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Abstract. Small-scale computations usually cannot fully utilize the com-
pute capabilities of modern GPGPUs. With the Fermi GPU architecture
Nvidia introduced the concurrent kernel execution feature allowing up to
16 GPU kernels to execute simultaneously on a shared GPU device for a
better utilization of the respective resources. Insufficient scheduling ca-
pabilities in this respect, however, can significantly reduce the theoretical
concurrency level. With the Kepler GPU architecture Nvidia addresses
this issue by introducing the Hyper-Q feature with 32 hardware managed
work queues for concurrent kernel execution.

We investigate the Hyper-(Q feature within heterogeneous workloads with
multiple concurrent host threads or processes offloading computations to
the GPU each. By means of a synthetic benchmark kernel and a hybrid
parallel CPU-GPU real-world application, we evaluate the performance
obtained with Hyper-Q on GPU and compare it against a kernel reorder-
ing mechanism introduced by the authors for the Fermi architecture.

1 Introduction

General purpose graphics processing units (GPGPU or GPU for short) represent
one major technology to implement hybrid computer systems taking advantage
of the highly parallel data processing capabilities of modern many-core proces-
sor chips. Both the hardware architectures and the programming models — e.g.
CUDA, OpenCL, and OpenACC - evolved to match the user’s needs, expose ar-
chitectural features, and provide flexibility for application design and migration.

Throughout various kinds of applications from the different fields of science
and economy, the execution of highly parallel code sections on GPU can result
in a significant increase in the overall program performance compared to exe-
cutions on current multi-core CPUs. For SIMD-like regular computations with
sufficiently large amount of available parallelism speedups up to one order of
magnitude are reported [1,2].

In contrast, small-scale computations do not rank among the promising can-
didates to exploit the capabilities of modern GPUs at first sight. In the context
of heterogeneous computing, however, sophisticated hybrid codes with multi-
threading or multi-processing on the CPU side and small-scale kernel ofHloads



within a CPU thread (process) may produce concurrent GPU workloads which
as a whole can charge the GPU to capacity. The latter point is addressed by
the ability of current GPUs to execute multiple independent computations in a
concurrent way.

This paper continues our investigations to evaluate and improve concurrent
kernel execution (CKE) within multi-level parallel applications [3]. The (CKE)
feature introduced with Nvidia’s Fermi GPU architecture [4] enables up to 16
independent workloads (kernels) to use a shared GPU device simultaneously. The
performance gain for such applications, however, strongly depends on both the
possibilities to express the independency of GPU computations within the host
program — “implementation challenge” — and the ability of the GPU hardware
to actually detect kernel independency at runtime — “architectural challenge.”

Within Nvidia’s CUDA programming model, independency is expressed by
means of CUDA streams, corresponding to logically distinct in-order work queues.
Computations associated with different streams do not depend on each other and
thus can execute concurrently. On Fermi GPUs all streams are multiplexed into
a single hardware work queue, where for two successive kernels to execute con-
currently on the GPU it is necessary that they are assigned to different streams.
If this is not the case all later kernels have to wait for an individual kernel to
complete, resulting in false-serialization, and hence reduced CKE performance.
In particular multi-threaded /-process applications are affected due to uncoor-
dinated GPU offloading, possibly with multiple successive kernels on the same
stream. With their Kepler GPU architecture [5], Nvidia approaches the false-
serialization issue by providing 32 hardware queues streams are mapped to —
known as Hyper-Q in the context of CKE.

In the present paper we investigate the Hyper-Q feature on Nvidia Kepler
GPUs for both multi-threaded and multi-process applications. Our main contri-
butions in this paper are:

1. Evaluation of the Hyper-Q performance using a synthetic benchmark kernel
and a real-world hybrid CPU-GPU application.

2. Performance comparison between Hyper-Q and the kernel reordering mech-
anism we proposed earlier to compensate for a potential CKE breakdown on
Nvidia Fermi GPUs [3].

Section 2 summarizes work already done in the field of small-scale compu-
tations on accelerators and concurrent kernel offloading. Section 3 briefly in-
troduces Nvidia’s Kepler GPU architecture and summarizes some elements of
the CUDA programming model. The focus is on concurrent kernel execution
and Hyper-Q. We also recap the basic idea of our kernel reordering mecha-
nism for Fermi GPUs. In Section 4, we compare the CKE performance obtained
with Hyper-Q against the one obtained with kernel reordering using a synthetic
benchmark kernel. Section 5 applies CKE to a real-word application implement-
ing a simulation of a small molecule solvated within a nanodroplet. Concluding
remarks are given in Section 6.



2 Related Work

The strengths and limits of the concurrent kernel execution (CKE) feature have
been investigated since the introduction of Nvidia’s Fermi GPU architecture in
late 2009. The need of a CKE feature was alluded by Guevara et al. [6] for Nvidia
GT200 graphics cards. The authors provide an approach which concentrates on
merging multiple small kernels into one large kernel (kernel batches) resulting
in a concurrent execution of multiple GPU kernels on the same GPU.

Investigations on using the CKE feature for host setups with multiple threads
or processes were published by El-Ghazawi et al. [7-9], with the focus on effi-
ciently sharing a single CUDA context between these threads (processes). The
authors compare a manual context funneling against the shared CUDA context
introduced with the CUDA 4 API. For multi-threaded host setups, the authors
found that the shared CUDA context gives about 90% of the performance that
can be achieved by manual context funneling.

Wende et al. [3] proposed a GPU kernel reordering mechanism for Nvidia
Fermi GPUs to recover concurrency on GPU when used within multi-threaded
program setups. Despite of being placed on logically different CUDA streams,
on Fermi GPUs all kernels are multiplexed into a single task queue. False-
serialization of kernels within that queue can prevent the GPU scheduler from
executing independent kernels simultaneously, potentially causing performance
degradation of the program. With their kernel reordering mechanism the au-
thors were able to reduce the level of false-serialization in the task queue. They
showed their approach allows to almost entirely recover concurrency on GPU
for a synthetic GPU kernel. For a real-world molecular simulation program, the
concurrency level could be increases by a factor 2 — 3.

Chen et al. [10, 11] addressed load-balancing issues at a finer granularity level.
Their task queue schema enables dynamic load-balancing of application kernels
on single and multiple GPU platforms.

Pai et al. [12] proposed the concept of elastic kernels together with multi-
program workloads to improve resource utilization. They could overcome the
limitations of the CUDA programming model by improving the turnaround time
for a two-program workload from the Parboil 2 suite by a factor of 3.7.

Awatramani et al. [13] demonstrated the impact of kernel scheduling from
multiple applications and demonstrated an overall throughput increase by 7%
on average for the Rodinia benchmark suite.

In the context of migrating the highly parallelized NAMD legacy code, Phillips
et al. [14] emphasized the need to schedule work from multiple CUDA streams
to overlap and synchronize concurrent work on CPU and GPUs more efficiently.

3 Nvidia Kepler GPU Architecture and the CUDA
Programming Model

The Kepler architecture is Nvidia’s current unified-shader GPU architecture. It
is build around a scalable set of streaming multi-processors, called SMX [5].



Each SMX contains 192 single-precision scalar processors (SPs), 4 scheduling
and 8 instruction dispatch units. Kepler-based GPUs contain up to 15 SMX for
a total of 2880 SPs and up to 12 GB GDDR5 ECC main memory. In addition
to a per-SMX 64 kB configurable shared memory and L1 cache, Kepler doubles
the amount of L2 cache to 1.5 MB compared to Fermi. With “Hyper-Q” (see
Section 3.1) and “Dynamic Parallelism” indispensable features for more flexible
programming found their way into the GPU architecture.

Table 1 summarizes some characteristic architectural properties of the devices
used in this document.

Table 1: Characteristics of the processor platforms used in this document. Information
are from [5] and from the vendor product homepages.

Tesla K20c Xeon E5-2670
Core | SMX Count 13 8(x2 HT)
Scalar Processors per Core |[SMX | 192 -
32-Bit SIMD / SIMT Width 32 4SSE, 8 AVX
Clock Frequency 0.705 GHz 2.6 GHz
Memory Bandwidth 208 GB/s 51.2GB/s
Single-Precision Peak Perform. 3.52TFLOP/s |0.33TFLOP/s
Power Consumption, TDP 225 W 130 W

In the CUDA programming model [15] the GPU acts as a coprocessor to a
distinguished host system that executes an adapted Fortran/C/C++ program
with GPU kernel calls in it. It is on the programmer to partition the problem at
hand into sub-problems that can be mapped onto the GPU’s SPs appropriately.
The number of CUDA threads that should execute the sub-problems is defined
by the programmer using a grid-block hierarchy of threads. Thread blocks are
dynamically created at runtime by the GPU scheduler and then are assigned to
the SMXs for execution — thread blocks are not migrated between SMXs once
their execution has started. The schedulers on the SMXs partition the thread
blocks into so-called warps (groups of 32 threads each) which execute on the SPs
in SIMD (more precisely: SIMT — Single Instruction Multiple Thread) manner
using up to 64-way interleaved multi-threading. In this way, the per-SMX thread
schedulers manage a total of up to 2048 concurrent threads, distributed over up
to 16 thread blocks. During their execution, threads can access different memory
layers ranging from fast on-chip shared memory — used for intra-thread-block
communication, synchronization and data sharing — to texture memory with
special data fetching modes, constant memory, and finally the global memory
locally available on the device.

3.1 Concurrent Kernel Execution and Hyper-Q

With the Fermi GPU architecture Nvidia introduced the concurrent kernel exe-
cution (CKE) feature. CKE allows for multiple GPU kernels placed on different



CUDA streams — the means in CUDA to express independency of GPU related
operations like data transfers and kernel executions — to potentially overlap dur-
ing their execution. On Fermi GPUs all streams are ultimately multiplexed into
a single hardware work queue, where up to 16 successive kernels in it can be
scheduled to the GPU concurrently. For that to happen all 16 kernels need to
be placed on different streams, and the resource requirements of all kernels — in
terms of shared memory and register usage, etc. — must be compatible with the
device’s capabilities. States of the hardware work queue where successive kernels
A and B are placed on the same CUDA stream result in false-serialization, that
is, B and additional kernels in separate streams thereafter wait for A to complete
before they can execute.

In Fig. 1 we illustrate a setup with multiple threads running on the host’s
CPU, each of which using a separate CUDA stream multiple kernels are placed on
during the thread’s execution. In this example host threads do not synchronize
their GPU kernel invocations which for multiple kernels placed on the same
stream can result in unfortunate states of the hardware work queue.

With the Kepler GPU architecture, 31 additional hardware work queues are
introduced — Hyper-Q feature — and the streams s[0..7] in Fig. 1 are mapped to
8 different hardware queues. With more than 32 streams, some work queues are
oversubscribed so that some streams alias onto the same hardware work queue
potentially causing false-serialization.

Kernel Reordering on Fermi GPUs using a Proxy. A simple means to
approach the false-serialization problem on Fermi GPUs is to introduce a proxy
that is responsible for the actual GPU kernel invocations. Threads (processes)

#pragma omp parallel num_threads(8)

if (omp_get_thread_num()==0){
GPUkernelA<<<1,512,0,s[0]>>>(...);
S |

GPUkernelB<<<1,256,0,s[0]>>>(...);
L

GPUkernelC<<<1,256,0,s[0]>>>(...);

if (omp_get_thread_num()==1){ |
=S - - Hardware Queue
GPUkernelH<<<1,512,0,s[1]1>>>(...); [z [s[7] Q
cee _ .
GPUkernelJ<<<1,128,0,s[1]1>>>(...);
———
if (omp_get_thread_num()==7){
GPUkernelX<<<1,512,0,s[71>>>(...); s[7]
“ee _
GPUkernelY<<<1,768,0,s[7]1>>>(...); [H[s[1]
—
GPUkernelZ<<<1,768,0,s[71>>>(...); Concurrent )
3 s Execution Results in
) False-Serialization

Fig. 1: False-serialization within the hardware work queue of an Nvidia Fermi GPU
caused by concurrent GPU kernel invocations from within an OpenMP parallel region.



Multi-Process GPU Sharing without MPS

Multi-Process GPU Sharing with MPS
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Fig. 2: Context funneling with MPS for multi-
process applications sharing a single GPU. Left:
Workloads from different processes (each with its
own CUDA context) are scheduled to the GPU in a
time-sliced manner. Right: Client-server approach
with a single CUDA context hold by the server.

insert their GPU kernels into software queues that are associated with different
CUDA streams, and signal the proxy to bring the respective work to the GPU
for execution. The proxy traverses all software work queues in round-robin fash-
ion and in each cycle schedules one kernel per queue — placed on the queue’s
CUDA stream — until all queues are empty and the program finishes. The inter-
leaving of work from different work queues (implicit “kernel reordering”) helps
reduce the false-serialization within the single hardware work queue after the
stream multiplexing. On Kepler GPUs the Hyper-Q feature should replace this
technique.

A detailed description of the proxy approach as well as performance obtained
on an Nvidia Tesla M2090 GPU can be found in [3].

Sharing GPUs across Multiple Processes using MPS. The Nvidia Multi-
Process Service (MPS) is a client-server based binary compatible implementation
of the CUDA API aiming at enabling multi-process applications to utilize shared
GPU devices in a concurrent manner using Hyper-Q [16]. Commonly, each pro-
cess has its own CUDA context for interactions with the GPU. As offloads to
the GPU from within different CUDA contexts are scheduled to the GPU in
a time-sliced manner, work from different processes cannot overlap resulting in
the GPU is possibly underutilized. With MPS a server process (MPS server)
holds and manages a single CUDA context. When a multi-process application
is started all processes connect to the server — processes become MPS clients —
and interact with the GPU via the MPS server. Since all work from all processes
is funneled through the MPS server’s CUDA context workloads from different
processes can overlap in their execution (Fig. 2).



for i in 0 1; do
mkdir /tmp/mps-$i /tmp/mps-log-$i

export CUDA_VISIBLE_DEVICES=$i # SELECT GPU

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps-$i # NAMED PIPES

export CUDA_MPS_LOG_DIRECTORY=/tmp/mps-log-$i # LOGFILES

nvidia-cuda-mps-control -d # START MPS DAEMON
done

# IF A CUDA PROGRAM CONNECTS TO THE MPS DAEMON, THE DAEMON CREATES AN
# MPS PROXY SERVER FOR THE CONNECTING CLIENT IF NOT ALREADY PRESENT.
# THE PROXY SERVER USES THE CORRECT GPU DEVICE.
unset CUDA_VISIBLE_DEVICES
mpirun -x CUDA_MPS_PIPE_DIRECTORY=/tmp/mps-0 -np 4 ./prog.x : \

-x CUDA_MPS_PIPE_DIRECTORY=/tmp/mps-1 -np 4 ./prog.x

for i in 0 1; do

export CUDA_MPS_PIPE_DIRECTORY=/tmp/mps-$i # SELECT MPS DAEMON
echo quit | nvidia-cuda-mps-control # STOP MPS DAEMON
rm -rf /tmp/mps-$i /tmp/mps-log-$i

done

Fig. 3: Execution of an OpenMPI application using two GPUs and MPS. In this ex-
ample directory /tmp/mps-[0,1] contains named pipes for communication among the
MPS daemons, servers, and the clients. /tmp/mps-log-[0,1] is used by the MPS dae-
mons for log messages. All directories must be user-writable and readable.

How to start, use, and quit the MPS is demonstrated in Fig. 3 for a setup
using two GPUs with OpenMPI spawning a total of 8 processes.

4 Synthetic Benchmarks

In this section we assess the Hyper-Q feature on Nvidia Kepler GPUs in the con-
text of multi-threaded/-process applications with uncoordinated offloads to the
GPU during the host computation. Our aim is to gather information about the
impact of the number of concurrent kernel calls and their launch configuration
on the program runtime.

Since many HPC applications are limited by the memory bandwidth of the
compute system, rather than by its compute performance, for CKE it is impor-
tant to know how multiple simultaneous executions on the GPU affect each other,
especially with respect to sharing the GPUs memory bandwidth. For that pur-
pose we use a synthetic kernel which applies the operation a[0:size]=CONST+
al0:size] to all elements of a vector of length size — the kernel is obviously
memory bound.

Hardware and Software Setup. For the synthetic GPU benchmarks we use
a dual-socket Intel Xeon E5-2603 (8 CPU cores) compute node that is equipped



with 32 GB DDR3 ECC main memory and hosts 4 Nvidia Tesla K20c GPUs
with 5 GB GDDR5 ECC main memory each. The system runs a 64-bit Debian
GNU/Linux 7 and has CUDA 5.0 installed with CUDA driver version 310.19.
Codes are compiled with nvce and g++ version 4.6.3. Multi-process benchmarks
use OpenMPI 1.6.5. For all benchmark runs we set the number of Hyper-Q con-
nections to the maximum of 32 via export CUDA_DEVICE MAX_CONNECTIONS=32.

Benchmarking Methodology. The Tesla K20c GPU is equipped with 13
SMX and offers 32 hardware work queues for CKE. On the host side we use
p=1,...,32 threads or p = 1,...,16 processes (restricted by the MPS server®
can serve at most 16 clients) each of which placing 100 kernels of the aforemen-
tioned type on its exclusive CUDA stream one after another. We consider the
program execution (a) not making use of CKE — that is, all work is placed on
the default CUDA stream —, (b) using Hyper-Q either from within an OpenMP
parallel region or from within different MPI processes (via MPS), and (c) us-
ing the kernel reordering approach — implicitly also making use of Hyper-Q. We
measure the overall time for all kernels to complete using clock_gettime (CLOCK
REALTIME, . .). The setup for the kernel launch is varied from 1 to 4 thread
blocks per kernel invocation, with each thread block made up of 256 threads.
We further vary the length of the vector that is processed by the GPU kernel
from (A) 8 MB to, (B) 16 MB, to (C) 32 MB, and (D) 64 MB.

In cases where the maximum number of all concurrent thread blocks across
all host threads (processes) is at most the number of SMXs (here 13) the overall
program execution time should be close to the execution time of the program
using a single thread (process) — the speedup over an equivalent execution using
a single CUDA stream then would be equal to the number of concurrent threads.

Benchmarking Results. Figure 4 illustrates the speedup of p concurrent ker-
nel executions according to (a), (b), or (c) over the execution of all kernels placed
on the same CUDA stream.

Throughout all setups (A) — (D) it can be seen that for the 1-thread-block-
per-kernel setups CKE behaves close to optimal when using the kernel reordering
approach or Hyper-Q from within multiple processes. The performance of Hyper-
Q from within multi-threaded host regions, however, lags significantly behind.
By assigning different values to the CUDA_DEVICE_MAX_CONNECTIONS environment
variable, we found that our benchmarking setup is sensitive to the actual number
of Hyper-Q connections. With CUDA_DEVICE MAX_CONNECTIONS=2 the overall ex-
ecution time is half the execution time of the single-CUDA-stream setup. When
not explicitly set, the number of Hyper-Q connections is 8. Allowing for 32 con-
nections increases the performance obtained with 8 connections by only 20%. To
eliminate any deficiencies in the compute node configuration, we ran the bench-
mark on another K20c¢c machine with CUDA 5.5 installed. The results remain
the same.

3 Before CUDA 5.5 it was named CUDA proxy server. However, we use MPS server
as a synonym for CUDA proxy server hereafter.



ConcurrentKernel Execution via:

OpenMP +Hyper-Q

» MPI+Hyper-Q

© OpenMP +Kemel-Reordering

Problem Size (A) Problem Size (B)
T T T T T T T T T T T T T T T T T T
24 - 1Thread Block e - 2Thread Blocks - 24| 1Thread Block e — 2Thread Blocks -
per Kernel ° per Kernel per Kernel ° per Kernel
§ 16} 4+ R R é 16} 4+ TR
»n 7]
g T 1 1 8°7 1 |
S of + 1 3 o + -
=) ! ! ! ! ! ! ! ! ! ! = ! ! ! ! ! ! ! ! ! !
£ T T T T T T T T T T £ T T T T T T T T T T
@ 24 - 3Thread Blocks — 4 Thread Blocks - @ 24 3Thread Blocks —+ 4 Thread Blocks E
o per Kernel per Kernel [ per Kernel per Kernel
(=] o
o 16 -+ B g 16 -+ B
§ eo oo E eo oo
Y A e o0 o | | A LN 4 e |
S 8r / e 8 / /
OF -+ B OF -+ B
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 8 16 24 32 0 8 16 24 32 0 8 16 24 32 0 8 16 24 32
Number of Threads (Processes) p on Host Number of Threads (Processes) p on Host
Problem Size (C) Problem Size (D)
T T T T T T T T T T T T T T T T T T
24 - 1Thread Block e — 2Thread Blocks - 24~ 1Thread Block e — 2Thread Blocks -
per Kernel . per Kernel per Kernel ° per Kernel
§ 16} 4 LA § 16} ¢ 4 R
»n A »n
= 1 187 1 |
S of 1 1 3 o 4 .
k=2 ! ! ! ! ! ! ! ! ! ! k=) ! ! ! ! ! ! ! ! ! !
< T T T T T T T T T T K= T T T T T T T T T T
@ 24 1- 3Thread Blocks -1 4 Thread Blocks - @ 24 3Thread Blocks —1 4 Thread Blocks -
o per Kernel per Kernel [ per Kernel per Kernel
S 16 1 1 218} 1 4
3 eo oo B eo oo
I o000 I LX) []
(% 8t / 4 / - (%_ 8 / A / -
oF + . oF + .
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 8 16 24 32 0 8 16 24 32 0 8 16 24 32 0 8 16 24 32

Number of Threads (Processes) p on Host

Number of Threads (Processes) p on Host

Fig. 4: Benchmarking results for the execution of up to p x 100 streaming-kernels
processing vectors of size (A) 8 MB, (B) 16 MB, (C) 32MB, and (D) 64 MB each.
On the host p = 1,...,32 threads or p = 1,...,16 processes each invoke 100 GPU
kernels that are placed on different CUDA streams. At every time of the execution at
most p kernels can execute concurrently on the GPU. The plots display the speedup
over an execution where all work is placed on the same CUDA stream resulting in no
concurrency.

Using the Nvidia Visual Profiler (NVVP), for 4 concurrent host threads we
found all work placed on the per-thread CUDA streams is executed with almost
perfect overlap, as can be seen in the upper profile in Fig. 5. Hyper-Q and kernel
reordering perform equal well in this case (upper two profiles). With 8 threads on
the host, the Hyper-Q profile shows up bubbles and the overall execution time
increases significantly. It seems that some hardware work queues are favored
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Fig. 5: Timelines showing kernel assignments to CUDA streams for different numbers
of host threads. The time lines have been generated with Nvidia’s Visual Profiler.

over others. For reasons that are not clear to us, this behavior starts during
the execution. Right at the beginning work on all CUDA streams is brought to
execution on the GPU. After about one second stream 8, 9 and 12 are suspended.
When finished all work placed on the remaining streams, stream 8, 9 and 12 are
revived for completion.

Since our host system provides 8 physical CPU cores the 8 host threads
should not interfere with each other. We tried different thread pinning schemes
using KMP_AFFINITY=scatter|compact respectively sched_setaffinity(), all
without significant effect on the program behavior.

The speedup over executions with no concurrency decreases with number of
thread blocks used per offload, since no concurrency means that the entire GPU
device is available for the execution of a single GPU kernel. In the concurrent
case, increasing the number of thread blocks per kernel launch results in more and
more threads share the GPU resources, so that the overall performance starts
to saturate already with a few concurrent executions. Consider, for instance,
problem size (A) with one thread block per kernel launch. With more than 16
concurrent offloads, the performance does not increase linearly anymore. For the
same setup, doubling the number of thread blocks per kernel launch shows that
the performance increase is almost linear up to about 8 concurrent offloads. With
4 thread blocks per offload and with more than 4 concurrent kernel launches the
performance starts to saturate. We also see that with increasing number of thread
blocks per launch the gap between the OpenMP + Hyper-Q setup and the other
two setups becomes smaller.

Figure 6 illustrates the speedup over a non-concurrent execution using two
Tesla K20c GPUs. In the case of multiple processes, we ran two MPS daemons
(server) each associated with one of the two GPU devices (Fig. 3). The perfor-
mance decrease with the number of thread blocks per kernel launch is delayed by
about a factor 2 compared to Fig. 4. Again we can see that using Hyper-Q from



Problem Size (A), 2GPUs

32[ 1 Thread Block . T 2 Thread Blocks b
o4 per Kernel e * | perKemel ? Concurrent Kernel Execution via:
L 4 2 2
§ N 2 .2 OpenMP-+Hyper-Q
& 161 o <+ o < | » OpenMP+Kernel-Reordering
S sk K 1 O | |+ MPl+Hyper-Q
=2 - -
(&) - -
> O} * + " B
=) Il Il Il Il Il Il Il Il Il Il . .
2 — 1 Fig. 6: Benchmarking results for the
« 321~ 3 Thread Blocks T 4 Thread Blocks T .
g ., per Kernel per Kernel execution of up to p x 100
3 24l £ 4 . .
= L2t streaming-kernels processing vectors of
H 2 .
g 161 ot T IR size 8 MB each (setup (A)). On the host
joN L .
] T .0 . p=1,...,32 threads (processes) each
- - .
ol * 4 = . invoke 100 GPU kernels that are placed
1 1 1 1 1 1 1 1 1 1 N .
0 8 16 24 32 0 8 16 24 32 on different CUDA streams. See Fig. 4
Number of Threads (Processes) p on Host or the text for further explanation.

within different processes or using the kernel reordering scheme gives significant
performance gains over using Hyper-Q from within threaded applications.

5 Global Local Adaptive Thermodynamics

The program package GLAT — Global Local Adaptive Thermodynamics — over-
comes the problem of critical slowing down of conventional thermodynami-
cal simulations by decomposing the conformational space into metastable sub-
regions, which can be investigated almost independently. A typical question of
pharmaceutical or biochemical applications is concerned with the prediction of
solvation for a conformational ensemble.

As small drug-like molecules with 10! — 102 atoms can exhibit more than 100
metastable states, the sampling of such a small molecule, for instance in a water
environment, requires the explicit modeling of a solvation shell which contains
at least an order of magnitude more atoms than the “internal molecule.” Strong
scaling even for simulations of these small molecules is achieved by GLAT per-
forms almost independent Hybrid Monte Carlo (HMC) samplings of the water
solvation for many metastable states in a concurrent manner. HMC is a com-
bination of short term Molecular Dynamics (MD) followed by a Monte Carlo
(MC) weighting of the generated conformations with respect to the total energy.

Due to the discrepancy in the computational effort for the internal molecule
and the surrounding water, work for calculating the solvation forces is transferred
to the GPU. As the detailed conformation of the water itself is not of interest, the
data for the water environment can remain on it. Only the forces of the water on
the internal molecule, the potential as well as the kinetic energy of the water are
required for the HMC step. Therefore, the amount of communication between
host and accelerator depends mainly on the size of the internal molecule.

Figure 7 illustrates the workflow of a typical simulation within one metastable
state: First the simulation is initialized with coordinates, velocities and forcefield
parameters of the internal molecule in a given metastable conformation. Followed
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Fig. 7: Workflow of the program package GLAT. For data transfers between host and
GPU “D” abbreviates “device” and “H” abbreviates “host.”

by an automatic modeling and minimization of the water environment, the result
is a water droplet containing the molecule of interest. Then the water data as well
as the positions of the internal molecule is transferred to the accelerator where
the calculation of the covalent contributions — resulting in vibrational modes
of each water molecule — and the forces of the water on the internal molecule
is started asynchronously to the host computation. After the invocation of the
respective GPU kernel, the force calculation of the internal molecule with itself
is performed by the host. At the following barrier the host receives the forces
on the internal molecule due to the water and starts a molecular dynamics step,
whereas the accelerator calculates all water-water interactions and performs the
water MD step thereafter. Meanwhile the host updates the coordinates of the
internal molecule and sends them to the GPU.

Since the whole simulation is embedded into a Hybrid Monte Carlo scheme,
the host performs some statistical weightings (not time intensive) after a se-
quence of about 10 MD steps. The HMC sampling is repeated for a given wa-
ter environment several times, until about 103 MD steps are reached. The final
convergence check will either finish the simulation or restart it with another
randomly created water environment.

Benchmarking Setup. For CPU benchmarks we use a dual-socket compute
node that is equipped with two Xeon E5-2670 octa-core CPUs (Hyper-Threading
enabled) and 64 GB DDR3 ECC main memory. The system runs a CentOS 6.3
Linux with kernel 2.6.32-279. We use Intel compilers version 14.0.1. For GPU
benchmarks we use the compute node described in Sec. 4.

To evaluate the performance of our implementations, we consider three dif-
ferent sized problems: one internal molecule consisting of 27 atoms surrounded
by 101 (P1), 302 (P2), and 505 (P3) water molecules. For each setup the to-
tal number of MD update steps is 1000. We consider concurrent executions of
p=1,...,32 simulations on the K20c and the CPU (as a reference) — codes for
the CPU are tuned using AVX SIMD (Single Instruction Multiple Data) intrin-
sics. On GPU the compute kernels use up to 4 thread blocks of 128 threads each.
On CPU each simulation uses two threads. Concurrency is achieved by means
of OpenMP on the host and CUDA streams for GPU offloading. In the case of
multi-GPU setups, we use one MPI process per GPU, and up to 16 host threads
per MPI rank.



As a performance measure we determine the overall number of particle-
particle interactions per second across all concurrent simulations. For that, we
measure the time for all simulations to complete using clock_gettime (CLOCK-
REALTIME,..).

Benchmarking Results. Figure 8 illustrates the performance achieved for the
setups (P1), (P2), and (P3). For setup (P1) the problem size is too small to run
on GPU with a performance increase over a CPU-only execution. Throughout
the other setups the performance gain over a CPU-only execution is between
a factor 2 — 3. On the GPU side the kernel reordering scheme achieves a lit-
tle more performance than the concurrent kernel execution with Hyper-Q not
using reordering. Since for GLAT, all GPU kernel launches use multiple thread
blocks each, the performance discrepancy between the two becomes smaller with
increasing number of concurrent kernels, as can be also seen in Fig. 4.

An interesting point is the low performance gain when using two accelerators
instead of just one. The performance with two GPUs increases rapidly for low
numbers of concurrent simulations, whereas for more than 16 simulations it starts
to saturate. Even in the case where two MPI processes are used — one process
per GPU, with its own MPS server — the performance remains low. We assume
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that the host system might be the bottleneck in these cases — for 32 concurrent
simulations each CPU core is 4-fold oversubscribed. Since a certain portion of
the MD update is performed on the host this may have a negative impact on
the concurrency on the GPU.

Independently from whether one or two GPUs are used for computations,
the performance gap between setups using Hyper-Q and those using kernel re-
ordering is significant for small simulations only. With increasing problem size
Hyper-Q is still behind kernel reordering, but with little discrepancy only.

6 Conclusion

Executing single small-scale workloads on GPU is insufficient to fully utilize the
GPU’s compute performance. A viable approach to take advantage of accelera-
tors, however, is to execute multiple kernels in a concurrent way. For a synthetic
benchmarking kernel, we found using Nvidia’s Hyper-Q feature — a mechanism
for concurrent offload computations on a shared GPU within multi-threaded/-
process applications — give significant performance gains over a serial execution
of the same amount of work on GPU. However, we encountered some deficiencies
when using Hyper-Q from within multi-threaded programs causing the overall
program performance be up to a factor 3 behind the expectations. We were able
to recover the performance by using a kernel reordering scheme we introduced
earlier for Nvidia Fermi GPUs. Using the Nvidia Visual Profiler, we found that
seemingly not all hardware queues offered by Kepler GPUs are equally favored,
but some of them are processed to completion before the others. Executions us-
ing Hyper-Q within multiple processes behave close to optimal with respect to
concurrency on GPU. For a real-world application implementing a simulation
of a small molecule solvated within a nano-droplet, we achieve about a factor 2
— 3 performance gain over an optimized multi-threaded CPU execution due to

Hyper-Q.
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