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ABSTRACT

Rigorous optical simulations are an important tool in optimizing scattering properties of nano-photonic devices
and are used, for example, in solar cell optimization. The finite element method (FEM) yields rigorous, time-
harmonic, high accuracy solutions of the full 3D vectorial Maxwell’s equations1 and furthermore allows for
great flexibility and accuracy in the geometrical modeling of these often complex shaped 3D nano-structures. A
major drawback of frequency domain methods is the limitation of single frequency evaluations. For example the
accurate computation of the short circuit current density of an amorphous silicon/micro-crystalline multi-junction
thin film solar cell may require the solution of Maxwell’s equations for over a hundred different wavelengths
if an equidistant sampling strategy is employed. Also in optical metrology, wavelength scans are frequently
used to reconstruct unknown geometrical and material properties of optical systems numerically from measured
scatterometric data. In our contribution we present several adaptive numerical integration and sampling routines
and study their efficiency in the context of the determination of generation rate profiles of solar cells. We show
that these strategies lead to a reduction in the computational effort without loss of accuracy. We discuss the
employment of tangential information in a Hermite interpolation scheme to achieve similar accuracy on coarser
grids. We explore the usability of these strategies for scatterometry and solar cell simulations.

Keywords: finite element method, optical simulations, adaptive sampling, metrology, parameter scans, solar
cells

1. INTRODUCTION

Determination of parameter dependent profiles such as the generation rate profile of a solar cell or the angular
dependence of the scatterometric signal is oftentimes a tedious task if the underlying problem has to be solved
numerically, as computation times for a single parameter value can easily require many hours of CPU time if
3D simulations are required. In other cases, like parameter optimization or reconstruction, the computation
and evaluation of many of such spectra may be necessary. Usually one choses a regular, equidistant parameter
spacing to sample the parameter interval and interpolates in between. However depending on the actual profile
this strategy might not be optimal as it will probably miss narrow width peaks of the profile if the spacing is
too broad or invest to much effort in areas where the profile changes smoothly with the parameter.
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2. NUMERICAL METHODS

As this contribution aims at comparing different sampling strategies in order to reduce the computational effort
in high accuracy parameter scans within rigorous optical simulations, we present some of the numerical methods
employed in this comparison.

2.1 The Finite Element Method

The finite element method (FEM) yields rigorous, time-harmonic, high accuracy solutions of the full 3D vectorial
Maxwell’s equations1 and furthermore allows for great flexibility and accuracy in the geometrical modeling of
these often complex shaped 3D nano-structures. In the following we describe in brief how scattering problems
for the time-harmonic Maxwell’s equations are investigated within this contribution. For this class of problems
a monochromatic field is incident to the computational domain and the scattered field inside the computational
domain is sought after. Using the finite element method (FEM) to discretize the arising differential operators
we solve the second order curl-curl-equation for the electric field:

∇× µ−1∇× E(r)− ω2εE(r) = 0. (1)

The complete mathematical formulation of a scattering problem with a detailed discussion of the arising boundary
conditions has been published by Pomplun et al.2

Time-harmonic Maxwell solvers, like the FEM-implementation use for this work, allow the use of optical
material properties as measured and do not require fitting of the complex refractive index to a physical model.
In addition, FEM offers great geometric flexibility, i.e. variable mesh element sizes to resolve arbitrarily shaped
material interfaces with sharp edges which is of interest especially in the solar cell model problem.

2.2 Sampling Strategies

The goal in determining parameter dependent profiles is to reconstruct the profile f(p) of a scalar parameter
p ∈ P ⊂ R within a parameter interval P as closely as possible with a minimal amount of (possibly expensive)
evaluations of f . We assume no a priori knowledge of the underlying profile. In our sample problems 3.1 and 3.2
these are derived from solutions of Maxwell’s equations computed with a FEM-solver. In general we assume f
to be a real valued (nonlinear) map pi ∈ P → fi = f(pi) ∈ R. Interpolation errors are usually measured as the
difference between the real profile f and its interpolation f̃ over the parameter interval measured for example in
the L1 norm ∥∥∥f − f̃∥∥∥

1
=

∫
P

|f(p)− f̃(p)|dp

or the L2 norm ∥∥∥f − f̃∥∥∥
2

=

(∫
P

(
f(p)− f̃(p)

)2
dp

) 1
2

.

The L2 norm penalizes differences f − f̃ stronger than the L1 norm. Throughout this work we use the L2 as an
error measure.

In order to find the best f̃ we make use of the extensive mathematical research available3 for the computation
of integrals

∫
P
fdp. The sequence of sampling points pi ∈ P used in computing

∫
P
fdp provides an interpolation

f̃ of f that minimizes the L1 error. There are a number of different numerical quadrature methods available
within numerical packages such as MATLAB.4 This includes error controlled adaptive schemes such as quad, which
combines integral values computed on intervals using Simpson’s rule and the trapezoidal rule. Except for the
widely used equidistant routine, all of the following methods estimate and control the L1 error:

equidistant A routine that samples f regularly with N sampling points in the parameter interval. No adaptive
control is executed or required and the sampling points are spaced at L

N−1 distance apart where L is the
length of the parameter interval P .



ode45 ode45 is the MATLAB implementation of an explicit Runge-Kutta (4,5) formula. In this case we utilize
the solver that is designed to solve initial value problems for ordinary differential equations as an adaptive
integration routine.

quad MATLAB offers quad as a general purpose numerical quadrature tool. It implements an adaptive Simpson
quadrature routine and is suggested to be used for low accuracy estimates with nonsmooth integrands.

quadl quadl is offerd by MATLAB as well. It is an implementation of an adaptive Lobatto quadrature routine
and is suggested to be used at higher accuracies for smooth integrands.

quadgk MATLAB also implements an adaptive Gauss-Kronrod quadrature routine quadgk designed to be used
for high accuracies and oscillatory integrands. Gauss-Kronrod quadrature rules provide very high order
interpolation polynomials. Its standard settings are quite conservative as it uses at least 150 function
evaluations.

adaptive The integration routine adaptive is a reimplementation with the Simpson rule similar to MATLAB ’s
quad. It makes use of all of its available function evaluations and increases the sampling point density
locally in subintervals where the desired accuracy is not met, if other subintervals have the accuracy and
the maximum number of function evaluations allowed is not yet reached. This design is meant to distribute
the function evaluations more evenly across the subintervals of the integration interval in cases where the
maximum function count will be reached. In contrast to quad, this should avoid situations where all the
allowed function evaluations are used to resolve only one subinterval to meet the desired accuracy whereas
others are left unrefined.

adaptive Hermite The adaptive Hermite routine is designed identical to the adaptive one. In addition to
functional evaluations it also uses parameter derivatives to approximate the function and thus the integral.
The adaptive error control takes this higher order interpolation into account.

multigrid The multigrid implementation follows the textbook description.3 The general idea is to start with
a very coarse grid and refinine locally only if the desired accuracy is not met. This yields a sequence of
grids or refinement levels and error estimates that have to be accounted for. If a regular bisection is used
to refine the grids, error estimates based on Simpson’s and trapezoidal rule can be used which makes the
error estimation similar to for example the adaptive routine or MATLAB ’s quad.

multigrid Hermite Similar to the adaptive Hermite implementation this algorithm uses a Hermite interpo-
lation and parameter derivatives instead of only function evaluations in combination with a multigrid
scheme.

3. MODEL PROBLEMS

3.1 A metrology problem

The following metrology model problem has been taken from.5 The geometry and finite element mesh of the 1D
periodic line grating with a pitch of 100nm is shown in Figure 1. In the referenced paper the authors computed
the dependence of the scatterometric signal strength I0 on the azimuthal incidence angle θ at λ0 = 197nm for
both polarization and studied the employment of physical parameter sensitivities in parameter reconstrutions.
We use the same model parameters for our model problem in this contribution. The investigated profile is shown
on the right in Figure 1. The shown reference solution is based on 2269 functional evaluations (in this case:
FEM simulations of the scattering of the periodic line grating). It has been computed using a multigrid method.
The different levels used by the sampling method can be observed in the same plot where the interval length
is shown. The smallest interval is 8.4877e-05 deg used near the singularity at 68.4346 deg. At 31.2891 deg the
largest grid interval is 0.3477 deg, 212 times larger than the smallest. The three intervals used for the detailed
analysis in section 4.1 roughly coincide with the refinement strategy used here: a coarser discretization for the
first interval, a extremely fine sampling intervals for the middle and a fine grid for the right interval.



Figure 1. Left: Finite-element mesh for spatial discretization of the investigated 1D-periodic line grating. Right: Depen-
dence of the scatterometric signal I0 on the azimuthal angle of incidence of the illuminating plane waves, for P-polarization.
The interval length between the sampling points of the reference solution demonstrates the different levels of grid densities
used.

Figure 2. Left: Excerpt of the finite-element mesh for spatial discretization of the investigated thin-film silicon tandem
solar cell. Right: Combined generation rate of both subcells over the investigated spectrum (bottom graph). The dotted
red lines mark the three intervals with smooth and oscillatory behavior and a transition in between. The interval length
between the sampling points of the reference solution is shown as a separate graph on top. The transition of the bottom
graph to an oscillatory behavior is clearly reflected here by a more dense grid.

3.2 A solar cell problem

The thin-film silicon tandem solar cell model presented here has been adapted from6 using the same material
data. In the cited reference we investigated the converge behavior of the 3D numerical model. In the following we
employ the same algorithm described in6 to generate a random interface texture in 2D and look at the combined
generation rate of both the a-Si and μc-Si subcells as a function of wavelength. As the model includes thick
layers (730 nm SnO2:F, 270 nm a-Si ,1600 nm μc-Si layer and 200 nm silver ) as well as very thin doped layers
(two p-type a-Si layers of 5 nm, 30 nm of n-type a-Si, 30 nm of p- and n-type μc-Si each and a 80 nm ZnO layer)



many narrow width peaks arise in the generation rate profile of the reference solution shown in Figure 2. The
reference profile shown here was computed using 2940 sampling points separated by intervals ranging from 0.1 to
5.72 nm. The dotted red lines mark the three intervals with smooth and oscillatory behavior and a transition in
between. Similarly to the metrology model problem in section 3.1 the different behavior of the generation rate
profile is reflected in the sampling point density of the reference profile shown here. As this reference solution
was computed with the quadl routine the density levels are not distinct as in Figure 1(right), but the transition
of the reference profile to an oscillatory behavior is clearly reflected by a denser grid (graph on top in Figure
2(right)).

4. RESULTS AND DISCUSSION

For each of the two model problems we implemented a MATLAB function that returns the figure of merit (scattero-
metric signal strength and combined generation rate of the subcells) derived from the rigorous electromagnetic
field solution upon input of the parameter varied (azimuthal incidence angle θ and vacuum wavelength λ0). This
was necessary to make use of the numerical quadrature functions provided by MATLAB itself.

4.1 Scatterometry

The results for the metrology model problem are shown in Figure 3. The graphs show the logarithm of the
interpolation error log10(‖f − f̃‖2) measured in the L2 norm for three different subintervals of the parameter
space. These subintervals are indicated by a thicker line in profile plots shown in the insets. The choice of the
boundaries of these three subintervals is arbitrary but can be motivated by the behavior of the characteristics
of the integrand. In the first interval the scatterometric profile varies smoothly with the angle. This is reflected
by the refinement strategy employed by the multigrid scheme used to compute the reference solution in Figure
1. The second interval includes the singularity and the remaining part of the parameter space forms the third.

We focus our discussion on the subintervals shown in (ii) to (iv). The most interesting interval is the second
one (Figure 3(iii)). To resolve the singularity accurately a very fine mesh is needed. The quad routine (green
line with cross markers) adaptively bisects its sampling intervals embedding the singularity and demonstrates
a convergence behavior with a very steep convergence rate. The other MATLAB routines quadl and quadgk

(green with star marker and dotted green) use more sampling points per interval resulting in a higher number of
function evaluations. Due to the lack of regularity of the profile this expense cannot be recovered with a higher
interpolation order. The multigrid routine uses an error estimate similar to quad’s based on Simpson’s rule
which lets it perform on par with quad for smooth integrands. The poor performance in this interval is due to
a different starting grid it does not “see” the singularity until a fairly high accuracy (10−4 in L1) is demanded.
This explains the poor behavior in this interval. The good performance of the equidistant or regular sampling
(black with square markers) underlines the need for fine resolution of the singularity. The Hermite routines (red
and blue with circular markers) have a similarly steep convergence rate in this interval up to an error level of
10−3.5 where the accuracy of the reference solution seems to limit further gains. The routine named adaptive

(dotted blue line) shows very little convergence due to the fact that it allows to invest computational effort not
needed in other parts of the integration interval in subintervals, where the desired accuracy hasn’t been met so
far. This results in a high local accuracy in this particular interval whereas the global accuracy is not as high.
In this case 37 of the 85 function evaluations (43.53%) lie in this interval compared to 5 used by quad on the
same global accuracy setting of 10−3 in L1.

In the smoother intervals (shown in (ii) and (iv)) the characteristics of the convergence properties of the
different routines are different. A significant gain in accuracy is obtained by using derivatives in Hermite in-
terpolation schemes in both intervals. The rate of convergence in general is determined by a regular global
refinement. Especially in the first interval (ii) this can be observed. Both multigrid routines exhibit similar
converge rates beyond N = 100 compared to the regular refinement as does the adaptive routine. quad, ode45
and quadgk have a similar converge rate which is only surpassed by using derivative information in the Hermite
schemes.

The last interval shown in (iv) exhibits a similar pattern with the convergence rate determined by the regular
refinement at large Ns. The steepness of the profile leads to a finer sampling for all the routines, the exception



again being the adaptive Hermite scheme. Similar to before, quad performs as good or better as all remaining
adaptive schemes and the equidistant sampling.

In (i) the results of the subintervals are combined and can be described more briefly. All adaptive schemes
reach a higher accuracy at less functional evaluations resulting in a overall reduction of computational effort and
thus an improvement in run times. The exception in this case is the ordinary different equation solver ode45

which estimates errors conservatively and cannot sample the model profile as well as for example quad. As the
adaptive routine is not designed to use the least amount of functional evaluations, but to perform better than
a regular sampling at a similar number of function evaluations, it performs just as intended. As mentioned
before the profile generated by quad is only surpassed in accuracy by using additional derivative information.
The multigrid method performs analogously to quad in the smooth intervals, but it suffers from the lack of the
detection of the singularity at low accuracies. This can also be seen in Figure ?? where the number of function
evaluations required by the different algorithms to reach certain global error levels in the L2 interpolation error
is shown which makes readability easier than Figure 3 (i).

4.2 Solar Cell

The results for the solar cell model problem are shown in Figure 5 and again we plot the logarithm of the L2

norm of the interpolation error for three different subintervals of the wavelength interval. The boundaries of the
subintervals were chosen at points were the profile exhibits a distinct change in features. In the first interval the
generation rate profile varies smoothly with the wavelength. In the third interval the profile is highly oscillatory
with a large number of very narrow width singularities. The profile changes in the middle interval from a smooth
curve to the oscillatory behavior observed in the last interval.

The convergence characteristics shown in the subplots (iii) and (iv) are very similar. The oscillatory profile
demands a high sampling density throughout the whole interval as provided by the equidistant sampling. The
adaptivity does not yield an advantage here as it results in a global regular refinement. The subplots focus on
the interesting ranges of N < 200 and N < 700. The MATLAB routine quadl uses 1611 functional evaluations in
the third interval alone and another 904 in the second. quad and quadgk similarly use more than 500 and 1000
function evaluations in the third interval. In contrast to smooth intervals the use of derivative information does
not yield a better interpolation as it tends to overshoot at steep flanks present in the highy oscillatory part.

In the first interval shown in (ii) the Hermite schemes again yield a better interpolation at a lower number
of functional evaluations. However the advantage is not as pronounced as in the metrology example. The steep
flank of the profile at the beginning of the interval and the small changes in inclination at 400 and 450 nm lead
again to fine almost equidistant sampling by the adaptive routines. The exception in this case is quadgk with
its Gauss-Kronrod quadrature rule which is designed to cope with this sort of integrand. The routine stays at
58 function evaluations in this interval with estimated error of less than 10−2.

5. CONCLUSION

To summarize, we have demonstrated that adaptive numerical integration and sampling routines are highly
efficient if the investigated profile is sufficiently smooth and only occasional singularities occur. Furthermore the
employment of derivatives yield a significant advantage provided the profile is again smooth. In the case of solar
cells and the computation of short circuit current densities where the generation rate profile is not smooth at all
the adaptive schemes cannot gain an advantage over a regular sampling strategy using equally spaced sampling
points except for the smooth parts of the profile.
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Figure 3. The graphs show the logarithm of the interpolation error log10(‖f− f̃‖2) for different intervals of the parameter
space indicated by the insets where the active interval is marked with a thicker line. The legend shown in the center
is valid for all four graphs. The Hermite integration routines show a distinct advantage in intervals where the profile is
smooth ((ii) and (iv)). The other algorithms perform generally as well as a regular sampling in resolving the singularity
(iii) and may show an overall reduction in computational effort (i) due to advantages in the smooth regions.



Figure 4. The number of function evaluations required by the different algorithms to reach certain global error levels in the
L2 interpolation error. The Hermite integration routines and quad require less function evaluations than the equidistant
for all error levels and demonstrate a gentle incline at higher accuracies.
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Figure 5. The graphs show the logarithm of the interpolation error log10(‖f − f̃‖2) for different subintervals of the
wavelength interval indicated by the insets where the active interval is marked with a thicker line. The legend shown in
the center is valid for all four graphs. The Hermite integration routines have a slight advantage in the interval where the
profile is smooth (upper right), but cannot outperform the equidistant sampling routines in the highly oscillatory parts of
the spectrum (lower row). The other algorithms perform generally as well as a regular, equidistant sampling routine. The
ode45 interpolation error in the smooth interval (upper right) deviates significantly from the others in a smooth region
where the polynomial interpolation should yield a reasonable estimate. The strange behavior of the dotted blue graph in
the lower right graph can be explained by the way the routine distributes functional evaluations in the parameter interval.
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