Konrad-Zuse-Zentrum fiir Informationstechnik Berlin

Bodo Erdmann Jens Lang Rainer Roitzsch

KASKADE Manual

Version 2.0

FEM for 2 and 3 Space Dimensions

Wenn man arbeitet, um anderen zu gefallen, kann es mifilingen, die Dinge aber, die
man gemacht hat, um selber zufrieden zu sein, haben stets Aussicht, irgendwen zu inter-
essieren. Es ist unmdglich, daf es nicht Leute gdbe, die einiges Vergniigen an dem finden,
was mir selber so viel Vergniigen bereitet hat.

MP, I/2, 98

TR 93-5 (December 1993)

Contents
1 Introduction

2 KASKADE runtime interface
21 Cbhasics oo o
2.2 Portability interface oo 00
2.3 Application frameo
2.4 Fixed sized list management oL
2.5 Application events 0L
26 Accessrtights L Lo o
2.7 Command language 0L
2.8 Parameter handlingo 0oL
2.9 Minigraphico L oo

3 Triangulation module
3.1 Triangulations L Lo L
3.2 Basic objects of a triangulation o000 L.
3.3 Organization of basic object lists
3.4 Global operations on a triangulation
3.5 Using a triangulationo
3.6 Procedures (Refinement/Deletion)
3.7 Customizing the module

3.8 Command language interface

4 Node module
4.1 Access management on basic objects
4.2 Node management
4.3 Sparse matrices
4.4 The matrix/vector multiplication method

4.5 Command language interface.
5 Adaptive computations

6 Assembling module
6.1 Defining the problem 0L

10
13
15

16
16
17
20
21
22
22
26
26

28
28
31
34
35
37

38

39

10

6.2
6.3

Shape functions oL

Local assembling o oL

Solve module

7.1

7.2

7.3
74
7.5

Interface for direct solvers
7.1.1 Direct methods and their duties
7.1.2 Defining a direct method
7.1.3 Command language interface
Interface for iterative solvers
7.2.1 Iterative methods and their duties
7.2.2 Defining an iterative method
7.2.3 The preconditioner method
7.2.4 Command language interface
Interface for error estimators L.
Interface for refinement strategies
Interface for a completely adaptive solution
7.5.1 Break conditions 00000

7.5.2 Command language interface

Numerical methods

8.1
8.2
8.3
8.4
8.5

Direct solverso
Iterative solvers
Estimator methods
Refinement methods

Preconditioners

Graphic module

9.1
9.2
9.3

Handling graphical ports
Drawingo

Command language interface.

KASKADE applications

10.1 ELLKASK 2D
10.2 ELLKASK 3D
10.3 KASTIO

48
49
49
51
52
52
52
33
54
54
54
35
56
56
56

59
59
59
59
60
60

61
61
61
62

104 KARDOS o

References

A: Command Language Interface

A.1 Command language syntax
A.2 Command language survey L.
A.3 Alphabetical list of commands
A4 Graphic parameterso

: File formats

: Defining your own problem

C.1 User functions for the stationary heat transfer equation

C.2 Defining the new problem
C.3 Invoking the new problem

Index

List of Figures

1 Fieldof anedge oL
2 Position in a triangle 0oL
3 Red refinemento oo
4 Blue refinement oo
5 Middle triangle will be red refined
6 Right triangle will be refined red
7 Green closure Lo
8 Node storage at points and edges
9 Main iteration loop of an adaptive solution
10 Triangulation of the example 'Kreis mit Schlitz”

List of Tables

1 KASKADE standard data types

66

68
68
68
69
85

87

90
90
92
93

95

O 0 =~ O Ot = W N

— = = =
= W NN = O

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

KASKADE standard constants 3

Constants for fixed size list management 4
Error constants for fixed size list management 5
Constants for application event management 6
Error constants for application event management 7
Constants for access right management 9
Error constants for access right management 9
command data structure oL 10
Modes read from the command definition file 11
Constants for the command language module 12
Constants for parameter management 13
Error constants for parameter management 13
Fields of the triangulation data structure TRIANGULATION, for

more fields see Table 20 17
Fields of the point data structure PT 17
Values of boundP fields 18
Fields of the edge data structure EDG 18
Values of typefields 19
Fields of the triangle data structure TR 20
Additional fields of the TRIANGULATION data structure. 21
Apply procedureso o 23
Selection codes Lo 23
Application events of the triangulation module 26
Fields of the nodes data structure (all type int) 29
Access macros, first letter: data type, second letter: object . . 30
Access macros for node storage 31
Preset fields of nodes 0oL 31
Macros to access sparse matrices L. 34
The matMulMethod data structure 36
Fields of the problemType data structure 39
Fields of the problem data structure 40
Return codes for the problem defining user routines 42
The integData data structure 44
The localData data structure 45

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Sets of integration points (IPs) 45

Some fields of the solve data structure 48
The femAnsatz data type 48
Events of the solve module 49
The dirMethod data structure 50
The storeMethod data type 51
The printMode data type 51
The iteMethod data structure 53
The preCondMethod data structure 54
The estiMethod data structure 55
The refMethod data structure 56
The break condition fields of the solve data structure 57
Values for the breakReason field 57
The Action data type 57
Available preconditioners oL 60
The graphic data structure00 63

Numerical methods in ELLKASK 64

1 Introduction

The code version KASKADE to be presented here is written in ANSI style
C. The modules of KASKADE are designed to allow reuse and extensions.
Well-known software engineering techniques like

1. information hiding,
2. object oriented interfacing,

3. portability etec.

are used. Thus we hope to support rapid prototyping of non trivial applica-
tions.

KASKADE consists of a collection of modules (a library) and some proto-
type applications (main programs and extensions). The functionality of each
module is specified by

1. a set of data types,
2. macro definitions,
3. a collection of procedures, and

4. specification of events generated.
If necessary, the modules are extended by

1. a command language interface and

2. internal/external test features.

The manual includes recipes to change and extend KASKADE and a “com-
plete” interface description of the modules. We try to hide information which
might change in the near future. The program is still under development,
there will be changes.

Errors, problem reports, or any comments should be forwarded to the authors
at the Konrad—Zuse-Zentrum (ZIB), e-mail addresses

roitzsch@sc.zib-berlin.de
lang@sc.zib-berlin.de
erdmann@sc.zib-berlin.de

This manual contains a description of the KASKADE 2-D stuff. KASKADE
will evolve to a 2D and 3D FEM tool box. Many routines described here are
valid in both “worlds”.

2 KASKADE runtime interface

The following modules are basically independent of the KASKADE applica-
tion. They can be used by other C programs, too.

2.1 C basics

The reader should know C, at least he should be familiar with the concept
of pointers (addresses). Reading the KASKADE sources is recommended.

We use the following naming conventions.

1. procedure names start with a capital letter,
2. variable names start with a small letter,

3. constant, type, and macro names should use only capital letters (with
some exceptions).

Some standard types are used in all KASKADE sources (they are defined
in zibutil.h), see Table 1. The use of the KASKADE runtime library is
recommended to benefit of the non-KASKADE specific software which is
used by the KASKADE modules.

real floating point numbers float or double
ptr pointers charx

proc procedure int (x) ()
realproc real procedure real(*x) ()
ptrproc address procedure ptr(*))

Table 1: KASKADE standard data types

These types should be used like the “popular” constants in Table 2.

2.2 Portability interface

It is good practice to use these routines to isolate system dependencies. Direct
calls of malloc, standard input/output routines should be avoided to make
the program more adaptable to different environments. All routines and
global variables are declared in the zibutil.h header file.

nil nil pointer

true true
false false
ZERD 0.0
ONE 1.0
HALF 0.5

REALPI 3.14159265358979323846
REALPI2 1.57079632679489661923
SQRT2 1.41421356237309514547

Table 2: KASKADE standard constants

void *ZIBAlloc(long size)
substitutes the standard malloc routine. The size parameter is now of
type long, thus allowing the handling of bigger chunks of memory. The
implementation assumes a small number of calls. (Each call might be
expensive.) For frequent calls with small sizes use the routines of the
fixed size list management (see Section 2.4). The amount of memory
allocated can be accessed via the variable allocMem of type long.

void *ZIBFree(void *buf)

is the counter part to free. In the current implementation allocMem
is updated (reduced)! A nil is always returned.

real ZIBSeconds()

returns the cpu-time in seconds with a machine dependent precision.

int ZIBReadFile(char *name,char **buffer,char *extension)
reads the complete file name (optional with an extension extension)

into buffer. The storage buffer is allocated automatically (through
ZIBAlloc) and may be freed by the user with ZIBFree.

void ZIBStdOut(char *s)
should be used to write messages. It depends on the environment how
the request is fulfilled. Output may go to a special window, standard
output, or a file (see ZIBOutFile). The technique used to substitute
calls of printf is:

sprintf(globBuf,......)
ZIBStdOut (globBuf) ;

The buffer globBuf is externally defined and should be of sufficient size
for standard text operations (actually 256 bytes).

void ZIBOutFile(char *s)

can be used to redirect standard output via ZIBStdOut to a file with
name s.

char *ZIBStdLine(char *prompt)

reads a line from the standard input after prompting the user.

2.3 Application frame

We use the skeleton for application programs which is under development at
ZIB. Documentation (in german) is available on request [8].

2.4 Fixed sized list management

The fixed sized list management includes routines to handle many memory
blocks of fixed, small sizes as they are used to store the data for points, edges,
triangles, boxes, etc. To reduce the overhead of direct calls to ZIBAlloc
(which is in some implementations big), buckets (blocks of storage) are allo-
cated. Each set of fixed size elements is identified by a positive integer.

All messages are done through ZIBStdOut, all storage allocation through
ZIBAlloc.

The constants and routines are declared in the fixedsize.h header file. The
constants are explained in the Tables 3 and 4. For complete documentation
see the source listing fixedsize.tex.

MAX FIXED_LISTS 100 maximum numbers of lists
BAD FIXED LISTS_ID -1 wrong list id number
MAX_SMALL SIZE 161 greatest small list size
SMALL_BUCKET SIZE 100 minimal bucket size

Table 3: Constants for fixed size list management

These routines are used by the software managing triangulations, nodes, and
sparse matrices. If the command line interface is used, a command informing
on the usage of these routines is supported. The command language interface
is the inffixed command.

EFS_SECOND -1 second call of init routine
EFS_TOO_SHORT -2 bucket size to small

EFS BUCKETSIZE -3 impossible bucket size
EFS_LENGTH -4 list length not allowed
EFS_TO0_MANY -5 too many lists
EFS_BAD_INDEX -6 wundefined list id

Table 4: Error constants for fixed size list management

int InitFixedLists(int maxLists,void (*UserError) (int,charx*))
initializes the module. It should only be called once at the start
of the user program. Negative values of maxList reserve space for
MAX FIXED_LISTS lists of fixed size elements. The user may supply a
routine to handle error messages. This routine is called with an error
number (Table 4) and a string as parameters. If UserError==nil the
string will be printed with ZIBStdOut.

int CreatelList(int lng,int bucketSize,char *name)

creates a single list name with the fixed size 1lng and returns the list
identifier. Each time when no elements are available in the free list,
bucketSize elements will be newly allocated.

void ReturnList(int no)

frees all elements of list no. The memory is returned to the operating
system. The user is responsible to keep no pointers to one of these
elements alive!

ptr GetElem(int no)

gets a pointer to a new element of list no, i.e. it has the size common
to all elements of this list.

void ReturnElem(int no,ptr *elem)

returns an element elem of list no into the internal free list. Note that
no memory is returned to the operating system. The user is responsible
to keep no reference to this element alive!

ptr GetSmallElem(int size)

This routine replaces the function of malloc. Small elements are col-
lected in buckets by using GetElem for elements of the same size.

void ReturnSmallElem(int size,ptr *elem)

returns elem. The user must supply the correct size value.

void InformLists(void(*UserProc)) (int no, int elemSize,
int bucketSize, int noOfBuckets, int noOfFreeElems,
char* name))

calls the user routine UserProc for each defined list with parameters
no, elemSize, bucketSize, no0fBuckets, no0fFreeElems, and name.

int InfFixed(command* cmd)

prints all available information on existing lists in tabular form. The
user can inform on the content of one list by supplying its name.

2.5 Application events

The application event routines include code to connect “loosely coupled”
modules. Two methods are available to process events which are defined by
the user program. One is the immediate processing of user routines at the
occurrence of an event. The other is queuing of events leaving the user the
task of writing a sort of main event loop.

The constants and routines are declared in the appevents.h header file. The
constants are explained in Tables 5 and 6. For complete documentation see
the source listing appevents.tex.

MAX_EVENTS 100 maximum of events
MAX_EVENT_TYPES 100 maximum of event types
MAX_EVENT PROCS 10 maximum of event procedures

POS_BEFORE -1 insert procedure before
POS_SUBSTITUTE 0 substitute procedure
POS_AFTER 1 insert procedure after

Table 5: Constants for application event management

int InitAppEvents(int maxE,int maxT,
void (*UserError) (int,char*))

initializes the module. It should only be called once at the start of
the user program. maxE is the maximal number of events which will
be held in the queue (default MAX_EVENTS). Only maxT different event

EAE_SECOND -1 second try to initialize

EAE UNKNOWN_TYPE -2 unknown event type
EAE_ALREADY DEFINED_TYPE -3

EAE_TOO_MANY_TYPES -4 too many event types
EAE_TOO_MANY_PROCS -5 too many procs at event type

TAE_TRACE_SEND 1 trace of SendAppEvent
TAE_TRACE_GET 2 trace of GetAppEvent
TAE_TRACE DEFINE 3 trace of DefineEventType
TAE_TRACE_PROC 4 trace of SetEventProc

Table 6: Error constants for application event management

types are allowed (default MAX_EVENT_TYPES). The user may supply a
routine to handle error messages. This routine is called with an error
number (Table 6) and a string as parameters. If UserError==nil the
string will be printed with ZIBStdOut.

int DefineEventType(char *name,int immediateP)

defines a new application event type. An identifier for this type of
event is returned. If immediateP==true new events getting in through
SendAppEvent are processed immediately and are not hold in the event
queue.

int SetEventProc(int type,int position,
void (*RefProc) (ptr,int,charx*),
void (*UserProc) (ptr,int,char*),char *name)

adds the user procedure UserProc at the beginning (if position is
POS_BEFORE) or end (if position is POS_AFTER) of the procedure list
for event type type if RefProc==nil. RefProc!=nil can be used to
substitute or insert (before or after) RefProc.

int SendAppEvent(int type,char *buffer,int lng,char *name)

processes an event of type type either by calling immediately the user
procedures or by putting the event in the event queue. The event is
described by (buffer,lng) and a name. The name can be used for
debugging purposes.

int GetAppEvent(int *type,char **buffer,int *1lng,char **name)

releases an event from the event queue. Returning false denotes an
emptly queue.

int InfEventTypes(void (*UserProc) (int,char*,char**,int,int))

calls UserProc for all defined event types with the parameters int
type, char *typeName, char **procNames, int maxProcNames, and
int noOfEvents.

int InfEvents(void(*UserProc) (int,char*,ptr,int,charx*))

calls the procedure UserProc for all events in the event queue. Param-
eters for UserProc are int type, char *typeName, ptr value, int
Ing, char *EventName.

void CallProcs(int type, ptr value, int lng, char *name)

calls all procedures belonging to event type with parameters value,
1ng,and name.

int SetEventTrace(int tr)

switches an internal trace on/off.

int EventsCmd(command* cmd)

prints information on the defined event types and pending events. At
the command language level, parameters pending and defined select
these features. Additionally an internal trace can be toggled.

2.6 Access rights

These routines allow the management of access to a workspace of a fixed
number of bytes. It is used by KASKADE to permit the access to the
associated arrays stored in the data structure for points, edges, and triangles.
To get positions in the associated arrays the access manager is asked for free
fields. All modules using the access manager should return the local storage
not used anymore by calls to the access manager.

The concept of an access list is rather simple. An access list consists of n
consecutive fields which are set available by a call to CreateAccessList.
Access rights to blocks of free fields are requested by the GetAccess routine.
The implementation is done by a prototype array of integers. A value of —1
denotes a free byte. A block of used space contains in each field the index of
the first byte. This sequence ends with a value different from the start value.
All messages are done through ZIBStd0Out or a user routine, all storage allo-
cation through ZIBAlloc.

The constants and routines are declared in the access.h header file. The
constants are explained in the Tables 7 and 8. For complete documentation

see the source listing access.tex.

‘ MAX_ACCESS_LIST 100 maximal number of access lists ‘

Table 7: Constants for access right management

ACC_SECOND -1 second call of init routine
ACC_LNG_NEG -2 list length negative
ACC_ALL_LISTSUSED -3 all lists in use
ACC_BAD_INDEX -4 bad access list index
ACC_NO_INDEX -5 list not defined
ACC_NO_FIELD -6 field not in use
ACC_MEMORY -7 not enough memory
ACC_FULL -8 request for space failed

Table 8: Error constants for access right management

int InitAccess(int maxLists,void (*¥UserError) (int,charx*))
initializes the access manager. The parameter maxLists defines the
maximum number of access lists. This routine is called internally if
necessary (with maxLists=MAX_ACCESS_LIST). The user may supply a
routine to handle error messages. This routine is called with an error
number (Table 8) and a string as parameters. If UserError==nil the
string will be printed with ZIBStdOut.

int CreateAccessList(int lng,char *name)

initializes the access list name and returns an integer identifier for this
list. The size of list will be 1ng. All its elements are free.

void ReturnAccessList(int listId)

frees the internal memory for the prototype array of 1istId.

int GetAccess(int listId,int lng,int alignment,char *elemName)

returns an identifier (the position) of a sequence of 1ng free elements in
access list 1istId. The alignment parameter controls the alignment
of the requested sequence of bytes. It should be set to the size of the
type it will hold.

void ReturnAccess(int listId,int elemId)

frees element elemId in access list 1istId for future use.

void InformAccessLists(void(*UserProc) (int,char*,int,int,int*,
char*#*) ,int listId)

calls the user routine UserProc for one or all (1istId==-1) exist-
ing access lists with the parameters int 1istId, char #*name, int
accesslng, int maxUsed, int *protoTypes, and char **elemNames.

int AccessTrace(int mode)

switches the internal trace mode on/off.

int InfAccess(command *cmd)
prints all information about current access lists. Command language
parameters traceon and traceoff can be used to toggle the internal
trace on/off.

2.7 Command language

These routines are used to implement the interface between a user (at a
terminal or writing a do—file, see Appendix A) and the application code.
The interface uses the command data structure (see Table 9) to pass the
information to application procedures.

int no command number

int no0fPars number of parameters

char** pars array of parameters

char** names predefined parameter names

char* results return string (used in tcl embedding)
int verbose level of verbosity (0O=silent)

Table 9: command data structure

The “first” parameter cmd . pars[0] is always the actual command name, the
parameter list ends with an additional nil pointer. Therefore the length of
cmd.pars is cmd .noOfPars+2. The user has to check the actual parameters
against the predefined parameters. The routine CheckName will ease this
task.

The list of predefined commands is read from a command definition file.
This file consists of information for setting modes (i.e the prompt), command

10

names followed by the command number and short description, and lists of
parameters of commands. A command definition file consists of two parts
separated by a blank line. In the first part some modes (see Table 10) may
be set. Each of these lines start with *$’ and the mode name followed by
the new value. The mode names are collected in Table 10.

$Prompt ‘string’ command prompt

$MaxPar number maximal number of parameters

$Escape character escape character

$Comment character comment character

$Quote character additional quote character

$CmdDelim character additional command delimiting character
$ParDelim character additional parameter delimiting character

Table 10: Modes read from the command definition file

The second part defines the command names the runtime system should rec-
ognize. Fach command name on a new line is followed by the command
number and a string which will be used as a short description of the com-
mand. After the definition of the command names an optional list of key-
words to given command numbers follows. Each list starts with a *$’ and
the command number on an extra line.

After calling the routine InitCommands (reading the command definition
file) the linking between the unique command number and the address of the
application procedure has to be done dynamically by calls to SetCommand.

The constants and routines are declared in the commands.h header file. The
constants are explained in Table 11. For complete documentation see the
source listing commands. c.

int InitCommands(char *path,char *name)

InitCommand returns true if the command file is read successfully.

int DoCommands(char *line,void(*UserProc) (char*))

puts the string 1ine on the command stack. UserProc is called after
the last command from line is executed. (Can be used to return the
storage for line.)

int ExecCommand(command *cmd)

executes a command by calling the procedure identified by the com-
mand number in cmd.

11

MAX_COM 1000 maximum number of commands
MAX_PAR 100 maximum number of parameters
endClass 127 character class: file end
commandClass 10 character class: command end
parameterClass 5 character class: parameter end
nameClass 5 character class: name end
quoteClass 1 character class: string end

Table 11: Constants for the command language module

command* GetNextCommand ()

extracts the next command from the command stack. This procedure
does the syntax analysis and returns the result as a pointer to the
command data structure.

void CmdMainLoop()

processes commands from some standard input.

void SetCommand(int no,int (*UserProc) (command*))

links the procedure address UserProc to the command number no.

int AddCmdPar(char *cmdName, char *parName)

adds parName to the list of parameters of the cmdName command. The
position of the parameter in this list is returned.

int SetVerbose(int newVerbose)

sets the default value for the verbose field of the cmd data structure.

int CheckName(char **text,char **names,int charClass)

tests if a string is in a keyword list.

char *ConvertString(char **text, char *target, int max)

converts (substitutes escape sequences) string *text to *target. The
pointers are updated. max is used to stop conversion.

int ParsCheck(command *cmd,int min,int max)

checks if min<=cmd->no0fPars<=max and prints an appropriate error
message.

12

int ReadIntPar(command *cmd,int k,int *intVal)

converts an integer from (cmd->pars) [k] and stores the value to *intVal.

int ReadRealPar(command *cmd,int k,real *realVal)

converts a real from (cmd->pars) [k] and stores the value to *realVal.

void SetLibAddresses(int sel)

predefines the basic commands of the modules described in Chapter 2.
sel==-1 defines all commands.

2.8 Parameter handling

The parameter module includes routines to handle named parameter lists.
A parameter list itself contains a list of parameter values of fixed size. A list
of parameter names and a list of named values may be maintained.

All messages are done through ZIBStdOut or a user output procedure (see
InitParams). All storage is allocated by ZIBAlloc.

The constants and routines are declared in the params.h header file. The
constants are explained in the Tables 12 and 13. For complete documentation
see the source listing params.tex.

MAX PARAMS LISTS 100 maximum number of parameter list
T_INT 0 constant denoting type int

T REAL 1 constant denoting type real
T_BOOL 2 constant denoting type bool

Table 12: Constants for parameter management

EPM DOUBLE_INIT -1 second call of init routine
EPM_MEMORY -2 not enough memory
EPM_ALREADY USED -3 parameter list name already in use
EPM_TOO_MANY -4 too many parameter lists

EPM NOT DEFINED -5 parameter list not defined
EPM_NOT_FQOUND -6 parameter name not defined

Table 13: Error constants for parameter management

13

int InitParams(int maxParams,void (*UserError) (int,charx*))

should be called once for initialization. The routine is called internally
with maxParams=MAX _PARAMS LISTS by some of the other routines (if
the user did not initialize the module). The user may supply a routine
to handle error messages. This routine is called with an error number
(Table 13) and a string as parameters. If UserError==nil the string
will be printed with ZIBStdOut.

ptr NewParamList(ptr buf,char *listName,int noOfParams,
int valueSize,char **names,int type,int noOfValNames,
char **valNames, ptr vals,
int (#*UserParamChanged) (char*,char*,int),
int (#*UserListChanged) (charx*))

uses buf as storage for a parameter list or, if buf==nil allocates new
storage. listName is checked for double definitions. The result of the
routine is the address to an array of noOfParams blocks of valueSize
bytes of memory.

Parameter values may be named to allow a user—friendly input via the
setpar command. A list of name—value pairs with length no0fValNames
is defined by valNames and vals.

If the user wants to be notified on changes of parameters or the complete
list a user routine UserParamChanged or respectively UserListChanged
may be supplied.

int ReturnParamlList(char *1istName)

releases the memory of a parameter list 1istName.

int GetParam(char *listName,char *name,ptr *value)

returns the address of the value of a parameter which is defined by the
parameter listName and name.

GetParamList (char *listName,char ***names,ptr *values,
int *noOfParams,int *type,int *noOfValNames,
char ***valNames, ptr *vals)

returns the pointer to the arrays of parameter names, parameter values,
and the pointers to information on named parameter values.

char **GetListNames(int *1ng)

returns a pointer to an array of all list names.

14

int ChangeParam(char *1listName,char *name,ptr value,
char *valName)

calls UserParamChanged with parameters 1istName, name, value, and
valName. If valName!=nil the named parameter value is looked up in
the valNames table of the parameter list and is set to the new value
value.

int ChangedParamList(char *1listName)

notifies the parameter management module of a change of values. The
routine UserListChanged is called.

int InfPar(command *cmd)

informs on parameter lists and parameter values on the command lan-
guage level.

int SetPar(command *cmd)

sets parameter values on the command language level.

2.9 Minigraphic

See the report by Andreas Wendt, Rainer Roitzsch [14].

15

3 Triangulation module

The triangulation module of KASKADE handles all basic operations related
to the data structures of a triangulation. It includes methods to operate
on sets of points, edges or triangles too. These sets are defined internally
by the module (like “all edges”) or may be defined by the user through list
operations or by predicate functions. Furthermore, this module contains the
procedures to refine a triangulation (including the generation of green refined
triangles to preserve regularity) and the procedures to delete triangles.

Triangulations are described by a global data type which allows the usage of
more than one triangulation in a program. This includes the possibility to
freeze a triangulation, working on a copy, or solving with different algorithms
on a triangulation.

This document contains a description of the module, listing all relevant data
types, constants, operations on these data structures, and procedures to use a
triangulation. It should include all necessary information to use the module.
The constants and routines are declared in the triang2.h header file. The
module is initialized by a call of InitTriang.

The data structures are developed by P. Leinen [11].

The following routines initialize the module.

int InitTriang()

initializes the module.

void SetTriAddresses(int sel)

makes the command language interface available (sel==-1).

3.1 Triangulations

A triangulation consists of sets of points, edges, and triangles which form a
subdivision of a two—dimensional area. The triangles should not overlap. The
data structure used to describe a triangulation contains many fields which
should be hidden to the normal user. Such fields are needed to find the data
for points, edges, and triangles. Other fields are open to the user and allow
fast access to some descriptive data, see Table 14.

The data for the triangulation currently in use is defined via the global vari-
able actTriang. All triangulations are linked, starting with firstTriang.
actTriang is changed by calls to the procedures which create, delete, or
select triangulations, see Section 3.4.

16

name char* name of the triangulation

fileName char* mname of the input file

no0fPoints int number of points

noOfEdges int number of edges

noOfTriangles int number of triangles

reflLevel int number of refinement steps

maxDepth int maximal number refinements of one triangle

Table 14: Fields of the triangulation data structure TRIANGULATION, for more
fields see Table 20

The set of procedures to access the basic elements of a triangulation are
described in Section 3.5. The handling of the adaptive refinement of an
existing triangulation is presented in Section 3.6.

3.2 Basic objects of a triangulation

The data type for points includes at least the (x, y)-coordinates, a boundary
type descriptor, some internal data, and a byte array (the associated array).

The list of fields is collected in Table 15.

vec char* associated storage

boundP char boundary condition type, see Table 16
mark char marking field

classA char additional classification

indexP int number of point

X real a—coordinate

y real y-—coordinate

next PT* pointer to the next point

last PT* pointer to the previous point

Table 15: Fields of the point data structure PT

The usage of the associated array vec is clarified in Chapter 4 on node man-
agement. The usage of the classA field allows the handling of geometrically
dependent, problem specific information (like material constants). The mark
field is free for (software) local use, but should be handled carefully to avoid
multiple use.

17

INTERIOR 0 inner element

DIRICHLET 1 Dirichlet boundary

NEUMANN 2 Neumann boundary
3

CAUCHY Cauchy boundary

Table 16: Values of boundP fields

The structural data next and last should not be used.

The data type for edges includes at least two pointers to the end points, a
boundary type descriptor, refinement type descriptor, some internal data,
and a byte array. The list of fields is collected in Table 17.

vec char* associated storage

boundP char boundary condition type, see Table 16
mark char marking field

type char type of edge, see Table 18
classA char additional classification
isBlueDiagonal char blue diagonal refined

depth short depth of edge

pl PTx first point

p2 PTx second point

pm PTx midpoint

t1 PTx first neighbor triangle

t2 PTx second neighbor triangle
next EDG* pointer to the next edge
last EDG* pointer to the previous edge
father EDG* pointer to father edge
firstSon EDG* pointer to first son edge

Table 17: Fields of the edge data structure EDG

The geometric information of edges is depicted in Figure 1.

The usage of the associated array vec is clarified in Chapter 4 on node man-
agement. The usage of the classA field allows the handling of geometrically
dependent, problem specific information (like material constants). The mark
field is free for (software) local use, but should be handled carefully to avoid
multiple use. The type tag gives some information on the generation of the

edge, see Table 18.

18

T WHITE 0
T_GREEN 1
T_RED 2
T_BLUE 3
T_NOTHING 4

Table 18: Values of type fields

pl

p2

Figure 1: Field of an edge

The structural data next, last, father, and firstSon should not be used.
The midpoint of an edge should be accessed with the PM macro.

The data type for triangles includes at least three pointers to the edges, re-
finement type descriptor, an integer number to specify the refinement depth,
some internal data, and a byte array. For convenience the pointers to the
vertices are stored too. The list of fields is collected in Table 19.

The geometric information of triangles is depicted in Figure 2.

The usage of the associated array vec is clarified in Chapter 4 on node
management. The usage of the classA allows the handling of geometrically
dependent, problem specific information (like material constants). The defi-
nition of depth is given in Section 3.6. The mark field is free for (software)
local use, but should be handled carefully to avoid multiple use. The type
tag gives some information on the generation of the triangle.

The structural data next, last, father, and firstSon should not be used.
The sons of a triangle should be accessed with the TREDxSON macros (x is 1,
2,3, or 4).

19

vec char* associated storage

mark char marking field

type char type of triangle, see Table 18
classA char additional classification
depth short depth of triangle

pl PTx first point

p2 PTx second point

p3 PTx third

el EDG* first edge

e2 EDG* second edge

e3 EDG* third edge

next TR* pointer to the next triangle
last TR* pointer to the previous triangle
father TR* pointer to father triangle
firstSon TR* pointer to first son triangle

Table 19: Fields of the triangle data structure TR

e?2

p3

el

pl

e3 p2

Figure 2: Position in a triangle

3.3 Organization of basic object lists

Points, edges, and triangles are organized in double linked lists. New points
are inserted at the end of the point list which can be accessed through the
firstPoint and lastPoint fields of the TRIANGULATION data structure (see
Table 20). The points of the coarse mesh are collected as an array in the

initPoints field.

The efficient implementation of hierarchical basis and bpx preconditioners
yield a more sophisticated handling of edges and triangles. New edges and

20

triangles are appended in sublists which correspond to their depth. These
sublists start at the depthFirstEdges and depthFirstTriangles fields. All
sublists for edges (and triangles) are linked to one list respectively. The
beginning and end is stored in the firstEdge, lastEdge, firstTriangle,
and lastTriangle fields.

maxDepthFirsts int max depth
no0fInitPoints int number of initial points
noOfInitEdges int number of initial edges
noOfInitTriangles int number of initial triangles
firstPoint PT* first point

lastPoint PT* last point

initPoints PT[] array of initial points
firstEdge EDG* first edge

lastEdge EDG* last edge

initEdges EDG[] array of initial edges
depthFirstEdges EDG** array of sublists
firstTriangle TR first triangle
lastTriangle TR last triangle
initTriangles TRL] array of initial triangles
depthFirstTriangles TR** array of sublists

Table 20: Additional fields of the TRIANGULATION data structure

3.4 Global operations on a triangulation

Procedures to create, delete, or select (via name) triangulations are available.

TRIANGULATION *CrTri(char *name)

creates a new TRIANGULATION data structure and initializes the fields.
Additionally a list of triangulations is maintained.

int SelTri(char *name)

makes the triangulation name the current one, i.e. sets actTriang. If
no triangulation is found false is returned. (Not yet implemented.)

int CloseTri(TRIANGULATION **trgul)

deletes the triangulation trgul, updates actTriang if necessary, and

21

sets *trigul to nil. All data for point, edges, triangles and their
associated byte arrays are returned.

3.5 Using a triangulation

The recommended way of working with the elements of a triangulation is the
following:

o Write a procedure to handle one object.

o Apply this procedure to all objects of a specified set.

This method should be clarified by a simple example (counting all edges of
a triangulation):

static int edgeCounter;
static int CountEdge(EDG *ed)
{
edgeCounter++;
return true;

b

edgeCounter = 0;

ApplyE(CountEdge,all);

sprintf (globBuf,"’s’ has %d edges\n",actTriang->name,edgeCounter);
ZIBStdOut (globBuf) ;

The ApplyE routine “knows” all about the internal linking of lists to find the
edges of the current triangulation (defined through actTriang) and calls the
procedure CountEdge with pointer to the corresponding edge data structure.
The constant all defines some selection criteria, in this case all edges of the
current triangulation.

Table 21 shows all apply procedures and Table 22 the selection codes.

3.6 Procedures (Refinement/Deletion)

The user can specify triangles to be refined. The “red” refinement method

used in KASKADE was first introduced by R. Bank [3]. Triangles divide

22

ApplyP apply on points

ApplyE apply on edges

ApplyT apply on triangles

ApplyPDepth apply on points at triangles of depth d
ApplyEDepth apply on edges of depth d
ApplyTDepth apply on triangles of depth d

Table 21: Apply procedures

all select all

allBackward select all, backwards

allHist select all, include fathers

allHistBackward select all, backwards, include fathers

initial select initial

dirichlet select objects with Dirichlet condition
notDirichlet select objects with no Dirichlet condition
initialNotDirichlet select initial objects with no Dirichlet condition
boundInit select all initial boundary

allReds select all red refined triangles

Table 22: Selection codes

in four similar triangles, see Figure 3. This method preserves the numerical
quality of the triangles, i.e. the new triangles have the same angles as the
starting triangle. The depth field of the new triangles and edges gets the
value of the father triangle increased by 1. The initial value is zero.

Figure 3: Red refinement

For anisotropic problems a different method [9] can be selected, see Figure 4.

23

We call this method “blue” in contrast to the “red” refinement of Bank. Note
that a blue refinement is not always possible. An example is given in [12].
The new triangles have a different quality in respect to their angles which
is hopefully the desired one. Two triangles generated by the triangulation
of a rectangle (e.g. by the BOXES program) are tied together through their
common edge, the “blue” diagonal. The field isBlueDiagonal denoting this
inherits this attribute in case of (red and blue) refinement.

N-5

Figure 4: Blue refinement

These methods will generate incompatible triangulation which have to be
“closed” in some way. Triangles with two refined edges are refined red, see

Figure 5.

Figure 5: Middle triangle will be red refined

Triangles having an edge twice refined are refined red too, see Figure 6.

This leaves some triangles with just one edge refined once. These triangles are
refined “green”, Figure 7. Consecutive green closures will generate arbitrary
bad angles. Therefore, at the start of a refinement step, green triangles are
always removed.

int OpenRef ()

24

int

int

int

int

int

int

Figure 6: Right triangle will be refined red

A

Figure 7: Green closure

prepares a triangulation for refinement: all green triangles are removed.
The refLevel counter is incremented.

RefTr (TR *t)

marks a triangle for red refinement.

RefBlue(TR *t, EDG *elnner, EDG *eRefine)

marks two triangles for blue refinement.

CloseRef(int verboseP)

refines all marked triangles and generates the (green) closure.

OpenDel ()

prepares a triangulation for deletion: all green triangles are removed.

DelTr (TR *t)

marks triangle t and its brothers for deletion.

CloseDel(int verboseP)

deletes all marked triangles and generates the (green) closure.

25

3.7 Customizing the module

The triangulation module generates a set of events (Table 23), which allow
the user to insert procedures at these events using the application event
module (see Section 2.5).

Event name assoclated data reason

NewPoint (PT *p) new point
ReturnPoint (PT *p) obsolete point
NewEdge (EDG *ed) new edge
ReturnEdge (EDG *ed) obsolete edge
NewTriangle (TR *t) new triangle
ReturnTriangle (TR *t) obsolete triangle
RefineEdge (EDG *ed) refined edge
RefineTriangle (TR *t) refined triangle
TriCreate (TRIANGULATION *triang) new triangulation
TriSelect (TRIANGULATION *triang) select triangulation
TriClose (TRIANGULATION *triang) delete triangulation
TriRefined (TRIANGULATION *triang) refined triangles
TriRenumbered (TRIANGULATION *triang) renumbered
TriDeleted (TRIANGULATION *triang) deleted triangles
TriRead (TRIANGULATION *triang) read triangulation

Table 23: Application events of the triangulation module

The TriRefined and TriDeleted are used by the graphic module to update
automatically pictures of changed triangulations. TriRenumbered signals a
renumbered triangulation, i.e. sparse matrices have to be restructured.

3.8 Command language interface

Some of the global actions on triangulations are available on the command
language level.

int TriInf(commandx*)

prints some data of the current triangulation and lists the names of
other triangulations in core.

int TriSel (commandx*)

selects another triangulation which has to be in core.

26

int TriDel (commandx*)

deletes the current triangulation.

int TriChk(command*)

makes some consistency checks on the current triangulation and prints
statistics about the refinement history.

27

4 Node module

In this section we describe the management of data for Finite Element com-
putation on triangulations. The data is held at the basic objects (points,
edges, triangles) via the associated arrays. The length of these arrays and
the access to their components are controlled by the access management rou-
tines (see Section 2.6). The definition of the routines is held in the header
file nodes.h.

The data of the current nodes structure is available via the global nodesState
variable (see Table 24). The size of the array in the node data structure is
defined by the constant MAX_NODE_GROUPS.

The module has to be initialized.

int InitNodes()

initializes the node module

4.1 Access management on basic objects

The length of the associated arrays (in this KASKADE version) can only
be defined prior to the creation of the first triangulation. Resizing is not
implemented.

The node module creates access lists (accPoint, accEdge, accTriangle)
for the basic objects (points,edges, triangles) when the first triangulation is
created. These identifiers should be used (by calls to the access right routines)
to get the allowance to read and write certain parts of the associated arrays.
The actual access is implemented with macros, see Table 25.

A typical part of a program using this feature is
static int triArea=-1;
/* Getting access right before first use */
if (triArea<0)
triArea = GetAccess(nodesState—>accTriang1e,
sizeof (REAL) ,sizeof (REAL),"area");

/* Accessing data via RT macro */

RT(t,triArea) = ComputeArea(t);

28

ptVec

edgVec

trVec

ptWs

edgWs

trWs

accPoint
accEdge
accTriangle
acclNode
bytesOnNode
no0fPointNodes
no0fEdgeNodes
no0fTriangleNodes
noOfEquations
startPointNodes
startEdgeNodes
startTriangleNodes
eqnPointNodes
eqnEdgeNodes
eqnTriangleNodes
iIndex

cBoundP

cClassA

rX

rY

rSol

rRhs

rDiag

stiff

compNormP

storage id for point vector

storage id for edge vector

storage id for triangle vector
length of associated point vector
length of associated edge vector
length of associated triangle vector
access id for point vector
access 1d for edge vector

access 1d for triangle vector
access 1d for node storage
length of node storage

number of nodes at point
number of nodes at edge

number of nodes at triangle
number of equations
array of first byte of nodes at point
array of first byte of nodes at edge

array of first byte of nodes at triangle
array of equation no of node

array of equation no of node

array equation no of node

accCess
accCess
accCess
accCess
accCess
accCess
accCess
accCess
accCess

identifier for index at nodes
identifier for boundary type at nodes
identifier for class at nodes
x—coordinate

y—coordinate

identifier for solution at nodes
identifier for right—hand side at nodes
identifier for diagonal at nodes
identifier for sparse matrix

ignore Dirichlet boundary conditions

Table 24: Fields of the nodes data structure (all type int)

/* Freeing access right after use */

ReturnAccess(nodesState—>accTriang1e,triArea);

triArea = -1;

29

CP(p,id) access byte id from point p
IP(p,id) access integer id from point p
RP(p,id) access real id from point p
AP(p,id) access address id from point p
CE(ed,id) access byte id from edge ed
IE(ed,id) access integer id from edge ed
RE(ed,id) access real id from edge ed
AE(ed,id) access address id from edge ed
CT(t,id) access byte id from triangle t
IT(t,1d) access integer id from triangle t
RT(t,1id) access real id from triangle t
AT(t,1id) access address id from triangle t

Table 25: Access macros, first letter: data type, second letter: object

The following routine can be used to change the default storage sizes.

int SetWS(int ptSize, int edgSize, int trSize, int ndSize)

initializes the sizes for the associated arrays. The usage of ndSize is
explained in the next section.

int GetWS(int *ptSize, int *edgSize, int *trSize, int *ndSize)

returns the sizes for the associated arrays. The usage of ndSize is
explained in the next Section.

Routines to print a string text followed by the values stored in the associated
arrays exist.

void PrintPointValues(char *text, int maxVals)

prints data of the associated array for the first maxVals points.

void PrintEdgeValues(char *text, int maxVals)

prints data of the associated array for the first maxVals edges.

void PrintTriangleValues(char *text, int maxVals)

prints data of the associated array for the first maxVals triangles.

The actual usage of storage is displayed by the infaccess command. The
default storage sizes can be changed with the workspace command.

30

4.2 Node management

Nodes are a further abstraction from our basic objects. The basic object is
now “node storage” and not points, edges, or triangles. Nodes may exist
on points, edges, or triangles. The access to nodes is organized in analogy
to the handling of triangulations, i.e. it is possible to write routines which
are applied by calls to ApplyNode to all nodes. These routines get a pointer
to the node data as parameter. The node setup defines how many nodes
are used at the basic objects. The routine GetNodeAddresses is used to
implement the matrix—vector multiplication with the stiffness matrix (or to
assemble the sparse matrix). The macros to access fields from a node storage
are collected in Table 26. Some fields are automatically set, see Table 27.
These values are taken from the basic objects, respectively are computed to
fit into the ApplyNode routine.

CV(vec,id) access byte id from node vec
IV(vec,id) access integer id from node vec
RV(vec,id) access real id from node vec
AV(vec,id) access address id from node vec

Table 26: Access macros for node storage

access id macro explanation

iIndex IV(vec,iIndex) index of node vec
cClassA CV(vec,cClassA) index of node vec
cBoundP CV(vec,cBoundP) index of node vec

rX RV(vec,rX) 2 of node vec
rY RV(vec,rY) y of node vec
rSol RV(vec,rSol) solution at node vec

Table 27: Preset fields of nodes

int NodeSetUp(int nodeWorkSpace, int nodesAtPoint,
int nodesAtEdge, int nodesAtTriangle, int noOfEquations)

defines the internal data structure of working space at nodes. The size
nodeWorkSpace is reserved for each equation through the access man-
agement nodesAtPoint times at points, nodesAtEdge times at edges,

31

void

NodesAtTriangle times at triangles. Figure 8 shows the local storage
setup at points and edges after a call of NodeSetUp(60,1,1,0,2).

(p->vec) — (ed->vec) —

nodes
nodeq

nodey

nodes

Figure 8: Node storage at points and edges

The offsets of the individual nodes can be computed from the fields
startPointNodes, startEdgeNodes, and startTriangleNodes, of the
nodesState variable. Thus the first index of node 4 in the preceding
example will be nodesState->startEdgeNodes[1]. The correspond-
ing equation numbers are stored in the eqnPointNodes, eqnEdgeNodes,
and eqnTriangleNodes array. This means that in the array of equa-
tion numbers nodesState->eqnEdgeNodes[1] will have the value 1
(the second equation), at least in our example.

ReturnNodes()

releases node setup, i.e. frees the node storage at the associated arrays
for points, edges, and triangles.

int ApplyNode(int (*UserProc) (char*),int sel)

applies UserProc to all nodes, starting with the nodes at points, edges,
and triangles. All nodes for one object (point, edge, or triangle) are
always processed before advancing to the next object. That means
that two nodes at a point have incremented indices. Nodes at different
objects get indices far away. This routine is used to implement all the
NodeXxxx routines. The parameter to UserProc is a pointer to the
node storage. The selection code sel should be applicable to points,
edges, and triangles.

32

int

int

int

int

int

int

int

int

int

int

GetNodeAddresses (TR *t,char **nodes,int no)

returns the addresses of all nodes at the points, edges, and the triangle
t. The length of the array of address nodes is no . This allows the
association of nodes to the local stiffness matrix. The sequence is: all
nodes for each equation. Thus we obtain a nice block structure of the
local stiffness matrix.

GetNoNodes ()

returns the number of nodes in the current triangulation.

AssRHS(int x, real *(*LocAssB) (TRx))

assembles the right-hand side to node field x. The routine LocAssB
computes the local right—hand side.

AssDiag(int x, real **(xLocAssA) (TR*))

assembles the diagonal of the stiffness matrix to vector x. The routine
LocAssA computes the local stiffness matrix.

NodeAssign(int a,int b)
assigns field b to a.

NodeAssNeg(int a, int b)
assigns field -b to a.

NodeLin(int a, int b, int c, real x)

assigns field b+x*c to a.

NodeLinNeg(int a, int b, int ¢, real x)

assigns field -b+x*c to a.

NodeAdd(int a, int b, int c)
assigns field b+c to y.

NodeSub(int a, int b, int c)

assigns field b-c to a.

real NodeScalProd(int a,int b)

int

returns the scalar product of fields a and b.

NodeSetZero(int a)
sets field a to 0.0.

33

int NodeSetBoundZero(int a)
sets field a to 0.0 for all nodes on the boundary.

int NodeSetBound(int a)

sets field a to the boundary values for all nodes on the Dirichlet bound-
ary.

int PrintNodeValues(char *text,int max)

prints the node values for the first max nodes. The output starts with
text.

4.3 Sparse matrices

Sparse matrices are stored as lists of real numbers which correspond to a list
of neighbor nodes. This list is generated when the first matrix is created. A
sparse matrix is identified via an integer variable and a set of macros return-
ing the length of these lists and the starting addresses of the corresponding
arrays (see Table 28).

NO_OF _NODE _NEIGHBORS(vec) retrieve the number of neighbors from
vec

NODE _NEIGHBOR_VEC (vec) retrieve the array of neighbor nodes
from vec

NODE_SPARSE VEC(vec,index) retrieve from vec the line of sparse ma-
trix index

Table 28: Macros to access sparse matrices

The algorithm to generate the sparse matrix now implemented is straight
forward:

o at each node, set the counter for the number of neighbors no0fNodeNeigh
to zero;

e scan all triangles and increase no0fNodeNeigh according to the node-
setup;

e scan all edges and subtract the double entries;
e allocate the array of neighbor nodes adr0fNodeNeigh;

e scan all edges and store all neighbor nodes in adr0fNodeNeigh, sort
them with respect to the node attribute iIndex.

34

int MakeSparseMatrix(int pos,char *name)

generates the frame of a sparse matrix. If not yet available the node
neighborhood relationship is constructed and arrays to store the matrix
lines are allocated. An integer identifying the matrix is returned, -1
denotes a failure.

int AssembleSparse(int index, char *name)

allocates storage for an additional sparse matrix and assembles without
respecting Dirichlet boundary conditions.

int BoundSparse(int index)

forces Dirichlet boundary conditions on matrix index.

void ReturnSparseMatrix(int index)

returns the storage for the matrix index including the frame.

SetOMatSparse(int index, int n, int symP)

sets all matrix elements of index to 0.0. The parameters n and symP
are ignored, they are just included for compatibility with the full and
envelope matrix routines.

void PrintMatSparse(char *s, int index, int n, int symP)

prints the string s and all non—zero elements of the sparse matrix index.
The parameters n and symP are ignored, they are just included for
compatibility with the full and envelope matrix routines.

4.4 The matrix/vector multiplication method

The matMulMethod data structure contains a set of routines with some data,

see Table 29.
The routines of the method have the following duties.

int InitMatMul(int stiff, real** (*NumAss)(TR*), int rhs,
real* (*NumAssB) (TR*))

initializes the matrix/vector multiplication method with routines NumAss
and NumAssB doing local assembling of the stiffness matrix and the
right—hand side of the linear system. stiff and rhs identifies a path
to the stiffness matrix, respectively the right-hand side vector which is
computed if rhs!=-1.

35

name char* name of the method

rhs int identifier right-hand side

stiff int identifier sparse matrix

InitMatMul int(*)(int,real**(*)(TR*), initialize method
int,real*(*) (TR*))

MatMul int (%) (int,int) multiply stiffness matrix

CloseMatMul int(x)() close method

Table 29: The matMulMethod data structure

int MatMul(int x, int y)

computes the product of stiffness matrix and the node field x and stores
the result in y.

int CloseMatMul ()

may return storage which is not used anymore.

A new method can be defined.

int DefMatMulMethod(char *name,
int (*InitMatMul) (int,real**(*) (TR*),int,real*(*) (TR*)),
int (*MatMul) (int,int),int (*CloseMatMul) ())

defines a new matrix/vector multiplication method with name name.

The local matrix/vector multiplication implements the product by
multiplying with local stiffness matrices and adding their contributions. No
global stiffness matrix is used.

int InitMatMul(int index, real **(*LocAssA)(TR*), int rhs,
real *(*LocAssB) (TR*)

prepares the computation of the multiplication of a vector with the
stiffness matrix and assembles the right—hand side vector rhs. index
is a dummy parameter. The routines LocAssA and LocAssB compute
the local stiffness matrix and the right-hand side corresponding to a
triangle. A negative value of rhs suppresses the computation of the
right—hand side. true is always returned.

int AXMul(int x, int y)

36

computes the product of node field x with the stiffness matrix and
stores the result in y. Dirichlet conditions are ignored if compNormP in
nodesState is set.

The sparse matrix/vector multiplication assembles the complete stiff-
ness matrix at the call of InitSparseMul and uses this matrix on the follow-
ing calls of AXSparseMul. The sparse matrix is removed on events TriRefined,
TriRenumbered, and TriRefined. .

int InitSparseMul(int index, real #**(*LocAssA)(TR*), int rhs,
real *(*LocAssB) (TR*)

assembles the stiffness matrix index and the right—hand side rhs. The
routines LocAssA and LocAssB compute the local stiffness matrix and
the right-hand side corresponding to a triangle. The Dirichlet bound-
ary conditions are fully integrated in the complete matrix. Negative
values of index or rhs suppress the computation of the stiffness matrix
or the right-hand side. The routine returns the index of the stiffness
matrix. A negative value denotes a failure to collect the stiffness ma-
trix.

int AXSparseMul(int x, int y)
computes the product of node field x with the stiffness matrix and
stores the result in y.

4.5 Command language interface

The infaccess can be used to get information on the node structure. The
structure of the sparse matrices can be displayed by functions of the graphic
module.

int WorkSpace(commandx)

changes the amount of memory allocated at points, edges, triangles,
and nodes.

37

5 Adaptive computations

This chapter will contain information on the module which handles the adap-
tive computation of geometric (and other values) in KASKADE. The user
can add his own code to the predefined procedures.

The design of the interface is still in discussion. The first version is docu-

mented in the source compadapt . tex.

38

6 Assembling module

6.1 Defining the problem

Let DF be defined

Diu' = — diV(PZk grad u’) + BiFu’, + ﬁéku; + ¢*u' with P™* = (pllkl pllkz)
21 P22

then KASKADE variants handle (systems of n) partial differential equations
of the type

n—1
ZDfui = ¢ nQ i=0,....n—1
=0)
' ' u' = 7y on I'gC of (1)
(P*gradu’) -n+nu’ = € on I'y C N

(P*gradu’)-n = 0 on OO\(I'yUT}) .
p;’;, g, Bk Bk g* 4t ' and £ are piecewise continuous real valued func-
tions on €, respectively the corresponding boundaries. Q@ CIR? is a bounded
polygonal domain. Each KASKADE variant has its own assumptions on
these functions. Here we describe the method to formulate the problem.

Some information on the class of problems are collected in the problemType
data structure (see Table 30).

char* name name of the problem class

int maxNoOfProblems max number of problems

int symP problems have to be symmetric?
int noOfEquations number of equations

int nodeEntries length of node memory

Table 30: Fields of the problemType data structure

int InitProblem(char *name,int noOfProblems,int noOfEquations,
int nodeEntries, int symP)

defines a problemType data structure which can be accessed by the
global variable theProblem. This routine should be called only once.

39

char* name name of the problem

char** varNames names of variables

IntProc Laplace local Laplace terms p;’l“

IntProc Convection local convection terms 3i*, 3ik
IntProc Helmholtz local Helmholtz term ¢'*

IntProc Source local load term ¢*

IntProc Obstacle local obstacles

IntProc Cauchy local Cauchy boundary functions 7°, £
IntProc Dirichlet local Dirichlet function ~*
IntProc Sol local solution (if known)
Real**Proc LocAss local assembling on a triangle
Real*Proc LocAssB local right-hand side on a triangle

Table 31: Fields of the problem data structure

A set of user functions defines a concrete problem. Such a problem is defined
by a call to SetProblem which defines a problem data structure (see Table
31). An actual set for computation is selected by the command language
function problem.

int SetProblem(char *name, char **varNames
int (*Laplace) (real,real,int,real*,int,int),
int (*Convection) (real,real,int,real*,int,int),
int (*Helmholtz)(real,real,int,real*,int,int),
int (*Source) (real,real,int,real*,int),
int (*0bstacle)(real, real,int,real*,int),
int (*Cauchy) (real,real,int,real*,int),
int (*Dirichlet)(real,real,int,real*,int),
int (*Sol)(real,real,int,real*,int),
real** (*LocAss) (TR*),real* (*LocAssB)(TR*))

defines a problem data structure which can be accessed by the global
variable actProblem. The parameters are routine addresses which are
specified in the following. The new problem is added to the array of
available problems (problems). A special problem can be selected by
the problem command.

void SetProblemAddresses()

initializes the command language interface, i.e. the problemand infproblem
command.

40

void SetStdProblem()

predefines some example problems.

After initializing the problem class with InitProblems, the user has to define
his version of the following functions to define the differential equations.

int Laplace(real x, real y, int classA, real fVals[4],
int equation, int variable)

returns the coefficients pﬁ(x,y)in,the array elements of fVals, i.e.

pl(x,y) in £Vals[0] etc. equation(index k) and variables(index i)
are valid for systems of equations. classA gives additional information
of the geometric subdomain which includes (x,y). That should be
useful to implement material constants.

int Convection(real x, real y, int classA, real fVals[2],
int equation, int variable)

returns the coefficients 8{*(z,y) and 3i%(x,y) in the array elements
fVals[0] and fVals[1].

int Helmholtz(real x, real y, int classA, real *fVal,
int equation, int variable)

returns the coefficient ¢**(z,y) in £Val.

int Source(real x, real y, int classA, real *fVal,
int equation)

returns the source value ¢'(z,y) in £Val.

int Obstacle(real x, real y, int classA, real fVals[2],
int equation, int variable)

returns the upper and lower obstacle in the array elements fVals[0]
and fVals[1].

int Cauchy(real x, real y, int classA, real fVals[2],
int variable)

returns n'(z,y) and '(z, y) in the array elements £Vals[0] and fVals[1].

int Dirichlet(real x, real y, int classA, real *fVal,
int variable)

returns the boundary values v'(x,y) in £Val.

41

int Sol(real x, real y, int classA, real fVals[3],
int variable)

returns the solution u(x,y) and its derivatives u,(z,y) and u,(x,y) in
the array elements fVals[0], fVals[1], and fVals[2]. This feature
is used to test the computed solution against the real solution if it is
known.

Fach of these user routines may be missing (nil). The return code of these
routines have to be one of the constants collected in Table 32.

F_CONSTANT values are constant on a triangle or an edge
F_VARIABLE values are not constant

F_IGNORE no values supplied

F_FAILED User failed to supply values

Table 32: Return codes for the problem defining user routines

The user can define his problem by supplying his own local discretization
with the following routines.

real** LocAss(TR *t)
returns a pointer to the local stiffness matrix.
real* LocAssB(TR *t)

returns a pointer to the local right-hand side.

The problem and problemType data structures for the currently selected
problem are accessed via the actProblem and theProblem pointers. A
change of the current problem raises an event (ProblemChanged).

Two commands are defined to select (and inform) on the current problem,
InfPrb and Problem.

6.2 Shape functions

Some subroutines to supply values of the shape functions and their derivatives
at points in the standard triangle are predefined.

void StdShape(real x,real y,int no,real *f,

42

real *fx,real *fy, real *fxx,real *fxy,real *fyy)

defines the values of the standard shape functions at (x,y)—coordi-
nates. The last three entries define the “hierarchical” extension of
linear elements by quadratic “bump” functions.

l—z—y

x

Y

dxy
dy(1 —z —y)
de(l —x —y)

void StdQShape(real x,real y,int no,real *f,
real *fx,real *fy, real *fxx,real *fxy,real *fyy)

defines the values of the standard quadratic shape functions at (x, y)—co-

ordinates.

21—z —y)(1/2—x—y)

y(2y — 1)
dxy

Ay(l —z —y)
de(l —x —y)

void StdCShape(real x,real y,int no,real *f,
real *fx,real *fy, real *fxx,real *fxy,real *fyy)

defines the values of the standard cubic shape functions at (x,y)—co-
ordinates.

(l—z—y)Bl-z-y)-1)B(1 -z —-y)—-2)/2
(3 — 1)(3z — 2)/2

y(3y — 1)(3y —2)/2

9zy(3z — 1)/2

9zy(3y —1)/2

9y(l —z —y)(By —1)/2

I —z—y)yB(l -z —y)—1)/2

91—z —y)eBl -z —y)—1)/2

92(1 — & — y)(3x — 1)/2

272y(l —x — y)

43

6.3 Local assembling

Two data structures integData and localData are used to ease local assem-
bling over triangles. The first one (see Table 33) holds global information like
precomputed function values of shape functions and is created by a call of
the InitAss routine. The second one (see Table 34) holds the transformation
data of a triangle to the reference triangle {0,0),(0,1),(1,0)}.

integPointX real* xy values of integration points
integPointY realx* yx values of integration points
integWeight real* weights at the integration points
lineIPX real** x; for edge :

linelY real** y;; for edge 1

lineIW real** weights for line integration
shape real#* values of shape functions ¢
shapeX real** values of shape functions ¢
shapeY realx*x values of shape functions qb;
lineVals real***x values v, of qb; on edge k
noOfIPoints int number of integration points
noOfLinelIP int number of integration points
noOfShapeFunc int number of shape functions
symP int true if symmetric

Table 33: The integData data structure

Pointers to the current data structures are held in the external variables
actIntegData and actLocalData. The following routine precomputes the
fields of an integData data structure.

integData *NewIData(int iFormula, int SF,
void (*ShapeF) (real,real,int,real*,real*,real*,real*,
real*,realx*),
real*,real*),int symP)

precomputes values of the shape functions and their derivatives at
the integration points. The shape functions are defined by the rou-
tine ShapeF, examples are StdShape and StdQShape. The parameter
iFormula selects the set of integration points, see Table 35. The user
can supply his own set of integration points by changing the values of
the variables userNoIP, userIPX, userIPY, and userIW.

44

X,y real* xp,y; values in triangle
pl1,p12,p21,p22 real* p;(xk,ys) values

q real* q(xy,yx) values

g real* g(xy,yx) values
betal,beta? real* [3(xy, yr) values
f11,f12,f21,f22 real transformation data
area real area of the triangle
classA int class identifier of the triangle
equation int number of equation
variable int number of variable

t TR* pointer to the triangle

Table 34: The localData data structure

int InitAss()

precomputes the values of the data structures for the integration rou-
tines, i.e. calls NewIData for a standard set of integDataand localData
data structures.

name #1Ps x of IPs y of IPs weights of 1P
BANKIP 3 1/6,2/3,1/6 1/6,1/6,2/3 1/6,1/6,1/6
LINIP 1 1/3 1/3 1/2
QUADIP 3 1/2,1/2,0 0,1/2,1/2 1/6,1/6,1/6
USERIP userNoIP userIPX userIPY userIW

Table 35: Sets of integration points (IPs)

The following routines can be used to construct a local stiffness matrix for a
triangle.

int OpenAss(TR *t)

precomputes the data for the transformation from the triangle t to
the reference triangle and prepares computations of the local integra-
tion of the stiffness matrix, mass matrix, right—hand side and more.
OpenAss initializes all data used by GetDomainVal((real x, real
y, int rIndex, real *fvals) routine, which interpolates variable
rIndex at (x,y) in the inner of the triangle t for all equations.

45

int CloseAss()

can be used to save the result of the local stiffness matrix.

int CompEll0p(real **locA)

computes the local stiffness matrix. The result is added to the array
locA[][]. The function actProblem->Laplace is used to compute

n 0 0
Ak :/T(j;:%pﬂa—xjﬁbia—mﬁbk)d(x,y)

with the shape functions ¢ and xy = x, x5 = y. The Cauchy boundary
conditions are applied if necessary:

A += / NGidpds .
aTAT,
The GetNodeAddresses routine returns the dimension (n) of the local
stiffness matrix.

int CompMass(real **1locA)

computes the local mass matrix. The result is added to the array
locA[][]. The function actProblem->Helmholtz is used to compute

A = /TC]@@d(l',y)-

int CompConvTerm(real **1locA)

computes the local convection matrix. The result is added to the array
locA[] []. The function actProblem->Convection is used to compute

(Not yet implemented.)

int CompRs(real *1ocB)

computes the local right—hand side. The result is added to the array
locB[]. The function actProblem->Source is used to compute

By = /TQ¢kd($ay) :

The Cauchy boundary conditions are applied by using actProblem->Cauchy
routine.

By 4= / {prds .
aTAr,

46

These routines can be used as prototypes for different discretizations. Stan-
dard NumAss and NumAssR functions are included which call these components
in a loop over the equations and variables, and which return (in the case of
linear shape functions) a (3n) x (3n) matrix (n the number of equations).

real **NumAss(TR *t)

assembles the local matrix of triangle t for a linear system of equations.

real *NumAssR(TR *t)

assembles the local right—hand side of triangle t for a linear system of

equations.

Sometimes a user function needs access to interpolated values of other vari-
ables on the current triangle. In this case the function GetDomainVal should

be used.

int GetDomainVal(real, real y,int rIndex,real *fvals)

interpolates the value rIndex on the current triangle (actLocalData->t)
for point x,y. The result is stored in fvals[k], k varying over the
number of equations.

47

7 Solve module

Global information (i.e. accumulated timing information, selection solution
components for direct and iterate solvers, error estimators and refinement
strategies) is collected in the solve data structure, see Table 36. The actual
status can be accessed via the solveState variable of type solvex.

name char* name of the solver
verboseP int level of verbosity
totalTime real time (seconds)

assTime real time for assembly
dirTime real time for direct solving
iteTime real time for iterative solving
estiTime real time for error estimation
refTime real time for refining
drawTime real time for drawing
renumbTime real time for renumbering
eNorm real energy norm

Direct int (*) (dirMethod*,int) solves direct

Iterate int (*) (iteMethod*) solves iterative
Estimate int (*) (estiMethodx*) estimates error

Refine int (x) (refMethod*) refines

Solve int (x) () adaptive solve

ansatz femAnsatz see Table 37

director dirMethod=* direct data structure
itor dirMethod* iterative data structure
estor dirMethod=* error estimate data structure
reftor refMethod* refine data structure

Table 36: Some fields of the solve data structure

linear linear ansatz
quadratic quadratic ansatz
cubic cubic ansatz

Table 37: The femAnsatz data type

48

int SolSetUp(int bytesOnNode, femAnsatz ansatz)

prepares data structures to solve a problem. The node module is ini-
tialized with nodes at points, edges and triangles corresponding to
ansatz (see Table 37). The amount of bytes is given by bytes0OnNode.
solveState is allocated and the fields of this solve data structure are
set. The event types of the solve module are defined, see Table 38.

NewSol solution computed
NewErrEsti error estimated
ProblemChanged the problem has changed

Table 38: Events of the solve module

7.1 Interface for direct solvers

Direct solvers are called by the Direct driver routine. This routine

e checks the applicability of the selected direct solver (i.e. only positive
definite systems),

e renumbers the triangulation (calling Renumber),

e assembles the linear system with the appropriate matrix structures
(calling Assemble),

e decomposes the system (calling Decomp),
e extracts the solution (calling FBSubst), and

e generates a NewSol event.
Additional timing information is assembled and a progress report is printed

on request. The data structure controlling this process is dirMethod, see
Table 39. The actual direct method is accessed via actDirector.

7.1.1 Direct methods and their duties

int Decomp()

49

name
renumberName
verboseP
onlyPosDef
onlySym

dim

env
stiffSparse
decompSparse
stiff

rhs

decomp
diagonal
solution
nodes

method

Decomp
FBSubst
CheckSol
Assemble
Renumber
PrintLS

ReleaseAll

charx*
charx*
int
int
int
int
int*
int
int
real*x*
realx*
real*x*
realx*
realx*
char**
storeMethod

int(x) O
int(x) O
int(x) O
int(x) O
int(x) O

int (*) (printMode)

int(x) O

name of the direct solver

name of the renumbering method
level of verbosity

only for positive definite systems
only for symmetric systems
dimension of the solution
vector of envelope offsets

id of sparse matrix

id of sparse matrix

stiffness matrix

right—hand side

decomposed matrix

diagonal elements

solution

array of node addresses

full, envelope, or sparse

(see Table 40)

decomposition method
for/backward substitution method
check solution method

assemble matrix method
renumber triangulation

print matrix method

(see Table 41)

release matrix method

factorizes the stiffness matrix

Table 39: The dirMethod data structure

A=LDL" .

The matrices and vectors are identified depending on the storeMethod

selected.

int FBSubst()

computes the forward substitution

Ly=15

and the backward substitution
DLTz =y
and stores the result in solveState->rSol.

int CheckSol()
checks the solution. This method is gracefully skipped, if not available.

int Assemble()

assembles the stiffness matrix and right—hand side according to storeMethod

(see Table 40).

full full matrix
envelope envelope matrix
sparse sparse matrix

Table 40: The storeMethod data type

int PrintLS(printMode mode)

prints the matrices and vector corresponding to mode. The printMode
data type defines the print selection (see Table 41).

printNothing print nothing
printLinSys print linear system Az = b
printDecomp print decomposed matrix LDLT

printSol print solution x

Table 41: The printMode data type

int ReleaseAll()

releases all data for matrices and vectors.

7.1.2 Defining a direct method

int DefDirMethod(char *name, char *renumberName,
storeMethod method, int onlyPosDef, int onlySym,
int (*Decomp) (), int (*FBSubst) (), int (*CheckSol) (),

51

int (*Assemble)(), int (*Renumber) (),
int (*PrintLS) (printMode), int (*ReleaseAll) ())

defines a new direct method, i.e. generates a new dirMethod data struc-
ture which can be accessed via actDirectoror solveState->director.
All defined direct methods are collected in the array dirMethods[] of
dirMethod*. The current direct method may be called by Direct ().

7.1.3 Command language interface

direct is the command language interface. The actual direct solver can be
changed with the seldirect command.

7.2 Interface for iterative solvers

Iterative solvers are called by the Iterate driver routine. This routine

e assembles the right—hand side of the linear system (calling directly
AssRHS),

e initializes the iterative solver (calling InitMethod),
e calls the iterative solver (calling Method),
e closes the iterative solver (calling CloseMethod), and

e generates a NewSol event.

The InitMethod is responsible for initializing a suitable matrix/vector mul-
tiplication. If needed preconditioners have to be initialized too.

Additional timing information is assembled and a progress report is printed
on request. The data structure controlling this process is iteMethod, see
Table 42. The actual iterative method is accessed via actItor.

7.2.1 Iterative methods and their duties

int InitMethod()

initializes the iterative process, i.e. checks for correct application, ini-
tializes matrix/vector multiplication and preconditioner methods, per-
forms onestep, etc.

52

name charx* name of the iterative solver
verboseP int level of verbosity

needsMatrix int needs the sparse stiffness matrix
computesRes int computes the residue
onlyPosDef int only for positive definite systems
onlySym int useful only for symmetric systems
iteCount int number of iterations

minSteps int minimum of iteration steps
maxSteps int maximum of iteration steps

eps real requested iteration error

res real iteration error

iteFactor real safety factor

InitMethod int(*) (iteMethod*) initialization method

Method int (x) (iteMethod*) iteration method

CloseMethod int(*) (iteMethod*) closing method

matMul matMulMethod* selected matMul method
preCond preCondMethod* selected preCond method

Table 42: The iteMethod data structure

int Method()

performs the required iterative step and updates the data in solveState
and actItor.

int CloseMethod()

closes the matrix/vector multiplication and preconditioner methods.

7.2.2 Defining an iterative method

int DefIteMethod(char *name, int needsMatrix, int computesRes,
int onlyPosDef, int onlySym, int (*InitMethod) (iteMethod*),
int (*Method) (iteMethod*), int (*CloseMethod) (iteMethodx*))

defines a new iterative method, i.e. generates a new iteMethod data
structure which can be accessed via actItoror solveState->itor. All
defined iterative methods are collected in the array iteMethods[] of
iteMethod*. The current iterative method may be called by Iterate().

33

7.2.3 The preconditioner method

The preCondMethod data structure contains a set of routines with some data,

see Table 43.

name char* name of the preconditioner
InitPreCond int(x)() initialize

PreCond int (*) (int,int) preconditioning
ClosePreCond (x)() close

Table 43: The preCondMethod data structure

The routines of the method have the following duties.

int InitPreCond()

initializes the preconditioner.

int PreCond(int x,int y)

transforms x to y (preconditioning).

int ClosePreCond()

cleans everything up.

A new method can be defined.

int DefPreCondMethod(char *name,int (*InitPreCond) (),
int (*PreCond) (int,int),int (*ClosePreCond)())

defines a new preconditioning method with name name.

7.2.4 Command language interface

iterate is the command language interface. The actual iterative solver can
be changed with the seliterate command. The selprecond commands is
available too.

7.3 Interface for error estimators

Error estimators are called by the Estimate driver routine. This routine

e initializes the error estimator (calling InitMethod),

54

e calls the error estimator (calling Method), and

e closes the error estimator (calling CloseMethod).

Additional timing information is assembled and a progress report is printed
on request. The data structure controlling this process is estiMethod see

Table 44.

name charx* name of the error estimator
verboseP int level of verbosity

ed_rq int storage for AQLUL

ed diag int storage for dg

ed_rhs int storage for bg

ed res int storage for rg

globError real estimated global error

mBar real weighted residual m
sFactor real need s(2.0) times new points
sigma real safety factor 0(0.95)
InitMethod int(*) (iteMethod*) initialization method
Method int (x) (iteMethod*) estimation method
CloseMethod int(*) (iteMethod*) closing method

Table 44: The estiMethod data structure

estimate is the command language interface. The actual estimator can be
changed with the selestimate command.
7.4 Interface for refinement strategies
Refinement strategies are called by the Refine driver routine. This routine
e initializes the refinement strategy (calling InitMethod),
e calls the refinement strategy (calling Method), and

e closes the refinement strategy (calling CloseMethod).

Additional timing information is assembled and a progress report is printed
on request. The data structure controlling this process is refMethod, see

Table 45.

35

name char* name of the refinement method
verboseP int level of verbosity

newFactor real nnew/nold

InitMethod int(*) (iteMethod*) initialization method

Method int (x) (iteMethod*) refinement method
CloseMethod int(*) (iteMethod*) closing method

Table 45: The refMethod data structure

The available refinement strategies are based on [6] (mean value) and extrap-
olation.

refine is the command language interface. The actual refinement strategy
can be changed with the selrefine command.

7.5 Interface for a completely adaptive solution

The full-adaptive solution is computed the solveState->Solve routine.
Figure 9 shows a flow diagram of steps taken by the Solve procedure.

7.5.1 Break conditions

The solve process calls the routine solveState->BreakCond to determine a
stopping condition. The standard BreakCond routine checks the number of
solve steps, number of unknowns, the estimated global errors, the failure of
the substeps (Direct, Estimate, Refine and Iterate). The reason for a
break is held in the breakReason of the solveState variable. A message
explaining the reason can be printed with the solveState->PrintBreakCond
routine.

7.5.2 Command language interface

The commands solve and setbreak constitute the command language in-
terface.

56

breakReason
maxSteps
curStep
maxDepth
maxPoints
dirFail
estiFail
refFail
iteFail
reqGlobError
BreakCond
PrintBreakCond
lastOp

int

int

int

int

int

int

int

int

int

real

int (x) (action)
void(*) ()
action

break reason, see Table 47
maximal number of steps
current step

maximal depth of triangulation
maximal number of points
direct solver failed
estimator failed
refinement failed

iterative solve failed
requested accuracy

check break condition
print break reason

see Table 48

Table 46: The break condition fields of the solve data structure

4 global requested error reached
3 max. nodes reached

2 max. depth reached

-1 direct solver failed

-2 1terative solver failed

-3 error estimator failed

-4 refinement failed

Table 47: Values for the breakReason field

opStart no last action
opDir last action Direct
opEsti last action Estimate
opRef last action Refine
oplte last action Iterate

Table 48: The Action data type

57

Etol

Eest
new
est

Ereq

Number of nodes
Requested global error (user supplied)
Estimated global error

Predicted global error on the new mesh
Required accuracy for the PCG iteration

Factor for the number of new points (parameter)
[teration safety factor (parameter)

Direct

Nold = IV

Estimate

N < nglq * 8

Iterate

.__ -New
5req T gest * P

Figure 9: Main iteration loop of an adaptive solution

38

& Numerical methods

8.1 Direct solvers

Available direct solvers are rational Cholesky decomposition[15] in full and
envelope mode. They are defined by DefFullChol () respectively DefEnvChol ()
calls. The envelope solver resorts the nodes internally with the Reverse

Cuthill/McKee algorithm][7].

8.2 Iterative solvers

Available iterative solvers are the preconditioned conjugate gradient method
([1], page 49), the preconditioned bicgstab method ([13]), and symmetric
Gauf3-Seidel. They are defined by DefCGMethod(), DefBiCGStabMethod (),
or DefGaussMethod () calls.

8.3 Estimator methods

The most simple method — doing nothing — is available. It is included in the
KASKADE standard error estimator defined by DefE11ErrMethod(). The
actual KASKADE error estimator [6] uses the hierarchical basis for quadratic
finite elements. The higher order system, whose solution should be compared
with the linear solution (computed by the direct or iterative solver) is

ALL ALQ U}j _ bL
AQL AQQ Ué bQ

The difference to the linear solution %y, is given by

e\ _(Us\ (U
do |~ \ U 0 0
and satisfies

(ALL ALQ)(dL):(bL—ALLf{L):(m)
Agr Agq dq bg — AgrUr]~ rQ

Solving this system is too expensive, it is substituted by the reduced system
Drr 0 CZL _{rL
0 DQQ dQ o TQ

59

with Dry the nearly diagonal matrix

(v 5)

which is used in context of the preconditioner, and Dgg the diagonal part
of Agg. Ao is the inverse on the coarse grid. To measure the size of global
error, the energy norm is chosen and the error is approximated by

|Al/2d|2 = (dv Ad) ~ (sz BJ) = (DgierrL) + (DC_QéQTerQ) .

The term (Dj}rr,r1) is computed by the iterative solver. (In case of the
availability of a direct solution 0.0 is assumed.) The other term (DéérQ, rg)
is computed newly. The sum is stored to globEps.

As an additional result a weighted residual m = (DéérQ, rg)/n is computed
to be used by the refinement process. The local residuals rg are stored at
ed_res.

8.4 Refinement methods

The most simple refinement method — refining all — is available. It is included
in the KASKADE standard error estimator definition DefE11ErrMethod ().

Additional to methods to use the error indicators computed by the error
estimator for a refinement are defined. They meanvalue strategy is described
in [6], for the extrapolation strategy see [2].

8.5 Preconditioners

Table 49 shows the preconditioners and how they are defined.

none DefNonePreCond() no preconditioner

diag DefDiagPreCond() the direct solution or 1/A
hb DefHBPreCond () hierarchical bases

bpx DefBPXPreCond() BPX preconditioner (see [4])

Table 49: Available preconditioners

60

9 Graphic module

The graphic functions of KASKADE are implemented using the MiniGraphik
routines. The higher level functions can be used to draw triangulations, solu-
tions (level lines, temperature), sparse matrix structures, and simple distri-
butions of numbers. Better graphics should be a part of an external graphic
system.

9.1 Handling graphical ports

A graphical port in the KASKADE/MiniGraphik context can be a window
or a file to which postscript output is written. Ports are identified by a driver
identification and an additional driver specific number. All other data of a
port are collected in the graphic data structure, see Table 50.

The global variable graphStreams holds an array of pointers to all graphical
ports. The length is MAX_GRAPH. The following routines can be used to create
and delete graphical ports.

graphic *NewKaskGraph()

creates a new graphic data structure. The parameter lists (see Subsec-
tion 2.8) selectxx, colorsxx, and clippingxx are created to raise the
information of the graphic data structure to the command language
level. (xx is an index into the graphStreams array.)

void UpdateKaskGraphs()

updates the information in all graphic data structures, i.e. computes
the xMin etc. newly.

void CloseGraphic(int port)

closes port graphStreams[port] and returns the graphic data struc-
tures. All parameter lists are returned. If port<0 all ports are closed.

9.2 Drawing

The following high level graphic subroutines are available.

void DrawFrame(graphic *g)

draws a frame using graphic->xMin etc.

61

void DrawBound(graphic *g)

draws the boundary of the current triangulation.

void DrawTri(graphic *g)

draws the current triangulation.

void DrawlIndex(graphic *g)
draws the point indices (p->indexP).

void DrawSol(graphic *g)
draws level lines. If graphic->levelsAt==nil, graphic->levelslevel

lines are drawn, otherwise level lines at graphic->levelsAt[] are
used.

void DrawTemp(graphic *g)

shows the solution by coloring the triangles.

void Draw3D(graphic *g)
shows the solution 3D.

void DrawMatStruct(graphic *g, int stiff, int rhs)

shows the structure of the sparse matrix stiff. Zero elements in the
structure are shown in red.

void DrawDistr(graphic *distrGraph, int *distr, int lng)

draws a distribution.

9.3 Command language interface

The commands window, graphic, show, and todraw are defined by calling
the following routine.

void SetGraphAddresses()

defines the graphic commands.

62

id int MiniGraphic driver identification

no int MiniGraphic port identification
noClear int used to suppress first zibcl call
boundary int draw boundary

level int draw level lines

triangulation int draw triangulation

index int draw point indices

temperature int draw (color) temperatures

ddd int draw solution 3D

noOfLevels int draw noOfLevels levels

percentage int start level line at zero

toDraw int selected variable

automatic int update at certain events

sparseMat int show sparse matrix

distr int show distribution

backCol int background color

triCoarseCol int used to draw coarse triangulation
triFineCol int used to draw refined triangulation
dirichletCol int used to draw Dirichlet boundary
cauchyCol int used to draw Cauchy boundary
neumannCol int used to draw Neumann boundary
levelCol int used to draw level lines

xMin real minimal z—coordinate of triangulation
xMax real maximal x—coordinate of triangulation
yMin real minimal y—coordinate of triangulation
yMax real maximal y—coordinate of triangulation
xSelMin real selected minimal x—coordinate
xSelMax real selected maximal x—coordinate
ySelMin real selected minimal y—coordinate
ySelMax real selected maximal y—coordinate

rotX real viewing angle

rotY real for

rotZ real 3D graphic

levelsAt real* array of values for level lines

Table 50: The graphic data structure

63

10 K ASKADE applications

10.1 ELLKASK 2D

The ELLKASK application solves a linear scalar, second—order, elliptic equa-
tion in two dimensions:

_(pllux)x - (plQul’)y - (p21uy)x - (p??uy)y —I' qu = g iﬂ Q
u = vyonlyCaN
P11tz + Pratyny + Partzng + pruyng, +nu = Eon I'y .
with T U Ty = 09 and ¢(x,y) > 0 and 0 < n(x,y), P = pi(x,y) positive
definite. Here, Q) denotes a polygonal domain in IR? and Ty is composed of
edges of 0. Furthermore n = (ny,nz2) denotes the normal vector associated

Table 51 shows the numerical methods included.

cholfull direct solver full matrix Cholesky decomposition
cholenv direct solver sparse/skyline Cholesky decomposition
pcg iterative solver preconditioned conjugated gradients
ssor iterative solver symmetric Gaufi—Seidel

pbicgstab iterative solver preconditioned bicgstab

none preconditioner no preconditioner

diag preconditioner diagonal

hb preconditioner hierarchical bases

bpx preconditioner bpx

none estimator no estimator

dly estimator see [6]

all refinement refine all

meanval refinement refine with mean value threshold
extrapol refinement refine with extrapolated threshold

Table 51: Numerical methods in ELLKASK

To give the user a nice start some examples and command files are included.

10.2 ELLKASK 3D
This ELLKASK version uses a modified KASKADE toolbox to handle three—

dimensional problems [5].

64

10.3 KASTIO

KASTIO solves a parabolic equation in two space dimensions [4].

10.4 KARDOS

The program KARDOS solves a system of semilinear, parabolic initial bound-
ary value problems in one space dimension [10]. It uses a modified KASKADE
toolbox to handle one-dimensional problems too.

65

