operator 

DKUh := meas(A') • \ £ (|[V«fc]r|/'1T) , K € Th (5.3) 
T£dK 

where [-]T denotes the jump across the edge r of K which is of length hT. The operator was 
also propagated in ERIKSSON/JOHNSON [3] and may be viewed as a discrete counterpart of the 

seminorm \u \l,K-



The algorithm can now be formulated as follows: 

Step 0: Choose an initial mesh T° satisfying the maximum angle condition. 

Step 1: Given a mesh TX, compute the corresponding finite element 

solution Uh £ Sh-

Step 2: Compute the error indicator for each K £ T)» 

\ /22 / „ „ „ \ 
ZK '•= [(Ci + Czh^hj^Dj^Uhj 

Step 3: If Zk < ETOL for all K £ Th then stop else construct a new mesh 

and go to step 1. 

Our refinement strategy consists of the well-known local refinement dividing certain triangles 
into four similar triangles by connecting the midpoints of the sides (red refinement). To remedy 
irregular nodes an additional irregular refinement is taken (green refinement). In a special case we 
will apply an adjusted refinement giving preference to the flow direction which has to be derived 
from a posteriori information (blue refinement). For more details we refer to BANK E T AL. [2 ] 
a n d JYUKNHUBfcyR/rLOllZbCH [pj . 

Finally, a triangle K £ T/j is marked for refinement, if 

Z«>JTHZK (5-4) 
6 K£Th 

with some constant C specified later. 

6. Numerical Results 

E x a m p l e 6 .1 : In t e r io r a n d b o u n d a r y layers. At first, for comparison, we consider a 
similar problem to that in JOHNSON/ERIKSSON [7]. For actual computation we choose Cl = 
(0,1) x (0,1), To = Tm U {(x,y)\x = 1, y < 0.8} with Tin := {(xy)) £ dQ,\max.(x, y) < 1}, 
Tj = ö ß \ r o , e = 10" , ß = (1.0, 0.5), / = 0 and 

{ 0, y > 0.3, (x,y) € r , n 

1, y < 0.3, (x,y) € Tin 

0, x= 1, y y<08. 

It is easily seen that the exact solution shows a linear internal layer proceeding from the discon
tinuity transport in the flux direction ß and an outflow layer. 

The constant in (5.4) was chosen such that the nodes on each level are comparable. In Fig. 6.1 -
6.2 we give some results with our algorithm for ETOL = 0.1. 

One immediately sees a concentration of mesh points in the layers. This leads to a reduction of 
the error. In a direct comparison with the results in JOHNSON/ERIKSSON [7] we can emphasize 
that our adaptive method detects and resolves the layers in a similar good way. Note, here the 
streamline diffusion without shock capturing is used and therefore oscillations of the numerical 
solution may still occur. 

E x a m p l e 6.2: B o u n d a r y layer. In many problems of practical interest boundary layers 
play an important role. As a simple example we choose Q — (0,1) x (0,1), To = <9fi, e = 10~ , 
ß = (0,1), / = 1 and uo(xy)) = 0. The exact solution exhibits an ordinary boundary layer 
at the outflow boundary r o u t = {(y, y) G d£l\y = 1} and the birth of a parabolic layer at the 
characteristic boundary rchar = {(^J)/) £ dCl\0 < y < 1}. 
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Here the constant in (5.4) was chosen such that the coefficient ,A/'(f
ew/Af° lies in the interval 

[2,3]. 

The results on the final level 6 for ETOL = 0.1 are shown in Fig. 6.3. 

We notice that the adaptive method results in a good resolution of the solution in the layer 
without oscillations. 

E x a m p l e 6.3: I n t e r i o r cu rved layer. Let us change in Example 6.1 the flux direction to 
ß — (y, —x), the diffusion parameter to e — 10"5 and the boundary condition to 

«o(*>y) = | i ' y < O j ' (x'^Gr° 

with T0 = Tin = {(x, y) G dQ,\x = 0 or y = 1} and Y\ = dQ\Tm. At hand this problem we would 
demonstrate how the local estimator works if anisotropic refinement is applied. For details on 
realization of so-called blue refinement we refer to K O R N H U B E R / R O I T Z S C H [8]. Here we realize 

Figure 6.4 shows that only with 184 nodes the solution is approximated with an acceptable 
accuracy. 

Note that for this problem the usual minimal angle condition no longer holds. 

F i g u r e 6 .1: Display of mesh and elevation of approximate solution for computation level 5 and 
level 6. 
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Level Nodes 

Maximum of 
approximate 
local error 

Approximate 
global error 

1 25 0.4945 1.4223 | 

2 79 0.3530 1.1259 | 

3 190 0.2496 1.0709 | 

4 451 0.1765 0.9296 
5 1021 0.1248 0.8461 | 

6 2304 0.0883 0.7701 

Figure 6.2: Curve of final solution. Estimated error in the 
of meshes. 

||e-norm and nodes on sequence 
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Level Nodes 

Maximum of 
approximate 
local error 

Approximate 
global error 

1 41 0.4876 1.3460 
2 123 0.3844 1.4359 
3 293 0.2883 1.5705 
4 641 0.2020 1.5162 
5 1400 0.1345 1.3376 
6 3073 0.0798 1.0874 

F i g u r e 6.3: Display of mesh, elevation and curve of final solution on level 6, history of errors 
in the || • ||c—norm. 
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Figu re 6.4: Display of mesh, elevation and curve of approximate solution with 184 points. 
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