
Konrad-Zuse-Zentrum für Informationstechnik Berlin

ANDREAS HOHMANN AND CLAUDIA W^ULFF

Modular Design of Extrapolation Codes

Technical Report TR-92-5

LSIM, and DlFEX. In addition, we amused ourselves by using the gen­
eral extrapolation module for the adaptive Romberg quadrature algorithm
TRAP EX. Besides the claims for flexibility and modularity, the efficiency of
the programs should not suffer. For that purpose we required the number of
function evaluations to be comparable to the existing FORTRAN codes. For
large problems the organization overhead will be of less importance.

For the final approximation for a particular fc, we may use the error estimator
to refine the approximation Tk and take Tk + Ek as the subproblem's solution,
In an extrapolation method this is just the diagonal entry Tk+i,k+i-

1.1 PREDICTION OF OPTIMAL ORDERS AND STEPSIZES

It is the task of an adaptive order and stepsize control to divide the main
problem<j>t0,txyyo) into appropriate subproblems <t>t,t+H(y) with (varying) step-
sizes H and to choose the orders k in order to solve the main problem up to
the prescribed (local) accuracy tol, i.e.

ek{t,H) <tol .

Substituting the unavailable error by the norm of the error estimator Ek, we
reauire

1 ORDER AND STEPSIZE CONTROL

In this section we discuss the order and stepsize control for extrapolation
method as proposed by Deuflhard in [1]. To avoid the double indices con­
nected with extrapolation tableaus, we use a slightly different notation. In
fact, the control mechanism works only on the diagonal and subdiagonal
entries of the extrapolation tableau. Therefore, all we need to apply the
techniques of [1], is a discretization scheme of variable order (with respect to
a stepsize) and a corresponding error estimator.

To start with, consider the standard initial value problem of non-autonomous
ODE's

y = IKVI*), y\to) = yo, y\fi)=?

If <j> denotes the corresponding flow, which we assume to exist fof all t i t
question, we have to compute y\ = 4>tQ,ti{yo) up to a prescribed accuracy
tol. To solve this problem, we are given a family of discretization schemes
Tk(t)H), k — 1,2,..., to approximate a subproblem $t,M-jj(y)- Thus, each
Tk represents a fixed formula which computes for ä given initial value t/, time
t, and stepsize H an approximation of ^t,t+iy(y).

We suppose that Tk is computed using the former approximations T\,..., Tk-i
and that the order of the discretization Tk with respect to the stepsize H is
pk for some fixed p 6 N , i.e., the approximation error 6k of Tk satisfies

£*(t,H) := ||<£t,t+#(y) -Tjb(t,iJ) | | = /y(t)Hph+1 (1.1)

for some proportionality factor 7(t) only depending on the subproblem given
by- / , t and y. In addition, we need a corresponding family of error estimators
Ek(t, H) suchthat

<l>t,t+H{y) ~ Tk(i,H) = Ek(t,H) + o(Hp).. (1.2)

In what follows, we will call k the order of the approximation, although this
is not true but for p — 1.

In the extrapolation context, which we obviously have in mind, the ap­
proximations Tk are the subdiagonal entries Tk = Tk+i,k of the extrapola­
tion tableau {Tt-fc} corresponding to the subproblem <j)t^+jj\y) with th t outer
stepsize H. The error estimator is the subdiagonal error criterion, i.e., we
compare the subdiagonal entries with the diagonal ones, which are of higher
order and get

Eki,-, H) — Tjk4.itjt-j-i — Tk+i,k •

3

For the final approximation for a particular fc, we may use the error estimator
to refine the approximation Tk and take Tk~\-Ek as the subproblem's solution.
In an extrapolation method this is just the diagonal entry Tk+i,k+i-

1.1 PREDICTION OF OPTIMAL ORDERS AND STEPSIZES

It is the task of an adaptive order and stepsize control to divide the main
problem 4>t0,tx (y0) into appropriate subproblems <f>ttt+H(y) with (varying) step-
sizes H and to choose the orders k in order to solve the main problem up to
the prescribed (local) accuracy tol, i.e.

efc(t,H) <tol .

Substituting the unavailable error by the norm of the error estimator Ek-, we
require

||ü?k(£, i7)|| < tol . (1.3)

If this error criterion is fulfilled, we say that the method converged for the
subproblem </>ttt+H{y) and call k th t convergence order. Of course seis ssould
be achieved with the least possible effort. To this end, we have to minimize
the work per unit step in each step from t to t-\-H. Since we have to decide in
advance which order and stepsize to take, we need a priori information about
the stepsizes Hk required for the accuracy tol employing the discretization
Tjfe. Using the formula (1.1) for the approximation error of the discretizations
Tk and the error £jt, we know a posteriori which stepsize Hk would have been
optimal, i.e., satisfy Ek(t,Hk) = tol:

Since in reality we only have the error estimates Ek at hand instead of the
true error e*, we multiply the accuracy tol with a safety factor p := 1/4 and
define

t 0 i H (M\
H (1.4)

stpnsirp -fnr TV ' as the expected optimal stepsize for Tk. Assuming that the proportionality
coefficient j()) does not vary much, it is feasible to use the a posteriori

J. A. TT 1 • ' !_• i r At A i

stepsize estimate Hk also as an a priori estimate for the next step.
If Ak measures the amount oi work to compute the approximation Tk

together with its error estimator hk-, we now have to minimize the work per
unit step

Wk = Ak/Hk , Ak = amount of work to compute Tk and Ek-

4

Hence, the predicted optimal order kopt for the next step has to satisfy

Wjtopt = min Wk

and we obtain the corresponding predicted optimal stepsize as Hopt := Hfkopt.

1.2 A PRIORI E R R O R ESTIMATES

While successively computing the approximation Ti,T2,. . . and error esti­
mates £?ii i?2> , .., we would like to control whether the method behaves as
expected or not. Therefore, we need a convergence monitor for the family
of approximations, or more precisely, a model of comparison ctk for the error
£fc- By means of this model we may check our approximation by

. ||i?A;(i,H)\\ < ctk :

Deuflhard proposed in [1] a simple model based on Shannon's information
theory, which works in a rather general context (not only extrapolation meth­
ods). We regard the approximations Tk as encoding machines transferring
function values into an approximation of the solution of the initial value prob­
lem. The input entropy ^^ 1S supposed to be proportional to the number
Bk of function evaluations needed for Tjfe,

E\, = ocBk, Bk = number of / evaluations for T*-,

while the output entropy 2£̂ °U is the number of significant binary digits

^ o u t) = - I d £*.(*,#)

of the approximation Tk. To obtain estimates otk for the errors e*, we assume
that there is a linear relationship

ri(out) _ /ori(i]i)

for some proportionality factor /?, or equivalently

— Id €k{t,H) = cBk (1.5)

for some constant c. Of course, (1.5) won't be true in reality, but if we know a
single error eq for some g, we may use (1.5), to define estimates ot\ = &k \eq)
for all errors 6k by

a("(e,):=£f/
B',

satisfying ak = eq and the relationship — lda^ = cBk for some c > 0
as derived from the (linear) information theoretic model. These a priori
estimates oA constitute the base of the convergence monitor.

5

1.3 CONVERGENCE MONITOR

Suppose, we have predicted an optimal order kopt and the corresponding
stepsize iJ0pt, forecasting

efc0pt (*> ^opt) = P tol . (1.6)

Using the information theoretic model, we obtain from (1.6) the (a priori)
error estimates

ek(t,Hopt) = crk
 op (/?)ol) (1.7)

for arbitrary k. As already mentioned above, we will use these a priori
estimates to control the convergence behaviour. We require the error estimate
Ek to be at least smaller than the estimates ork°

pt '(ptol) that we would
expect for convergence order kopt + 1, i.e..

II E1 (4- TJ \ l l *s ~ (*opt + 1) (_ J . _ 1 \ / l o\

ll-C^t, XloptJH S ak [ptOl). {±'°)

For an easy formulation (and realization) of the stepsize mechanism, we do
not use the error estimates and stepsizes directly, but the corresponding
stepsize factors. We define the stepsize factor ßk{s) for a given error e as

ßk(e) :=
pfc+l/ptol

If we apply ßk to the error estimates e = ||£?jfe(£, üT)|| (a posteriori) and
e — ajft (/? tol) (a priori), we obtain the stepsize factors

X(kyH) := ßk(\\Ek(t,H)\\) and a(fc,#) :=/?fc(c>4 (p)ol)) .

In this notation, the predicted optimal stepsize (1.4) for order k reads

Hk = \(kjH) H . (1.9)

Moreover, the convergence monitor (1.8) is equivalent to

A(fc, H) > Q:(fc, fc0pt + l) . (1.10)

If (1.10) is violated for order k, we have to reduce the stepsize by a factor
Ared < 1 using the latest available information. According to (1.7) we want
the new stepsize HTe<i — Ared H to meee the eondition

||i£jfc(£, #red)|| — ak P* {P^°ty J

6

I

or equivalently
A(fc Hred) = ^{kjkopt) (1.11)

in order to achieve convergence for order fc0pt. Since for any scalar c

\(kccH) = c-1X(k,H) ,

we derive from (1.11) the reduction factor

Ared == Q (« , fcopt) / A^K, Jj-opt) •

1,4 POSSIBLE O R D E R INCREASE

So far we choose the optimal order kopt by minimizing the work per unit step
in the range from 1 to the convergence order A;Conv of the last step. To check
whether a higher order k > fcconv would be cheaper, we employ again the
a priori estimates as derived from the information theoretic model: We are
looking for the stepsize Hk such that convergence is achieved for order k, i.e.,
£&(t,H)) = pto.. Therefore we expect

\\EkcoTlv{t,Hk)\\ = aJ2nv(/>tol),

or equivalently

Since for the optimal stepsize Hkconv for order kconv we have A(fccon,, Hkconv) =•
1, we obtain for the stepsize quotient H^^/Ek

cony __ conv
'H^conv> -"Jfcconv) — "H^conv> tlk) — ö(^conv» «»)

Hk Hk

Thus, regarding the work per unit step, we may test an order k > fcconv by

1.5 O R D E R WINDOW

Both, the convergence monitor as well as the possible order increase should
not be applied to all orders k. First, the information theoretic model is only
valid for an optimal code, i.e., at most around the optimal order and stepsize.
Second, it is a good numerical practice not to change the order too rapidly
to get a "smooth" behaviour of the algorithm. Therefore, we introduce a
so-called order window

{k e N | max(l, kopt - 1) < k < kopt + 1}

7

around the predicted optimal order fcopt. The accuracy check (1.3) as well as
the convergence monitor (1.10) are only applied inside this range. Moreover,
we choose the next optimal order from this set.

If the accuracy check (1.3) failed for all orders k inside the order window,
we reject the given stepsize Hopt, even if the convergence monitor was not vio­
lated. Again using the latest information, i.e., the error estimate Ek(t, Hopt),
and the formula (1.9) for the optimal stepsize for order kopt, we take

HTed = A(A;, .ffop)) Hopt

as the new stepsize in order to meet H'JE?̂ t(i, i?red)|| = ptol.

1.6 DETERMINATION OF A FEASIBLE MAXIMAL ORDER

So far, we have no upper limit for the order k. Based on the information
theoretic model, we can determine a maximal order fcmax for which we expect
computational profit. More precisely, we compute the smallest order k such
that using the next order would be more expensive, i.e.

Wfc+i > Wk or equivalently —— > ———.
k k

Obviously, we have no stepsizes Hk at hand, but we can give an estimate of
the quotient Hk+i/H-. If Hk+i is the stepsize to obtain

ejt+i(tf, Hk+i) = ptol,.

then, using the information theoretic model, we expect

£jfe(£, Hk+i) = a[+1*(pto\).

The optimal stepsize Hk for convergence order k can be computed by

TT O / _ (4- XT W II /Q (y^ V*""rl) / „ ±. _1 \ \ TT _ /1» L i 1 \ TJ

-"& — Hk\£k\ti •tik+ljj-tlk+l = Rk{ak \P^Oi))Ilk+l = Ct(K,K + ±)Jtlk+l

Therefore we get an estimate for the stepsize quotient by

% i = <*(fc,fc + i)-V

2 A P P L I C A T I O N T O E X T R A P O L A T I O N M E T H O D S

In this section we want to apply the rather general order and stepsize control
to extrapolation methods. The base of such an method is a discretization
scheme depending on a stepsize /i, which allows an asymptotic expansion in
hP.

2.1 DISCRETIZATION SCHEMES

To fix notation, we denote the result of n steps of such a basic discretization
scheme by D(y, t, /i, n), where y and t are the initial value and time, and h the
(inner) stepsize. This notation will become clear by the following examples.

EXAMPLE 1. Explicit Euler discretization (code EULEXj. The discretiza­
tion D(y, t, h, n) = : yn may be recursively defined by

a) 2/o '•= y, t0 '•— t

b) t/t-+i := yi + hf(y»,U), U+i '•= t% + h for * = 0 , , . . , n - 1.

EXAMPLE 2. Semi-implicit Euler discretization with fixed Jacobian (code
EULSIMJ. £)(y,i, /i,n) = yn is recursively denned by

a) yo :=y, to :— t

b) yt-+i \= yi + h(I — hfy(y> t))~ yi, ti+1 := tt- -f h for * = 0 , , . . , n - 1.

EXAMPLE 3. Trapezoidal sum discretization used for quadrature (code
TRAPEXj.

D(y, t, hyn):=y + hl- /f(t) + f{t + nh)) + J2 /(t + jh) n .

EXAMPLE 4. Explicit mid-point rule (code DlFEXj. The explicit mid­
point rule b) as a two step discretization is combined with an initial explicit
Euler step a) and Gragg's final step c) to obtain the result D(y, i,./i, n) == xn.

a) Explicit Euler start step:

yo := y, *o:=t, yi := y0 + ^/(yo?^o)5 [tx:=t0 + h,

9

b) Explicit mid-point rule:

yi+1 = yi_i -f 2hfyyi, ti), i,-+i = t{ -\- h for i = 1 , . . . , n

c) Gragg's final step: xn = ^(ynii + 2yn + yn+i)-

2.2 ORDER AND STEPSIZE CONTROL IN THE EXTRAPOLATION C O N ­

TEXT

As already mentioned in section 1 the main application of the rather general
order and stepsize control are extrapolation methods. We denote by {Tik =
Tik(t, H)} the extrapolation table corresponding to the discretization scheme
D(y, t, h, n). More precisely, let n\ < ri2 < • • • be a subdivisson ssquence and
define {Tik} by the well-known formula for polynomial extrapolation with
respect to hp:

Ti,i = Tt-,1(t,if) = D(ytt, H/n),rii) for i = l,..-.

Titk = Ti,k-\ H—*- ~ —r£——- for * = 2 , , . . , i

Since the subdiagonal entries Tjb+i^ are of order pk, they constitute a family
Tk of approximations as defined in section 1. Moreover, the diagonal entries
Tk+i,k+i are of order p(k + 1) and may be used to define an error esttmator,
namely the subdiagonal error criterion. Thus, we have

Tk = Tk+i,k and Ek = Tk+i,k+i - Tjt+ijt .

To use the order and stepsize control in this particular context, we have to
compute the sequences {Ak} and {Bk} measuring the amount of work for Tk
and Ek and the "information" employed for Tk, respectively. In the extrap­
olation framework, Ak is the amount of work to compute the extrapolation
table up to row k + 1. Therefore, neglecting the effort for the recursive com­
putation of the Tik for k > 2, we have to measure the cost for Ti??i, . . , Tk+i,i,
i.e. for D(y, t, H/ni, n t) for i = 1 , . . . , fc + 1.

Concerning the second sequence Bk, the approximation Tk = Tk+i,k only
contains information from T2,i)•.•• Tk+i,i, as easily derrved ffom the extrapo­
lation table. Thus, Bk measures the information necessary for T2,,i , . . , Tjt+14,
i.e. for the basic discretizations D(y,t, i7/nt-,n,-) for i = 2 , . . . ,k 4-1.

We continue our four examples by calculating the corresponding sequences
{Ak} and {Bk}.

10

EXAMPLE 1. Explicit Euler discretization (code EULEX,). The subdivi­
sion sequence used in EULEX is the harmonic sequence given by nt- = % for
i = 1,2,.... Thh emooun to work kequence eAkk}i secursively definnd by

AQ := rii and Ai — A,_i + nt- — 1 1or r — 1,2,

Since /(yo, ^o) is computed only once at the beginning of the extrapolation
process, we must subtract 1 in the last formula.

EXAMPLE 2. Semi-implicit Euler discretization with fixed Jacobian (code
EULSIMj. The subdivision sequence of EllLSIM is again the harmonic se­
quence. For the semiimplicit Euler discretization we have to take into ac­
count the cost for an evaluation of the Jacobian and the solution of the
arising linear equations. Therefore we have to introduce the following work
coefficients:

Cj cost of an /-evaluation
Cj cost of an evaluation of the Jacobian fy(yo)
CLU cost of an LU-decomposition of a (n, n)-matrix
Csubst cost of a backward and forward substitution of a linear trian­

gular system

Using this information, we get the amount of work sequence

A0 = Cj + fti(Cgubst + Cf)

Ai = Ai-t + CLR + ftt'Csubst + (nt- - l)Cf for » = 1,2,.-.

In the present implementation of EULSIM we set

Cf• — 1, Cj = nCf and CLR = Csxlhst = 0

EXAMPLE 3. Trapezoidal sum discretization used for quadrature (code
TRAPEXj. For the quadrature problem the function / only depends on the
time t. Therefore, we need to evaluate / only once for a given time t inde­
pendent from the current state variable y (this is different from a true initial
value problem where we always have to use the latest approximation of y(t)
to evaluate /(t/(t),t)). For the so-called Bulirsch sequence

{ 2 : 2i = 2ffc fc=fc,2,...
3 - 2k~1 : i = 2k 4-1, k = 1,2,... ,

1 : i — 1

11

the sequence A* is given by the following formulas (the initial value /(to) is
assumed to be available from the preceding step):

A — -i A — A A — i ^i1i n* i+ i /2 : i odd
AQ — 1, A2 — 4, Ai — < . , _ 7 > 9 even '

EXAMPLE 4. Explicit mid-point rule (code DlFEXJ. The subdivision se­
quence used in DlFEX is the double harmonic sequence nt- = 2i, i = 1 ,
The sequence Ak is given by

A0 = rii -\-1, A; = A ' - ! + ftj+i for i = 1,2, —

Note that due to Gragg's final step one additional /-evaluation is needed for
the computation of T^i for i — 1,2,....

Computaiion of the sequences {Bk}- Let Äk denote the information needed
to compute T2,,i , . . , Tk+i,i. For ODE's the sequences A* and Bk are related

by
Bk = Äk — ÄQ -f l .

In EULEX, T R A P E X and DlFEX the information Äk can be measured by the
number of necessary /-evaluations, thus Äk equals A* in these codes. In
EULSIM the information contained in the terms (/ — hfy(yo))~ f(y) may be
counted. Therefore {Äk} and {Ak} differ. {Äk} is given by

ÄQ = rii, Ä{ = Ai-i -j- rii — 1 for r = 1,2,,.. .

2.3 ADDITIONAL O R D E R AND STEPSIZE RESTRICTIONS

Sometimes the discretization scheme provides additional information to re­
strict the order or stepsize of the surrounding extrapolation method (or more
general: the surrounding method of variable order and stepsize). As an ex­
ample, we will discuss the integration of a stiff ODE using the semiimplicit
Euler discretization. Following Deufihard [3], there are two tools which may
be used to control the stepsize: The estimation of the logarithmic norm \i
of the Jacobian and the natural monotonicity test for the first step of the
Newton iteration which constitutes the implicit Euler discretization.

If fj, = ß(A) denotes the logarithmic norm

. . {x,Ax)
i ^{A) = SUp — —

x̂ O {X,X)

12

of the Jacobian A = fy(y,t), an investigation of the convergence of the
Newton method associated with the implicit Euler discretization leads to the
stepsize bound

fj>h < 1 . (2.1)

Replacing the unavailable logarithmic norm /i by local estimates

, N (x,Ax)

^:= i^r<"
and the 1 by some upper bound cj^ < 1, we can use (2.1) in the algorithm
to restrict the stepsize by

/ \ L ^ (max)

fi(x) h<c\h .

If this test is violated, we return cjj* /fi(x) as the maximal allowed stepsize,

where c^ < c^ is a safe upper bound for the product fih. In the present

implementation we have chosen ci^ := 0.9 and c£h *' := 0.5.

Concerning the natural monotonicity test, we regard the nonlinear equa­
tion connected with the implicit Euler discretization:

F{y) :=y — yo — hf(y, t0) = 0

The semiimplicit Euler discretization may be viewed as the first step of the
simplified Newton method

y° := yo? y + 1 •== y + Ay ? Ay := —F,(yo)F(y)

for this nonlinear equation. The Jacobian of F is F'(yo) = J — hA, where
A := fyyyo,to) is the derivative of / at the initial value and the first Newton
correction

Ay0 = h(I - hA)-lJ{yQ)

is just the correction Ayo — yi — yo of the semiimplicit Euler discrettzation.
The convergence of the simplified Newton method, may be checked using the
natural monotonicity test

\\Äy1\\ a i
- IIAy°ll 4 '

where Äy1 .:= —F'(yo)F(y1) is the first simplified Newton correction. Since
we employ only the first step of the Newton method, we require the mono­
tonicity coefficient 6 to be well below the maximal coefficient 6 and check

0 < 0max :== i • (2.2)

13

This monotohicity test needs, besides the ordinary Newton correction Ay =
Ay0, being already computed for the semiimplicit Euler discretization, the
simplified Newton correction Ay1. In our context, we get

Äy1 = (I — hA)\l(yi — yo — hfyyi))i)) = (I - /iA)-1Ay0 - Ayi ,

using the correction Ayi = (/ — hA)~lf(yi,t\) of the next discretizatton
step. In addition, we have to solve another linear system to calculate (/ —
hA)~1Ayo. If (2.2) is violated, the stepsize should be reduced by an ad hoc
factor, say, Areci = 0.7.

2.4 NORMS AND STANDARD SCALING

In our description of the extrapolation method we used an abstract norm
|| -| | to measure the error estimate Ek- The choice of a suitable norm plays
an important role for the performance of the algorithm. First of all, we
recommend a smooth norm, since the behaviour of the order and stepsize
control depends on the given norm. The most common choice is the Euclidean
norm || • H2. On the other hand, we require the algorithm to be scaling
invariant, i.e., independent of the units chosen for the components y,- of the
state variable y. To this end, we introduce a scaled norm

\\y\Uca, •.= -^WO-'vh = (£ £ (J)*)

where D = diag(si , . . . ,sn) is the current scaling matrix. Using a scaled
norm in the accuracy check (1.3) also allows to control the relative (local)
error of the solution rather than the absolute one. The current scaling D
may depend on all solutions computed so far. Thereby we want the scaling
factors Si to meet the following requirements:

1) The algorithm should be scaling invariant.

2) The accuracy check ||ü7jt(£, H)|| < tol should (in principle) control the
relative error.

3) If a component becomes too small (regarding the modulus), the ac­
curacy requirement should be softened to control the absolute error
(absolute lower bound).

4) The scaling must not change abruptly. In particular, a zero component
in a single step should not alter the scaling.

14

file:////y/Uca

5) As in 3), a component which is relatively small with respect to the
maximal value over all time steps computed so far should be controlled
using its absolute error (relative lower bound).

These claims lead to a standard scaling strategy. We have to use the following
information:

y current solution vector
y last accepted solution (last time step)
j / m a x maximum over all solutions accepted so far
<sabs absolute lower bound for the scaling factors
srei relative lower bound for the scaling factors ,
ûserScaie componentwise absolute lower bounds for the scaling factors.

Moreover, we have to distinguish three phases of scaling. At the beginning we
have to initialize the scaling factors taking into account the initial value and
the lower scaling bound given by the user. During a single integration step
we have to compute an appropriate scaling for each order k, but without
updating ylast and yma,x (intermediate scaling). The latter has to be done
when we achieved prescribed accuracy and thus accepted the approximation _
(reseating).

• Initialization: for %I = 1 , . . . , n

Si :== VT&X '•— m a x { | 2 / ? t a r t | , y ? 8 ' e r ^ ' j ^ a b s }

• Intermediate scaling: for i': — 1 , . . . , n

nonstiff case: s,- := max{|yi,, \y^ \, yfi&x • <srei, *abs ? yfsey c e}

stiff case: s:- := max{|yt-|, yf1** ,aabs}

• Rescaling: as intermediate scaling, in addition

^max ._ jnax-fy?1^ \yt-|y for i = 1 , . . . , n and ylast := y.

2.5 SCALING FOR VARIATIONAL EQUATIONS

The standard scaling described in the last section is only feasible for a general
initial value problem without any knowledge about its inner structure. As
an example, we will study the variational equation

W'=• fy(y,t),, W(t0) = I, W((\) =?

15

for the Wronskian W()) = dy{t)ddy(0) G Matn(R). Together with the orig­
inal problem y = / (y , i) , y(to) = yo, w e get an initial value problem of
dimension n -\- n2.

(l) = M,W,t) := (^ j y , (* g }) = (») . (2.3)

The Wronskian W^i) : R n —Y R n maps a perturbation dy{to) of the initial
value on the resulting perturbation <9T(£) of the solution y(t),

dy{to) i—y oy(t) = W{t)dy{to) 1

Regarding the mapping of the scaled variables

jD(^o-_1<9y(^o) '—> D{t)-ldy{t) = (£>(t)-1jy(£)D(tj)) ^D(t0) -1dy(io)) ,

we see that we have to scale the columns of W{t) using the scaling D(to)
at the initial value y(t0), while the rows are to be scaled by the inverse of
the current scaling D(t) at y(t). The column and row scalings correspond to
a scaling of the domain and image of W(£,, respectively. Thus, the scaling
of the Wronskian part of the IVP (2.3) depends on the scaling of the first
n components belonging to the original IVP. An optimal choice for a norm
of the Wronskian part would be a scaled spectral norm ||Z)(i)"1v4JD(to)\\2
for a Matrix A 6 Matn(R). Since this is too expensive, we use the scaled
Frobenius norm instead:

ll^llscai := —||-D(t)_1AJD(to)||^ = - I £ (siit^aijSjito)) M
M = l

For a complete vector (z,A) € R n + n of the variational IVP (2.3) we end up
with the scaled norm

||(s,A)||8cai = / (\\D(t) 1x\\l + \\D(t) 1AD(t0)\\
2

F)2

V n -\-n v '

Almost the same considerations hold in case of parameter dependent ODE's
V — /(y- t-, A), A A R9, if ww eant t t onow the eerivative

P(t) = dy(t)/d\ € Matnig(R)

16

file:////A/U

with respect to the parameter A. P(t) is the solution of the linear inhomo-
geneous initial value problem

P = /A(J/)^5 A) + fy(y1 t, A)P, P(to) = 0 .

The parameter derivative P : Rg —» R n maps a perturbation dX of the
parameter on the corresponding perturbation dy(t) of the solution. Hence,
the rows (image) are to be scaled by the current scaling D(t) of y(t), while we
use for the columns (domain) an appropriate scaling D\ = diag((si T s 9)
of the parameter. Thus, ä suitable norm for the parameter part is

1 „ n / w l n n ., (l ^ ^ t , x *) t ' \ ^ '
\\B sea. := -7= \\D{t) 1BDX\\FF \—JLl^{si(t) bijSj)

for a matrix B € Matn,g(R).

2.6 ADVANCED SCALING

Using the scaling strategy described in section 2.4, we control the local rel­
ative discretization error, although we would definitely prefer to control the
global relative error. The following scaling strategy which was proposed by
Deuflhard [2] in fact allows us to achieve

||2/m T^oAnvyoJIIscal _ ^ tol ,

where tol is the prescribed accuracy and ym the approximation of <f>t0,tm(yo)
obtained after m discretization steps. To fix notation, let

tstart = to < ti < ' • • < tm = tend

be the time steps, automatically chosen by the integration method with
(outer) stepsizes hj := tJ+1 — tj, and let yt- « 0ti_1,fj(2/i—y) be the local ap­
proximations. The algorithm always controls the local discretization error

oy%'— =% ~ -u-i,u{yi-i) °h

11 ̂ 2/« 11 scal ^ tol

in some scaled norm || • ||scai. In addition, we denote the global discrettzation
error by 8y(ti) := y,-—0to»*t Qs/o)• In linearieed zhetry the errors ars arepagated
by the Wronskian W(s1t) = dy(s)/dy(t) along the solution, leading to the
recurrence formula

Sy(tj+i) == Syj+i + W{tj+\, tjy 8y(tj) (2.4)

17

for j — 0 , . . . , m — 1. Hence, ,f we want to give an upper bound for the global
discretization error 8y(tj+i), we have to estimate the norm ||W(ij+i,ij)|| of
the Wronskian. If the right hand side / of the ODE satisfies the one-sided
Lipschitz condition

{f(u) — f(v)yu — vv < fj,(u — uvu — vv)or ala u,v,t (2.5)

the Wronskian is bounded by

11^s^)^)11 < e ,
where || • || is the spectral norm corresponding to the scalar product in (2.5).

Next we turn to the scaled situation. Again, Dj = diag(si(tjJ),. . , ssntj))
denotes the scaling matrix for time tj. The resulting scaled variables are
marked by a bar, e.g. yj = Dj jj is the scaled approximation, 5yj = D~ Syj
the scaled local error, and so on. The recurrence formula (2.4) translates to

8y(tj+l) = Syj+i + ^(tj+i,tj)5y(tj) ,

where W(tj+i,)j) := D~+1W(tj+^,tj)Dj is the scaled Wronskian. If the local
error is controlled by ||#y(<j)|| < tol, the global error is bounded by

||^y(tj+i)|| < t o l + ||^yt^')||||W^(^'+i,^j)|| . (2.6)

Hence, to meet the global error bound ||£y(£m)|| < ratol, the local errors
should not be amplified in each step (2.6), i.e.

11̂ (̂ +1,̂)11 < i .

To estimate this scaled norm of the Wronskian, we assume that we have at
least an estimate of the one-sided Lipschitz constant \LJ of / with respect to
the scaled product (D~ '^DJ •) at hand. We obtain

| |^ (i i + 1 ,* ; .) | | = \\Dj*1W(tH.1,ti)Dj\\ < l l ß - ^ l l l l - D - ' W ^ . i ^ l l

< max JpLe»,h, .

Thus, the requirement ||W^(^+i,^j)l| — ^ ls fulfilled, if

Si(tj+i) > Si{tj)e^3 3 for * = 1 , . . . , ra .

If we require in addition that the scaling should not be more restrictive than
the scaling obtained by the standard relative concept, we end up with the
following scaling strategy:

st-(tj+)) = max{5((tj)eMj J', |t/t-(£j.|_i)|, sabs} .

18

Of course, the unavailable one-sided Lipschitz constant /i has to be replaced
by some local estimate

, , (DJ1 Ax, DJ1 x)

where A — fy(y,, tj) is the Jacobian of / . For stiff problems, we already have
this estimate at hand. That is why we implemented this scaling strategy
only for stiff ODE's.

19

d IMPLEMENTATION 3

The extrapolation method was realized in ANSI C using the GNU gcc com­
piler and debugger on a SUN SPARC station. So far, the package consists
of the following modules:

mystd standard types and procedures, machine depen­
dent constants

message simple message facility

MatVec matrix and vector types and procedures, allocation
and deallocation, utilities such as matrix vector
multiplication, etc.

LRMat types and procedures for the LR decomposition of
a square matrix and the solution of a linear system.

intex abstract extrapolation method with order and
stepsize control

ivpScale structure and procedures for the standard scaling
in the IVP context

ivp structure describing an initial value problem and
the associated procedures (allocation, dealloca­
tion, etc.)

eulsim extrapolation integrator based on the semiimplicit
Euler discretization with fixed Jacobian

trapex extrapolation method for quadrature based on the
trapezoidal rule (Romberg quadrature)

difex extrapolation integrator based on the explicit mid­
point rule

variation construction of the variational IVP corresponding
to a given IVP

3.1 STYLE CONVENTIONS

For identifiers and the organization of the modules we use the following style
conventions.

• Multi-word names capitalize each word but possibly the first one.

• Types and procedures start with a capital letter.

20

• Variables start with a small letter.

• Constants of enumeration type start with an 'e', with the exception of
'true' and 'false'.

• Global (extern) variables start with a 'g'.

• The following standard types are used:

typedef double Real;

typedef int Int;

typedef enum {false, true} Bool;

• Each new structured type (type) is associated with allocation and deal­
location procedures

(type) *New(type)();

void Free(type)((type) *);

New(type)() may also have additional arguments (e.g. dimensions)
needed for the allocation.

• The arguments of procedures are ordered according to:

- Input or input/output arguments are posed in front of output
arguments.

— More complex arguments are posed in front of less complex oness
i.e., structures before reals before integers.

Sometimes compatibility with standard C headers and functions necessitates
deviations from these rules.

3.2 MODULARIZATION

The modularization concept we employed for the extrapolation package was
inspired by the object oriented approach, i.e., data strongly connected with
the procedures acting on them. Unfortunately (and unlike C++) , C does not
provide such nice facilities as classes with its associated member functions
which know the class data automatically. A C-procedure only knows its
arguments and global (extern or module) variables. Moreover, there is no
equivalent to PASCAL'S WITH statement, which would present an alternative

21

(structure pointer as argument whose components are accessed using the
WITH statement) avoiding the lengthy direct access to structure components.

To circumvent these difficulties we use the following strategy. A module
contains data (in most cases pointers) as module variables which all pro­
cedures act on. If a procedure is called, these variables have to be set to
the components of the structure the procedures should work on. Therefore,
we call a globalization procedure at the beginning of every procedure ex­
ported by the module. If the procedure finished its job, we have to write the
non-pointer variables back into the given structure.

In what follows we briefly describe each module, concentrating on the
exported structures and procedures.

3.3 MODULE MYSTD

In addition the the definition of the standard types Int, Real and Bool, this
module contains machine dependent constants such as the relative machine
precision epsMach, which are set calling the initialization procedures Init-
Mystd.

extern Real epsMach, sqrtEpsMach;

extern void InitMystdQ;

Moreover, the type ScaleMode is defined herein.

typedef enum SCALEMODE {
eNoScale, eStandardScale, eUserScale

} ScaleMode;

3.4 MODULE MESSAGE

This module provides a simple message facility used all over the package.
There are four procedures

extern void Message(char *format, . . .) ;
extern void Warning(char *format, . . .) ;
extern void Error(char *format, . . .) ;
extern void Fatal (char *format, . . .) ;

using variable argument lists in the same way as the standard printf functions
do. These four procedures are based on a single output function accessed by
the global function pointer

22

extern Void (*gPrint)(char *s);

which is by default set to the printf procedure on the calling shell.

3.5 MODULE M A T V E C

To implement vectors, matrices and tensors of type (type) with arbitrary
index range, we use pointers to (type), pointers to pointers to (type), and so
one. The module defines the corresponding types

typedef Real* RealVec;
typedef RealVec* RealMat;
typedef RealVec** RealTen;
typedef Int* IntVec;
typedef IntVec* IntMat;

and provides dynamic (de-)allocation procedures for various kinds of vectors,
matrices and tensor. For example, NewRealPtrVec(l, h) gives a vector to
pointers of Reals with the index range [/.. .h] and NewRealUpMat(rl, rh, cl,
ch) an upper diagonal matrix with the accessible entries (i,j) 6 [rl... rh] x
[cl... ch] satisfying i — rl < j — cl. The memory for rhe entries so matrices
and tensors are allocated in one go, so that they may be used as a vector. In
addition, all entries are automatically set to zero in the allocation procedures.
The rest of the module defines a bulk of useful procedures acting on vectors
and matrices, such as addition of vectors, matrix vector multiplication, norms
and scalar products, copy procedures, solution of triangular systems, etc..

3.6 MODULE L R M A T

The LR decomposition of a square matrix is implemented using a structure
LRMat which contains the required data.

typedef struct {
RealMat AUser;
RealMat A;
IntVec pivot;
Int n, signum;
Bool rankDefect;

} LRMat;

23

AUser is a pointer to the matrix which should be decomposed, while A is
the matrix used for the decomposition itself, pivot contains the pivoting per­
mutation vector, n the dimension of the matrix and signum the sign of the
permutation. For each matrix A G Mat„(R) to be decomposed/the user has
to define an LRMa,, e.g. by ALR = NewLRMat(A, n), thereby allocating
the appropriate vectors and matrices in the LRMat structure ALR and set­
ting AUser to the given matrix A. If the procedures LRDecompose(ALR) is
called, the contents of ATJser is copied to A and the LR decomposition with
partial pivoting is run on the matrix A (destroying the copy A but keeping
AUser untouched). If the algorithm recognizes a rank defect, it returns false,
otherwise true. Once decomposed, the matrix may be used to solve a lin­
ear system Ax = 6 using the procedure LRSolve(b, x) which embodies the
solution of the arising triangular systems.

3.7 MODULE INTEX

This module realizes the abstract extrapolation method with order and step-
size control for an arbitrary discretization scheme
-̂ (2/Start) t, h, k). The structure ExtrapolationProblem includes all information
needed for the extrapolation process.

typedef struct {
Bool (*BasicIntegrator)(RealVec yStart, Real t, Real h, Int k,

Bool newStep, RealVec y, Real *reductionFactor);
void (*InitSequence)(Int kMax, IntVec nSub);
void (*InitAmountOfWork)(IntVecnSub, Int kMax,

RealVec A, RealVec B);

void (*IntermediateScale)(RealVec y);
void (*Rescale)(RealVec y);
Real (*ScaledDistance)(RealVec y, RealVec z);

Real (*MaximalStepsize)(Real HConv);
Int (*MaximalOrder)(Int kConv);

RealVec yStart, y;
Real tStart, tEnd, hStart, tol;
Int n, p, kStart;
Bool saveSteps;
Int nStep, nStepMax;

24

RealVec tSave;
RealMat ySave;

} ExtrapolationProblem;

Obviously, n is the dimension of the problem, p the order of the basic dis­
cretization, tStart and tEnd the start and stop time, respectively. The user
has to give the basic discretization scheme D(ysta.rt^t^^,k) by defining the
Basic Integrator. Note that the extrapolation method does not know the
function itself but only the discretization scheme.

Bool (*BasicIntegrator)(RealVec yStart, Real t, Real h, Int k,
Bool newStep, RealVec y, Real *reductionFactor);

In addition to the arguments ystart, *, h, and k, there is the boolean vari­
able newStep indicating that the Basicintegrator is called for the first time
for the particular initial value (t/startj*)* This information may be used to
evaluate the function /(ystart)t) (and its derivative, if used) only once. The
Basicintegrator may fail by returning false and providing a stepsize reduction
factor.

The extrapolation method uses the user-defined procedures InitSequence
and InitAmountOfWork to initialize the subdivision sequence {ftj} (in the
code called nSub) and the sequences {Ak} and {1^}, respectively.

Additional order and stepsize restrictions as described in section 2.3 may
be added defining the procedures

Int (*MaximalOrder)(Int kConv);

Real (*MaximalStepsize)(Real HConv);

where kconv and iJConv are the order and stepsize of the last accepted step.
The (scaled) norm used in the extrapolation algorithm to compute the

error \\Ek|| = dist(Tfc4.i,k+iiTi+i,k) is specified by the function

Real (*ScaledDistance)(RealVec y, RealVec z);

The procedures Intermediatescale and Rescale are called to give the user the
opportunity to update his scaling for each new order k and after an accepted
step, respectively.

Themodule also allows to save the time steps of the extrapolation process
together with the corresponding approximations (e.g. to be used for graphical
output). To this end, the boolean component saveSteps has to be set, causing

25

the time steps and approximations to be saved in the vector tSave[0... nStep]
and the matrix ySave[0.. .nSte^jfl . . . n].

The extrapolation method is applied on a given extrapolation problem by
calling the main procedure

extern Bool Intex(ExtrapolationProblem *);

3.8 M O D U L E IVP

To describe an initial value problem we employ the following structure:

typedef void (*Func)(RealVec y, Real t, RealVec fy);
typedef void (*Deriv)(RealVec y, Real t, RealMat dfy);

typedef enum eStiff, eNonStiff, eQuadrature Ivp Type;

typedef struct INITIALVALUEPROBLEM {
Func f;
RealVec y St art, yEnd, yScale;
Real tStart, tEnd;
Real hStart;
Real tol;
Int n;
IvpTypetype;
Int nStep, nStepMax, kStart;

ScaleMode scaleMode;
void (*InitScale)(struct INITIALVALUEPROBLEM *ivp);
void (*IntermediateScale) (RealVec y);
void (*Rescale) (RealVec y);
Real (*ScaledDistance)(RealVec y, RealVec z);
void *scale;

Bool saveSteps;
Int nSave;
IvpSaveData *saveData;

Deriv df;
void (*Jacobian)(RealVec x, Real t);
Bool (*NewtonJac)(Real h);
Bool (*Solve)(RealVec b, RealVec x);

26

Real (*LogarithmicNorm)(RealVec x);
Real (*MonotonicityCoefficient)(RealVec deltaFirst, RealVec delta);
Real (*LastScaledProduct)(RealVec y, RealVec z);

} InitialValueProblem;

At first sight, this structure seems to be rather complicated, but fortunately
most components are predefined. In the simplest case of a small non-stiff
ODE, it is sufficient to define the dimension n of the problem, the right hand
side / , the initial values ystart and tstart5 the stop time tend and the required
accuracy tol. The rest is chosen automatically. For small stiff ODE's, the
semiimplicit method needs in addition the derivative df, and the type has to
be set to eStiff, since it is by default set to eNonStiff.

It may also be useful to set the initial (outer) stepsize /istart, although the
integration method behave rather robust with regard to the initial stepsize.

The scaling procedures are same as in the ExtrapolationProblem, except
for the scale mode scaleMode and the void pointer scale. The first is used
to choose whether a predefined scaling (standard or no scaling) should be
employed or the user provides his own scaling procedures. The latter may
contain data of the scaling process.

For stiff IVP's, the (implicit or semiimplicit) methods need the Jacobian
and associated functions. Due to the flexibility claim, the user may either
provide the derivative df of the ODE's left hand side as described above, or
specify his own procedures to handle the Jacobian.

For that purpose, there are there are the three function pointers Jacobian,
NewtonJac and Solve. The first one forms the pure evaluation of the Jacobian
A = fy(y, t) to be stored somewhere for further computations. The procedure
Newton Jac (h) has to compute the Jacobian J— I' — hA (without destroying
the contents of A). Often, this procedure will also hold the decomposition of
the J. Finally, Solve(b,x) has to solve the linear system Jx = b. If the user
gives the derivative df, these procedures are predefined using a full matrix
to save the Jacobian A and LR decomposition to solve the linear system
Jx = b.

For the additional stepsize restrictions (see section 2.3), we need in ad­
dition the function LogarithmicNorm(x) calculation the estimate fJ>{x) =
(x,Ax)l(x,x) of the logarithmic norm of the Jacobian A = fy(y,t) with
respect to some (scaled) product (•,•). Furthermore, the function Mono-
tonicityCoefficient has to compute the monotonicity coefficient

^(<$firs.}O) I = \\- ~~ ^ lfirstllillOfirstll ,

27

where J = I — hA is again the Jacobian of the implicit discretization. Ob­
viously, the procedures for stiff problems depend somehow on the particular
discretization scheme. In the present form they are suitable for the semi-
implicit Euler discretization (EULSIM) or the semiimplicit mid-point rule
(METAN, not yet included in the package).

3.9 MODULE IVPSCALE

Since we want to use the standard scaling strategy in different contexts with­
out copying parts of code, we introduced a structure IvpScale.

typedef struct {
RealVec yScale, yMax, yScaleLast, yScaleMin;
Real scalMinRel, scalMinAbs;
IvpType ivpType;
Int nMin, nMax;

} IvpScale;

It contains all data to scale the components [nMin... nMax] of a solution
vector according to the standard scaling mechanism as described in section
2.4. To employ this scaling facility, the user has to generate an appropriate
IvpScale structure using the allocation procedure

extern IvpScale *NewIvp Scale (Int nMin, Int nMax, IvpType ivpType);

Once generated, this structure has to be given to the scaling procedures

extern void IvpInitScale(IvpScale *, RealVec yStart, RealVec yUser-
Scale, Real tol);

extern void IvpIntermediateScale(IvpScale *ivpScale, RealVec y);

extern void IvpRescale(IvpScale *ivpScale, RealVec y);

3.10 MODULE VARIATION

As already mentioned, we are also interested in parameter dependent ODE's.
Therefore, we combined the construction of the variational equation of a
given ODE with the parameter derivative (see section 2.5). Since we wanted
to access the partial derivatives dy(t)/d\j as vectors, we do not compute the
matrix P(t) = dy(t)/dX G Mat9i7l(R) but its transpose which is nonetheless
denoted by P in the code. (We could also say that we store the matrix as a

28

vector of pointers to the columns instead to the rows.) A variational problem,
including the parameter derivative is necessary, is described by the following
structure:

typedef struct VARIATIONPROBLEM {
InitialValueProblem *ivp, *ivpVar;
Int q;
Deriv dfPar;
RealVec lambdaScale;
void *hiddenData;

} VariationProblem;

In this structure we used a void pointer hiddenData to hide the data which are
only used inside the module. For the structure used to store these data is not
known but inside the module, the components of the hiddenData structure
are not accessible by the user.

The variational problem for a given initial value problem InitialValueProb­
lem *ivp is created by simply calling NewVariationProblem.

VariationProblem *varProblem = NewVariationProblem(ivp, q);

where q is the number of parameters, i.e., q = 0 for the true variation prob­
lem. Once the variational problem has been created, an arbitrary integrator
(eulex, eulsim, difex) may be used to solve the corresponding initial value
problem (which is, of course, of dimension n -f- n -f qn) by calling the proce­
dure

extern Bool SolveVariationProblem(VariationProblem *, IvpSolver,
RealMat W, RealMat P);

where W € Matn(R) and P € Mat9fn will contain the Wronskian and the
parameter derivative (if q > 0), respectively.

3.11 MODULES EULEX, EULSIM, DIFEX AND TRAPEX

These module presents perhaps the simplest part of the whole package. In
fact, they mainly define the function Basicintegrator which realizes k steps
of the particular discretization schemes. The exported procedures

extern Bool Eulex (InitialValueProblem *ivp, RealVec y);

29

extern Bool Eulsim(InitialValueProblem *ivp, RealVec y);

extern Bool Difex(InitialValueProblem *ivp, RealVec y);

extern Bool Trapex(InitialValueProblem *ivp, RealVec y);

create an extrapolation problem and call the extrapolation integrator intex.
For the semiimplicit Euler discretization (module eulsim) we have in addi ­
tion to define the additional stepsize restriction as described in section 2.3.
Until now, we also set the default Jacobian and solver in this module (since
it is the only one for stiff ODE's).

4 EXAMPLES

In this section we would like to give two examples, a non-stiff and a stiff initial
value problem. They are not intended to show the numerical performance of
the extrapolation codes, which is already demonstrated in the literature, but
to illustrate how to use the programs. Moreover, we only give examples for
the canonical usage of the package, without user defined solvers or scaling.
The interested reader may take the module variation as an example which
uses a lot of these features.

30

4.1 A N O N - S T I F F EXAMPLE

As a non-stiff example we take the two dimensional non-autonomous equation
y = / (t / , t) , where the right hand side / is defined as

Realized in C, we get the following procedure.

s t a t i c void f (RealVec y, Real t , RealVec fy) {
fyCi] - y [2] ;
fy[2] = sqr t (1+y[2]*y[2]) / (2 5 - t) ;

To use EULEX, the following header files have to be included.

»include <stdio.h>
»include <math.h>
»include <malloc.h>

»include "mystd/mystd.h"
• »include "myssd/message.h"

»include "MatVec/MatVec.h"
»include " ivpSolve/ ivp.h"
»include " ivpSolve/eulex/eulex.h"

To integrate the non-stiff ODE from 2start = 0 to iend = 20 with the initial
value t/start = (0,0), we simply have to create the corresponding initial value
problem and start the non-stiff integrator, here EULEX. In the following
program we use for the initial value and the solution the same vector y.

void main() {
In t n = 2;
RealVec y = NewRealVec(l, n) ;

InitialValueProblem *ivp ~ NewInitialValueProblemQ ;

yCl] - y[2] = 0 ;

ivp->f = f;

ivp->yStart = y;

ivp->tStart = 0;

ivp->tEnd = 20;

31

ivp->tol = le-5;

ivp->hStart = ivp->tol;

ivp->n = n;

if (Eulex(ivp, y)) {

MessageC'solution y = %s", PrintRealVec("'/lg", y, 1, n)))

}
else {

Warning("Eulex failed");

FreeRealVec(y, 1, n) ;
Free ln i ta l lValueProblem(ivp) ;

4.2 A STIFF EXAMPLE

As an example for a stiff initial value problem, we take an autonomous chem­
ical oscillator of dimension n = 5. The right hand is given by

f(y) =

(loo - j/i - 2000 yi2/4 + 100(1 - 2/4 - 2/5) \

2// ~~ 2/2
2/2 - 2/3 - 100 2/3(l - 2/4 - 2/5) + 2600 2/5

—2000 2/12/4 + 100(1 - 2/4 - 2/5) + 600 2/5

100y33(— 2/4 ~ 2/5) - 2600 2/5 /

The function / is realized as a C procedure as in the non-stiff case. Similarly,
its Jacobian df corresponds to the following C procedure.

s t a t i c void df(RealVec y, Real t , RealMat dfy) {
d fy [l] [1] = -1 .0 -2000.0*y[4] ;
d f y [l] [2] = 0 . 0 ;
d f y [l] [3] = 0 . 0 ;
d fy[l] [4] = - 2000.0*y[l] -100.0;
d fy[l] [5] = -100 .0 ;

d f y [2] [l] = 1 . 0 ;

32

dfy[5] [5] =-2600.0 -100.0*y[3] ;
}

To use the stiff integrator EULSIM, we don't need to include eulex.h but
eulsim.h instead.

#include "ivpSolve/eulsim/eulsim.h"

As for the non-stiff problem, we have to set the components of an initial
value problem and call the stiff integrator.

void main() {
In t n = 5;
InitallVaueeProbeem *ivp - NewIIntialValueProblem();
RealVec y = NewRealVec(l, n) ;

y [l] = 8.99293;
y[2] » 7.1579;
y[3] = 5.184;
y[4] -=• 0.0100777;
y[5] = 0.164548;

ivp->n = n;
ivp->f =f;
ivp->df = df;
ivp->yStar t - y;
i v p - > t S t a r t = 0;
ivp->tEnd = 3.02335;
ivp-> to l = l e - 8 ;
ivp->hStar t = 0 . 0 0 1 ;

i f (Eulsim(ivp, y)) -C
Message ("solu t ion = */.su, PrintRealVec("'/.f", y , 1, n)) ;

}
else {

Warning("Eulsim failed");
}
FreeRealVec(y, 1, n))
FreelnitialValueProblem(ivp);

33

ACKNOWLEDGEMENT

We are pleased to thank U. Nowak for his support. He put us on our way by
extracting the details of the algorithms from the FORTRAN codes.

34

REFERENCES

[1] P. Deuflhard. Order and stepsize control in extrapolation methods. Nu-
mer. Math., 41:399-422, 1983.

[2] P. Deuflhard. Numerik von Anfangswertmethoden für gewöhnliche Dif­
ferentialgleichungen. Technical Report TR 89-2, Kotirad-Zuse-Zentrum,
Berlin, 1989.

[3] P. Deuflhard. Uniqueness Theorems for Stiff ODE initial Value Problems.
In Proceedings 13th Biennial Conference on Numerical Analysis, pages
74-88. University of Dundee, 1989.

35

Veröffentlichungen des Könrad-Zuse-Zentrum für Informationstechnik Berlin
Technical Reports September 1992

TR 91-1. F. Bornemann; B. Erdmann; R. Roitzsch. KASKADE - Numerical
Experiments.

TR 91- 2. J. Lügger; W. Dalitz. Verteilung mathematischer Software mittels
elektronischer Netze: Die elektronische Softwarebibliothek eLib.

TR 91- 3. S. W. C. Noelle. On the Limits of Operator Splitiing: Numerical
Experimenss for the Complex Burgers Equation.

TR 91- 4. J. Lang. An Adapiive Finite Element Method for Convection-
Diffusion Problems by Interpolaiion Techniques.

TR 91- 5. J. Gottschewski. Supercomputing During the German Reuniiication.

TR 91- 6. K. Schöffel.Computational Chemistry Software for CRAY X-MP124
at Konrad-Zuse-Zentrum für Informaiiontstechnik Berlin.

TR 91- 7. F. A. Bornemann An Adapiive Multilevel Approach to Parabolic
Equations in Two Space Dimensions.

TR 91- 8. H. Gajewski; P. Deuflhard; P. A. Markowich (eds.). Tagung
NUMSIM '91 J5.-8. Mai 1991_ Collected Abstracts and Papers.

TR 91- 9. P. Deuflhard; U. Nowak; U. Pöhle; B. Ch. Schmidt; J. Weyer. Die
Ausbreitung von HIVIAIDS in.Ballungsgebieten.

TR 91-10. U. Nowak; L. Weimann. A Family of Newton Codes for Systems of
Highly Nonlinear Equations.

TR 92-1 . K. Schöffel. Ab initio Quantum Chemical Calculations with
GAMESS-UKand GAUSSIAN00 Program Packeges - A Comparison -

TR 92- 2. K. Schöffel. Computaiional Chemistry Software at ZIB.

TR 92- 3. R. Weismantel. Plazieren von Zellen: Theorie und Lösung eines
quadraiischen 0/1 'Optimierungsproblems.

TR 92- 4. A. Martin. Packen von Steinerbäumen: Polyedrische Studien und
Anwendung.

TR 92- 5. A. Hohmann; C. Wulff. Modular Design of Extrapolation Codes.

