><P<P<P<><P<>
X X X XXX]

AKX XXX XA

Konrad-Zuse-Zentrum fir Informationstechnik Berlin

L. Weimann

U. Nowak

A Family of Newton Codes for Systems

of Highly Nonlinear Equations

10 (December 1991)

Technical Report TR-91-

A Family of Newton Codes for Systems
of Highly Nonlinear Equations

U. Nowak L. Weimann

Abstract

This reports presents new codes for the numerical solutiuon of highly nonlin-
ear systems. They realize the most recent variants of affine invariant Newton
Techniques due to Deuflhard. The standard method is implemented in the
code NLEQ1, whereas the code NLEQ2 contains a rank reduction device
additionally. The code NLEQIS is the sparse version of NLEQ1, i.e. the
arising linear systems are solved with sparse matrix techniques. Within the
new implementations a common design of the software in view of user inter-
face and internal modularization is realized. Numerical experiments for some
rather challenging examples illustrate robustness and efficiency of algorithm
and software.

Contents

0 Introduction

1 Global Affine Invariant Newton Techniques
1.1 Outline of algorithm
1.1.1 Newton methods
1.1.2 Affine invariance
1.1.3 Natural monotonicity test
1.1.4 Damping strategy
1.1.5 Newton path
1.2 Basic algorithmic scheme
1.3 Details of algorithmic realization
1.3.1 Choice of norm
1.3.2 Scaling and weighting
1.3.3 Achieved accuracy
1.3.4 Solution of linear systems
1.3.5 Rank reduction
1.3.6 Rank-1updates
1.3.7 Refined damping strategies

2 Implementation
2.1 Overview.
2.2 Interfaces
2.2.1 Easy to use interface
2.2.2 Standard interfaces
2.3 Options

3 Numerical Experiments
3.1 Test problems
3.2 Numerical results for the basic test set

3.3 Special experiments

A Program Structure Diagrams

O O O e e

11
13
15
15
16
20
22
24
26
28

31
31
32
32
33
37

44
44
46
52

61

0. Introduction

The efficient and robust numerical solution of a system of nonlinear equa-
tions can be a rather challenging problem — especially in cases where only
little a priori information on the solution is available. A quite outstanding
method for solving nonlinear equations is the Newton method, an iterative
scheme which is known to converge quadratically near the solution, but only,
if the initial guess is sufficiently close to the solution. Now, in order to ex-
tend the convergence domain of Newton’s method, some globalizations are in
common use, e.g. damped Newton methods, steepest descend methods and
Levenberg-Marquardt methods. Based on the latter techniques, some state-
of-the-art software has been developed, e.g. the codes from IMSL, NAG and
MINPACK [23]. In contrast to this, the codes presented in this paper are
based on the affine invariant damped Newton techniques due to Deuflhard
[5, 6, 7). Within these algorithms the usual local Newton techniques are
combined with a special damping strategy in order to create globally conver-
gent Newton schemes. One essential property of these algorithms — as well
as of the underlying theory — is their affine invariance. As far as possible,
this property of the algorithms is preserved by the codes. Furthermore, the
damping strategy and the convergence checks are implemented in a scaling
invariant form — a feature which is extremely useful especially for real life
applications.

The codes presented here are revised and extended versions of former research
codes due to Deuflhard. Within the new codes the most recent theoretical
results of [7] are regarded and, furthermore, some new algorithmic variants
are realized. The main new features of the implementation are the internal
workspace management, an option setting concept and the modular program-
ming. The new interface allows on one hand an easy-to-use application and
on the other hand an easy selection and control of special features of the
codes. The codes are still considered to be research codes, in the sense, that
a variety of algorithmic options may be set by the user and that they are not
optimized with respect to performance.

The family of Newton codes which is presented in this paper consists of three
different codes. The code NLEQ1 represents the basic version of the global
affine invariant Newton algorithm. The code NLEQ2 contains, in addition
to the damping strategy of NLEQ1, a special rank reduction device. Finally
there is the code NLEQ1S, which is the sparse version of NLEQ1, i.e. sparse
matrix techniques are used for the solution of the internally arising linear
systems. All these codes belong to the numerical software library CodeLib
of the Konrad Zuse Zentrum Berlin, thus they are available for interested
users.

The paper is organized as follows. Chapter 1 contains a detailed description

of the algorithmic characteristics of the global affine invariant Newton codes.
Within Section 1.1 the main features of the basic algorithm are outlined,
and the whole algorithm is summarized in Section 1.2. Section 1.3 deals
with details and variants of the basic algorithm, e.g. internal scaling, rank
reduction and modifications of the damping strategy. Chapter 2 describes
the implementation of the basic algorithm and its variants. First, a general
overview is given in Section 2.1. Section 2.2 deals with the interfaces of the
codes and Section 2.3 describes how to use and adapt the special facilities of
the codes. Typical numerical experiments are presented in Chapter 3. First,
in Section 3.1 a set of test problems is established. The numerical results of
solving a certain basic test set are given in Section 3.2. In order to rate these
results some comparisons with another state-of-the-art code (HYBRJ1 from
MINPACK [23]) are presented. The results of some special experiments are
reported in Section 3.3. Finally, some concluding remarks are made.

1. Global Affine Invariant Newton
Techniques

The codes presented in this paper are designed to solve a system of n non-
linear equations in n unknowns:

fl(.%'l, ce ,l’n) =0
: : (1.1)
fn(l'l, Ce ,l’n) =0
or, in short notation:
F(z)=0 (1.2)
where
F:D— IR"
r=(z1,...,2,)T € DCIR"
Usually, some a priori information about the solution point x* of (1.2) is
available in form of an initial guess xy. Besides the nonlinearity of F' and the
dimension n of the system, the quality of this information will strongly affect
the computational complexity of solving (1.2) numerically. Taking this into
account, the complete problem formulation may be written as:
a) F(z)=0, z€R"

(1.3)
b) 1z given initial guess.

1.1 Outline of algorithm

Within this Section the basic ideas and considerations, which led to the de-
velopment of the damped affine invariant Newton methods due to Deuflhard
[5, 6, 7], are shortly described. A proper and detailed mathematical formu-
lation of that topic can be found in the recent monograph of Deuflhard [7].
Note that the theoretical advantages of these algorithms — as well as their
limitations — show up also in the codes presented in this paper.

1.1.1 Newton methods

First, consider the ordinary Newton method for problem (1.3). Let

o on
0xy oxy,

J(z):=F'(x) = : : (1.4)
O fn 0 fn
3o A

denote the Jacobian (n,n)-matrix, assumed to be nonsingular for all z € D.
Then, for a given starting point z¢y € D, the ordinary Newton iteration reads

k=0,1,2,...

a) J(xp)Azp = —F(x

) J(wx)Axg (k) (L5)
b) Tpy1 = T+ A.l"k

Axy : ordinary Newton correction.

This method is known to be quadratically convergent near the solution x*,
i.e. only a few iteration steps are necessary to generate a highly accurate
numerical solution for (1.3). However, the scheme (1.5) is only locally con-
vergent, i.e. the initial guess xo must be ”close enough” to the solution x*.
To achieve convergence also for "bad” initial guesses xy, one may globalize
(1.5) by introducing a damping parameter A\. With that, (1.5) is extended
to a damped Newton iteration

k=0,1,2,...
a) J(xp)Azx, = —F(zg)

(1.6)
b) Tpy1 = T+ M AT

Ax : damping factor (0 < A, <1)

Indeed, in order to create an efficient and robust solution method for problem
(1.3), this iteration must be combined with an adaptive steplength control.
Within such a procedure the damping factors Ax should be chosen in such
a way, that the iterates xy approach successively the solution z* — possibly
fast. As the "true” convergence criterion

[k = 2| < flew — 27, 2 # 2 (1.7)
and the associated stopping criterion
|xks1 — ™| < tol (1.8)

are computationally not available, substitute approach criteria must be intro-
duced. Usually, such criteria are based on the definition of a so-called level
function (test function). A widely used level function is given by

T(x) = S| F(@) = 5 F () Fla) (1.9

and (1.7),(1.8) may be substituted by

T(.I]H_l) < T(.ka) (1.10)

T(xpy1) < tol . (1.11)

The main objection to this type of criteria is, that the checks of (1.10) and
(1.11) are made in the "wrong” space, namely in the space of the residuals.
Instead of this, the approach and the quality of the iterates z; should be
checked in the space of the (unknown) solution z*. This requirement is also
a consequence of the general affine invariance principle, which is the leading
theoretical concept of the Newton techniques due to Deuflhard.

1.1.2 Affine invariance

Let A denote an arbitrary nonsingular (n,n)-matrix, i.e. let A € GL(n).
Then problem (1.2) is equivalent to any problem of the type

A-F(x)=0. (1.12)
In other words, problem (1.2) is invariant under the affine transformation
F— G:=AF, A€ GL(n). (1.13)

Equivalently, problem (1.2) is said to be affine invariant. This property is
shared by the ordinary Newton method. Application of method (1.5) to the
transformed problem (1.13) yields corrections

AxS = —G'(zp) 7 Glay) = —F'(vp) AT AF (21) = —J(23) " F (21) = Az,

Hence, starting with the same initial guess z§ = z{’, an identical itera-
tion sequence {z§}r—012.. = {@f k=012, is generated. Consequently, for

a damped Newton method of type (1.6) the affine invariance property of
problem (1.3) should carry over. Thus, an adaptive steplength control algo-
rithm for (1.6) must be formulated in terms of affine invariant quantities —
including affine invariant substitute criteria for (1.7),(1.8).

1.1.3 Natural monotonicity test

In order to create a computationally available affine invariant convergence
(monotonicity) criterion one may define generalized level functions

1 1
T(x|B) := 5;\3 CF(z)||3 = §FTBTBF, B e GL(n) (1.14)

which have the property

T(z|B) >0& o #a*,
T(x|B)=0& 2z =2a".

With an accepted iterate x, and a trial iterate x4 (e.g. from (1.6)) at hand,
the associated generalized monotonicity criterion reads

T(xp41|B) < T(x|B) . (1.15)
A quite outstanding choice for B turns out to be (see (1.25) below)
B = J(x) . (1.16)

This choice ensures affine invariance of (1.14) and (1.15). This can be seen
easily by applying (1.14), with the choice (1.16), to the original problem
(1.2) and to the transformed problem (1.12) respectively. With the notation
Fy, = F(xy), Jy = J(zx) = F'(zr), Gk, = G(z), G}, = G'(x1), one has

1
T o= Tl I) = 5F T T P

and .
TE = T(x|G) = §G£G';TG',;1Gk.
Using G = AF, G’ = AJ one immediately obtains:

T& = 5(AR) (AT (AJ) (AF)
=LFTATAT T T P ATIAF,
= yF T
=TF
For the left hand side of (1.15) one has
Ty o= T(wps|J7h) = % widi Ty P

and obviously

=k _
Tg = T(xk‘-f-l’G/kl)

=T
holds. Thus, the approach to the solution x* of a trial iterate x4 is tested
by the affine invariant natural monotonicity check

T(xpea|) < Tkl). (1.17)

In contrast to the above mentioned convergence check (1.10) — which is,
however, not affine invariant — the evaluation of (1.17) requires some addi-
tional computational work. First, note that the evaluation of

_ 1, _ 1
Tl i) = 5195 FIE = 5 lAw3

7

is (essentially) for free, as the ordinary Newton correction
Axy, = —J ' Fy, (1.18)

has been already computed in order to generate the trial iterate zyxy1 =
i + AAzy. But, in order to evaluate

_ L,
T(zplJyt) = Sk FFRall?
the so-called simplified Newton correction

Az = —J P (1.19)

has to be computed additionally. However, this additional amount of work
is usually small — compared to the overall costs for one Newton step (eval-
uation of Fj, Ji, solution of (1.18)). Recall that the computation of the
ordinary Newton correction is usually done by solving the linear system
(1.6.a) with direct linear solvers (LU-decomposition of Jj, followed by a for-
ward /backward substitution). Now, in order to compute Az just another
forward /backward substitution is necessary. Things may change for large
scale systems, where the linear systems must be solved with iterative meth-
ods. Affine invariant Newton techniques for this case have been studied in
[8]. One result of the investigations in [8, 24] is, that the additional costs for
solving (1.19) are again acceptable.

The combination of a damped Newton iteration (1.6) with the natural mono-
tonicity criterion (1.17) turns out to be the essential step in order to have
a globally convergent Newton method. In principle, any (affine invariant)
damping strategy can be added to (1.6),(1.17). As an example take a step-
length strategy of Armijo type [1] selecting damping factors

Ak €41, %, i, -+ +y Amin } subject to

A
T(we+ Melael i) < (1=)T (il I)
T (g + MAxy|) = m/\inT(a:;€ + Mz J).

Concerning a substitute stopping criterion for (1.8), the condition ||Azg41| <
tol is a quite natural choice, as the Newton iteration converges quadratically
near the solution z*. Moreover, since |Axji1|| =~ |[[Axsi1]| holds near z*
(i.e. A = 1), one may apply a criterion in terms of the simplified Newton
correction Azyyq,

[Azgia) < tol. (1.20)

In this case, the current iterate x;,; may be improved by adding Az, thus
saving the computation of the next ordinary Newton correction Axyyq. In

order to overcome pathological situations, the above criterion (1.20) is only
accepted for termination, if additionally the condition

a) ||Azg|| < Vitol- 10
(1.21)
D) Ae=1

holds.

Finally, a quite interesting feature of the natural level function should be
mentioned. The steepest descent direction Azy, for T'(zy|B) in xy is given by

Ay, := —gradT (z;|B) = —JL BT BF.
Therefore, the specification B := J; ! yields
Axy = —JET VT R = Axy

In other words: for a given xy, the steepest descent direction for the natural
level function T'(zx|J; ') and the ordinary Newton correction coincide.

1.1.4 Damping strategy

The above mentioned outstanding choice B := J;; 1 as well as the selection
of an associated optimal damping factor A for (1.6) is based on a substantial
theoretical result (see [7, 5] for details and proper formulation). In order
to characterize the nonlinearity of the problem, one may introduce an affine
invariant Jacobian Lipschitz constant w. Assume that a global constant w
exists such that

1/ ()~ (y) = J (@)l < wlly — =]

(1.22)
r,yeD, w<oo
Then, with the convenient notation
hy = ||Azg|| - w, hyg = hicond(BJ(zy)) (1.23)

the following inequality holds
a) T(xy+ Mz B) < t3(A\B)T(xx|B)
where (1.24)
b) tu(A\|B) =1— A+ 1N\,

The result (1.24) implies, that maximizing the descent means minimizing
tk(A|B). Straightforward calculations leads to the optimal choice

opt _ : 1
a) A (B)—mm{LE—k} (1.25)
b) B = J(z))!

9

with the extremal properties (B € GL(n))
a) A < t(AB) (1.26)
b) NI = A(B). '

In order to have a computational available estimate Ay for A\7*(J; 1) due to
(1.25) and (1.23) an estimate for w is required. From (1.22) a local estimate
[wg] for the local Lipschitz constant wy, < w can be derived. Estimating

[Azy, — Axyl| = [T Fy — Ji |
= [T Ted i B = T e 2 Fi|
= |7 (Jk = Ji—1) Ay
< T (@per + A1 Azgr) — T (w-1)]|] - [[Ay
< w1 [Az || - ([Azl

an affine invariant local estimate

WE| = — S Wi S w 1.27

R PR - Ve 2
is inspired. Insertion into (1.23) and (1.25) respectively yields an a priori
estimate for the damping factor AP

1
a))\g)) = min {1, —}
()

Axp — A A
b (0] .= N8z daddliAzdl) -
Az [|[| Azl
Note that this so-called prediction strategy requires information from 1 the
previous Newton iteration (accepted damping factor A;_1, corrections Axy,

Axp_1). Thus, for the very first iteration of (1.6) an (user given) initial

(1.28)

estimate)\(()0) is required. However, if this value (or the a priori factor)\g)),
k > 0) leads to a failure of the natural monotonicity test, a so called reduction
strategy can be invoked. Recall that at this stage of the computation a
first trial value xxy1 = xx + A;O)Aa:k and the associated simplified Newton
correction A—xgizl = —J'F (:cgﬂl) are at hand. Based on this information
one is able (c.f. Bock [2]) to compute (recursively) a posteriori estimates

[hggj)]d =1,2,... and to establish a reduction strategy

| N
a) A= min{l,k—, &
2 [n

A [A

(1.29)

10

Usually, this a posteriori loop is quite rarely activated. Nevertheless, in order

to avoid an infinite loop, the estimates)\k ,7=12 ... — as well as the a
priori estimate)\§€ — must satisfy the condition)\g 2)\mirw 7=0,1,2 ..,

where \,,;, denotes a minimal permitted damping factor. Otherwise, the
damped Newton iteration (1.6) is stopped.

1.1.5 Newton path

There is a quite interesting theoretical consideration which gives insight to
the behavior of the damped Newton algorithm derived above. Recall the def-
inition of the generalized level function (1.14) and the associated generalized
monotonicity criterion (1.15). As long as B is not yet specified, a general-
ized, but quite natural, requirement for an iterative method is, that the next
iterate xy41 descends — but now for all possible choices B € GL(n). This
requirement can be formulated by introducing the generalized level sets

G(zk|B) :={z € R"|T(x|B) < T'(x|B)} (1.30)
and rewriting the monotonicity criterion (1.15) to
Tp41 € G(xk’B)
With that, the above quoted generalized requirement reads
Tp41 € é(xk)
G(zk) = () G(zx|B).
BeGL(n)

Under certain assumptions, the intersection G(xy) exists and turns out to
be a topological path 7 : [0,2] — IR", the so called Newton path, which

satisfies
a) F(z(s)) = (1 - s)F(z)
’ =

T(z(s)|B) = (1 — 5)*T (x| B)

b) Z—"j = —J(@) " F(x) (131)
z(0) =z, T(1l) =a*

c) Z—f = —J(zp) " F (7)) = Ay

This result (see e.g. [7]) deserves some contemplation. The constructed
Newton path T is outstanding in the respect that all level functions T(x|B)
decrease along T — this is the result (1.31.a). Therefore, a rather natural ap-
proach would be to just follow that path computationally, say, by numerical
integration of the initial value problem(1.31.b). But, as — in contrast to the

11

original problem (1.3) — the problem (1.31.b) can be extremely ill-posed, this
approach is no real alternative. Furthermore, even following the path with an
appropriate piece of numerical software, solving (1.31.b) is quite costly and
shows no benefit — compared to a solution with the damped Newton codes
presented here. However, the local information about the tangent direction
at xj, should be used — which is just the Newton direction (result (1.31.c)).
This means that even "far away” from the solution point z*, the Newton
direction

A.l"k
| Az

is an outstanding direction, only the length ||Azy|| will be too large for highly
nonlinear problems. Geometrically speaking, the (damped) Newton step in
1, continues along the tangent of the Newton path G(x;,) with an appropriate
length and at the next iterate xj.1, the next Newton path G(z.1) will be
chosen for orientation towards z*. Likewise, these considerations reveal the
limit of the affine invariant Newton techniques. If the Newton path (from
xo to z*) does not exist, the damped Newton iteration will, in general, fail
to converge. This situation occurs, if the solution point x* and the initial
guess x(are separated by a manifold with singular Jacobian. Typically, this
case may arise in problems, where multiple solution points exist. In practical
applications, however, different solution points z* usually have a distinct
physical interpretation. Thus, using a solution method, which ”connects” the
(meaningful) starting point zy with the ”associated” solution z* may be a
great advantage. This feature of the algorithm shows up also in the codes and
is illustrated in Figure 1.1. Herein, the Newton path G(zg) connecting the

singular Jacobian

Figure 1.1 Newton path and Newton iterates

12

(positive) starting point zy and the (positive) solution z* is nicely ”followed”
by the damped Newton iterates (zj, connected by solid line), whereas the
undamped Newton iteration (||Az|| too large) crosses the critical line (1) =
0, where the Jacobian is singular. Consequently, these iterates (2, dashed
line) converge to the symmetric (negative) solution — following the Newton
path G(Z;). In order not to overload the Figure 1.1 just three Newton pathes
(G(xo), G(x3), G(&1), dotted lines), which have been computed with the
Linearly IMplicit EXtrapolation integrator LIMEX [9, 10], are plotted in the

Figure.

1.2 Basic algorithmic scheme

The following informal algorithm shows the basic structure of a damped affine
invariant Newton iteration (including steplength strategy) due to Deuflhard.
Essentially, this scheme consists of the outer Newton iteration loop and an
inner steplength reduction loop. This a posteriori loop is part of the outer
loop and may be performed repeatedly. The Newton step comprises control
of convergence and check for termination, as well as an a priori estimate for
the damping factor A. Within the steplength reduction loop just a refined (a
posteriori) damping factor is selected and the convergence of the associated
refined Newton iterate is checked again.

Global affine invariant Newton scheme (Algorithm B)

Input:

0 initial guess for the solution

tol required accuracy for the solution
Ao initial damping factor

Amin, ~ minimal permitted damping factor

itmar maximum permitted number of iterations

user routine to evaluate the nonlinear system function F'(x)
user routine to evaluate the Jacobian of the system J(x) := %—i
(may be dummy as internal numerical differentiation procedures
may be used)

standard routines for direct solution of linear equations

Start:

evaluate system

Newton step:

evaluate Jacobian
Jk = J(.Tk)

compute ordinary Newton correction
A.’ﬂk = _‘]k_le

compute a priori damping factor

.) 1
if (k > 0))\20) = Ifflln{l7 W}

k
Axy — Axy ||| Axy]
where [h{"] := H — “ N
R T - T A
else)\g)) =\
7:=0

a posteriort loop

compute trial iterate '
.1'2]_,)_1 = x + AAxy

evaluate system))
F) = F(zy))

compute simplified Newton correction
A_ifgl = _JEIFli21
termination check
exit = (|Bzy || < tol A | Axk|| < Viol- 10 AN =1)
if exit : Tou = xgizl + A—xgl
solution exit

compute a posteriori damping factor

i1) 1
)\2‘]4—) ‘= min {1, W}
k
A~ ()
(G+1)] . 2 [|Azgy — (1= A)Azg|
A [Az

14

monotonicity check ’
konv := [Bally | < || Az

if konv : Awrgyq = A—xgl
Tyl 2= xgcj-kl
Fq = Flii)
)\k‘ = A
k:=k+1
if (k> itmax) : fail exit
proceed at Newton step
else: Ji=7+1
if (A= A\) : fail exit

5 oA
A= min{)\g), 5}
A = max{\, Apin}
proceed at a posteriori loop

For the above scheme, the minimal user input consists of zy, F'(z) and tol,
as internal standard values (routines) for Ao, Amin, itmaz, J(x) and linear
system solution are available within the codes. In order to perform one
Newton step with this scheme, the essential computational work turns out
to be: one evaluation of J(x), one evaluation of F'(x) and the solution of two
linear systems — as long as no a posteriori steplength reduction is necessary.
In such a case, each reduction step requires additionally one evaluation of F
and one linear system solution, but, this device is activated quite rarely.

1.3 Detalils of algorithmic realization

In order to describe the underlying algorithms of the codes NLEQ1, -1S, -2
some details of the algorithmic realization are worth mentioning. In practi-
cal applications the robustness and efficiency of the algorithm presented in
the preceding Sections may e.g. strongly depend on the selected norm, the
reasonable choice of termination criterion and the chance to select special
variants or modifications of the basic scheme.

1.3.1 Choice of norm

Generally speaking, to control the performance of the damped Newton algo-
rithm smooth norms (such as the Euclidean norm || - ||2) are recommended.
Non-smooth norms (such as the max-norm || - ||) may lead to some non-
smooth performance, e.g. alternating between competing components of the
iterates. For the termination criterion of the Newton iteration, however, the

15

max-norm may be used. Within the current realization of NLEQ the so
called root mean square norm is used. This norm and the underlying scalar
product is defined by
1 &, n
[0]lrms 1= 4| = D V3 velR (1.32)
i=1

Note that for large scale systems this norm may significantly differ from the
usual || - ||2 or || - [|s norms, which are defined as follows:

vl = ng (1.33)

v e R"
[v]loo = max{foil } (1.34)

The choice of (1.32) is motivated by the following consideration. Assume
that the problem (1.3) represents a discretized PDE. In order to check the
quality of the discretization, one may solve the underlying continuous prob-
lem on grids with different levels of fineness, i.e. varying dimension n of the
discretized problem. For adequate discretizations one may expect the same
behavior of the Newton scheme — (almost) independent of n. To achieve this
aim, the algorithm must use quantities which are independent of the dimen-
sion of the problem — like || - ||ms or || - ||co. Note that for special classes of
applications, the use of (1.32) within NLEQ is certainly not the best choice,
but for an algorithm which is designed to solve general problems of the form
(1.3) this choice turns out to be quite reasonable. Observe that the Newton
scheme, as presented here, is exclusively controlled by norms to be evalu-
ated in the space of the iterates (and not in the space of the residuals) —
a necessary condition for an affine invariant method. Furthermore, in order
to control the algorithmic performance ratios of norms are used, whereas the
absolute value of a norm is just used for the termination criterion. These
facts are of essential importance for the reliability of the algorithm.

1.3.2 Scaling and weighting

A proper internal scaling plays an important role for the efficiency and ro-
bustness of an algorithm. A desirable property of an algorithm is the so called
scaling invariance. This means, e.g. regauging of some or all components of
the vector of unknowns z (say, from A to km) should not effect the algorith-
mic performance — although the problem formulation may change. In order
to discuss this essential point consider a scaling transformation defined by:

a) z—y:=S"'z
with a diagonal transformation matrix (1.35)
b) S :=diag(si,...,Ssn)

16

Insertion into the original problem (1.3) leads to a transformed problem
H(y) = F(Sy)=F(z)=0 (1.36)
where the associated solution y* and Jacobian matrix H, are given by

y* — S—lx*

H,(y) = Fy(z)- S = J(z)- S (1.37)

The problem (1.3) is said to be covariant under the scaling transformation
(1.35) — a property which is shared by the ordinary Newton method, as for
k=0,1,...

a) Ayk = —Hy_l(yk.)H(yk) = —S_lj_l(.%k)F(.Tk) = S_IA.Tk

1 (1.38)
b) Yks1 = yr + Ayp = S ap + ST Axy, = ST g

holds. Note that the theoretical covariance property yi = S~ 'z, may be
disturbed in real computations due to roundoff, except for special realizations
like symbolic computations. As long as the Newton update is done via (1.38b)
the simplified Newton correction is covariant also:

Aypyy = —H () H(ypsr) = =S T H(@k) F(wpa1) = S 'Apr (1.36.0)

But, if norms (in the space of the iterates) enter into the algorithm, e.g. to
perform a damping strategy or an error estimation, the covariance property
of the algorithm is lost. As, in general

1Ayell = (157" Aall # [|A| (1.39)

holds, the control and update procedures within the algorithm will generate
a different algorithmic performance if they are applied to problem (1.36)
instead of (1.3). To overcome this difficulty one may internally replace the
usual norm (e.g. (1.32)) by an associated scaled or weighted norm:

lll — [ID~ o] (1.40)
where D is a diagonal matrix to be chosen. Consider now the first Newton

step of algorithm (B). Assume, a choice

D :=diag(z9,...,2%) | 2¥ initial guess for z* (1.41)

is possible (29 # 0,7 = 1,...,n). Inserting (1.41) into (1.40) yields for system
(1.3):
[Azo| — [[D~! Aol (1.42)

Applied to the transformed system (1.36) one has

D= diag(y(l), . ,yg) , y initial guess for y*

17

and due to

0 = 5140
one has
D '=Ds
thus:
Aol — D" Ayol| = [D1SS A = || D~ Ao - (1.43)

In contrast to the case of unscaled norms (c.f. (1.39)) for the scaled norms
(1.42) and (1.43) the norms of the first Newton corrections coincide. The
same holds for the norms of the first simplified Newton correction. From this
follows, that the first monotonicity test (1.17) will lead to the same algorith-
mic consequences, independent of an eventual a priori transformation of type
(1.35). Even all subsequent decisions of the algorithm will be invariant. With
that, the fixed choice of (1.40) for the internal scaling matrix D will yield
invariance for all Newton steps. But concerning the termination criterion of
the Newton scheme an adaptive choice is indispensable.

Consider the natural stopping criterion for a Newton method in its unscaled
form:
err = || Axgl|
stop, if err < tol (1.44)
tol : prescribed (required) tolerance (accuracy)

In this unscaled form, erris a measure for the absolute error of the numerical
solution x;. Using a scaled norm

err := || D Axy| (1.45)

with
D* := diag(z7,...,z}) (1.46)

n

err is a measure of the relative error of xj. Note that || D (x* — xy)| is
the true relative error of zj, (still depending on the selected norm), whereas
| DAzl is just an estimate of it, but a quite reasonable one, as Newton’s
method converges quadratically near the solution z*. Again, similar to (1.41),
xf # 0, ¢ = 1,...,n is required, but, in any case, z* is usually not avail-
able. To avoid the difficulties coming from zero components and to connect
the natural scaling matrices Dy, D, ((1.41), (1.46)) within the course of
the Newton iteration the following scaling strategy is applied. An internal
weighting vector xw is used to define local scaling matrices Dy by

Dy, := diag(zwn, . .., zw,) (1.47)
and zw may be locally defined by:
zw; = max{|z¥|, thresh} (1.48)

18

where
thresh > 0 : threshold value for scaling.

This scaling procedure yields reasonable values for the scaled norms used in
the codes. Note that the actual value of thresh determines a componentwise
switch from a pure relative norm to a modified absolute norm. As long as
2% > thresh holds, this component contributes with

A;Ef
||

to the norm, whereas for x¥ < thresh this component contributes with

A;Ef'
thresh

to the total value of the norm. In order to allow a componentwise selection
of thresh and to take into account that the damped Newton algorithm uses
information from two successive iterates the following extension of (1.47) and
(1.48) is used in the codes.

Scaling update procedure

Input:

rw" := user given weighting vector
Initial check:
a) it (jauwt| =0)

tol if problem is highly nonlinear
zwf :=4 1 if problem is mildly nonlinear (1.49)
(see Table 1.1 for problem type)

Initial update:
0.

b) ww] :=max{lzwy], |27[}

Iteration update:
¢) wwf:=max {Jzw}], 3(jef | + |2}])}

Thus, the scaling matrix and norm (weighted root mean square) used in the
codes are given by:

a) Dy := diag(zwy,...,zw,)

18/ v \2 (1.50)
b =, —)
) ol an(w)

19

Remarks:

(1) The final realization of scaling within the algorithm must be done care-
fully to achieve properly scaled norms for terms which include values
from different iterates.

(2) In order to allow a scaling totally under user control, the updates
(1.49.b,c) can be inhibited optionally.

(3) In order to have scaling invariance also for the linear system solution,
the arising linear systems are internally scaled:

J Az, = —F, — (Jk'Dk)(Dlzlek‘) = —F; (1.51)

Thus, a user rescaling via (1.35) does not change the performance of
the linear solver. For a further discussion of linear system solution see
Section (1.3.4).

1.3.3 Achieved accuracy

First, recall that all norms used for the algorithmic control are evaluated in
the space of the iterates x; and not in the space of the residuals. Concerning
the termination criterion this means, that the associated error estimate yields
a direct measure for the error of the associated solution vector. As scaled
norms are used (relative error criterion) an interpretation in terms of correct
leading decimal digits is possible. Assume, a termination criterion of the
form

errre & || Az < tol (1.52)

holds, where || - || is the weighted root mean square norm (1.50). Then, one
has roughly
cld := —log,,(tol)

correct decimal leading digits in the mantissa of each component x¥, inde-
pendent of the actual exponent — except x¥ < zw?. In such a case the

number of correct digits in the mantissa is approximately

cld := —(logyo(tol) — (10g10(’$f’) - 10g10($wf))) .

In other words, the componentwise absolute error is, for both cases, approx-
imately given by A
err’, .~ tol - xw? .

In contrast to this, an unscaled termination criterion in the space of the

residuals
| (z)|| < tol

20

neither controls the error in the computed solution nor shows any invariance
property. A simple reformulation of the original problem (1.3) of the form

F—SF=F, §S= diag(tol™*, ..., tol™")

will lead to R
[F(z)| ~ 1

whereas a stopping criterion like (1.52) is not affected. In order to realize
invariance against such a rescaling one may again use a scaled check, e.g.

|ID7F|| < tol

where

D := diag(F\(x0), . . ., Fa(x0)) -
However, there is some arbitrariness in the choice of D and it is not clear
how to develop an adaptive selection of further scaling matrices Dy. In any
case, the disadvantage of checking in the wrong space is still remaining.

Remark: Assume that the problem (1.3) is well scaled, i.e. unscaled norms
yield meaningful numbers. If in such a situation

|Azg|| < tol with ||F(xy)| "large”

holds, the underlying problem is said to be ill-conditioned. That means,
|F'(x)]| "large” may occur even for x := float(z*) — just because z* can’t
be represented exactly due to the finite length of the mantissa. For a badly
scaled problem a check for the condition of the problem must use scaled

norms, i.e. R
|D Az < tol with |[D™tF ()| "large” (1.53)

indicates an ill-conditioned problem, provided that D, D are properly chosen.
Note that within the codes an optional printout of ||F'(xy)|| is possible — but
in unscaled form. Thus, situations like (1.53) may be pretended to users, but
due to D = I the problem is well-conditioned but ill-scaled.

Furthermore, recall that the implemented termination criterion for the Newton
iteration in NLEQ is a modification of (1.52). But the considerations made
above hold also for the implemented stopping criterion (1.20), (1.21).

Finally, note that for the Newton iteration no heuristic divergence criterion
is needed. Clearly, a maximum number of iterations may be prescribed, but
usually an internal fail exit condition

A < A (1.54)

will stop a divergent iteration before.

21

1.3.4 Solution of linear systems

All codes presented in this paper use direct methods to solve the arising

linear systems of type
A-x=b. (1.55)

Recall, that within the course of the damped Newton iteration (Algorithm
B) systems with varying right hand side b but fixed matrix A have to be
solved. Thus, a split into a factorization (decomposition) phase and a for-
ward /backward substitution (solution) phase is a quite natural requirement.
As, in general, application of Gaussian elimination is the most efficient way
to solve (1.55), the corresponding standard software from LINPACK [12]
is used within NLEQ1 in order to perform LU-factorization (DGEFA) and
solution (DGESL). For a rather wide class of problems this software works
quite efficient and robust. If, however, the dimension of the problem is "not
small”, the above mentioned standard full mode software may be no longer
the method of choice. For large n, however, the Jacobian matrices often have
a special structure. As a typical example take discretized PDE problems (in
one space dimension). Usually, the associated Jacobian shows band struc-
ture. Thus, within NLEQ1 a special band mode LU-factorization solution
software, again from LINPACK, is available.

Whenever the Jacobian shows no special structure but turns out to be sparse
(number of nonzero elements ~ ¢ - n,c < n) sparse mode elimination tech-
niques may be successfully applied up to a considerable size of n. Within
NLEQ1S, the well known MA28-package due to Duff [13, 14] is used to solve
the linear problems (1.55). In order to call the MA28 codes as efficient as
possible, the adaptation techniques presented by Duff/Nowak [15] for an ap-
plication of MA28 within a stiff extrapolation integrator, can be essentially
applied.

A quite different elimination technique is used in the code NLEQ2. Therein,
a special QR-decomposition [4] of A is performed. During this decomposi-
tion the so-called sub-condition number sc(A) (see Deuflhard /Sautter [11]) is
monitored. If this estimate for the condition of the matrix A becomes ”too
large”, say

1

se(4) > epmach’

epmach: relative machine precision (1.56)

instead of (formally) generating the inverse A™', a rank-deficient Moore-
Penrose pseudo inverse A1 is computed. In other words, instead of

T:=A"" (1.57)
a unique, but rank deficient, solution

Pi=ATb (1.58)

22

of the associated linear least squares problem |[Az — b||2 = min is used as
the numerical approximation to the true solution x of (1.55). Roughly speak-
ing, the reason for this rank reduction is the finite length of the mantissa.
The quality of the numerical solution of a linear system (1.55) may strongly
depend on the condition of A (cond(A)). If A is ill-conditioned — but still
regular in the sense that non-zero pivots can be found — the computed so-
lution 7 (via (1.57)) may be totally (or partially) wrong, as small errors due
to roundoff may be amplified, (in the worst case) by the factor cond(A) to
errors in .

In order to avoid this, in NLEQ2 the QR-decomposition/solution codes
DECCON/SOLCON are used to compute a solution of the arising linear
systems — either via (1.57) if A is well conditioned or via (1.58) if A is
extremely ill-conditioned. The rank reduction of A can be interpreted as a
replacement

A— AD g:=rank(A9) <n

such that |

epmach’

1
epmach

sc(AW) < sc(A+Dy) >

holds. The general disadvantage of solving (1.55) with QR-decomposition
and associated rank reduction option should be mentioned. Usually, a QR-
decomposition is more expensive (roughly twice) than a LU-decomposition.
Furthermore, no efficient extension (especially because of the sub-condition
estimate) for large systems with special structure (banded, sparse) is avail-
able.

Finally, a proper scaling of the system (1.55) plays an important role. As
pointed out above, the linear systems, to be solved with the above mentioned
decomposition techniques, are already (column) scaled — c.f. (1.51). Thus,
the linear system solution is invariant under rescaling of type (1.35). But, an
affine transformation of type (1.13) may effect the performance of the linear
solver. In order to avoid this, a special row scaling — again internally done
within the course of the Newton iteration — turns out to be quite helpful,
but does not guarantee affine invariance of the linear system solution. In
general, however, small perturbation in solving (1.55) will not destroy the
affine invariance of the Newton scheme. The total internal scaling is as
follows. Recall that systems of the type

JkA.Tk = —Fk
have to be solved. Then, systems to be identified with (1.55) read
—— _ ——1
(Dy, " JuD) (D Azy) = —(Dy, Fy) . (1.59)

Herein, Dy, is given by (1.50.a) and Dy, is another diagonal matrix

Dy = diag(dy, ..., d,) .

23

Now, let a; ; denote the elements of the column scaled Jacobian Jj, - Dy, then
d; is chosen according to

Ei:—lrgja%]a”] i=1,...,n.

1.3.5 Rank reduction

As pointed out above, within the QR-decomposition routine of NLEQ2 the
rank of a Jacobian J; may be automatically reduced by checking the corre-
sponding sub-condition number sc(J). Beyond that, there is still another
case where a Jacobian rank reduction may be helpful. Recall that for the
standard scheme (Algorithm B) the iteration stops, say at xy, if Ay = Ain
and ||Axgy1|| > ||Azg|. In such a situation — often indicating an iteration
towards an (attractive) point & where the Jacobian J(2) is singular — a de-
liberate rank reduction of J; may avoid this emergency stop. In order to do
so, the ordinary Newton correction Az is recomputed according to (1.58)
— but now with a prescrlbed maximum allowed rank ¢ :=n — 1. With the
new (trial) correction Awk at hand, the current step is repeated, i.e. a new

a priori damping factor "% a new trial iterate ajﬁl) = 2, + AP ALY
and a new simplified correction Az, +1) = (Q)J’F ,iif) are computed. If

the monotonicity check is now successfully passed the iteration proceeds as
usual. Otherw1se the damplng factor A is recomputed using a posteriori esti-
mates A U.a) (1=1,2,. If \;/" < Apin occurs, the maximum allowed rank
is reduced again and the repetition of the current steps starts once more.
This rank reduction procedure is carried out until natural monotonicity (

|Ax Effl | < HA.’IZ H) holds or ¢ < ¢min (0 < ¢min < n) is reached.

It should be mentioned, that the application of a rank reduced Newton step
means to perform an intermediate Gauf-Newton step. Although, in princi-
ple, both methods are algorithmically quite similar, there are some essential
theoretical differences (see [7]). As a direct consequence of this fact, the usual
estimates for the quantities [hg)] ,7=20,1,... must be modified — but these
details are omitted here and can be found in [7]. Rather, the rank reduction
strategy will be described in the following informal algorithm. Note that an
emergency rank reduction can occur in a step where the rank of J; has been
already reduced because of the sub-condition limit (1.56).

Global Newton scheme with rank strategy (Algorithm R)

Input:
0 initial guess for the solution
Ao initial damping factor

24

Amin minimal permitted damping factor

1rank,;, minimal permitted rank g,

condpmq; maximal permitted sub-condition number sc(.J ,E,Q))
tol, itmax, FCN, JAC, direct linear solver subroutines

Start:
k:=0
Fy, = F(xy)
(A) Jg = J(xk)
irank =n

(B) Azl .= —J9OVF,
q, J,ﬁ‘” such that ¢ < irank, sc(J,g‘J)) < condymqy , ¢ maximal

1
0, min 1,7}, k>0
)\gg q) = { [hggo,q)]
)\07 k=0
ji=0, Ay =1
A= A0

Q) if ((g=nV q=iranknim) A X< Amin A AT > A0 0 A= Anin
if (A < Apin) then : drank = irank—1
if (irank< irank,,;,) : fail exit
proceed at (B)
x;ﬁqf = xp +)\Ang)
FEY = Pa?)
Al = —J RGP from (B))
if (|AZZY | < tol A |AZ?| < Viol-10 A A = 1)
then : solution exit (¢ = n)

special exit (¢ < n)

. 1
AUFTED . i {1, 7}
k [h§€J+17Q)]

konv = [z || < || Axf?|
if (konv) then : zpyp := x;ﬁqf
Frpr = FEY
k:=k+1
if (k> itmax) : fail exit
proceed at (A)

25

else: J=7+1
if (A= A\) : fail exit
A

A= min{)\g”), 5}

A = max{ A, Anin }
proceed at (C)

Note that the first emergency rank reduction is only activated, if a step
with A = A\ (for ¢ = n) has been already tried. So, in principle, the code
NLEQ?2 is a real extension of NLEQ1 in the sense, that the (emergency) rank
strategy does not replace (even not partially) the usual damping strategy, but
it is an additional device in order to extend the convergence domain of the
method. However, as the solution of the arising linear systems is done with
different algorithms (QR-decomposition with optional rank reduction / LU-
decomposition with check for zero pivot), for a given problem at hand, the
codes NLEQ1 and NLEQ2 respectively, may show a different algorithmic
performance, even if the emergency rank reduction is never activated.

1.3.6 Rank-1 updates

Whenever the Jacobian evaluation dominates the computational work of a
(damped) Newton step, then Jacobian savings may speedup the overall per-
formance, even if some additional steps are needed. However, the overall
iteration behavior should not be affected too much. Instead of just fixing
the Jacobian — which would yield a simplified Newton iteration — Jacobian
rank-1 updates due to Broyden [3], say, of the type

T
AV

Jio1 1= Ji + (Fry1 — (1 —)\k;)Fk;)m>
2

(1.60)
may be applied. Near the solution z*, the associated quasi-Newton iteration
is known to converge superlinearly. The decision, to apply (1.60) instead

of the usual evaluation of Jiyq, is based on an estimate for the expected
Jacobian change (c.f. (1.22), (1.23))

17e (Terr = Ji) || < M (1.61)

If the condition A\xhr < 1 holds, then the new Jacobian Ji.; is not worth
generating. In order to realize (1.61) (without knowledge of Ji;1) one may
use the a posteriori estimate [R5°*'] — c.f. (1.29.b). Then, if the substitute
condition

APTO[pRost] < (1.62)

Q=

holds, Ji41 may be computed according to (1.60). Empirical values for o
range in the interval [3,10] — a choice, which turns out to be not very

26

critical. Numerical experience, however, suggests to permit quasi-Newton
steps only if the undamped Newton iteration converges, which is indicated by
Ag—1 = 1, X" = 1. For cases where ;" < 1 and (1.62) holds, the current
(trial) Newton step & — k + 1 may be repeated with an appropriately
increased damping factor A\;°*. Thus, based on (1.62) two extensions of
algorithm (B) are realized:

a) if M1 =1 A N =1 A MNO[RP] < 1) then

evaluate Ji41 by (1.60),

try)\Z”O := 1 for all following steps (k > k), (1.63)
b) if (IR < L)

02

repeat step ay — Ty41 with A7
where
5 10
o=3, o=
’)\mzn

Obviously, the update (1.60) is affine invariant. But, concerning scaling in-
variance, the situation is quite different. Recall the considerations on scaling
invariance and scaling covariance made in Section (1.3.2). Straightforward
calculation shows, that, in general, jk+1 is not scaling covariant, i.e. apply-
ing update (1.60) for problem (1.36) instead of (1.3), will, in general, not
yield the required property H'piq = Jii1 - S (c.f. (1.37)). Thus, in order to
generate scaling covariant quasi-Newton correction Ay, , = S~ Az, the
update (1.60) must be modified to

(Dl;iAxk)T

Jpr = Jp + (Frepn — (1 —)\k)Fk))\k;HD_l At
k+1 2

(1.64)

where Dyy4 is recursively defined by (1.49), (1.50.a).

In order to exploit the Jacobian rank-1 updates beyond just using (1.60)
instead of a standard evaluation J(zj41), one may realize the quasi-Newton
step(s) in a special iterative manner. Within such an iterative realization the
usual decomposition of jk+1 , jk+2 , ... 1s saved additionally. Based on the
relations (presented for the case A = 1)

_ . Ax
Axpyy = —J;;LlleH = %
— Ok
where (1.65)
o (An) (M)
e | Akl
and _ T
A A$k+1(A$k) _
A @ S MR Sl VA b 1.66

27

all subsequent quasi Newton corrections B}Hlﬂ , 1 =20,1,... can be com-
puted according to an iterative scheme as presented in [7]. The analo-
gous scheme for the scaling covariant update (1.64) — taking also into
account the linear system scaling (1.59) — reads as follows. Let Azj be
the latest ordinary Newton correction, i.e. Ji is the last evaluated Jaco-
bian. Now, assume that Az; (to be identified with Azy), all following
quasi Newton corrections Axyy, [= 1,2,.. ., the (diagonal) scaling matrices
Dy, Dii1, Diyip1, 1 =1,2,... and the row scaling matrix D, have been
saved (currently accepted iterate is xpy;41). Then the next quasi-Newton
correction B}Hlﬂ can be computed by

a) solve (E,:leDk.)w = —E,ZIFHZH
v:= Dyw
) i=k4l,... k+l
By = (D' Az)" (Do)
D Al
vi=0+ @;&Ei

(Dl;il-HAxk)T(Dl;il-Hv)

(1.67)

C) Opy41 ‘= — —
HDk—il—l—l—lek-i—lH%
— v
AZpyrpr = m-

The computational costs for the above scheme are O(l - n). As long as [is
of moderate size, the evaluation of Azy;41 with (1.67) will save computing
time — compared to the evaluation by solving jk+l+1Axk+l+1 = —Friig1-
Furthermore, this iterative update can be applied also for Jacobians with
special structure (banded, sparse), whereas the update (1.64) would destroy
this structure. However, (1.67) requires additional storage, around 2{ vec-
tors of length n. In principle, the storage of Dgi1, ..., Dxyy can be avoided,
as these values can be recomputed within the course of the iteration (1.67).
But this would diminish the computational advantages of (1.67). In lieu of
that, one may use the current scaling matrix Dy;41 for a fixed scaling within
(1.67). With that, (1.67) is a slight modification of the direct update tech-
nique (1.64), but a quite reasonable one, as, in general, Dj4;1 approaches
the optimal scaling matrix D*. Thus, one may expect even "better” updates
J; by using D411 instead of D;. Numerical experiments reveal only petty
changes due to the replacement D; — D41 in (1.67).

1.3.7 Refined damping strategies

In order to start the computation an initial damping factor A\ is needed. For
mildly nonlinear problems, where an undamped Newton scheme converges,

28

the choice \y = 1 is optimal. Even for highly nonlinear problems \g = 1
may be used, as the a posteriori damping strategy will correct a too opti-
mistic choice of \yg. The additional costs are usually low, but note that the
a priori factor Ay enters via (1.29) into the a posteriori estimate. Further-
more, in critical applications the necessary evaluation of F'(xo+ AgAzg) may
cause problems for Ao = 1 (e.g. overflow, invalid operand) as the first un-
damped trial iterate can be out of bounds. So, a ”small” initial guess A is
recommended. As pointed out above, a further parameter of the damping
strategy, the minimal permitted damping factor \,.;,, has to be selected.
Besides this, for extremely sensitive problems a recently developed modifica-
tion (see [7]) of the damping strategy may be selected. Within this restricted
damping strategy the estimates [hy]| are replaced by [hi|/2. Note that this
restricted strategy shows some nice theoretical properties. Furthermore, in-
tended for problems where the function values vary in an extremely large
range, a bounded A-update turns out to be quite helpful. Within this ad-
ditional device a bounding factor f;, limits the decrease and the increase of
the damping factors (either between two successive iterations or within the
a posteriori loop of Algorithm (B)). Thus, the following condition is claimed
for a new damping factor \"¢":

MUy < AT < N s (1.68)

and f, = 10 may be used as a standard factor. This bounded A-update
helps in cases, where a too bad trial value leads to nonsensical estimates
(A7, [A°*"]. Finally, another additional device is realized in the codes. If,
for the current trial value, say ajg), the nonlinear function F' (a:g)) can’t be
evaluated (e.g. too large argument for exp, negative argument for sqrt) this
case can be indicated (see Section (2.2.2) below) and the damping factor will

be reduced (repeatedly if necessary) according to
, , 1
PYCARVEEE\C N A 3 (1.69)

In order to simplify the choice of \g , Anin and the type of the strategy the
following (Table 1.1) specification of problem classes and associated internal
selection of parameters is made.

If no user classification of the problem is available the problem is assumed to
be 7highly nonlinear”. Observe that for the classification of a problem not
only the nonlinear function F' is relevant but also the quality of x,. The case
"linear” is realized in the NLEQ-codes to allow the solution of a linearized
problem with the same piece of software as for the original nonlinear problem.
Because a specification "mildly nonlinear” at least forces the computation
of the first simplified Newton correction, a problem specification ”linear”
includes the computation of the first ordinary Newton correction with the

29

problem class Ao | Amin | A-strategy | Ad-update
linear 1 — — —

mildly nonlinear 1|107* | standard | standard

highly nonlinear | 1072 | 107* | standard | standard

extremely nonlinear | 107% | 107 | restricted | bounded

Table 1.1 Definition of problem classes

update x; := x9 + N\gAxg only. Thus, the computational overhead for the
solution of a linear problem with the codes is small. Note that in such a
case the required tolerance tol is ignored, whereas a user selection \g < 1 is
observed.

30

2. Implementation
2.1 Overview

The algorithms presented in Chapter 1 are implemented in three concur-
rent pieces of numerical software, the codes NLEQ1, NLEQ1S and NLEQ?2
respectively. They belong to the numerical software library CodeLib of the
Konrad Zuse Zentrum Berlin, thus they are available for interested users. All
codes are written in ANSI standard FORTRAN 77 (double precision) and
are realized as subroutines which must be called from a user written driver
program. All communication between the codes and the calling program is
done via the arguments of the calling sequence of the subroutines. Some
(optional) data- and monitor output is written to special FORTRAN units.
Besides the interface to the calling program each of the codes has two fur-
ther interfaces. There are calls from the NLEQ subroutines to a subroutine
named FCN which has to evaluate the nonlinear function F'(z) of problem
(1.3) and there is a call to a subroutine named JAC which must return the
system Jacobian F'(x).

The following sections give a short introduction in how to use the NLEQ
codes. A detailed documentation including all technical details is part of
the code and is not reproduced here. Rather, the relation of the software
to the underlying algorithms of Chapter 1 is pointed out and some general
comments are made. The codes are implemented with respect to the general
design guidelines stated for CodeLib programs and incorporate many com-
mon features as calling modes, output structure and others. Internally, the
routines use some arrays for working purposes and the user is only required
to pass two workspace arrays - one of type integer and one of type real to
the subroutine. The routine called by the user makes the division of the user
supplied workspace into the appropriate smaller pieces and passes them to
the kernel subroutine which realizes the algorithm.

Several options common to the three routines may be passed through an
option integer array. Additionally, some internal parameters of the algorithm
may be changed by setting certain positions of the workspace arrays to the
appropriate nonzero values.

All three programs may be used in a standard mode, i.e., called with a given
starting point and prescribed precision, all necessary Newton steps to com-
pute a solution satisfying the required precision are done within this one call.
Alternatively, they may be used in a so-called one-step mode. This means,
that the program returns control to the calling routine after each performed
Newton step. By examining a return value, the calling program can obtain
information if there are additional Newton steps needed to get an approx-
imation of the solution fitting the required precision, and can occasionally

31

initiate another successive call of the program — again having the choice
between a standard mode and a one step mode call.

Except for the sparse solver, which always needs a user supplied routine for
computation of the Jacobian, the Jacobians computation may optionally be
done by an internal numerical differentiation routine referencing only the
user function which implements the nonlinear system.

Output is written to three different FORTRAN units — the choice of the
unit depends on the type of output. One unit, named the error unit, receives
all error and warning messages issued by the program. Another unit, named
the monitor unit, receives protocol information about the settings of input
parameters, some values characterizing the performance of the Newton it-
eration (||Axgl|, ||Azrs1ll, Mk, --.), and a final summary information. The
iteration vector and characteristic values may be received for each Newton
step by the solution unit — with some additional control information, suit-
able to be processed as input by a graphics program.

Substitution of the linear solvers delivered with the programs only needs the
adaptation of two easy to survey subroutines (three for the sparse solver),
which establish the interface to the linear solver. Furthermore, the scaling
update procedure (1.49) and the used norm for the stopping criterion can be
easily modified by just replacing the associated internal routines.

Finally, in addition to the standard routines mentioned above, so-called easy
to use interfaces are available, which may facilitate a first use of the codes.

2.2 Interfaces

2.2.1 Easy to use interface

In order to obtain a solution of the nonlinear problem with a minimum of
programming effort the user may decide to use the additionally provided
"easy to use calls” of the codes NLEQ1 or NLEQ2, namely the subroutines
NLEQI1E or NLEQ2E. These subroutines call the corresponding code with
the algorithmic standard option settings, and some monitor output will be
written to FORTRAN unit 6. The easy to use interface subroutines read as
follows:

NLEQIE
SUBROUTINE \p g(jop (N, X, RTOL, TERR) ,

where the arguments must be supplied as described below:

N integer, input :
dimension of the nonlinear system to be solved, N < 50

32

X real array(N), in-out :
in : initial guess z°
out : final (current) approximation ., (zx) of the solution x*

RTOL real, in-out :
required (in) / achieved (out) relative accuracy of

IERR integer, output :
error flag (IERR > 0 signals an error or warning condition)

In order to use this interface, the nonlinear problem function must be named
exactly FCN and its required interface reads:

SUBROUTINE FON(N, X, F, IFAIL)

where:

N integer, input : see above

X real array(N), input:
the argument X for which F(X) is to evaluate

F real array(N), output:
Must get the vector F(X)

IFAIL integer, in-out
error flag, =0 on input
on output: =0 indicates successful evaluation of F(X)

Remember that the codes NLEQ provide several options. In order to solve
highly critical nonlinear problems it may be necessary to use nonstandard
option settings. All the available options can be modified using the standard
interfaces of the codes, which are described in the subsequent sections.

2.2.2 Standard interfaces

The actual implemented standard user interface subroutines (to the calling
program) read:

NLEQ1
SUBROUTINE NLESQ (N, FCN, JAC, X, XSCAL, RTOL, IOPT, IERR,

LIWK, IWK, LRWK, RWK)

SUBROUTINE NLEQ1S (N, NFMAX, FCN, JAC, X, XSCAL, RTOL,
IOPT, IERR, LIWK, IWK, LI2WK, I12WK,
LRWK, RWK)

33

Within these calling sequences one may distinguish two groups of arguments:
one group for the problem definition and the associated solution requirements
and another which refers to the algorithm. The arguments of the first group
are:

N integer, input :
dimension of the nonlinear system to be solved

FCN external subroutine, input :
evaluation of the nonlinear function F'(x)

JAC external subroutine, input :
evaluation of the Jacobian matrix J = F'(z)

X real array(N), in-out :

in : initial guess z°

out : final (current) approximation ., (zx) of the solution x*
XSCAL real array(N), in-out :

in : initial user scaling vector zw"
out : current internal scaling vector xw

RTOL real, in-out :
required (in) / achieved (out) relative accuracy of

k

Arguments, which apply to NLEQ1S only:

NFMAX integer, input :
Maximum number of nonzero elements in the Jacobian matrix

In order to make a proper initial setting for these arguments the strong
internal coupling of the arguments XSCAL, RTOL, X and even N should be
observed. Recall that the internal scaling procedure (1.49) connects X-input,
XSCAL and RTOL. Due to (1.50) the current scaling vector zw* influences
the whole algorithmic performance, especially the termination criterion (c.f.
(1.20)). Furthermore, an interpretation of the achieved accuracy can only
be made in connection with xw* and z* and with regard of the internally
used norm (c.f. (1.50)) — where N enters. A zero initiation of XSCAL is
possible but may lead to an unpleasant behavior of the algorithm — especially
together with 2° = 0.

The second group of arguments is:

IOPT integer array(50), in-out :
selection of options

IERR integer, output :
error flag (IERR > 0 signals an error or warning condition)

34

LIWK integer, input :
declared length of the integer work array IWK
LIWK = N+50 for NLEQ1, N+52 for NLEQ2, 8*N+57 for NLEQ1S

IWK integer array(LIWK) - in-out :
first 50 elements: selection of special internal parameters (e.g. limit on
iteration count) (in), statistics of the algorithmic performance (out)
elements up from the 51 th : integer workspace for the linear solver

LRWK integer, input :
declared length of the real array RWK
LRWK = (N+NBROY+13)*N+61 for NLEQ1 with full storage mode
Jacobian, (2*ML+MU+NBROY+14)*N+61 for NLEQ1 with banded
storage mode Jacobian — where ML denotes the lower, MU the upper
bandwidth and NBROY the maximum number of possible consecutive
rank-1 update steps;
(N+NBROY+15)*N+61 for NLEQ2, 3*NFMAX+(11+NBROY)*N+62
for NLEQ1S.

RWK real array(LRWK), in-out :
first 50 elements: selection of special internal parameters of NLEQ
(e.g. starting and minimum damping factor) and possibly of the linear
solver (in), actual values of some internal parameters (out)
elements up from the 51 th : real workspace for NLEQ and the linear
solver.

Arguments, which apply to NLEQ1S only:

LI2WK integer, input (NLEQLS only) :
declared length of the "short integer” work array I2WK
LI2WK = Int(7.5*NFMAX)+5*N

I2WK integer array(LI2WK):
”Short integer” workspace. In the current implementation the same
integer type as this of IWK, e.g. INTEGER*4.

Besides providing workspace the arguments IOPT, RWK and IWK can be
used to control and monitor the performance of NLEQ. This can be done by
assigning special values to (a part of) the first fifty elements of these arrays.
Note that a zero initiation forces an internal assignment with the default
values.

Furthermore, some of these elements will hold helpful information after re-
turn — e.g. the minimum needed length of IWK and RWK to solve the given
nonlinear problem (LIWK . = IWK(18) , LRWK, . = IWK(19)). Ob-

serve that the internal default values are chosen according to the suggestions

35

made in Chapter 1. The features of the codes which can be influenced by
this type of option selection are described in Section 2.3 below.

Concerning the external subroutines FCN and JAC, from NLEQ the following
requirements are made:

Self-evident, FCN/JAC must provide the function value F(z) / F'(x) for
that vector = which is input to FCN/JAC. Note that all components of
F(z) have to be set by FCN (even constant values) as F (on input) contains

no information from a previous call. The same requirement holds for the
argument DFDX of JAC. The error flag IFAIL can be used to invoke the
heuristic damping device (1.69).

SUBROUTINE FON(N,X,F,IFAIL)

N see above
X real array(N), input
current (trial) iterate z”

F real array(N), output A
function values F (CL";;))

IFAIL integer, in-out
error flag, =0 on input
on output: if < 0, NLEQ terminates
if > 0, invokes heuristic damping device

for NLEQ1 and NLEQ2:

SUBROUTINE JAC (N,LDJAC,X,DFDX,IFAIL)

N see above

LDJAC integer, input
leading dimension of the array DFDX

X see above

DFDX real array(LDJAC,N), output
Jacobian matrix

IFAIL integer, in-out
error flag, =0 on input
on output: if < 0, NLEQ terminates

for NLEQ1S:
SUBROUTINE JAC (N,X,DFDX,IROW,ICOL,NFILL,IFAIL)

36

N see above

X see above

DFDX real array(NFILL), output
real values of the Jacobian

IROW integer array(NFILL)
row indices of the Jacobian

ICOL integer array(NFILL)
column indices of the Jacobian

NFILL integer, in-out
in: dimension of DFDX, IROW and ICOL
out: Number of nonzeros stored in DFDX, IROW and ICOL

IFAIL see above

2.3 Options

Though the underlying algorithm of the codes is self-adaptive in the sense
that the damping factor A is automatically adapted to the problem at hand,
there are still some algorithmic parameters and variants open for an adjust-
ment by the user. In general, the influence on the overall performance is
not dramatic but in special applications a skillful matching may increase ef-
ficiency and robustness drastically. Besides these algorithmic options some
other useful options, e.g. output generation, are available for the user. As
pointed out in the preceding section the adaptation can be easily performed
by assigning special values to specific positions of the arrays IOPT, IWK and
RWK. As far as possible, the input is checked for correctness.

Jacobian generation and storage mode

Within the codes NLEQ1 and NLEQ2 the Jacobian is either evaluated via
the user subroutine JAC or, alternatively, approximated by an internal sub-
routine using numerical differentiation. This selection may be done by setting
IOPT(3). The choice IOPT(3)=1 means that the user subroutine JAC will
be called to get the Jacobian. A value IOPT(3)=2 selects the numerical ap-
proximation of the Jacobian by an internal subroutine. Setting IOPT(3)=3
causes the use of another internal numerical differentiation routine which ad-
ditionally uses a feedback strategy to adapt the finite difference disturbance.

The decision which storage mode for the Jacobian has to be used can be
made by setting IOPT(4). If IOPT(4)=1 is selected, NLEQ1 awaits that
the Jacobian is supplied in band storage mode and calls the appropriate
linear solver from LINPACK (DGBFA/DGBSL). Using IOPT(4)=0 implies
that the Jacobian is supplied in full storage mode, thus the corresponding
linear solver subroutines DGEFA /DGESL from LINPACK will be called for

37

solving the arising linear systems. Note that in case of selecting numerical
approximation of the Jacobian by IOPT(3)#1, the mode of the numerical
differentiation (full or banded) is selected according to the value of IOPT(4).

Scaling

The internal update of the user scaling (weighting) vector XSCAL according
to (1.49) can be switched off by setting IOPT(9)=1. Note that the initial
check (1.49a) is done in any case. The problem classification which may
influence the performance of (1.49a) is done via IOPT(31) — see below.
Furthermore, recall that the arising linear systems are also row-scaled (c.f.
(1.59)). This scaling may be switched off by setting IOPT(35)=1 — by
default it is switched on.

Output generation

The amount of output produced by the codes is internally controlled by the
actual values of some output flags and directed to associated FORTRAN
units. In order to monitor the algorithmic performance of the code, the
internal flag MPRMON can be modified by the user by setting the asso-
ciated element of the IOPT array (MPRMON corresponds to IOPT(13)
and the associated output unit LUMON to IOPT(14)). An user assign-
ment [OPT(13)=0 produces no monitor print output, whereas a setting
IOPT(13)=3 will generate a detailed iteration monitor, e.g. the unscaled
norm (1.32) ||F(xg)||rms (where F' denotes the problem function introduced
in (1.3) and xj the Newton iterate), the scaled norms (1.50.b) of the cur-
rent Newton corrections ||Azy||, ||Azki1|| and the current damping factor Ay
are written to FORTRAN unit IOPT(14). Similar flag/unit pairs are avail-
able for error/warning printout, data output and time monitor output — c.f.
Table 2.1.

Option Selection | Range | Default Unit
error/warning messages | IOPT(11) | 0-3 0 IOPT(12)
Newton iteration monitor | IOPT(13) | 0-6 0 IOPT(14)
Solution output IOPT(15) | 0-2 0 IOPT(16)
Time monitor IOPT(19) | 0-1 0 IOPT(20)

Table 2.1 Options for output generation

Modification of the damping strategy

The damping strategy of the Newton scheme can be partially modified by
the user. First, a general problem classification can be made by the user
by setting the parameter NONLIN (c.f. Table 1.1) to the desired value (1
— linear problem, 2 — mildly nonlinear, 3 — highly nonlinear, 4 — extremely
nonlinear). But besides this, the values of some special internal parameters

38

can be adapted separately. Thus, the initial and minimum damping factors
A0s Amin, as well as the bounding factor f, of (1.68), can be set individually.
Furthermore, the bounded A-update may be switched on or off separately,
whereas the general type of the damping strategy (standard or restricted)
still depends on NONLIN. Recall that \,,;, appears in the emergency stop-
ping criterion (1.54). Thus, the emergency exit of all codes as well as the
emergency rank reduction device of NLEQ2 are directly effected by a modi-
fication of A,;,. Finally, the decision whether a (successful) step is repeated
because the a posteriori damping factor is greater than the a priori estimate
can be influenced by specifying o2 — c.f. (1.6.b). Note that the default value
for oy inhibits a step repetition. An overview on the options related to the
damping strategy of the Newton iteration is given in Table 2.2.

Option Selection | Range Default
problem classification IOPT(31) | 04 3
bounded damping strategy | IOPT(38) | 0-2 | see Table 1.1
Newton iteration limit IWK(31) >1 50
initial damping factor RWK(21) | <1 |seeTable 1.1
minimum damping factor | RWK(22) | <1 |see Table 1.1
bounding factor RWK(20) | >1 10.0
step repetition RWK(24) | >1 10/ Amin,

Table 2.2 Options for the damped Newton iteration

Rank-1 updates

The ordinary Newton corrections computed within each iteration step may
be replaced (under certain conditions, c.f. Section 1.3.6) by quasi Newton
corrections. Recall that these corrections are computed without needing a
Jacobian evaluation or LU-decomposition — thus the activation of this option
(IOPT(32)=1) may save computing time. However, as within consecutive
iterative Broyden steps all previous quasi Newton corrections are needed for
computing the next one (c.f. (1.67)), storage must be reserved in order to keep
them. The maximum number of consecutive Broyden steps may be changed
by setting IWK(36) to the desired value — the default is chosen such that
there will be in general no more storage needed as for one Jacobian, except
that a minimal value 10 is allowed (i.e. IWK(36) = max(n, 10) if the Jacobian
is stored in full mode). The decision criterion (1.63.a) whether Broyden steps
are done, depends on the parameter ¢ (default is 3), which may be changed
by setting RWK(23) to the requested value.

Controlling the rank strategy of NLEQ2

Recall that the activation of the reduction strategy is mainly determined

39

by the minimal permitted damping factor \,,;, and the maximum allowed
subcondition number cond,., — c.f. algorithm (R) of Section 1.3.5. As
mentioned above, the value of A,;, is influenced by IOPT(31) or can be set
directly by specifying RWK(22). The subcondition limit can be changed by
setting RWK(25) to a preferred value (default is cond.. = 1/epmach =~ 101°,
where epmach denotes the relative machine precision). Furthermore, in each
Newton step the Jacobians rank is initially assumed to be full. But, for
special cases, the maximum initial rank of the Jacobian at the starting point
xo may be limited to some smaller value by setting IWK(32) < n.

Sparse linear algebra options of NLEQ1S

As the efficient generation of a sparse Jacobian matrix by numerical differen-
tiation is an independent, nontrivial task, no internal differentiation routine
is available within the current version of NLEQ1S. Thus, values and pat-
terns of the Jacobian must be provided in the user subroutine JAC, however,
eventually generated by a user written approximation scheme. Note that the
efficiency of the sparse linear system solution clearly depends on whether the
sparse pattern of the Jacobian changes within the course of the Newton it-
eration. To make this clear, the general strategy for the sparse linear system
solution is now shortly summarized. The very first Jacobian matrix is fac-
torized with the so-called Analyze-Factorize routine MA28A — which means
that a conditional pivoting is performed in order to minimize the fill-in but
still ensure numerical stability. This optimization process — which can be
rather time consuming — is controlled by a special threshold value (threshl).
Numerical experience suggests the choice thresh1 = 0.01, which represents
a good compromise between fill-in minimization and stability preservation.
Now, the matrices arising in the subsequent Newton steps may be decom-
posed with the fast Factorize routine MA28B — which works on the pattern
provided by MA28A. Hence, these matrices must have the same pattern
as the first Jacobian matrix, but the numerical values may have changed.
The numerical stability of such factorizations can be monitored by checking
the arising pivot ratios. If such a ratio is beyond a certain threshold value
(thresh2) the Analyze-Factorize routine is called again.

Now, to indicate an always fixed pattern to NLEQ1S, IOPT(37)=1 must be
set. Otherwise, (and that is the standard option) in order to check whether a
MAZ28B call is possible, the pattern of a new Jacobian is internally compared
to that pattern which was used for the latest MA28A call. Thus, if the
sparse structure of all Jacobians provided by JAC is known to be the same,
additional storage and computing time can be saved by setting IOPT(37)=1.

In principle, the performance of the sparse linear solver can be influenced
by changing certain parameters of the common blocks MA28ED, MA28FD
— for more information refer to [18]. Some of these values (e.g. threshl =
1072 thresh2 = 1079) are already adapted in the internal subroutine NISLVI

40

of NLEQIS.

On return from NLEQI1S, the positions IWK(46), IWK(47) contain infor-
mation about minimal integer workspace needed by the sparse linear solver,
and IWK(48), IWK(49) are holding the maximum count of some compres-
sion operations done by the solver on the integer workspace — thus giving a
measure for the efficiency of the linear solver. If this count seems to be too
large, the integer workspace should be increased. Finally, IWK(50) contains
an estimate of the latest Jacobian rank.

For each LU-decomposition, the current values of the informal integers men-
tioned above and, additionally, the number of nonzeros and the percentage of
nonzeros in the Jacobian may be obtained from a special output stream — the
linear solver output. This stream is activated by setting IOPT(17)=2, and
the FORTRAN unit where to send the output is chosen by setting IOPT(18)
to the desired number.

Convergence order monitor

If the Newton iterates xj approach the solution z* and J(z*) is not sin-
gular, the iteration converges quadratically, or, for quasi Newton iteration,
at least superlinearly. However, due to roundoff errors, the Newton correc-
tions Azy = —J(xx) ' F(x)) are only computed up to a certain precision.
In praxis, this fact may lead, at least, to a slowdown of the convergence, or,
even worse, convergence may be lost if the required accuracy rtol is chosen
too stringent. In such a case, if no further improvement of the accuracy of
xy is possible, it is desirable that the Newton iteration stops (with an error
indicator returned). Therefore, an optional convergence order estimate and
associated optional stop criteria are available.

As soon as A\, = 1 holds, the convergence rate Ly and the convergence order
oy of the current step i.e.

[Azp]| = Li| Ayl
are tried to estimate. Omitting details, the convergence is defined to be

superlinear if ay > 1.2
quadratic it ap > 1.8,

where ¢4, is an estimate for ay. Now, a convergence slowdown is said to
appear in the k-th Newton step (with A\, = 1), if superlinear or quadratic
convergence has been already achieved in a previous Newton step, but now

aE < 0.9

holds.

The action taken as consequence of a convergence slowdown depends on the
value of the convergence order monitor option IOPT(39). If this value is set to

41

2 or 0, the weak stop option is chosen. This means that the Newton iteration
is terminated and an error indicator (IERR=4) is returned, if in some Newton
step ko convergence slowdown has been detected and if in a (possibly later)
step k1 the monotonicity test fails to be satisfied — while all intermediate
damping factors Ag,, ..., A\, have taken a value 1. If IOPT(39)=3 is set,
the hard stop option is selected, which means that a convergence slowdown
leads to an immediate termination of the iteration and return with the error
indicator as above. An error (warning) indicator IERR=5 is returned, if
the usual convergence criterion is fulfilled, but no quadratic or superlinear
convergence has been detected so far. This proceeding takes into account,
that the error estimate (1.52) may be rather poor for such cases. Finally, the
choice IOPT(39)=1 totally switches off the convergence order monitor.

One step mode

Within special applications it may be useful to perform the Newton iteration
step by step, i.e. the program control is passed back to the calling program
after one Newton step. This mode can be selected by setting the mode flag
IOPT(2)=1. In order to distinguish the first call — certain initializations and
checks are made by NLEQ — and successive calls an associated flag IOPT(1)
is used. IOPT(1)=0 indicates that this is the first call whereas IOPT(1)=1
indicates a successive call. Note that the codes internally set IOPT(1)=1 on
return if it was called in stepwise mode. Furthermore, the error flag IERR is
set to —1 as long as the stopping criterion (1.20)4(1.21) does not yet hold.
As an example for an application of this option, just this internal stopping
criterion can be substituted by a user defined one as the continuation of the
iteration is under user control.

Time monitor

In order to get more detailed information concerning the performance of
the codes (including the user supplied problem subroutines), a time monitor
package, which is designed for time measurements of multiple program parts,
is added to the NLEQ packages and may easily be used. Before the first
use of the monitor package for time measurements, because of the machine
dependency of that stuff, the user has to adapt the subroutine SECOND in
such a way that on output the only argument of this routine contains a ”time
stamp”, measured in seconds. As distributed, SECOND is a dummy routine
which always returns zero to this argument.

The monitor may be turned on by setting IOPT(19)=1. Its output will be
written to the FORTRAN unit IOPT(20). The printout includes the total
time used for solving the nonlinear problem and detailed statistics about
the following listed program sections: factorization of the Jacobian, solution
of the linear system (forward/backward substitution), subroutines FCN and
JAC and NLEQ monitor- and data output. Statistics about the remaining
code pieces are summarized as the item "NLEQ1” respectively "NLEQ1S”,

42

"NLEQZ2”. For each section and for the remaining code the following statis-
tics are printed out before the NLEQ subroutine exits: number of calls of the
code section, time used for all calls, average time used for one call, percentage
of time related to the total time used and related to the summarized time of
the specific parts measured.

Of course, the time monitor package distributed with the NLEQ codes may
be used as a separate piece of software within any program to print out
statistics as described above for program sections which may be arbitrary
defined by the user. These sections may even be nested — as applied within
the CodeLib software package GIANT. The use of the monitor package is
described in detail within its code documentation.

Machine dependencies

One aspect of the modular structure of the codes is the fact that the ma-
chine dependencies of the whole program are concentrated in two FORTRAN
modules: the timing subroutine SECOND and the machine constants double
precision function DIMACH. The routine SECOND is only called when the
time monitor is switched on and therefore described within the context of
this monitor. The function DIMACH returns, dependent on its input ar-
gument, typical machine dependent double precision constants, such as the
machine precision, the smallest positive and the largest real number. It con-
sists of comments which contain sets of FORTRAN data-statements with
the appropriate constants for several different machine types. Before using
the NLEQ code on a machine different from SUN, the user should comment
out the data-statements related to these machines and uncomment the set
of data-statements which is appropriate for the target machine.

43

3. Numerical Experiments

In this Chapter some computations, illustrating the behavior of the damped
affine invariant Newton techniques described in Chapter 1, are presented.
The discussion will focus on the performance of the codes NLEQ1, NLEQ2
and NLEQ1S. But, in order to allow a comparison with other available soft-
ware, the results of some experiments with the well-known and widely used
codes HYBRJ1/HYBRD1 [23] from MINPACK are given additionally. Note
that the corresponding nonlinear equation software in NAG and IMSL is de-
rived from these codes, which are of Levenberg/Marquardt type. Although
the comparison shows some interesting results, this Chapter should not be
misunderstood as a general software evaluation or a proper comparison test.

3.1 Test problems

In order to create a certain ”basic test set” some quite different test problems
from literature are put together. The first part of the test set consists of 14
examples, which have been used already in [22] as a test set for nonlinear
equation solvers. One may criticize some of these problems as they are ar-
tificially generated test problems with properties, which are not typical for
real life applications. Nevertheless, all these examples are part of the basic
test set. However, in contrast to the tests made in [22, 19], each problem is
used only once, i.e. for all test problems with a variable dimension, n = 10
is set (except the Chebyquad problem, where n =9 is chosen) and only the
standard starting point is used.

Next, the three chemical equilibrium problems from [19] are added. As no
initial guess z° is given in [19], they are used with the initial values z¢ =
1, 2=1,...,n. For the parameter R in the third example a choice R = 10
is made.

Three nice application problems (distillation column test problem) have been
presented by R. Fletcher [17] in [21]. Two of them (Hydrocarbon-6, Methanol-
8) are used in the basic test set, whereas the larger one (Hydrocarbon-20) is
used for testing NLEQ1S — see Section 3.3.

In order to demonstrate the band mode facility of NLEQ1, a discretized 1D-
PDE problem is used. This example (SST Pollution) is the stationary version
of example F from [25]. For discretization, a simple finite difference scheme
on an equidistant grid of size n, = 101 is used. With that, a nonlinear system
of dimension n = 404 arises. The results of solving this problem can be found
in Section 3.3. However, the O-dimensional problem (n = 4) of finding the
chemical equilibrium neglecting diffusion is part of the basic test set. Here,
the parameter SST1 is set to 3250. As an initial guess the quite poor values

44

2?9 =10%, 29 =10, 29 = 10'3 | 2 = 10" are used.
A quite hard problem is selected from [20]. In this paper, the boundary
conditions for a 2D semiconductor device simulation turn out to be

fi = exp(a(rz — 11)) — exp(a(rs — 22)) — D/n; =0

fo = =0

fa=x3 =0

fa = exp(a(xe — x4)) — exp(a(xy — x5)) + D/n; =0

fs=x5-V =0

f6:x6—V =0 (31)
where

o = 38.683

n; = 1.22 - 10

V =100

D =107

In combination with the starting point
0_ L
x; =1for i=1,...,6

one has an extremely nonlinear and sensitive problem.

Finally, another artificial test problem is added to the basic test set. The
equations read
fi = exp(ai+a3) — 3 =0

fo = @1 + x5 — sin(3(x1 + 12)) = 0 (3:2)

and the initial value is given by
7Y =0.81, 25 =0.82

The usual name, an identifying abbreviation, the dimension n and the ref-
erence to get a full documentation are given in Table 3.1 for all problems
of the basic test set. Herein, a mark ”{” in the column Ref. means a ref-
erence to this paper. It should be mentioned, that all test functions are
implemented in such a way, that "bad” input values z (e.g. invalid argument
for log, sqrt) cause a return to the calling routine with the error indicating
return code TFAIL=1 for the codes NLEQ1 and NLEQ2 and IFAIL=-1 for
the code HYBRJI.

45

No | Name Abbrev. n | Ref.

1 | Rosenbrock function Rosenbr 2| [22]

2 | Powell singular function Powsing 4| [22]

3 | Powell badly scaled function Powbad 2| [22]

4 | Wood function Wood 41 [22]

5 | Helical valley function Helval 31 [22]

6 | Watson function Watson | 10 | [22]

7 | Chebyquad function Cheby9 9 [22]

8 | Brown almost-linear function Brallin 10 | [22]

9 | Discrete boundary value function Discbv 10 | [22]
10 | Discrete integral equation function | Discint 10 | [22]
11 | Trigonometric function Trigo 10 | [22]
12 | Variably dimensioned function Vardim | 10 | [22]
13 | Broyden tridiagonal function Broytri 10 | [22]
14 | Broyden banded function Broybnd | 10 | [22]
15 | Chemical equilibrium 1 Chemeql | 2 |[19], T
16 | Chemical equilibrium 2 Chemeq2 | 6 | [19], T
17 | Chemical equilibrium 3 Chemeq3 | 10 | [19], {
18 | SST pollution, 0 dimensional SSTOD 41 [25], T
19 | Distillation column - Hydrocarbon 6 | Dchyd6 | 29 | [21]
20 | Distillation column - Methanol 8 Dcemeth8 | 31 | [21]
21 | Semiconductor boundary condition | Semicon | 6 | [20], {
22 | Exponential/sine function Expsin 207

Table 3.1 Problems of the basic test set

3.2 Numerical results for the basic test set

All experiments of Chapter 3 have been carried out on a Macintosh II
personal computer equipped with a MC68881 coprocessor using the Lan-
guage Systems FORTRAN 2.0 compiler with the options ”-mc68020” and
7-mc68881”" under MPW 3.0 (System 6.0.3). For the experiments of this
Section the optimization level "-opt=1" has been specified (due to buggy
compilation when trying higher optimization levels), while all codes for the
special experiments of Section 3.3 have been compiled using ”-opt=2".

If not otherwise stated, the default options and parameters of the codes
NLEQ1, NLEQ2 are active, which means, e.g. that all problems are speci-
fied as being highly nonlinear (i.e. Ao = 1072, Broyden update switched off,
condpar = 1/epmach =~ 9- 1077, ..). For the required relative tolerance of
the solution a value of RTOL = 107!° is prescribed. Recall that this value

46

has to be interpreted in connection with the associated scaling vector xscale.
The internal scaling update is done according to (1.49) and an initial value
of XSCALE = 1079 is used for all problems — thus, a change of RTOL does
not affect the internal scaling. Except for this special choice and the fact,
that the analytical Jacobian is used by the codes, the call of the codes corre-
sponds to a call of the easy to use interfaces NLEQ1E/NLEQ2E mentioned
in Section 2.2.1. For that reason, the easy to use MINPACK code HYBRJ1
(HYBRDI in case of numerical differentiation) is selected in order to have
a rough comparison to another state-of-the-art code. The results of solv-
ing the basic test set with the ”standard” codes NLEQ1/NLEQ2/HYBRJ1
(N1/N2/HY) are summerized in Table 3.2.

example #F #J CPU (s)
no name N1 | N2 |HY || N1 | N2 |HY || N1| N2 HY
1| Rosenbr 6 6| 16)) 31063072 0.17
2 | Powsing 54 | 54 | *f4 || 53 | 53 — || 1.23 | 1.45 | 2.33
3 | Powbad 16| 16 | 170 || 15| 15 6| 040 | 042 | 1.97
4 Wood 19 19| 87| 16| 16 20521060 | 1.83
5} Helval 121 12| 19| 11| 11 310381042 0.28
6 | Watson 21 21 78| 19| 19 6 || 8.52 |9.07 | 12.87
7 | Cheby9 9 91 25 8 8 20771093 | 1.67
8 | Brallin *3 | 67| 16 - 34 31028503 1.22
9 | Dischv)) 7 4 4 11 0.431]0.58 | 0.50
10 | Discint 5} 5} 7 4 4 11 0.60|0.72 | 0.58
11 Trigo *3 | 16 | *f4 -1 14 -1/ 0.40 | 1.55 | 4.95
12 | Vardim 16| 16 | 22 || 15| 15 1] 1.22 | 1.68 | 1.58
13 | Broytri 7 7| 13 6 6 1053]0.77 | 0.92
14 | Broybnd 8 8| 23 7 7 11 0.621|0.90 | 1.67
15 | Chemeql 8 8 | *f2 7 7 -1 0.28 | 0.32 | 3.38
16 | Chemeq2 || 20 | 20 | 37 || 19 | 19 310.75(093 | 1.23
17 | Chemeq3 || 12| 12 | 40 || 11 | 11 21090 |1.27 | 2.92
18 | SSTOD 22| 22| *f4 | 21| 21 -1 0.62]0.72| 0.27
19 | Dchyd6 7 7| 16 6 6 2| 3.07 | 7.37 | 10.08
20 | Dcmeth8 6 6| 16 5} 5} 11292720 | 9.83
21 | Semicon | *f3 | *£3 | *fp - - — 11 0.25 | 0.27 | 0.05
922 | Bxpsin | 13| 13| *p | 11| 11| | 035037 0.02

Table 3.2 Results of NLEQ1/NLEQ2/HYBRJ1 solving the basic test set
Usually, the number of function evaluations and Jacobian calls needed to

solve a problem are listed in such tables in order to indicate the efficiency of
the codes. But, it must be pointed out, that the total amount of work may

47

be dominated by internal matrix operations (e.g. LU- or QR-decomposition,
Broyden updates), thus the overall computing times are presented addition-
ally. A comparison of efficiency by just counting J and F' calls — especially
for different methods, where the distribution of the computational work is
quite different — may lead to totally wrong conclusions. In any case, the
most important measure for the quality of a code is its robustness — mainly
in the sense of "a code may fail but must not lie” (B. Parlett), but also ”bet-
ter early return because of ’lack of progress’ than wasting computing time
until maximum iteration limit is reached” [19]. In this respect, all codes
show a quite high degree of robustness. To examine this, a ”true” solution
7* is computed by an a posteriori call to NLEQ2, with RTOL = 10'2,
XSCALE = 107!, and the approximate solution from the test run (z™™) is
checked by computing the actually achieved accuracy

num
:L' —

max{10~6];E]}|

(3.3)

acc = Imnax
1<i<n

Note that neither NLEQ1/2 nor HYBRJ1 use this norm as the implemented
stopping criterion. Nevertheless, no code claims ”solution found” without
really having a good approximation ™™ for x*. The worst case, acc =
5-10% - rtol (acc = 3.5 - 10 - rtol), occurs for HYBRJ1 in example Watson
(Chemeq?2) while for all other numerical solutions acc = rtol holds.

If one judges the quality of the codes by counting the fail runs, the Newton
code with additional rank reduction device (NLEQ2) turns out to be the
"best” (only 1 fail), followed by NLEQ1 (3 fails) and HYBRJ1 (6 (5) fails).
While the NLEQ codes only stop due to f3 := "too small damping factor” ,

HYBRJ1 fails twice due to fp := "error return from user problem function
(invalid x)”, 3 times due to f4 := "bad iteration progress” and once due to
f2 := "maximum iteration limit”. It is worth mentioning, that for one f4-fail

(Powsing) the final iterate of HYBRJ1 is already the solution (according to
(3.3)). This behavior is a consequence of the fact that the stopping criterion
of HYBRJ1 runs into problems if x* = 0 occurs. Furthermore, one fail of
HYBRJ1 (example SST0D) can be removed by just restarting the code — a
proceeding which is suggested by the {2 or f4 messages. Restarting NLEQ1
with A\pin = 1078 removes the failure for problem Semicon. Finally, note
that the above ranking of the codes can be easily changed (reinforced) by
adding e.g. example Brallin with dimensions n = 30, n = 40 — as in the
test set used in [22] — (adding e.g. problem SST-0D with a parameter value
SST1 = 360) to the basic test set.

Analyzing the performance and efficiency of the codes in more detail, the
comparison of NLEQ1 with NLEQ2 nicely shows that NLEQ2 is an exten-
sion of NLEQ1 (less failures, same J and F' count for solved problems). But
this fact must be paid by more computing time (+35% in average, +150% for

48

Demeth8 (n = 311)), because a QR-decomposition is more costly than a LU-
decomposition. A comparison of NLEQ1 with HYBRJ1 (only solved prob-
lems) shows that HYBRJ1 needs (in average) twice as much F-evaluations as
NLEQ1, but NLEQ1 needs 4 times more Jacobian calls. Concerning CPU-
time, NLEQ1 is mostly faster than HYBRJ1 (1:2 in average, 1:5 for Powbad,
but 4:1 for Rosenbr). Due to the low Jacobian count of HYBRJ1 one may
expect advantages if the Jacobian must be generated by (internal) numerical
differentiation. Rerunning the test set with this option (HYBRDI instead
of HYBRJ1) shows, that NLEQ1 is still faster (now 1:1.5) and the ratio of
the F-counts (including all calls for the generation of the Jacobian) turns
out to be 1.2 : 1. However, there are two additional fails for NLEQ1 with
numerical differentiation (problems Watson, Vardim). But this is no contra-
diction to the fact, that the Newton scheme (B) is, in principle, insensitive
to approximation errors in the Jacobian. Rather, the numerical differentia-
tion procedures of NLEQ1 are realized in scaled form (XSCALE enters) and
this feature, which helps in ill-scaled problems, invokes some trouble (at the
very beginning of the iteration) in cases, where some or all components of
20 are zero and XSCALE is small (107%). Apart from this exception, a very
good accordance of both variants (with/without analytical Jacobian) can be
stated for all methods (NLEQ1, NLEQ2, HYBRJ1/D1).

A doubtless interesting question is now, how far the theoretical affine invari-
ance and scaling invariance property of the Newton algorithms carry over to
the performance of the codes. Recall that there are some sources of trouble,
e.g. the linear system solution, the scaling update thresholds and the finite
length of the mantissa. The affine invariance property is now checked by
solving the affine transformed test problems

G(z) = A-F(x)=0, 2°as before
where
A = diag(as,...,an) (3.4)
Qoi1 = g~ (4=(i=1)modd) for 1<2i—1<n
Qg; = & (im1)modd for 1<2i<n.

The degree of practical scaling invariance is examined by solving transformed
functions with regauged variables, i.e.

H(y) == F(S-y)=0, y? = S 120
where
S = diag(s1,...,Sn) (3.5)
Soi_1 = 10%(imHmodd for 1<2i—1<n
So; = 10~ (4= (i=1)modd) for 1<2i<n.

49

Recall that the solution of these problems is given by y* = S~'z*.

The performance changes of NLEQ2 and HYBRJ1, solving (3.4) and (3.5)
instead of the original formulation (1.3), are summarized in Tables (3.3)
and (3.4). As the performance changes of NLEQ1 are even less than the

example ret. code #F #J
no | name N2 HY || N2 HY || N2 | HY
1 | Rosenbr — | 4] — +49 || — | +15
2 | Powsing — | =4 — -5 — | +3
3 | Powbad — | 42 — | +130| —| —4
4 | Wood — | +f4] — —13 — | +9
5 | Helval — | 44| — -8 —| —1
6 | Watson — | 42 — | 41022 || —| —
7 | Cheby9 — — | — -1 — | —
8 | Brallin — — | — +2 || — —
9 | Dischv — — 1 — — | — | —
10 | Discint — — | — — | — —
11 | Trigo — | =t| — | 4111] — | +15
12 | Vardim — — | — — | — —
13 | Broytri — — | — — 1 —] —
14 | Broybnd — — 1 — — | — | —
15 | Chemeql | — | f2—4 || — | —232| — | +14
16 | Chemeq2 | — — | — — 1 — | +2
17 | Chemeq3 | — — | — —11) — | +3
18 | SSTOD — | =4 — +18 || — | +5
19 | Dchyd6 — — | — — |\ — | —
20 | Dcmeth8 — — | — — 1 — | —
21 | Semicon || =f3 | =fp | — — 1 — | —
22 | Expsin — | =fp || — — 1 —] —

Table 3.3 Performance changes due to affine transformation of equations

changes of NLEQ2 these results are omitted. Within the tables an unchanged
performance is indicated by an entry ”—" (or "=fi” in case of failure with
the same return code i as for the original problem). Additional fail runs are
marked by ”+fi” (i indicates the reason for failure) and runs where the error
message changes are marked by ”fi—j”. The result of this experiment clearly
shows the advantages of using a code with invariance properties. Table 3.3
makes evident the total invariance of both the Newton codes with respect
to the affine transformation (3.4), whereas Table 3.4 discloses the limit of
practical scaling invariance.

50

Solving the rescaled problems (3.5) instead of (1.3), the code NLEQ2 shows
one more deviation than the code NLEQ]1 (additional fail for problem Brallin),
which nicely reflects the fact that the rank strategy of NLEQ?2 is affected by
a rescaling of type (3.5). In contrast to the nearly invariant performance of
the damped Newton codes, the performance of the hybrid code HYBRJ1 is
strongly impaired by the transformations (3.4) and (3.5) respectively. Quite
a large number of additional fail runs occur whereas for the solved problems
the degree of the performance change is rather insignificant. Further experi-
ments with other affine and scaling transformations confirm the observations
mentioned above. Of course, the affine invariance property of the Newton
codes can be destroyed by choosing the matrix A in (3.4) in such a way that
the Jacobian G'(x) is (nearly) numerically singular.

example ret. code #F #J
no | name N2 HY N2 | HY N2 | HY
1 | Rosenbr — — — | +5 — | —1
2 | Powsing — | =4 +13 | —11 || +13 | —1
3 | Powbad — — — | =94 — | —4
4 | Wood — — — | —10 — | +2
5 | Helval — +f4 || —1 — | -1] —
6 | Watson — — | +1|420| +1] +8
7 | Cheby9 — | +f4 — | +6 — | +3
8 | Brallin +13 +f4] =30 | =31 —20| —1
9 | Discbv — — — | — — | —
10 | Discint — — — — — | —
11 | Trigo — | =f4 — | —49 — | =5
12 | Vardim — — — | +1 — | —
13 | Broytri — — — | — — | —
14 | Broybnd — — — | — — | —
15 | Chemeql | — | f2—4 — | =21 — | +5
16 | Chemeq2 || — — — | =5 — | —
17 | Chemeq3 || — — — | =12 — | +1
18 | SSTOD — | =f4 — | — — | —
19 | Dchyd6 — — | +1| +1y +1] —
20 | Dcmeth8 — — — | — — | —
21 | Semicon || =f3 | =fp — | — — | —
22 | Expsin — | =fp — | — — | —

Table 3.4 Performance changes due to rescaling of variables

Besides the experiments presented so far, a lot of further testing has been
carried out, especially experiments with non-standard options (Broyden up-

51

dates on, modified damping,. ..). The results can be summarized as follows.
The Newton codes show an extreme robustness, but — for the basic test set
— only minor performance changes due to (reasonably) modified options.
The latter fact is not surprising, as the problems of the basic test set are not
much large and, most of them, not really highly nonlinear in the sense that
the Newton path from z° to z* exists but can’t be followed by the ordinary
Newton method. Thus, on an average, sophisticated damping or setting spe-
cial options does not pay off for these examples. Rather, the advantages of
the algorithms and codes will show up especially for large and numerically
sensitive problems.

3.3 Special experiments

SST Pollution

Finding the stationary state of a (discretized) system of nonlinear PDEs
represents a quite interesting and challenging problem class for nonlinear
equation software. For PDE problems in one space dimension the application
of quite a lot discretization techniques (e.g. finite differences, finite elements,
collocation) leads to a system of nonlinear equations where, typically, the
corresponding Jacobian shows band structure. Although the dimension of
the discretized system is mostly of still moderate size, this fact should be
exploited in order to solve the arising linear systems efficiently. As an example
take the problem SST pollution (see Section 3.1) where n = 404 and — due to
the simple structure of the diffusion term — the lower and upper bandwidth
of the Jacobian turn out to be ml = mu = 4. The results of some experiments
with NLEQ1 are summarized in Table 3.5. The gain from switching on the

NLEQ]1-variant #F | #J | CPU (s)
full mode, num. diff. 23 | 22 2237.4
full mode, anal. Jac. 23 | 22 944.3

band mode, num. diff. | 23 | 22 84.6
band mode, anal. Jac. | 23 | 22 55.7

Table 3.5 NLEQ1 for problem SST Pollution: band mode vs. full mode

band mode option is obvious but not surprising. Note that the internal band
mode variant for the numerical differentiation (just 9 evaluations of F'in order
to generate the Jacobian) works quite efficient, as the overall computing time
is just increased by 52% by switching on this option whereas, in the full mode
case, the additional amount of work turns out to be 137%.

52

Hydrocarbon

Another interesting problem class are (moderate) large nonlinear systems
where the non-zero elements of the Jacobians show a sparse but irregular
pattern. The performance of the corresponding Newton code NLEQ1S is
now illustrated by means of three variants of the distillation column test
problem Hydrocarbon (see Section 3.1). The first variant is the Hydrocarbon-
6 example which has been already used in the basic test set (n = 29). Second,
the Hydrocarbon-20 problem is considered, which consists of a set of n = 99
coupled equations. The number of Jacobian non-zero elements turn out to
be nnz = 740, thus the portion of (structural) non-zero elements in the Jaco-
bian (7.6%) is still not really small. Finally, by modeling a 40-stage column
(instead of 6 or 20 stages respectively) one gets an, at least medium sized,
system with 199 unknowns (Hydrocarbon-40). Herein, 1520 of 39601 matrix
elements (3.8%) are structurally non-zero. The results of applying NLEQI1,
NLEQ1S and HYBRJ1 (analytical Jacobian, standard options otherwise) to
these problems are summarized in Table 3.6. Obviously, the use of sparse
matrix techniques pays off only for sufficient large n — but this limit not
only depends on the dimension and sparseness of the problem, but also on
the hardware configuration of the computer at hand (vector, parallel or se-
quential machine). Furthermore, increasing the number of stages within this
model increases the complexity of the nonlinear problem as well. This clearly

| Problem/Code | #F | #J | CPU(s) |
Hydrocarbon-6
NLEQ1 7 6 2.6
NLEQ1S 7 6 2.5
HYBRJ1 16 2 8.8
Hydrocarbon-20
NLEQ1 13 12 68.0
NLEQ1S 13 12 15.5
HYBRJ1 24 4 266.0
Hydrocarbon-40
NLEQ1 22 21 677.9
NLEQ1S 22 21 56.7
HYBRJ1 *£4(218) | (14) | (8689.7)

Table 3.6 Performance of standard methods for Hydrocarbon problems

shows up in the Hydrocarbon-40 example, where HYBRJ1 fails to converge
and NLEQ1S needs 3 times more iterations as for the Hydrocarbon-6 example.

53

A quite interesting effect shows up, if one repeats these runs on another
machine (SUN-Sparcl+) where the relative machine precision is a bit worse
(107" — 107'%). NLEQIS needs 3 additional iterations in order to solve
the Hydrocarbon 40 problem whereas all other runs remain uneffected. How-
ever, analyzing both runs, the reason for this difference is obvious. Up to
the 20 th iterate there is a perfect coincidence, but then, very close to z*
where Ax — 0, the sparse linear system solution is not accurate enough
to guarantee quadratic (or at least superlinear) convergence for the Newton
method. Hence, NLEQ1S needs 3 more (linearly convergent) iterations in or-
der to meet the required accuracy of 10719, It is quite satisfactory, that the
internal convergence monitor of the code realizes this behavior and issues a
corresponding warning message. As the accuracy for the sparse linear system
solution can be improved by reducing the chance of conditional pivoting one
may solve the problem with modified linear algebra options. First, all matri-
ces are factorized with the Analyze-Factorize routine MA28A and, second, for
all these factorizations the chance of conditional pivoting is switched off by
setting thresh1:= 1. The results are given in Table 3.7. The disturbance of

Hydrocarbon-40 #F | #J | ¢CPU for LU
standard options 25 | 24 0.07
only A/F, thresh1=0.01 | 24 | 23 0.16
only A/F, threshl= 1. 22| 21 0.20

Table 3.7 Performance of NLEQLS with modified linear algebra options (on
SUN-Sparcl+)

the Newton convergence is successively removed, but the average CPU time
for one LU-decomposition is increased. For this specific example the latter
effect is quite small, but, in general, a decrease of the required tolerance is
a better response to the above mentioned warning message of the Newton
code.

Expsin

For a last experiment, the artificial test problem Fxpsin is now used to dis-
cuss again one of the structural advantages (and the associated limit) of the
damped Newton scheme (B) presented in Section 1.2. For that purpose re-
call the reflections on the Newton path made in Section 1.1.5. Now, for this
simple test problem the manifolds with singular Jacobian can be explicitly

54

computed. Straightforward calculations show, that

Det(J(x)) = 0 occurs for (z = (z,y)7)

y==u
or

1 1. j-2r

=4)+ 5=0,1,2,... .
y=Fgarccos(z) £=——, =012

These lines (plotted in Fig. 3.3) separate six different, but symmetric, so-
lutions. The behavior of the code NLEQ1 (with standard options) is now
checked by a special experiment. The domain [—1.5,1.5]? is " discretized” by
selecting initial values

yi =—154+1-A 1=20,...,90
(A :=0.06)

and NLEQ1 is started from all these ”initial guesses”. The result is illustrated
in Figure 3.1. Herein, the different markers indicate toward which of the six
solution points the code converges whereas white space indicates failure. This
information totally reveals the topological structure of the problem. Except
for 4 cases (Ao too large) NLEQL converges from the given starting point
to the "associated” solution — even from "far away”, if y ~ —z (e.g. x =
(5,—4)T). In cases, where 2 and x* are separated by a line with singular
Jacobian, NLEQ1 fails to converge — even from "nearby”, if y ~ x (e.g. x =
(1,0.9)T). The result of repeating the experiment with HYBRJ1 is shown in
Fig. 3.2. This method shows more convergent runs, but the nice structure,
induced by the problem, of Figure 3.1 is smeared. Furthermore, a quite large
number of "lie points” occurs, i.e. HYBRJ1 claims ”solution found” without
returning it. All starting points at which this happens are marked with a
black filled circle.

The above mentioned 4 exceptions remove if NLEQ1 is used with the "ex-
tremely nonlinear” option switched on. The reason for this is illustrated
in Fig. 3.3. Herein, the neighborhood of one of the critical starting points
is magnified. The extreme nonlinearity shows up in the rapid change of
the Newton direction near x°. Obviously, the standard choice for the ini-
tial damping factor (A\g = 107?) — a compromise between robustness and
efficiency — is not small enough to prevent the iteration from crossing a
line with singular Jacobian. As this first trial iterate passes the natural
monotonicity check, the code converges — but to a solution which is not
”connected with 297, Starting with a smaller damping factor (Ag = 107%)
the code gets sufficient local information on the nonlinearity near z° in order
to properly adapt all following damping factors. With that, convergence to
the connected solution is guaranteed.

95

56

£
S
@
KKK KKK KKK KR KKK KKK KK KK+ ++++++ W KKKXXOO ® *KEkkExKk*K*KO* F KKK KKK KK KKK KKK KK KK ++++++
KKK KKK KRR KR KKK KR KKK KK+ +++++++ N XN\ X O X %O BRI KX RKKE X RH KRR KRR KK KKK KKK KKK FHt+t+++t
KKK K KKK KRR KKK KRR KK KKK+ +++++++ Du X % * BRX KK KKTRKKB OF KKK KKK KK KKK KKK KKK ++++++++
KKK KKK KKK KRR KRR KKK KKK+ ++++++++ X+ B® XKKkKTRKXKK® OOk KKk Kk KKK KKKKKKKKK ++++++++++
KKK KKK KKK KKK KKK KK KKK+ +++++++++) * ® X BB KKK+ KKK KOKK KK KKK KKK KKKKKKKK +++++++++++
KKK KKK KKK KKK KKK KK KKK K+ +++++++++++ — ® % X® KT RKKB OX KKK KKK KKKKKKKKKKKK +++++++++++
KKK KKK KKK KK KKK KK KKKKK+++++++++++++ o +® DD X ®® BXXKKKKKKKKKKKKKKKKK ++++++++++++%
KKK KK KKK KKK KK KKK KKK KKK+ ++++++++++++ m + ®® BEBD® * ¥OKXKXXKXKKKKKKKKKK ++++++++++++%
KKK KKK KKK KKK KKK KKK KKK+ ++++++++++++ DOEBDD BB® BXOKKKXKKKKKKKKKKKKKK ++++++++++++%
KKK KKK KKK KK KKK KKK K KKK+ +++++++++++ < ®® K R® BrXOXX KKK KKK KK KK RKKKK +++++++++++++
KKK KKK KKK KKK KKK KKK KKK+ ++++++++++++ < XXKKX ®D FORKK KK KKK KKK KX KK KKK+ ++++++++++++
KKKKKK KKK KKK KKK KKK KKK+ ++++++++++++) XXXXXX ®D OK KKK KK KKK KKK KKKKKK+++++++++++++
XXNK KKK KKK KKK KKK KK KRR KF++++++++++++ XXXXXO ®® KKK KKK KKK KKK KKRK K+ +++++++++++
XXXXN KK KKK KKK KKK KKK KKK+ ++++++++++ = XXXXOX & KKK KKK KKK KK KKK KKK+ ++++++++++++
XXXXXXN KKK KKK KKK KKK KKK+ ++++++++++ &w XXXOXXB®B® ® +F XX\ XKXXKXX XXX XX XKKKK+++++++++++++
XXXXXXXXN\ KKK KK KKK KKK KK+ ++++++++++++ XXOXX @ @ +XXXX\K*X KKK KKK KKK+ ++++++++++++
XXXXXXXXXXN\ KKK KKK KKK KK+ ++++++++++++ ~ X XXX® @ +XXXXXX\@ Xk XXk K¥X ++++++++++++
XXX XK K XX X XK XN K K KKK KKK+ O XXXX® @ +XXXXXXXB\® KXXKKK ++++++++++++
XXXXXXXXXXXXXXNK KKK KKK FF 4+ ++ &) XX X® + X XXX XXX R \PKKKKKK K+++++++++++
XXXXXXXXXXXXXXXX\ KKK KK+ ++++++++++++ Lu +F XX X X XXXXXXXX BN K % * &k X +++++++++++
XXXXXXXXXXXXXXXXXX\KXKXKXK+++++++++++++ [S) XX +HXXXXXXXXXXX X XN ¥ & +++++++++++
XXXXXXXXXXXXXXXXXXXXN\X+++++++++++++ FHEXXXXXXXXXXXXXXXXX\® ®+++++++++++
XXXXXXXXXXXXXXXXXXXXXEXN\N++++++++++++ n XXXXXXXXXXXXXXXXX @ +4+++ A+
XXXXXXXXXXXXXXXXXXXXXOON++++++++++ o= XXX XXXXXXXXXXXXXXXXX* +++@++++ X
XX XX XX XXX XXXXXXXXXXX000ON++++++++ < XXXXXXXXXXXXXXXXXXXX BOOV+®++++ *
XXXXXXXXXXXXXXXXXXXO00000ON\++++++ m XXXXXXXXXXXXXXXXXXX% 0000+ ++ x
XXXXXXXXXXXXXXXXXXOO000000O0ON\++++ 5 XXXXXXXXXXXXXXXXXX%¥ 0O000®0K++&
XXXXXXXXXXXXXXXXXO0000O0OO0OOON\++ XXXXXXXXXXXXXXXXX*¥X00008®0 O * X
XXXXXXXXXXXXXXXXO000000000000N* o] XXXXXXXXXXXXXXXX%¥00000 0000 ® X X
XX XXX XXXXXXXXXXO00000000000O0 o XXXXXXXXXXXXXXX00000000000® x® Q0 x
XXXXXXXXXXXXXXO0000000000O0O* % * o XXXXXXXXXXXXXXO0000000000 X* * ago - -
XXXXXXXXXXXXX0O00O00000000O0* * % % % XXXXXXXXXXXXXO0000000000 X****%*¥\&® X ® -0
XXXXXXXXXXXX0000C000Q000O0OO* * * % % % % +~ XXXXXXXXXXXXO0000000O000O0* X * %% % % *x @\ @ OxXx & - -
XXX XXXXXXXX0O0000O00OOQO0OOQO* * %% % %% %% — XXXXXXXXXXXO0000OU0OOOOOOX % % % % % % B\ D OX® & -
XXXXXXXXXX00000000OOOOO* % % % % % % % % % % u XXXXXXXXX 000000000000 X * % % % % % % ® OX® ® X
XXXXXXXXXO000000OQOOOQOO* % % % % % % % % % % ¥ % »n XXXXXXXX 0000000000000 % % % % % ¥ % % % * % OX® & +
XXXXXXXXO000000OOOOOOQO* % % %% % %% %% %% %¥%% [0 XXXXXXX 0000000000000 % % % %% % % % % % % % % %% OX® ®® +
XXXXXXXO000000000OOOOQO* % % % % % % % % % % % % % % %% = XXXXXX 0000000000000 * % %% % %% %% %% %% %% %% ® +
XXXXXXO000000000OOOOO* * % % % % % % % % % % % % % %% %% XX XXX 0000000000000 ** % % %% %% %% %% %% %¥%%% ®® +
XX XXXO0000O0OOOOOOOO* % % % %% %% % %% ¥%%%%¥¥%%%% _ XX XX 000000000000 * %% % %% %% %%%%%%%%%%+ EX)
XXXX00000O000OO0O0OOOO* % % ¥ % % % % % % % %% % ¥ % %% %% %% XXX 0000000000000 * %% %% %% %% %% ¥%%%%¥%%x+K ®D KKK
XXXO000000O0OOOOOOH % % % % % % % %% % %% %% %% %%¥%%% — X X 000000000000 *¥X¥¥ ¥ ¥ ¥ X ¥ XX ¥ XX XX *¥+XD 2B D *®®
XX0O00O0OOOOOOOOOO* %% % % % % %% %% %% %%%XX%X%X%%XX X 000000000000 *¥*kAXAXXXX XXX XX XXX X%X+XBD ®D BRERR R
XOOO0DO0OOOOOOOOO* % %% %% %% %% %%%%X¥¥XXX%%x% ﬁ% *000000000000 ¥ ¥ ¥ XX ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ %% %+hkk DOORD EE) o
OO000O00OO0OOOOOOO* %% %% % %% % %% %% % %*%%X%X%% %% UD *¥0000D00000000 *H*X ¥ %X XK XXX XX XX XXX KX BR EX X ®0
QOO0 00OOOOOOH* % O0O0OO000O0OO0OOOD H***%%%%%%%%%%%%%%%K B *xxO*x*x®D *
OOOODOOOOOO X * %% %X XXX XK%XK*X¥XXXXX — OOO00D000000D HXX¥XX¥XXKXX¥XX¥¥%F K PXXXOX%% B * %
QOO0 0OOOOO* % MH QOO0 00O0OD H¥¥HKKH¥H¥¥%%¥%%%%%%%¥++ %¥%%xO%%x% ®® o
QOO0 0DOOOO* % OOOODOOOX **¥F%¥XkFKk¥XFKXXK¥¥X¥***¥KF RBr*x*x0O*%*%% %@ * *
OQOOOODOOO % % % % % % % % % % % %% % % % %% % %% % — OOOODOOX H¥*FKKFKKXKXXKFRHFFEHFE KXFKRKFXK**XP +® +
OQOOOODOOH % %% %% %% %% XX %% %% %%*%%%% N OOODOOOX X ¥HKX¥HKXKHKXXKXK*KX***K ¥R KX N*H B ++ * K ¥
[~e]
Q
5
20

Figure 3.2 HYBRJ1 — result of domain check for example Ezxpsin

Figure 3.3 Neighborhood of a critical 2°. Original scale, first and second zoom
in

o7

=

Figure 3.4 Damped Newton iterates and Newton pathes for example Expsin

Finally, Figure 3.4 makes again evident the extreme good accordance of the-
ory, algorithm and code. For some selected starting points 2° the associated
Newton pathes G(2°) (dotted lines) and the (extremely) damped Newton
iterates (connected by solid lines) — from symmetric initial values ° — are

plotted.

Conclusion

Three new codes for the numerical solution of systems of highly nonlinear
equations have been presented. For the first time, the affine invariant Newton
techniques due to Deuflhard are available in the form of reliable and modern
software. The essential features of the algorithms carry over to the codes.
Systems up to a considerable size can be solved efficiently. The new codes
turn out to be very robust.

58

References

1]

[9]

[10]

L. Armijo: Minimization of functions having Lipschitz-continuous first
partial derivatives. Pacific J. Math. 16, p. 1-3 (1966).

H.G. Bock: Numerical Treatement of Inverse Problems in Chemical Re-
action Kinetics. In: [16], p 102-125 (1981).

C.G. Broyden: A class of methods for solving nonlinear simultaneous
equations. Math. Comp. 19, p. 577-583 (1965)

P. Businger, G.H. Golub: Linear least squares solutions by Householder
transformations. Num. Math. 7, p. 269-276 (1965)

P. Deuflhard: A Modified Newton Method for the Solution of Ili-
Conditioned Systems of Nonlinear FEquations with Application to Multi-
ple Shooting. Numer. Math. 22, p. 289-315 (1974).

P. Deuflhard: A Relazation Strategy for the Modified Newton Method.
In: Bulirsch/Oettli/Stoer (ed.): Optimization and Optimal Control.
Springer Lecture Notes 477, p. 59-73 (1975).

P. Deuflhard: Newton Techniques for Highly Nonlinear Problems - The-
ory and Algorithms. Academic Press,Inc. (To be published)

P. Deuflhard: Global Inexact Newton Methods for Very Large Scale Non-
linear Problems. Konrad-Zuse-Zentrum fiir Informationstechnik Berlin,
Preprint SC 90-2 (1990).

P. Deuflhard, E.Hairer, J. Zugck: One-step and FExtrapolation Methods
for Differential-Algebraic Systems. Num. Math., 51, p. 501-516 (1987).

P. Deuflhard, U. Nowak: Eztrapolation Integrators for Quasilinear Im-
plicit ODE’s. In: P. Deuflhard, B. Engquist (eds.): Large Scale Sci-
entific Computing. Progress in Scientific Computing Vol. 7, p. 37-50,
Birkhaeuser (1987).

P. Deuflhard, W. Sautter: On Rank-Deficient Pseudo-Inverses. Lin. Alg.
Appl. 29, p. 91-111 (1980).

J.J. Dongarra, C.B. Moler, J.R. Bunch, G.W. Stewart: LINPACK.
SIAM, Philadelphia (1979).

I.S. Duff: MA28 — A Set of FORTRAN Subroutines for Sparse Un-
symmetric Linear Fquations. AERE Report R. 8730; HMSO, London
(1977).

I.S. Duff: Direct Methods for Solving Sparse Systems of Linear Equa-
tions. SIAM J. Sci. Stat. Comput. 5, p. 605-619 (1982).

59

[15]

[16]

[17]

[25]

[.S. Duff, U. Nowak: On Sparse Solvers in a Stiff Integrator of FExtrap-
olation Type. IMA Journal of Numerical Analysis 7, p. 391-405 (1987).

K.H. Ebert, P. Deuflhard, W. Jager (ed): Modelling of Chemical Reac-
tion Systems. Berlin-Heidelberg-New York: Springer Ser. Chem. Phys.,
vol. 18 (1981).

R. Fletcher: Practical Methods of Optimization. Second Edition, John
Wiley, 1987.

HARWELL: MA28 Subroutine library specification. 28th May 1985.

K.L. Hiebert: An Evaluation of Mathematical Software that Solves Sys-
tems of Nonlinear Equations. ACM Trans. Math. Software, Vol. 8, No.
1, p. 5-20 (1982).

J. Molenaar, P.W. Hemker: A multigrid approach for the solution of the
2D semiconductor equations. IMPACT Comput. Sci. Eng. 2, No. 3, p.
219-243 (1990).

J.J. Moré: A Collection of Nonlinear Model Problems. Preprint MCS-
P60-0289, Mathematics and Computer Science Division, Argonne Na-
tional Laboratory (1989)

J.J. Moré, B.S. Garbow, K.E. Hillstrom: Testing Unconstrained Opti-
mization Software. ACM Trans. Math. Software, Vol. 7, No. 1, p. 17-41
(1981).

J.J. Moré, B.S. Garbow, K.E. Hillstrom: User Guide for MINPACK-1.
Preprint ANL-80-74, Argonne National Laboratory (1980).

U. Nowak, L. Weimann: GIANT — A Software Package for the Nu-
merical Solution of Very Large Systems of Highly Nonlinear Equations.

Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, Technical Report
TR 90-11 (1990).

R. F. Sincovec, N. K. Madsen: Software for Nonlinear Partial Differ-
ential Fquations. ACM Transactions on Mathematical Software Vol. 1,
No. 3, September 1975, p. 232-260.

60

A. Program Structure Diagrams

i FCN %
1 (user) i€
rJAC
1 (user)
> N1JCF
+ N1JCFB |—
> N1JAC
+ N1JACB
> WNORM
| NISCAL
-+ NISCRF
N1PCHK | s N1SCRB
NLEQ1
NIINT [— | DGEFA
(LINPACK)
| NIFACT [
DGBFA
™ (LINPACK)
DGESL
™ (LINPACK)
-+ N1SOLV [
DGBSL
| (LINPACK)
- N1LVLS
| N1PRV1
+ N1PRV2
L] N1SOUT

Figure A.1 NLEQ1: Program structure (subroutines)

61

routine purpose
Interface to the calling program

NLEQ1 Numerical solution of nonlinear equations — User interface and workspace

distribution subroutine
N1PCHK Checks, if input parameters and options have reasonable values

Internal subroutines, realizing the algorithm (B)

NI1INT Main core subroutine of NLEQ1 — realizing the damped Newton scheme
N1LVLS Descaling of the linear systems solution vector, computation of natural and

standard level for the current (accepted or trial) iterate
N1FACT Common interface routine to a matrix decomposition routine of a linear solver
N1SOLV Common interface routine to a linear solver routine to be used together with

the corresponding matrix decomposition routine called by NIFACT
WNORM Computation of the norm used for the error estimate

Jacobian approximation by numerical differentiation

N1JACB Computation of a banded Jacobian
N1JCFB Computation of a banded Jacobian, with steplength feedback control
N1JAC Computation of a full mode storage Jacobian
N1JCF Computation of a full mode storage Jacobian, with steplength feedback

control

Scaling subroutines
N1SCAL Calculates the scaling vector for the damped Newton iteration
N1SCRF Internal row scaling of the linear systems matrix A (full mode storage)
N1SCRB Internal row scaling of the linear systems banded Matrix A
Output subroutines
N1PRV1 Does print monitor output
N1PRV2 Does print monitor output (another format, different data as in N1IPRV1)
N1SOUT Output of the sequence of Newton iterates (or the solution only)
Time monitor

MONON Starts a specific time measurement part
MONOFF | Stops a specific time measurement part
MONINI Initialization call of the time monitor package
MONDEF | Configuration of the time monitor — definition of one specific measurement

part
MONSRT Start of time monitor measurements
MONEND | Finishes time monitor measurements and prints table of time statistics

LINPACK subroutines solving the linear systems
DGEFA Matrix decomposition by Gauss algorithm (full mode storage)
DGBFA Matrix decomposition by Gauss algorithm (band mode storage)
DGESL Linear system solution routine to be used together with DGEFA
DGBSL Linear system solution routine to be used together with DGBFA
Machine dependent subroutines
D1IMACH Returns machine dependent double precision constants
SECOND Returns a time stamp measured in seconds - used for the time monitor
Routines to be supplied by the user of NLEQ1

FCN The nonlinear problem function (required)
JAC The Jacobian associated to the nonlinear problem function (optional)

Table A.1 purpose of NLEQ1 subroutines

62

, (user)
L JAC
y (user)
> WNORM
> NISCAL
> NISCRF
NISLVI
MA28AD
(HARWELL)
NLEQ1S —+ NIPCHK | (- NIFACT
MA28BD
(HARWELL)
NIINT |
| MA28CD
> NISOLV —"|(HARWELL)
> NILVLS
= NIPRV1
| NIPRV2
L NISOUT

Figure A.2 NLEQ1S: Program structure (subroutines)

63

routine

purpose

Interface to the calling program and Initialization

NLEQ1S Numerical solution of nonlinear equations system with sparse Jacobian matrix
— User interface and workspace distribution subroutine
NIPCHK Checks, if input parameters and options have reasonable values
NISLVI Performs initial settings for the sparse linear solver
Internal subroutines, realizing the algorithm (B)
NIINT Main core subroutine of NLEQLS - realizing the damped Newton scheme
NILVLS Descaling of the linear systems solution vector, computation of natural and
standard level for the current (accepted or trial) iterate
NIFACT Common interface routine to a matrix decompositionroutine of a sparse linear
solver
NISOLV Common interface routine to a sparse linear solver routine to be used together
with the corresponding matrix decomposition routine called by NIFACT
WNORM Computation of the norm used for the error estimate
Scaling subroutines
NISCAL Calculates the scaling vector for the damped Newton iteration
NISCRF Internal row scaling of the linear systems matrix A (sparse storage mode)
Output subroutines
NIPRV1 Does print monitor output
NIPRV2 Does print monitor output (another format, different data as in NIPRV1)
NISOUT Output of the sequence of Newton iterates (or the solution only)
Time monitor
MONON Starts a specific time measurement part
MONOFF | Stops a specific time measurement part
MONINI Initialization call of the time monitor package
MONDEF | Configuration of the time monitor - definition of one specific measurement
part
MONSRT Start of time monitor measurements
MONEND | Finishes time monitor measurements and prints table of time statistics
LINPACK subroutines solving the linear systems
MA28AD Analyze-factorize subroutine for sparse linear system solution: needs to be
initially called for factorizing a sparse matrix (using conditional pivoting)
MA28BD Factorizes a sparse matrix, which has the same nonzeros pattern as some
other sparse matrix passed before to a MA28AD call
MA28CD Solves a sparse linear system with a matrix factorized before by a call of
MA28AD or MA28BD
Machine dependent subroutines
DIMACH Returns machine dependent double precision constants
SECOND Returns a time stamp measured in seconds - used for the time monitor
Routines to be supplied by the user of NLEQ1S
FCN The nonlinear problem function (required)
JAC The sparse Jacobian associated to the nonlinear problem function (required)

Table A.2 purpose of NLEQ1S subroutines

64

— N2JCF

- WNORM

- N2SCAL

N2PCHK > N2SCRF

NLEQ2

N2INT » N2PRJN

>~ N2FACT DECCON

Y

- N2SOLV SOLCON

Y

- N2LVLS

= N2PRV1

= N2PRV2

—» N2SOUT

Figure A.3 NLEQ2: Program structure (subroutines)

65

routine purpose
Interface to the calling program
NLEQ2 Numerical solution of nonlinear equations — User interface and workspace
distribution subroutine
N2PCHK Checks, if input parameters and options have reasonable values
Internal subroutines, realizing the algorithm (R)
N2INT Main core subroutine of NLEQ2 — realizing the damped Newton scheme with
rank-reduction option
N2LVLS Descaling of the linear systems solution vector, computation of natural and
standard level for the current (accepted or trial) iterate
N2PRJN Provides the projection to the appropriate subspace in case of rank-reduction
N2FACT Common interface routine to a matrix decomposition routine of a linear solver
with determination of the matrix rank
N2SOLV Common interface routine to a linear solver routine to be used together with
the corresponding matrix decomposition routine called by N2FACT
WNORM Computation of the norm used for the error estimate
Jacobian approximation by numerical differentiation
N2JAC Computation of a (full mode storage) Jacobian
N2JCF Computation of a (full mode storage) Jacobian, with steplength feedback
control
Scaling subroutines
N2SCAL Calculates the scaling vector for the damped Newton iteration
N2SCRF Internal row scaling of the linear systems matrix A (full mode storage)
Output subroutines
N2PRV1 Does print monitor output
N2PRV2 Does print monitor output (another format, different data as in N2PRV1)
N2SOUT Output of the sequence of Newton iterates (or the solution only)
Time monitor
MONON Starts a specific time measurement part
MONOFF | Stops a specific time measurement part
MONINI Initialization call of the time monitor package
MONDEF | Configuration of the time monitor — definition of one specific measurement
part
MONSRT Start of time monitor measurements
MONEND | Finishes time monitor measurements and prints table of time statistics
LINPACK subroutines solving the linear systems
DECCON QR-Matrix decomposition with rank determination (full mode storage)
SOLCON Linear system solution routine to be used together with DECCON
Machine dependent subroutines
D1IMACH Returns machine dependent double precision constants
SECOND Returns a time stamp measured in seconds - used for the time monitor
Routines to be supplied by the user of NLEQ2
FCN The nonlinear problem function (required)
JAC The Jacobian associated to the nonlinear problem function (optional)

Table A.3 purpose of NLEQ2 subroutines

66

