
Jens Lang

KARDOS � KAskade Reaction Di�usion

One�dimensional System

Technical Report TR 93–9 (July 1993)

Jens Lang

KARDOS — KAskade Reaction Diffusion

One–dimensional System

Abstract. A software package for the adaptive solution of time–dependent
reaction–diffusion systems and linear elliptic systems in one space dimension
is presented. The used algorithm is based on fundamental arguments in
Lang/Walter [4]. Here, only brief outlines of the algorithm are given.
This software package is based on the KASKADE toolbox [3].

Key words: Rothe method, embedded Runge–Kutta method, adaptive
Multilevel Finite Element method.

2

Contents

1 Introduction 1

2 Defining a problem 6

3 Reading a grid 7

4 Command language 8

5 For programmers only 10

5.1 Defining a time problem . 10

5.2 Defining a time integrator . 11

5.3 Time integration process . 15

5.4 Grid management . 17

6 An example 18

6.1 User functions for a population ecology model 18

6.2 Defining the new problem . 22

6.3 Providing two common coarse grids 22

6.4 Dialog with the system . 23

References 25

Chapter �

Introduction

Using the program KARDOS, systems of semilinear parabolic initial bound-
ary value problems of the form

P (x)ut − (D(x)ux)x = F (u) , x ∈ Ω ⊂ R�, t ∈ [ta, te]

u = ξ�(t, x) , x ∈ Γ� ⊂ ∂Ω

un + σ(x)u = ξ�(t, x) , x ∈ Γ� ⊂ ∂Ω

u(ta, x) = u�(x) ,

(1.1)

are solvable. Here, u = (u�, u�, ..., ur) is a vector function. The matrix
function P (x) may vanish on a subset of Ω. The discretization is done by
the Rothe method. In contrast to the widespread method of lines, time is
discretized first than space. The main advantage of this sequence is the
possibility to compute the space discretization optimal during the time in-
tegration by an adaptive multilevel finite element method. Therefore the
KASKADE toolbox is modified to handle one–dimensional problems. In
KARDOS a special embedded Runge–Kutta method of order 3(2) has been
implemented. This method keeps its accuracy even in the case of differential–
algebraic equations (P (x) = 0 somewhere).
The above differential equations can be reformulated into an abstract Cauchy
problem possibly of differential–algebraic type in an appropriate Hilbert
space H.

Put = f(u) , u ∈ H , t ∈ [ta, te]

u(0) = u� .
(1.2)

Now, a three–stage embedded Rosenbrock method for this pure time problem
looks as follows:

(P − γiiτfu(u�))ki = τf(u� +
i��∑
j��

αijkj) + τfu(u�)
i��∑
j��

γijkj , i = 1, 2, 3

u� = u� +
�∑

j��

bjkj

û� = u� +
�∑

j��

b̂jkj

(1.3)

1

Yet this form is not suited to be implemented straight–forward, because
along with function evaluations there are still matrix∗vector products on the
right–hand side. The transformation

li :=
i∑

j��

γijkj , i = 1, 2, 3

leads to the new system

(
1

τγii
P − fu(u�)

)
li = f(u� +

i��∑
j��

aijlj) + P
i��∑
j��

cij
τ
lj , i = 1, 2, 3

u� = u� +
�∑

j��

mjlj

û� = u� +
�∑

j��

m̂jlj .

(1.4)

In KARDOS a special set of parameters, which guarantees L–stability of the
chosen method, is used. Setting γ�� = γ�� = γ�� := γ only two function
evaluations and one matrix inversion are needed on the right–hand side. The
corresponding method was given by Roche [6], who gives further statements
about convergence and consistency.

coefficients
γ = 0.435866521508459

m� = 2.236727045296589 m̂� = 2.059356167645941
m� = 2.250067730969645 m̂� = 0.169401431934653
m� = -0.209251404439032 m̂� = 0.0

a�� = 1.605996252195329 c�� = 0.8874044410657823
a�� = 1.605996252195329 c�� = 23.98747971635035
a�� = 0.0 c�� = 5.263722371562130

Due to the difference of the approximated values of order 3 and 2

timeError := ‖u� − û�‖ (1.5)

we have a good estimator of the main error term describing the local error
of the second order method. The proposal for the new step size is

τnew := safeFactor ∗
(

timeTol

timeError

)1
3

∗ τ . (1.6)

2

The norm which KARDOS uses is a weighted L�–norm, given by

‖u� − û�‖�,w :=

(
1

r

r∑
i��

‖u�,i − û�,i‖��
w�

i

) 1
2

(1.7)

where

wi :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uAbsi : ‖u�,i‖� < uAbsi

uRelMaxi : uAbsi ≤ ‖u�,i‖� < uRelMaxi

‖u�,i‖� : uRelMaxi ≤ ‖u�,i‖�
with

uRelMaxi := RTOLi ∗maxt‖u�,i‖� ,
uAbsi := ATOLi ∗ |Ω|�/� .

Scaling can be turned on or off. If the scaled error norm is used, the tolerances
RTOLi and ATOLi have to be selected very carefully to reflect accurately
the scale of the problem. The tolerance ATOLi should indicate the absolute
value at which the i–th component is essentially insignificant. On the other
hand, the value RTOLi affects the relative accuracy of the i–th component
with respect to its maximal value in time. This control turns out to be quite
efficient and robust for a wide class of problems. However, it is clear that it
is not a universal method.

To implement one time step, one elliptic problem has to be solved at each
stage of the Rosenbrock method. This is done by means of an adaptive
multilevel finite element method elaborated in recent years, see Deuflhard
et al. [2]. This method is an excellent tool to adapt the space discretization
for the current solution in such a way, that a prescribed tolerance spaceTol
is achieved. KARDOS uses standard linear elements connected with a local
error estimator of Babuška–Rheinboldt [1] type. We get at each stage,
discretizations of the form

Bτ (l
n
i , vn) = ri(vn), l

n
i ∈ Sn, ∀vn ∈ S�

n, i = 1, 2, 3, (1.8)

where Sn denotes the space of all continuous, piecewise linear functions on a
partition �n of Ω, satisfying the Dirichlet boundary conditions. In S�

n they
vanish on the Dirichlet boundary. The equations only differ in the respective
right–hand side and in the special boundary conditions taken into consider-
ation.

3

To control the space discretization, we restrict ourselves to the first stage of
the Rosenbrock method which is exactly the semi–implicit Euler method ap-
plied to the system (1.2). According to a local principle, on each current grid
an error estimation is computed. Therefore we consider the corresponding
elliptic differential equation on each element, imposing the current solution
of the Euler method uE as boundary conditions, and solve it approximately
by a quadratic finite element method. The difference εk between the linear
and quadratic approximation over the k–th element satisfies

Bτ (εk, φ) = r�(φ)− Bτ(uE , φ), εk, φ ∈ Q�

k, (1.9)

where Q�

k only consists of the quadratic bubble function. Finally, we end up
with an error estimator for the k–th element

δk := ‖εk‖�,w .

The error estimator computed that way makes sense whenever the quadratic
approximation is better than the linear one. In most cases this assumption
is fulfilled.

Equipped with such an error estimator, the solution of the semi–implicit
Euler method, and hence the solution u�, can be improved using an adap-
tive refinement process to equilibriate the global discretization error over the
whole grid. Usually, an element should be refined if its local error estimator
exceeds a certain level cut. In KARDOS two different strategies for comput-
ing cut are realized. One of them is simply to compute the average of all
local estimators

cut� =
1

n

n∑
k��

δk .

This approach uses only the current space discretization. Another possibility
consists in bringing in the multilevel structure. Beside δk the error of the
direct father–element δold,k is taken into account. Then, a predictor

δ̂k := min

{
δ�k

δold,k
, δk

}

shows the effect if the k–th element is divided. The refinement level is set to

cut� = maxkδ̂k .

This method is often named extrapolation method. The adaptive refinement
process stops, whenever the following condition holds

4

(
n∑

k��

δ�k

)
�/�

< spaceTol .

The final grid is used for solving the other elliptic problems too. Only one
grid is applied for all unknowns of the system.

Setting the parameter globTol, KARDOS controls the space and time dis-
cretization due to the special tolerances

spaceTol = globTol/3.0 , timeTol = globTol/2.0 .

This specific splitting results from the chosen parameters of the method. On
the other hand, the parameters spaceTol and timeTol allow special tuning, if
desired. For more details see Lang/Walter [4,5].

In the case of inconsistent starting values for differential–algebraic systems
it is possible to use an implicit Euler method in the first time step coupled
with a damped Newton method.

As a program, which handles a very general class of problems, KARDOS
cannot succeed for all problems. Experiments have shown, that the compu-
tations have often been improved setting the parameters very carefully. In
extreme cases the iterative solver may fail.

5

Chapter �

De�ning a problem

At first the user has to check that in the main file kardos.c the static param-
eter time is set to one. Next the desired number of equations noEqn used in
the functions

InitProblem("kardos",100,noEqn,250,FULL)

InitTimeProblem("kardos",100,noEqn)

to prepare the memory has to be inserted. At the moment the maximal
number is 10. It can be changed easily in nodes.h setting the fixed parameter
MAX NODE GROUPS.
The actual problem is defined by the functions

Parabolic : P (x)
Laplace : diffusion matrix D(x)
Convection : not carried out! (IGNORE)
Helmholtz : put in the right–hand side (IGNORE)
Source : force term F (u)
Jacobian : jacobian of the force term Fu(u)
InitialFunc : initial values u�(x)
Cauchy : boundary values ξ�(t, x), σ(x)
Dirichlet : boundary values ξ�(t, x).

The procedure SetTimeProblem announces the problem defined that way to
the KARDOS toolbox. According to the fact, that one example is better
than thousand explanations, the reader is referred to study intensively the
file stdtimeprob.c.
Hint: Setting time=0 KARDOS can also be used to solve systems of linear
elliptic partial differential equations in one space dimension comparable to
ELLKASK [3].

6

Chapter �

Reading a grid

KARDOS requires two common starting grids, which first have to be read
with the help of the command readtri. During the computation one grid con-
cerns the starting values, on the other grid the current solution is computed
adaptively.
Beside a geometrical description of the coarse space discretization, the sort
of boundary conditions has to be declared. For that, the parameters B, I, D
and C, which stand for Boundary, Interior, Dirichlet and Cauchy, are avail-
able. Furthermore, it’s possible to characterize different subdomains through
a class–parameter. A general input reads as follows:

grid name
Dimension:(number of points,number of edges)
point index:x–coordinate,B or I to characterize
the location of the point, I or D or C to characterize
the boundary conditions for all components, class–parameter
to characterize a special property only on the boundary
END
edge index:(left point index,right point index), class–parameter
to characterize a special property of a subdomain
END

An example concerning two components with mixed boundary conditions on
[0,1] and two different materials in [0,0.5) and (0.5,1] looks like the following
input stream:

example1
Dimension:(4,3)
0:0.0,B,DC,0
1:0.25,I,II
2:0.5,I,II
3:1.0,B,CD,1
END
0:(0,1),0
1:(1,2),0
2:(2,3),1
END

Inner boundary points are available.

7

Chapter �

Command language

All special commands which KARDOS needs for the time integration are ex-
plained in the following. A list of all commands can be found in kardos.def.
All other commands not explained here are used as in KASKADE.
KARDOS reads at the start a file kardos.startup which contains a sequence
of commands and executes these commands. If no quit is included, more
commands are requested from standard input.

timeproblem

A time problem is selected.

inftimeproblem

informs about the current time problem.

seliterate

For the time integration the parameters ssortime and pbicgstabtime are avail-
able.

selrefine

For different refinements the parameters meanval or extrapol are available.

seltimeinteg

A time integrator is selected. The parameters rodas and euler are available.
The Euler method can be used only for the starting step.

timestepping

This command corresponds to the solve–command of KASKADE. The time
integration is carried out. The following parameters can be used:

8

verboseP 0,1 - Important data are printed. At the moment,
always true.

scaling 0,1 - step size control: 0 absolute,
1 for relative. If scaling is set to be 1, so
all corresponding parameters atoli, rtoli,
i=1,2,...,number of unknowns have to be set too.

maxsteps Int - number of maximal time steps
tstart Real - starting time
tend Real - final time
timestep Real - initial time step
globtol Real - accuracy demanded for the integrator (internal

spacetol and timetol are set automatically)
spacetol Real - desired space accuracy
timetol Real - desired time accuracy (if spacetol

and timetol are selected, then internal globtol
is set)

itertol Real - desired relative accuracy of the iterative
solver for the linear systems,
standard is 0.0001

itermaxsteps Int - maximal number of iterations, standard is 1000
showsol Int - graphic is plotted every Int steps, standard is 1
atoli Real -
rtoli Real - i=1,...,number of unknowns, necessary input for

every unknown to control the time step size
relatively (scaling 1). The tolerance atol should
indicate the absolute value at which the
corresponding component is essentially
insignificant. The tolerance rtol affects
the relative accuracy with respect to the
maximal value in time.

9

Chapter �

For programmers only

This chapter gives some information to get a feeling for the internal structure
of the program. Of course, it cannot mention all details. Furthermore,
for a better understanding it is necessary to read all header– and c–files of
KARDOS very carefully.

��� De�ning a time problem

To include all data of a initial boundary value problem two new data struc-
tures are added.

struct timeProblem

char *name;

int (*Parabolic)(...);

int (*Laplace)(...);

int (*Convection)(...);

int (*Helmholtz)(...);

int (*Source)(...);

int (*Jacobian)(...);

real (*InitialFunc)(...);

int (*Cauchy)(...);

int (*Dirichlet)(...);

int (*Sol)(...);

struct timeProblemType

char *name;

int maxNoOfTimeProblems;

int noOfEquations;

The access to these structures is realized by the pointers

timeProblem *actTimeProblem, *timeProblems;

timeProblemType *theTimeProblem;

Furthermore, there are some functions to announce certain problems within
the program.

int SetTimeProblem(char *name, char **varNames,

int *Parabolic,

10

int *Laplace,

int *Convection,

int *Helmholtz,

int *Source,

int *Jacobian,

real *InitialFunc,

int *Cauchy,

int *Dirichlet,

int *Sol)

A time problem is announced.

int SetStdTimeProblems()

Some standard time problems are announced.

void SetTimeProblemAddresses()

Special addresses are set to select time problems within the command lan-
guage.

int InitTimeProblem(char *name,

int noOfTimeProblems,

int noOfEquations)

The current timeProblemType–structure is built up.

��� De�ning a time integrator

To define a time integrator the structure timeIntegMethod is used. It con-
sists of the following elements:

char *name

name of the time integrator

int verboseP

control of the information output, standard: true

int scaling

control of the norm for the time error, 0: absolute, 1: relative

int showSol

control of the picture plot, standard: 1

11

int nonNegativity

control of the non–negativity of the solution, unused

int noOfTimeSteps

number of the current time steps

int maxSteps

maximal number of time steps

int noOfStepReductions

number of the time step reductions within an integration step

int maxStepReductions

maximal allowed time step reductions within an integration step,
standard: 10

int stepTypePar

differentiation from the starting step
START STEP: starting step, LATER STEP: later step

int backDepth

grid depth, on which every solution process is started again, standard: 0

real time

local starting time

real newTime

local final time

real tEnd

global final time

real timeStep

length of the time step

real newTimeStep

new proposed time step

12

real tRest

remained global time

real gammaStab

stability parameter of the method

real timeTol

allowed tolerance of the local time error

real spaceTol

allowed tolerance of the local space error

real globTol

allowed tolerance of the global error

real timeError

current local time error

real globError

current global error

real trueError

true error if solution known, unused

real normSol

norm of the solution

real timeStepFactor

factor by which the old time step is divided

real rho

timeTol/globTol, standard: 0.5

real maxTimeStep

maximal time step, standard: 10.0

real timeStepSafe

safety factor for the control of the time step, standard: 0.9

13

real spaceTolFac

spaceTol/globTol, standard: 1.0/3.0

TRIANGULATION *compTriang

current computation grid

TRIANGULATION *resultTriang

grid for the starting values

int *InitTimeInteg

initializes the time integration process

int *TimeInteg

realizes the time integration process

int *CloseTimeInteg

closes the time integration process

int *AssRhs1

computes the right–hand side of the first stage

int *AssRhs2

computes the right–hand side of the second stage

int *AssRhs3

computes the right–hand side of the third stage

problem *firstStage

elliptic problem of the first stage

problem *secondStage

elliptic problem of the second stage

problem *thirdStage

elliptic problem of the third stage

The access to the different time integrators is done by the pointers

timeIntegMethod *actTimeIntegtor, *timeIntegMethods;

14

To build up a time integrator the following functions are available:

int DefTimeIntegMethod(char *name,

int *InitTimeInteg,

int *TimeInteg,

int *CloseTimeInteg,

char *nameFirstStage,

char *nameSecondStage,

char *nameThirdStage,

int *AssRhs1,

int *AssRhs2,

int *AssRhs3,

real spaceTolFactor,

real gammaStability)

announces a time integrator. Beside a name, functions for the realiza-
tion of the method (InitTimeInteg, TimeInteg, CloseTimeInteg), the
corresponding elliptic problems ("nameFirstStage", "nameSecondStage",

"nameThirdStage"), the functions for the computation of the right–hand
sides (AssRhs1, AssRhs2, AssRhs3), the parameter spaceTolFac and the
stability parameter gammaStab have to be inserted,
such as DefTimeIntegMethod("rodas",InitIntegStep,RodasStep,Close-
IntegStep,"rodas1", "rodas2","rodas3",AssRHSRodas1,AssRHS-

Rodas2,AssRHSRodas3,THIRD,RODAS GAMMA).

int SetStageProblems()

The elliptic problems occurring in each stage of the method are announced
within SetStageProblems by calling the function SetProblem.

��� Time integration process

Picture 1 shows the whole process of the time integration method. The pro-
gram comes to an end when the final time or the maximal step number are
reached or when the maximal number of step size reductions within one in-
tegration step is exceeded.

15

CloseTimeInteg:

do grid management
plot informations

�
�

�
�noOfStepReductions<maxStepReductions

�
�
�
�END

TimeInteg:

do
solve the elliptic stage problems

control the time step size
while

step size reduction and
noOfStepReductions<maxStepReductions

InitTimeInteg:

provide the grids
set the starting values

�
�

�
�(t<tEnd) ∧(noOfTimeSteps≤maxSteps)

timestepping

�

�

�

�

�

�

�

Y

Y

�

Picture 1: Time integration process

16

��� Grid management

The program KASKADE supports work with several grids which are con-
nected to a list. A time integration requires to exchange values on differently
refined grids. This leads to costly seek algorithms. To be more effective here,
the structure EDG is enlarged by the new element

EDG *twin;

If the considered edge exists in the other triangulation, then this element
points at the corresponding element, otherwise it is nil. In the structure
TRIANGULATION the new element int twinRelation stands for the ex-
istence of such a relation between two triangulations.
To work with two grids the following functions can be used:

int SetTwinRelOnCoarseGrids(TRIANGULATION *t,TRIANGULATION *t)

initializes the twin–relation of two coarse grids.

EDG *FindBrotherEdge(real x,EDG *edFrom)

finds the edge of the other grid in which a given point lies.

real InterpolateInEdge(real x,EDG *edIn,int var,int index)

gives back an interpolated value.

17

Chapter �

An example

In this chapter we show how to add a new problem to the list of predefined
problems:

• define a set of functions to characterize the initial boundary value prob-
lem,

• add the problem to the list of predefined problems (call SetProblem,
using InitUserTime in user.c of the kardos–directory,

• add two common coarse grids in the grids–directory,

• use kardos.startup for an automatic command language dialog with
the system.

��� User functions for a population ecology model

Let us solve the following equations

ut − 0.0125 uxx =

(
35 + 16u− u�

9
− v

)
· u

vt − vxx =
(
u− 5 + 2v

5

)
· v

in the domain Ω = (0, 2.5) for t > 0, with the boundary conditions

ux = vx = 0 for t > 0 , x = 0 and x = 2.5

and the initial condition

u� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5 for 0 ≤ x < 1.0
4x+ 1 for 1.0 ≤ x < 1.25
−4x+ 11 for 1.25 ≤ x < 1.5
5 for 1.5 ≤ x < 2.5

v� =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

10 for 0 ≤ x < 1.0
4x+ 6 for 1.0 ≤ x < 1.25
−4x+ 16 for 1.25 ≤ x < 1.5
10 for 1.5 ≤ x < 2.5.

18

This system of nonlinear equations models a certain planktonit predator–
prey situations in which crowding is a factor. The KARDOS user defines in
user.c the following functions:

static int EcoParabolic(real x, int classA, real t, real *fVals,

int equation, int variable)

{

if (equation!=variable) return F_IGNORE;

switch (variable)

{

case 0: fVals[0] = 1.0;

break;

case 1: fVals[0] = 1.0;

break;

}

return F_CONSTANT;

}

static int EcoLaplace(real x, int classA, real t, real *fVals,

int equation, int variable)

{

if (equation!=variable) return F_IGNORE;

switch (variable)

{

case 0: fVals[0] = 0.0125;

break;

case 1: fVals[0] = 1.0;

break;

}

return F_CONSTANT;

}

static int EcoConvection(real x, int classA, real t, real *fVal,

int equation, int variable)

{

return F_IGNORE;

}

static int EcoHelmholtz(real x, int classA, real t, real *fVal,

int equation, int variable)

{

return F_IGNORE;

}

static int EcoSource(real x, int classA, real t, EDG* ed,

19

real *fVal, int equation,

real (*Func)(real,EDG*,int,timeIntegMethod*))

{

real val0, val1;

switch (equation)

{

case 0: val0 = Func(x,ed,0,actTimeIntegtor);

val1 = Func(x,ed,1,actTimeIntegtor);

fVal[0] = ((35.0+16.0*val0-val0*val0)/9.0-val1)*val0;

break;

case 1: val0 = Func(x,ed,0,actTimeIntegtor);

val1 = Func(x,ed,1,actTimeIntegtor);

fVal[0] = (val0-1.0-0.4*val1)*val1;

break;

}

return F_VARIABLE;

}

static int EcoJacobian(real x, int classA, real t, EDG* ed, real *fVal,

int equation, int variable,

real (*Func)(real,EDG*,int,timeIntegMethod*))

{

real val0, val1;

switch (equation)

{

case 0: if (variable==0)

{

val0 = Func(x,ed,0,actTimeIntegtor);

val1 = Func(x,ed,1,actTimeIntegtor);

fVal[0] = (35.0+32.0*val0-3.0*val0*val0)/9.0-val1;

}

else if (variable==1)

{

val1 = Func(x,ed,1,actTimeIntegtor);

fVal[0] = -val1;

}

else ZIBStdOut("error in EcoJacobian\n");

break;

case 1: if (variable==0)

{

val1 = Func(x,ed,1,actTimeIntegtor);

fVal[0] = val1;

}

20

else if (variable==1)

{

val0 = Func(x,ed,0,actTimeIntegtor);

val1 = Func(x,ed,1,actTimeIntegtor);

fVal[0] = val0-1.0-0.8*val1;

}

else ZIBStdOut("error in EcoJacobian\n");

break;

}

return F_VARIABLE;

}

static real EcoInitialFunc(real x, int classA, int variable)

{

real val = 0.0;

switch (variable)

{

case 0: if ((0.0<=x)&&(x<1.0)) val = 5.0;

else if ((1.0<=x)&&(x<1.25)) val = 4.0*x+1.0;

else if ((1.25<=x)&&(x<1.5)) val = -4.0*x+11.0;

else if ((1.5<=x)&&(x<=2.5)) val = 5.0;

else ZIBStdOut("error in EcoInitialFunc\n");

break;

case 1: if ((0.0<=x)&&(x<1.0)) val = 10.0;

else if ((1.0<=x)&&(x<1.25)) val = 4.0*x+6.0;

else if ((1.25<=x)&&(x<1.5)) val = -4.0*x+16.0;

else if ((1.5<=x)&&(x<=2.5)) val = 10.0;

else ZIBStdOut("error in EcoInitialFunc\n");

break;

}

return val;

}

static int EcoDirichlet(real x , int classA, real t, real *fVal, int variable)

{

return F_IGNORE ;

}

static int EcoCauchy(real x, int classA, real t, real *fVals, int variable)

{

switch (variable)

{

case 0: if ((x==0.0)||(x==2.5)) {

fVals[0] = 0.0; /* Sigma */

21

fVals[1] = 0.0; /* Xi */

}

else ZIBStdOut("error in EcoCauchy\n");

break;

case 1: if ((x==0.0)||(x==2.5)) {

fVals[0] = 0.0; /* Sigma */

fVals[1] = 0.0; /* Xi */

}

else ZIBStdOut("error in EcoCauchy\n");

break;

}

return F_CONSTANT;

}

��� De�ning the new problem

Next we define the new problem with the help of the following procedure:

int InitUserTime()

{

if (!SetTimeProblem("example1",varName,

EcoParabolic,

EcoLaplace,

EcoConvection,

EcoHelmholtz,

EcoSource,

EcoJacobian,

EcoInitialFunc,

EcoCauchy,

EcoDirichlet,

(int(*)(real,int,real,real*,int))nil));

return true;

}

A call of InitTimeUser is carried out automatically from the main program.

��� Providing two common coarse grids

Now we insert two coarse grids in the grids–directory, using the files ecology1.g
and ecology2.g.

ecology1 ecology2

Dimension:(11,10) Dimension:(11,10)

22

0:0.0,B,CC 0:0.0,B,CC

1:0.25,I,II 1:0.25,I,II

2:0.5,I,II 2:0.5,I,II

3:0.75,I,II 3:0.75,I,II

4:1.0,I,II 4:1.0,I,II

5:1.25,I,II 5:1.25,I,II

6:1.5,I,II 6:1.5,I,II

7:1.75,I,II 7:1.75,I,II

8:2.0,I,II 8:2.0,I,II

9:2.25,I,II 9:2.25,I,II

10:2.5,B,CC 10:2.5,B,CC

END END

0:(0,1) 0:(0,1)

1:(1,2) 1:(1,2)

2:(2,3) 2:(2,3)

3:(3,4) 3:(3,4)

4:(4,5) 4:(4,5)

5:(5,6) 5:(5,6)

6:(6,7) 6:(6,7)

7:(7,8) 7:(7,8)

8:(8,9) 8:(8,9)

9:(9,10) 9:(9,10)

END END

��� Dialog with the system

KARDOS reads at the start a file kardos.startup which contains a sequence
of commands and executes these commands. That way we get an automatic
dialog with the system. Of course, a step–by–step dialog is available too. We
deposit in kardos.startup the following commands:

read ../grids/ecology1.g

read ../grids/ecology2.g

timeproblem example1

seliterate pbicgstabtime

selmatmul sparse

selestimate babuska

selrefine meanval

seltimeinteg rodas

window new automatic name solution1

graphic solution triangulation

seldraw 0

window new automatic name solution2

graphic solution triangulation

23

seldraw 1

timestepping timestep 0.0001 maxsteps 200 globTol 0.02 tEnd 10.0

Now we can start the program.

24

References

[1] I. Babuška, W.C. Rheinboldt: Error estimates for adaptive finite ele-
ment computions. SIAM J. Numer. Anal., 15, p. 736–754 (1978)

[2] P. Deuflhard, P. Leinen, H. Yserentant: Concepts of an Adaptive Hier-
archical Finite Element Code. IMPACT, 1, p. 3–35 (1989)

[3] B. Erdmann, J. Lang, R. Roitzsch: KASKADE – Manual. To appear as
Technical Report TR 93–5, Konrad–Zuse–Zentrum (ZIB) (1993)

[4] J. Lang, A. Walter: A Finite Element Method Adaptive in Space and
Time for Nonlinear Reaction–Diffusion Systems. IMPACT of Comput-
ing in Science and Engineering, 4, p. 269–314 (1992)

[5] J. Lang, A. Walter: An Adaptive Rothe Method for Nonlinear Reaction–
Diffusion Systems. Applied Numerical Mathematics, 13, p. 135–146
(1993)

[6] M. Roche: Rosenbrock Methods for Differential Algebraic Equations.
Numer. Math., 52, p. 45–63 (1988)

Acknowledgements. I acknowledge R. Roitzsch for inspiring discussions
on the field of programming and for making available always the current
version of KASKADE. I also thank U. Nowak for supplying me with reference
solutions obtained by his finite difference method.

25

