Freie Universitat [ ¥ Berlin

B

Zuse Institut Berlin
Department Distributed Algorithms
and Supercomputing

Institute of Computer Science

BACHELOR THESIS

A Gossiping Framework for Scalaris

Author: Jens V. Fischer
Matriculation No.: 3923671
uni@jens-fischer.eu

Primary Examiner: Prof. Dr. Katinka Wolter
Secondary Examiner: Dr. Florian Schintke

Berlin, 28th February 2014

Abstract

Gossiping is a technique for solving communication and computation tasks
in peer-to-peer systems. It refers to the periodic, pairwise, message exchange
between random peers in a network. Gossiping provides probabilistic guar-
antees on convergence speed and accuracy and features very good scalability,
robustness and uniform load distribution. The two most important classes of
gossiping algorithms are gossip based information dissemination and gossip
based aggregation.

Scalaris is a distributed key-value store with guarantees of atomicity, con-
currency, isolation and durability on transactions (ACID properties). It is com-
pletely based on peer-to-peer techniques and uses gossiping for several pur-
poses.

The contribution of this work is is twofold: First, to conceptualise and im-
plement a gossiping framework for Scalaris. An appropriate abstraction of
different gossiping algorithms is established and used for the implementation.
Second, the gossip based aggregation of load information in Scalaris is to be im-
proved. The symmetric push-sum protocol is selected as aggregation algorithm
and extended to allow histogram computation and periodic restarting. It is
then implemented on the basis of the framework.


mailto:uni@jens-fischer.eu




Jens V. Fischer

Eidesstattliche Erklarung

Ich versichere hiermit an Eides Statt, dass diese Arbeit von niemand anderem
als meiner Person verfasst worden ist. Alle verwendeten Hilfsmittel wie
Berichte, Biicher, Internetseiten oder dhnliches sind im Literaturverzeichnis
angegeben, Zitate aus fremden Arbeiten sind als solche kenntlich gemacht.
Die Arbeit wurde bisher in gleicher oder dhnlicher Form keiner anderen
Priiffungskommission vorgelegt und auch nicht veroffentlicht.

28th February 2014

Jens Fischer

ii






Jens V. Fischer

Zusammenfassung

Gossiping ist eine Technik zum Lésen von Kommunikations- und Berech-
nungsaufgaben in Peer-to-Peer Systemen. Es lésst sich als periodischer, paar-
weiser Nachrichtenaustausch zwischen zuféillig gewéhlten Nachbarknoten
verstehen. Gossiping gibt probabilistische Garantien beziiglich Konvergen-
zgeschwindigkeit und Genauigkeit und zeichnet sich durch Skalierbarkeit,
Robustheit und gleichméfiige Lastverteilung aus. Informationsverbreitung
und Aggregation durch Gossiping sind die zwei wichtigsten Arten von
Gossiping Algorithmen.

Scalaris ist eine verteilte Key-Value-Datenbank welche Atomaritit, Kon-
sistenz, Isolation und Dauerhaftigkeit (ACID Eigenschaften) fiir Transak-
tionen garantiert. Scalaris basiert vollstindig auf Peer-to-Peer Techniken und
nutzt Gossiping zu verschiedenen Zwecken.

Der Beitrag dieser Arbeit ist ein zweifacher: Erstens, der Entwurf und die
Implementation eines Gossiping Frameworks fiir Scalaris. Eine angemessene
Abstraktion verschiedener Gossiping Algorithmen wird entworfen und als
Basis fiir die Implementation genutzt. Zweitens wird das Monitoring von
Lastinformation verbessert. Das "Symmetric Push-Sum Protocol wird als
Algorithmus fiir die Aggregation ausgewdahlt und erweitert, um die Berech-
nung von Histogrammen und periodisches Neustarten zu unterstiitzen. Das
Load Monitoring wird auf Basis des Frameworks implementiert.

Abstract

Gossiping is a technique for solving communication and computation tasks
in peer-to-peer systems. It refers to the periodic, pairwise, message exchange
between random peers in a network. Gossiping provides probabilistic guar-
antees on convergence speed and accuracy and features very good scalability,
robustness and uniform load distribution. The two most important classes
of gossiping algorithms are gossip based information dissemination and
gossip based aggregation.

Scalaris is a distributed key-value store with guarantees of atomicity, con-
currency, isolation and durability on transactions (ACID properties). It is
completely based on peer-to-peer techniques and uses gossiping for several
purposes.

The contribution of this work is is twofold: First, to conceptualise and im-
plement a gossiping framework for Scalaris. An appropriate abstraction of
different gossiping algorithms is established and used for the implementa-
tion. Second, the gossip based aggregation of load information in Scalaris is
to be improved. The symmetric push-sum protocol is selected as aggrega-
tion algorithm and extended to allow histogram computation and periodic
restarting. It is then implemented on the basis of the framework.

iv






Contents Jens V. Fischer

Contents
List of Figures fviiil
List of Tables il
List of Algorithms fviiil
List of Code Fragments il
1 Introduction il
2 Fundamentals of Gossiping 4
2.1 Gossip Based Information Dissemination . ... ... .. ..
2.1.1 Basic Dissemination Algorithm . . . . ... ... ...
212 RelatedWork . . ... ... ... . ... . ..... [
2.2 Membership Management . . . .. ... ............
221 Example Membership Protocol: Cyclon . .. ... .. Ol
222 RelatedWork . .. ... ... ... ... . 0. 10l
23 Cycles. . . ... 1]
2.4 Robustness in Practical Settings . . . . ... ... .... ... 11l
3 Gossip Based Aggregation 3]
31 RelatedWork . ... ... ... .. ... ... . ... . ... 13
3.2 Computing Averages . . . . ... .. ... ........... 15l
33 Histograms. . . .. ............. ... .. .. ... 19
3.4 Evaluation of symmetric push-sum protocol . ... ... .. 20]
3.5 PeriodicRestarting . . ... ............. .. .. .. 22]
4 The General Structure of a Gossiping Operation 24]
5 A Gossiping Framework for Scalaris 26]
51 CommunicationModel . . . . ... ... ... ... ... .. 27
5.2 Interaction with the Callback Modules . . . . . ... ... .. 28]
5.3 Atomicity and Coupling . . . . ... .............. B1l
54 Rounds ... ... ... ... ... ... . 32]
5.5 State of Behaviour Module . . . .. ... ... ... ... ... B3l
5.6 Usage of the Framework . . . ... ... ... ......... B33l
5.7 Evaluation of the Framework . . ... ... .. ... ... .. 34
6 Gossiping Load Information in Scalaris 37
6.1 Interaction with the Behaviour Module . . ... ... .. .. 37
6.2 Periodic Restarting . . ... ................... 39
6.3 Stateofgossip_load . . .. ... ... ... .. .. ... .. .. 40]
6.4 Usageofgossip_load . ... ... ................ 4a

Vi



Contents Jens V. Fischer

6.5 Evaluationof gossip_load . ... ... ............ 40
7 Conclusion 43
Appendices 45]
A Overview of Callback Functions 45|
Al TypeDefinitions . . . . ... ... .. ... ... .. 45|
A2 Startup and Shutdown . . .. ... ... ... ... ... 45]
A3 GossipOperation . . .. ... .................. 45
A4 Config Functions . .. ... ... ....... ... ...... 47
A5 Notifications . . . . . . . . . . 48
B Source Code 49
Bl GoogleCode . . .. ... ... .. ... .. .. ... .. .. .. 49|
B2 Github . .. .. .. 49
Bibliography

vii



List of Figures Jens V. Fischer

List of Figures
1 Example Mass Conservation Violation in Push-Pull Gossiping [17]
2 Phases of a gossiping operation . . . .. ... ... ... ... 24]
3  Prepare-RequestPhase . . . ... ................ 28
4  Prepare-ReplyPhase . ... ................... 29]
5 Integrate-Reply Phase . ... .................. 30
6 LoadperKeyRange . ...................... 38
7 Convergence Speed of Average Function . . . . . .. ... .. 42]
List of Tables
1  Stateof gossip.erl . ... .. ... ... ... . ... ..., 33
2 Stateof gossip_load . . . . . . ... ... ... ... ... 40
List of Algorithms
1  Basic dissemination algorithm, push-pull scheme . .. ...
2 Cyclon: Extended Shuffling . ... ............... 10
3  Push-Pull Gossiping . . ..................... 16l
4  Symmetric Push Sum Protocol . . . . . ... ... ... ... .. 18]
5  Symmetric Push Sum Protocol for Histogram . . . . . . . .. 20
List of Code Fragments
1  Histogram: Merge procedure . . ... ............. 21

viii






1 Introduction Jens V. Fischer

1 Introduction

The rise of ever growing computer networks poses new problems for the
design of distributed systems. In large networks, the failure, disconnection
and reconnection of nodes becomes the norm rather than the exception.
In these highly dynamic conditions, traditional hierarchical client-server
architectures reach their limits with respect to scaleability and robustness.
Decentralised architectures like peer-to-peer networks offer a different frame-
work for developing solutions.

One of the proposed solutions is called gossiping. Gossiping is a technique
used to solve communication and computation tasks in peer-to-peer systems.
It refers to the periodic, pairwise, message exchange between random peers
in a network. Every node randomly chooses a neighbour to exchange inform-
ation with. The information exchange is repeated periodically after a given
time interval.

The communication problem gossiping tries to solve is that of informa-
tion dissemination in large-scale distributed systems, i.e. the distribution
of information which originates at one node to all the nodes of a network.
In recent years, gossiping has also been expanded to solve computation
problems, namely the aggregation of values spread across the nodes of a
distributed system. Gossiping promises to solve this problems in a scaleable
and robust way.

Scalaris [38], an ongoing research project at the Zuse Institut Berlin, is a
distributed key-value store with ACID properties on transactions. ACID
stands for atomicity, concurrency, isolation and durability and is a set of
properties of transactions in a database system. While SQL based database
system always guarantees these properties, most distributed databases have
to relax the ACID properties in order to achieve full decentralisation (cf. [14,
29]). Guaranteeing ACID properties in a fully decentralised database is one
of the major contributions of Scalaris.

Scalaris already uses gossiping for several purposes: For the construction
and maintenance of the structured overlay a modified version of -MAN
[22, 40] is used. For the monitoring and passiv load balancing, gossip based
aggregation of load informaiton is used. Based on Vivaldi Coordinates[11],
a synthetic network coordinates system representing the latency between
nodes, an agglomerative clustering algorithm is used for data center detection
[39]. Cyclon [48]], a gossip based peer sampling service, is used to provide
the other gossiping protocols with references to random peers.

Scalaris is implemented using the programming language Erlang. Erlang is
a natural fit for implementing distributed algorithms. It provides language
level support for processes and message passing and can be seen as an
implementation of the actor model [17]]. The actor model is a popular model of
concurrent computation and is often used to describe distributed algorithms.
The basic primitives in this model are stateful "actors" which communicate



1 Introduction Jens V. Fischer

exclusively through messages. The implementations provided in this work
will use Erlang as well.

Contribution. The contribution of this thesis work is twofold: First, to
conceptualise and implement a gossiping framework for Scalaris. Based on
the analysis of different classes of gossiping algorithms, an appropriate ab-
straction of different tasks is established. This is then used to implement a
framework that provides the infrastructure necessary to implement miscel-
laneous gossiping protocols in Scalaris. The framework implements the parts
generic to all gossiping protocols and defines an interface. This interface
needs to be implemented by a concrete gossiping protocol to provide the
parts specific to the gossiping protocol in question.

As mentioned above, gossip based load monitoring is already deployed in
Scalaris, using the algorithm from [20]. The second contribution of this work
is to improve the load monitoring by choosing an algorithm superior to the
one currently used. The algorithm will then be extended to allow for the
distributed computation of simple histograms. It will finally be implemented
using the newly developed framework, thus also serving as a demonstration
of the functionality of the framework.

The selection of the algorithm is based on a survey of the relevant literature,
an experimental evaluation of the chosen algorithm is out of the scope of this
work. References to works with experimental comparisons of the different
algorithms are provided in the corresponding section. Although wireless
networks, especially wireless sensor networks, are a common environment
for gossiping algorithms, this is out of the scope of this work as well. As
Scalaris is deployed in wired networks there is no need to discuss the effects
of wireless environments on the use of gossiping algorithms.

Outline. Following the introduction, Section 2 will present an overview of
the fundamentals of gossiping. This includes a discussion of gossip based
information dissemination and membership management protocols. The
concept of cycles is introduced and the robustness criteria used for analysing
the algorithms are established.

Section |3| provides an extensive discussion of gossip based aggregation.
Several algorithms for computing averages are introduced and the symmetric
push-sum protocol is chosen as the algorithm to be used in the implement-
ation of the gossiping of load information. The protocol is then extended
for the computation of basic histograms. Next the symmetric push-sum pro-
tocol is evaluated with regard to the established robustness criteria. Finally,
the concept of periodic restarting is applied to the protocol to improve the
robustness with regard to node failures.

The general structure of a gossiping operation is developed in Section [4]
The breakdown into different phases is designed to capture the gossiping
algorithms from the previous sections and provide a basis for the imple-
mentation of the framework.



1 Introduction Jens V. Fischer

Section[5|gives an overview of the general structure and the generic parts of
the framework and discusses the most important implementation decisions.
The implementation is based on the analysis provided in the first part and
will be evaluated against the robustness criteria from Section

The design and implementation of load information aggregation will be
discussed and evaluated in Section 6]

Finally, Section [7| will present the conclusion and an outlook on future
research.



2 Fundamentals of Gossiping Jens V. Fischer

2 Fundamentals of Gossiping

Gossiping is a technique used to solve communication and computation
tasks in peer-to-peer systems. Peer-to-peer systems are, in contrast to central-
ised client-server architectures, characterised by the lack of any hierarchical
organisation or centralised control. All the nodes constituting a peer-to-peer
system are in principle equal and can carry out the same functions. Peer-to-
peer networks are usually built as overlay networks. Overlay networks are
built on top of an existing network, where the participating nodes cannot
communicate directly with arbitrary other nodes and thus have to use the
communication channels provided by the overlay network. (cf. [44]).

Peer-to-peer networks can again be subdivided into structured and un-
structured overlays. In both, every node only knows a subset of all nodes,
called its partial view. Its known peers are called its neighbours. In a structured
overlay the partial view is filled with references to peers complying to specific
criteria. The most common form are overlays implementing a distributed hash
table (DHT). By contrast, in an unstructured overlay the partial view is filled
with a random sample of peers from the whole network.

The general idea of gossiping is as follows: A node randomly chooses a
peer from its partial view and exchanges data with this peer. This is done by
every participating node and repeated in a periodic fashion. The most basic
example for the exchanged data would be a bit of information originating
at one node. Through the periodic pairwise exchanges, the information is
eventually distributed to all nodes. This kind of gossiping is usually referred
to as gossip based information dissemination.

Classes of Gossiping Algorithms. Different classes of gossiping algorithms
can be distinguished. The main classes are information dissemination, anti-
entropy and aggregate computation (cf. [5, 13, 31])E] Dissemination will be
discussed in the next section and computing aggregates will be discussed in
Section 3] Membership management (see Section [2.2) is somewhat at odds
with this classification, as it is a necessary part of nearly all gossiping al-
gorithms, but it works like information dissemination and can be seen as a
special case of it.

This leaves only anti-entropy gossiping. The idea is to resolve differences
of replicated datasets by comparing the complete datasets in each gossiping
operation. Hashes can be used to avoid comparing identical datasets. While
this is a very reliable mechanism for distributing updates in a database, it is
also very costly in terms of bandwidth. Seldom even referenced [5, 44], the
single use case of anti-entropy gossiping seems to be for replica reparation
in distributed databases [10, |13, 19]. Anti-entropy gossiping will therefore

! Kermarrec and Steen [31] additionally list topology construction and resource manage-
ment, but describe them as special cases of information dissemination. Birman [5]], on the
other hand, subsumes topology construction under aggregate computation.



2.1 Gossip Based Information Dissemination Jens V. Fischer

not be discussed further in this work.

2.1 Gossip Based Information Dissemination

Gossip based information dissemination, sometimes also referred to as
rumor-mongering [13], is the oldest and most widely used form of gossiping.
The main goal is to rapidly propagate information in a large network.

Epidemics. Gossiping is sometimes also referred to as "epidemic dissemin-
ation" or "epidemic algorithms" [13| 15 47]]. As the name suggests, this kind
of information dissemination can be described analogously to the spread
of epidemics, where a disease is spread by already infected members of a
group which infect other individuals with whom they come into contact. In a
network, the disease to be spread is the information to be distributed and the
people of a group are the nodes of the overlay network. Just as in epidemics,
the distribution of the information does not follow a predetermined path, but
is random and can encounter already "contaminated" nodes. The dreaded
characteristics of epidemics such as rapid spreading and high resilience are
desired properties in a distributed system.

2.1.1 Basic Dissemination Algorithm

Algorithm 1 Basic dissemination algorithm, push-pull scheme

¢ information dissemination can be started in any round by any player

¢ each node P periodically choses f nodes @1, ..., @y uniformly at ran-
dom from the entirety of the nodes

¢ if P already is informed (already has the information), P sends the
information to Q1, ..., Q¢ (push)

¢ if P is uninformed, it requests the information from every Q1, ..., Qy

* A message is only forwarded max. ¢ times

Algorithm(I|shows a procedure for gossip based information dissemination.
This procedure is repeated periodically at a predefined period of time, called
a cycle (see Section [2.3). The important parameters of the algorithm are f
(called fanout) and ¢t (sometimes called age). The fanout f regulates how
many peers are contacted during each cycle and is the determining factor of
the robustness of the algorithm. Kermarrec, Massoulié and Ganesh [30] give
a detailed analysis of the effect of different fanout values. They conclude, that
the fanout should be set to f = log(n) + v (Where 7 is a system configuration
parameter). The age parameter determines the termination of the algorithm,
in the simplest form it is just a counter and the information is no longer
spread after a predefined number of send operations. The timely termination
is important for keeping the number of messages sent as low as possible.



2.1 Gossip Based Information Dissemination Jens V. Fischer

More advanced termination mechanisms are feasible. Karp et al. [26] for
example propose a more robust mechanism which takes into account how
often an already informed node receives the information again.

Push, Pull and Push-Pull. There are three principal schemes for how to
exchange the information between peers: push, pull and push-pull. In a
push scheme, an already informed node P contacts a node () and sends it the
information. The information can only be spread by nodes which already
have the information. In the beginning, there are a lot of uninformed nodes
so the probability of a informed node selecting an uniformed one is high
and the information spreads exponentially, until about half of the nodes
are informed. After that, the dissemination speed slows down significantly.
Karp et al. [26] call this the shrinking phase.

In a pull scheme, a node P would contact a node ) and ask for information.
Pure push schemes are not used in practise, because a node which wants
to inject information needs to wait until it is contacted. But the pull scheme
is faster in the shrinking phase, because the more nodes are informed, the
higher the probability of contacting an informed node. According to Karp
et al. [26], this point is reached when about half of the nodes are informed.

In a push-pull scheme the information is exchanged bidirectionally, which
combines the advantages of both approaches. In practice, this is the most
commonly used approach and regarded as having the best dissemination
speed (cf. [6] 13| 21} 26, 44]).

Time Complexity. Gossip based information dissemination is considered
to be exponentially fast, i.e. reaching exponentially more nodes every cycle.
Obviously, the exact dissemination speed depends on the concrete algorithm
used, especially on the fanout value and whether a push-, pull or push-pull
scheme is used. Karp et al. [26] give a detailed analysis of the time and
message complexity of different dissemination algorithms. They show, for
example, that their push-pull scheme reaches all nodes in logz n+O(nInlnn)
cycles with very high probability. In general, the convergence speed is ex-
pected to be logarithmic in the network size, i.e. in O(log n), where n is the
size of the network. This makes gossiping a fast and scalable information
dissemination technique.

Guarantees of Delivery. Due to the probabilistic nature of gossiping, there
is no guarantee that all nodes receive a certain message. But gossiping can
usually guarantee a very high probability of reaching all nodes. Kermarrec,
Massoulié and Ganesh [30] show, that if the fanout value is set to f = log(n)+
7 (where v is a configuration parameter) the probability of reaching all nodes

is exp (—exp (—)).



2.1 Gossip Based Information Dissemination Jens V. Fischer

2.1.2 Related Work

Gossiping as information dissemination can be seen as a form of application
level multicasting. The most common alternative approach is to build multi-
cast trees on top of a structured overlay. Tanenbaum and Steen [44] describe
a simple scheme to build a tree on top of Chord [43], which can be used for
multicasting. Scribe [8] is a more elaborate system built on top of Pastry [37].

Robustness. The main advantage of gossiping algorithms is seen in the
greater resistance to communication disruptions. Gossiping has an inherent
redundancy, as every message is delivered multiple times through multiple
paths. This, combined with the random peer selection is enough to ensure a
very high robustness, i.e. even in the presence of node failures and message
loss the information will still reach all nodes with very high probability.
Kermarrec, Massoulié and Ganesh [30] give a detailed theoretical and exper-
imental analysis in which they show, that this reliability is strongly related
to the fanout value and and that by tuning the fanout (and other system
parameters) success probabilities arbitrarily close to 1 can be achieved. Gos-
siping in this sense is a proactive algorithm, it does not require a mechanism
to detect and reconfigure from failures. Structured approaches are usually
reactive and can not give comparable guarantees for robustness. It follows
that a major application domain for gossiping are highly dynamic networks
with, for example, a lot of churn and very unreliable communication.

Message Overhead. The redundancy in the message delivery also causes
one of the main disadvantages of gossiping: the higher message overhead. In
gossiping, the number of messages needed to reach all nodes is in O (nlogn),
whereas deterministic schemes can achieve message complexities of O (n — 1)
[26]].

Load Distribution and Latency. Another advantage of gossiping is the
very predictable load. The exchange data is usually assumed to be of fixed
size and the gossip procedure is repeated periodically at a predefined time
interval. Consequently, every node in the network produces the same amount
of load per time interval, i.e. the distribution of the load over time and
over all nodes is uniform. As the time interval is usually set to a value
well above the transmission time of a message, gossiping has in practise a
higher latency then other multicast solutions. These characteristics make
gossiping especially suitable for applications that require continuous data
dissemination in the background. The prime example for this is system
monitoring.

Scaleability. Algorithms for structured peer-to-peer overlays need to main-
tain routing information, like the finger tables in Chord, to be able to dis-
tribute messages. Additionally, when considering multicast trees, the trees
need to be constructed and maintained. The only "routing information" in
gossiping is the partial view. Even if one considers extending the size of the



2.2 Membership Management Jens V. Fischer

partial view in relation to the network size, the management overhead in
gossiping is much smaller. Gossiping is therefore considered to have even
better scalability than most algorithms for structured peer-to-peer networks.

2.2 Membership Management

So far, the existence of an overlay or the possibility of a node to choose a peer
uniformly at random from the entirety of nodes has been assumed as given.
But the construction of a random overlay and the filling of the partial views
of the nodes needs to be facilitated somehow. This can be done by gossiping
itself and most gossiping systems include some mechanism to do so. This
aspect of gossiping is referred to as membership management.

Centralised Overlay Construction. There are other ways to construct the
overlay, for example a server based protocol. All nodes who want to parti-
cipate in the overlay have to register with the server. The server maintains a
list of all nodes and provides joining nodes with a random sample of this
list (the reference to the new node would also need to be distributed to
the existing nodes). Such an approach comes with all the disadvantages of
client-server architectures such as a single point of failure, scalability issues,
reliability issues etc. and is in general undesirable in a peer-to-peer environ-
ment. Furthermore, membership management is one of the main strengths
of gossiping.

Random Graphs. Unstructured overlays produced by gossip based mem-
bership protocols are modelled after and measured against random graphs.
A random graph is a simple, connected graph G in which pairs of vertices
are connected by some probability. For a collection of n vertices and for each
of the (3) possible edges, an edge (h,u) is added with a probability p,,. For
modelling random overlays in gossiping, usually only simple random graphs
with the same p,,, for every pair of distinct vertices u and v are of interest (cf
[47]).

Random graphs exhibit some properties which are very interesting for
gossiping, namely a short average path length, a low average clustering
coefficient and an even degree distributionE]

The average path length is a metric for the number of hops to reach any
given node from a given source. A short average path length is therefore an
essential property of every overlay used for information dissemination.

The clustering coefficient, defined as the ratio of the existing links among
the node’s neighbours over the total number of possible links among them,
shows to what percentage the neighbours of a node are also neighbours of
each other. The clustering is important with regard to the connectivity of the
overlay. A lot of clustering would increase the chances of network partitions.

2 For the following remarks, cf. [48].



2.2 Membership Management Jens V. Fischer

Higher clustering also causes more redundancy in the message delivery,
which is bad for the dissemination speed.

The degree distribution shows how evenly connections are distributed between
the nodes. The out-degree specifies how many other nodes one node knows
and is relatively fixed by the size of the partial view. More interesting is the
in-degree, which specifies by how many other nodes a node is known. It is
desirable to have a low standard deviation in the node degree. It indicates a
good connectivity and uniform load distribution.

2.21 Example Membership Protocol: Cyclon

A good representative of the class of gossip based membership management
protocols and probably the most widely used is Cyclon [48]. The basic idea
follows the same structure as in information dissemination: A peer is selected
from the partial view and some information is exchanged with the peer. But
in Cyclon the data to be exchanged is a random subset of the node’s partial
view. The receiving peer uses the subset to update its own partial view.
Algorithm 2| gives the exact procedure for Cyclon. Cyclon uses so called
extended shuffling, which extends the basic shuffling introduced in [42]
with an ageing mechanism, which is then used to always chose the peer
with the oldest entry. This dramatically improves the removing of references
to dead nodes. By imposing a predictable lifetime on every reference it
also facilitates a more uniform distribution of pointers. The main system
parameters are the cache size ¢, the shuffle length 1 <[ < c and the cycle
length AT'. The cache is the partial view of the node, the shuffle length is
the number of references exchanged between nodes and the cycle length is
the amount of time when a node initiates a new shuffle operation. Based
on their experimental analysis, Voulgaris, Gavidia and Steen [48] suggest
values of ¢ = 20,50 or 100, [l = 3 — 8 and AT = 10s as a good compromise
between convergence speed and message overhead.

Properties. Their empirical analysis also shows, that Cyclon converges with
speed logarithmic to the network size to a network strongly resembling a
random graph with the discussed properties such as a short average path
length, a low average clustering coefficient and an even degree distribution.

Besides the desirable properties of the overlay, the main advantage of
gossip based membership protocols in general and Cyclon in particular is
the remarkable robustness. Removing up to 70% of the nodes of a network
at once does not threaten the connectivity. Furthermore, thanks to the ageing
mechanism the references to dead nodes are removed very quickly. Fewer
than a number of cycles equal to the cache size are needed to "forget" dead
links. So not only is the connectivity preserved, but the remaining nodes
also quickly restrengthen the connectivity by replacing invalid references
with valid ones. The latter is referred to as self-healing behaviour.



2.2 Membership Management Jens V. Fischer

Algorithm 2 Cyclon: Extended Shuffling
Every fixed period AT, P initiates a shuffle:

¢ Increase by one the age of all neighbours

¢ Select neighbour @ with the highest age among all neighbours, and
[ — 1 other random neighbours

¢ Replace )’s entry with a new entry of age 0 and with P’s address

¢ Send the updated subset to peer )

¢ Receive from () a subset of no more than i of its own entries

¢ Discard entries pointing at P and entries already contained in P’s cache

¢ Update P’s cache to include all remaining entries, by firstly using empty
cache slots (if any), and secondly replacing entries among the ones sent

to Q.

Upon receiving a set of neighbours S from P:

¢ Select a random subset of [ neighbours from @Q’s cache

* Send the selected subset to peer P

¢ Discard entries in S pointing at ) and entries already contained in Qs
cache.

* Update @’s cache to include all remaining entries in S, by firstly using
empty cache slots (if any), and secondly replacing entries among the
ones sent to P.

Application Domains. The main application domain for membership pro-
tocols is gossiping itself. The membership protocol can be integrated with
a gossiping application or run as a separate peer sampling service. When
integrating the membership protocol with the gossiping application, the
messages can be combined, which reduces the overall number of messages.
Furthermore, the peer sampling can be tailored to the specific task. Having
a separate peer sampling service has the advantage that multiple gossiping
applications or other components can use the same service.

The latter gives rise to a whole new application domain for gossiping,
usually referred to as topology construction. Here, the random network
constructed by a membership protocol is used as a substrate for building
a structured overlay through gossiping. The basic idea is similar to the de-
scribed shuffling mechanism, but instead of a random selection of nodes for
the cache (or view) the nodes are selected with a ranking or optimisation
function. Two examples for gossip based topology construction algorithms
working like this are T-Man [22] and X-Bot [32].

2.2.2 Related Work

Cyclon can be classified as a protocol using a cyclic strategy, meaning the
partial view is updated continuously and independently of overlay related
events such as joining, leaving or failing nodes. An alternative, reactive

10



2.3 Cycles Jens V. Fischer

strategy is followed by Scamp [35]. In Scamp, the partial view is only updated
when nodes join or leave, failing nodes are detected with heartbeat messages.
Scamp compares favourably in relatively static and error free environments
due to the smaller message overhead but lacks the robustness necessary for
highly dynamic networks. HyParView [33], on the other hand, is optimised
for higher robustness even than Cyclon. It uses two partial views combined
with a node failure detection mechanism, but comes at the cost of higher
consumption of resources, especially TCP connections (which are used for
failure detection).

2.3 Cycles

Even though most gossiping algorithms are not synchronous, it is useful to
refer to the execution of the protocol in terms of cyclesE] Assuming a push-
pull scheme, a cycle is defined to be the time period during which f - 2n
exchange operations have been made, where n is the number of nodes and f
the fanout (see section2.1.T). During a cycle, each node initiates exactly f data
exchanges. How often a node is contacted for a data exchange depends on
the randomness of the peer selection, but on average every node is contacted
f times per cycle. It should be obvious that assigning exchange operations
to a specific global time interval only works in a synchronous environment.
In asynchronous environments this can only be an approximation. Due to
uncertainties of different clock speeds and message delivery delays, there
might never be a point in time where all nodes finished the same cycle, i.e.
cycles can interleave. As most environments in which gossiping is deployed
cannot guarantee synchronicity, this should be carefully considered when
selecting suitable gossiping algorithms.

2.4 Robustness in Practical Settings

When implementing a gossiping algorithm, practical application settings
of distributed networks need to be considered. The practical settings often
diverge from the simplified assumptions made by the designers of the al-
gorithm. This can affect the correctness of the algorithm, especially in the
case of gossip based aggregation (see Section [3). In this work, when dis-
cussing the algorithms used and the implementation of the framework, the
following three aspects will be considered (cf. [23]]):

First, the communication model. Here one can distinguish between synchron-
ous and asynchronous operation modes. In a synchronous model, restrictions
are placed on when message delivery and computations can occur. The exe-
cution proceeds in lock-step rounds, i.e. there is no uncertainty of timing.

* Although the term "cycle" is widely used [6,[13} 20} 22, |48]], "round" is also commonly
used [5} (15} 26,131, |47] to refer to the same idea. The term "round" however is also used to
refer to another concept (see Section[3.5), hence "cycle” is used in this work.

11



2.4 Robustness in Practical Settings Jens V. Fischer

In an asynchronous model, no such restrictions are placed on the timing.
Message delivery is assumed to take a finite but unknown amount of time.
The communication is, however, assumed to be in FIFO order, i.e. no message
already sent can be surpassed by a message from the same source.

Second, the reliability of message delivery. Message loss refers to the loss
of communication data due to temporary link or node failure. Note that
message loss can occur even if reliable point-to-point connections are used,
e.g. in systems where messages are routed on the application layer the failure
of a node can cause message loss.

Third, node failures. The node failures considered here are only crash fail-
ures, i.e. node failures where the nodes stops working at an arbitrary time.
Byzantine failures are out of the scope of this work.

12



3 Gossip Based Aggregation Jens V. Fischer

3 Gossip Based Aggregation

Traditionally, gossiping was mainly associated with information dissem-
ination. More recently, gossiping techniques have been adopted to solve
aggregation problems in distributed systems. Today;, this is the most active
area of research (cf. [23]).

In gossip based information dissemination the basic idea is to spread some
bit of information originating at one node to all the other nodes. Gossip
based aggregation, on the other hand, starts from a set of multiple input
values spread across all nodes of the system. Examples for interesting values
to aggregate include load information, sensor readings and application layer
information like the number of files stored on a file server. These local values
are iteratively combined through gossiping with neighbouring peers, using
an aggregation function such as sums, averages, and extremal values. The
result of each iteration is called the current (local) estimate. In the end, the
local estimates aggregated at each peer converge towards the same global
aggregate. Gossip based aggregation thus is a way of providing local access
to information about global properties. (cf. [6, 20, 23]).

It might not always be possible to converge to the true global aggregate,
sometimes only an approximation is possible. This can be due to algorithmic
limitations as some more complex aggregation functions are intrinsically
approximative in nature, e.g. g-digest based quantile computation [18} 41].
In other cases system factors such as failing nodes and links can cause an
otherwise exact algorithm to produce erroneous results, i.e. the achieved
estimated aggregate is less accurate.

The complexity of gossip based aggregation is generally considered to be
in O (log n), resulting in a message complexity of O (nlogn). More details
will be given when discussing concrete algorithms below.

3.1 Related Work

The centralised approach to aggregation is a single node which retrieves
all the values from the other nodes and performs the aggregation locally at
the collecting node. This can work effectively in small and static networks,
but the centralised approach comes with well known disadvantages: The
concentration of traffic and processing load at the central node leads to
problems with scalability. As the central node is the single point of failure,
reliability is also an issue (cf. [12]).

Trying to decentralise the aggregation, several distributed aggregation
protocols have emerged in recent years. They can be divided into two main
classes: tree based and gossip based aggregation protocols.

Tree Based Aggregation. The main idea of tree based aggregation proto-
cols is to organise all nodes into an overlay tree on which the aggregation is
performed. The aggregation is then performed from the leaf nodes to the

13



3.1 Related Work Jens V. Fischer

root node of the tree. A representative example for a tree based aggregation
protocol is GAP (Generic Aggregation Protocol) [12]. GAP constructs and
maintains a breadth first search (BFS) tree on an existing overlay. The BFS
tree is then used to compute the aggregates, every node computes partial
aggregates of its subtree and the aggregates are then sent along the tree
towards the root. For maintaining the BFS tree, the partial view of each node
also contains entries of non-tree nodes with which messages are exchanged
as well. Assuming the availability of a failure detection service, GAP is able
to deal with node failures.

GAP has since been extended for different purposes. Wuhib et al. [49] use
GAP as basis for detecting threshold crossing alerts (TCAs) for network-
level variables. A-GAP[36] is an extension to GAP focussing on configurable
accuracy, allowing for trade-offs between accuracy and protocol overhead.
Astrolabe [46] is an earlier attempt to a general aggregation solution, but
does not provide the same robustness as GAP and its successors.

Qualitative Comparison. There are qualitative and quantitative differ-
ences between gossip and tree based aggregation algorithms (cf. [50]). First,
gossip based protocols are usually simpler, as they do not need to construct
and maintain an additional overlay for the aggregation. Second, in gossiping
the result of the aggregation is available at every node of the system while
in tree based approaches only the root node knows the aggregation result.
Third, node failures effect both approaches in very different ways. In gossip
based aggregation, the main concern with node failures is the resulting mass
loss (see Section [3.4), while a tree based aggregation protocol needs to recon-
struct the aggregation tree. Forth, using an aggregation tree leads to a higher
load on the root node and its children, as the aggregation occurs along the
tree towards the root (cf. [45]). This can become a scalability issue in very
large networks, although this is still far superior to centralised approaches.
Gossip based aggregation, on the other hand, is characterised by a uniform
load distribution (see also Section [2.1.2).

Quantitative Comparison. In the quantitative comparison, the published
simulation results indicate advantages for tree based aggregation. Wuhib
et al. [50] compare GAP and G-GAIﬂ a gossip based aggregation protocol.
They compare the estimation accuracy of the aggregation in function of the
round rates, the network size and the failure rate and conclude, that the
GAP consistently outperforms the gossip-based protocol. Using their own
extension of G-GAP, Tesfaye [45] provides an even broader experimental com-
parison with GAP. The author finds some cases where gossiping compares
favourable, but in general the findings are in accordance with [50].

4 G-GAP [50] stands for Gossip-based Generic Aggregation Protocol and is an extension
of the push-synopses protocol from [28]]. The focus of G-GAP is on continuous monitoring
and robustness.

14



3.2 Computing Averages Jens V. Fischer

3.2 Computing Averages

This chapter analyses gossip based aggregation algorithms further, namely
algorithms for averaging. In addition to computing the average, all the al-
gorithms discussed are capable of computing count, sum and extremal values
as well.

Continuous Aggregation vs Periodic Restarting. The values to be aggreg-
ated might change over time, e.g. when trying to aggregate sensor readings
the sensor may periodically or continuously produce new readings. There
are two ways of dealing with dynamic values: First, periodic restarting of
the protocol and second, protocols that inherently allow for continuous ag-
gregation of changing values. The basic idea of periodic restarting is the
following: The aggregation is started with a set of local values which are
aggregated. After the current set of values has converged, the local values
are read again and the aggregation process is restarted. This amounts to
periodically computing the aggregate of a snapshot of all values at a certain
point in time. Assuming no node failures or message loss, this approach
converges to the true global aggregate value.

In protocols which allow for continuous aggregation, changing values are
constantly fed into the aggregation process and the protocol deploys some
mechanism to deal with the dynamics, i.e. some mechanism to ensure that
the protocol still converges to a meaningful global aggregate. Assuming
no changes in the values aggregated, these protocols would also converge
to the true average. In the presence of changing values, however, only an
approximation is achievable at any point in time. Examples for protocols
which allow for continuous aggregation are G-GAP [50], flow updating [2,
24, 25] and the evaporative approach presented in [4].

Whether the precise aggregation of snapshots or the continuous approxima-
tion is preferable depends not least on the application scenario. Additionally,
the ability to deal with continuously changing values usually comes at the
cost of higher message overhead. On the other hand, the ability to handle
dynamic values can be extended to network dynamics, that is to say these
algorithms have interesting properties with regard to robustness of node
failures (periodic restarting is also a means of dealing with failing nodes, see
Section [3.5]for details). Extensive analytical or empirical comparisons of the
two approaches still have to be done.

Periodic restarting presents a simple and effective way of dealing with
dynamics in networks and values. Additionally, G-GAP and flow control rely
on a more static overlay than Cyclon provides, hence it is not clear how well
they would work within Scalaris. This work will therefore concentrate on the
analysis of algorithms with periodic restarting. The continuous approach
offers interesting opportunities for further research, especially a detailed
comparison with the algorithms presented here would be of interest.

Another approach is provided by Kashyap et al. [27]. They present an

15



3.2 Computing Averages Jens V. Fischer

algorithm optimised for message complexity rather than time complexity. By
allowing a slightly worse time complexity of O (log nloglogn) cycles they
can provide a message complexity of O (nlogloglogn). As this work is more
interested in convergence speed than the message overhead, this algorithm
is not discussed further.

Mass conservation. Before discussing the different averaging algorithms,
an important property of these protocols needs to be explained. Mass con-
servation [28] (also cf. [6} 23| 50]) states, that at any time ¢

E Ly = E Vg
T T

where z; refers to the original local value at node 7 and v; to the current local
estimate at node ¢. Put into words, mass conservation expresses, that the
sum ) ; v; of all local estimates in a network is invariant at any time. When
mass conservation is given, the protocol is guaranteed to converge to the true
average. In this context, ), v; is often referred to as the global mass. In the
algorithms using a sum s; and and a weight w; (see below), v; is calculated
as v; = Si /vi.

Algorithm 3 Push-Pull Gossiping

Xo: initial local value

initialize
VvV = Xo

every interval time units
j = getNode()
j ! {v, true }

upon event receijved {v’, r} from j
if r is true then
j ! {v , false}
end if
v = (v +v’)/2

Push-Pull Gossiping. In the current implementation, Scalaris uses the
push-pull gossiping protocol from [ZOE as shown in Algorithm 3| Periodic-
ally, a node P starts a gossiping operation by sending its current estimate
vy, to the selected peer Q. @ replies by sending back its current estimate v,,.
Both P and @) update their local estimate by computing v = (v» +v4) /2. When
v is initialised with the local values at all nodes the average is calculated,
initialising all but one node with v = 0 and one node with v = 1 will return
1/n, i.e. it can be used to calculate the size of the network. The sum of all
local values can be calculated as average times size. The theoretical and

> Boyd et al. [7] provide a nearly identical algorithm.

16



3.2 Computing Averages Jens V. Fischer

Node A Node B
2=3 v=0 v=1 .
_— push(1) /push(2)
Node A Node B
V=O V=1
Node A Node B
v=0.5 v=1.5
—pul@)~ —pull(t)”

Node A Node B

Figure 1: Example Mass Conservation Violation in Push-Pull Gossiping

experimental analysis provided in [20] show that the push-pull gossiping
protocol is within the time and message complexity bounds given above (see
page[13).

The main disadvantage of this algorithm is, that it violates the mass conser-
vation invariant. As shown by Jesus, Baquero and Almeida [23], the push-pull
protocol needs atomicity for the operation v = (v» +v4) /2 to not violate the
mass conservation. This is true even in synchronous settings, i.e. without
interleaving between different cycles. Figure|1|(cf. [23]) shows one cycle of a
gossiping operation with three nodes involved. Node B sends a pull request
to Node A while also receiving a pull request from Node C. Node B then
updates its current value and uses this value when the message from Node
A arrives. The mass of all nodes has changed now, >, z; # > . v;, i.e. mass
conservation is violated.

Message interleaving can also result from asynchronous communication
where messages from different cycles interleave. It should be evident from
the above, that this would also result in mass conservation violations.

Push-Sum Protocol. Another approach is the push-sum protocol presen-
ted by Kempe, Dobra and Gehrke [28], which guaranties mass conservation
in the case of asynchronous communication. The algorithm is the same as

17



O N Ul W N e

3.2 Computing Averages Jens V. Fischer

Algorithm [ just without lines 13-16 (which also supersedes the use of r).
The basic idea is that every node ¢ maintains the local estimate as a sum s;
and a weight w;. The sum is initialised with the local value: s; = z;, and the
weight is initialised to w; = 1. The weight w; expresses the contribution of
the sum s; to the current estimate v; = s: fw,.

At the beginning of every cycle, a node P sends the tuple {s»/2,w»/2} to a
randomly chosen peer () and stores s»/2 and w» /2 as its new sum and weight.
When @ receives the message, the local sum and weight are updated with
the received sum and weight as v, = v, + v, and w, = v}, + w,. The whole
exchange can be interpreted as dividing the weight of the estimate between
the P and Q.

Kempe, Dobra and Gehrke [28] provide detailed theoretical analysis of the
time complexity of the push-sum protocol. They show that with probability
at least 1 — §, the protocol converges within O (logn + logl/= + 1/5) cycles to
an approximation of the average within ¢, § and ¢ being two arbitrary small
positive constants.

The primary disadvantage of the push-sum protocol is that it is a pure
push-based gossip scheme. As detailed in Section[2.1.1} push-pull schemes
are considered to have a better convergence speed than pure push based
designs.

Algorithm 4 Symmetric Push Sum Protocol

Xo: initial local value
wo: initial local weight

initialize
S = Xpg, W = Wg

every interval time units
j getNode ()
s s/2, w = w/2
j U {{s, w}, true }

upon event received { {s’, w’}, r } from j
if r is true then
s =s/2, w=w/2
j ! { {s, w}, false }
end if
s=s+s’, w=w+w

Symmetric Push-Sum Protocol. The symmetric push-sum protocol [23]
combines the robustness of the push-sum protocol with the better conver-
gence speed of push-pull schemes. The symmetric push-sum protocol, as
detailed in Algorithm[4} extends the push-sum protocol by adding replies

18



3.3 Histograms Jens V. Fischer

to the scheme, effectively making it a push-pull schemeﬂ Upon receiving a
message, the node checks whether the message is a request (r is true), or
if it is a reply. If its a request, the node sends back its own s/2 and w/2 and
divides its local estimate by two. Irrespective of whether it is a request or
reply, the local estimate is then updated to incorporate the foreign values.

Blasa et al. [6](also cf. [23]) provide extensive experimental comparison of
push-pull gossiping, the push-sum protocol and the symmetric push-sum
protocol, demonstrating the better performance of the latter with regard to
accuracy and convergence speed.

The symmetric push-sum protocol can be used (like the other algorithms)
for computing various aggregates including the average, the sum and the
count of nodes. Which aggregates are computed depends on the initial values:
To calculate the average, one initialises s; to the local value and w; to 1 at the
beginning of the protocol (or at the beginning of a new round). To compute
the sum, s; is set to the local value again, but w; is set to 1 at exactly one node
and to 0 at all other nodes. The count of all nodes can be computed the same
way as the sum, but initialising s; to 1 at every node.

Based on the discussed advantages of the symmetric push-sum protocol,
namely the better robustness towards message interleaving and the superior
convergence speed, this is the algorithm chosen for the implementation of
load monitoring in Scalaris. The rest of this section will provide further
analysis and extension of this algorithm.

3.3 Histograms

The symmetric push-sum protocol can be extended to compute basic histo-
grams. To compute a histogram with this protocol it has to fulfil the following
conditions: First, the number and width of the buckets needs to be known to
all nodes when starting the protocol. Second, given the number and width of
the buckets, every node needs to be able to locally decide upon initialisation
what its contribution to one or multiple buckets of the histogram is. Third,
every bucket of the histogram can be computed as an average of the local
contributions. More general solutions to gossip based histogram computa-
tion exist, e.g. using g-digests [18, 41], but they are beyond the scope of this
work.

Given that the above conditions are met, a histogram can be computed using
the Algorithm [5|analogously to the symmetric push-sum protocol described

® Blasa et al. [6, p. 29] call the reply an "asynchronously perform[ed] [...] symmetric push
operation", presumably to emphasize the difference to the push-pull protocol: In the push-
pull protocol, the push and pull depend on each other, the updating of the local estimate can
only take place when the pull was successful. In the symmetric push-sum protocol, the push
and the symmetric back-push are independent of each other. In this work push-pull is used
in the broader sense of bidirectional communication (see section , hence the symmetric
push-sum protocol is considered a push-pull scheme.

19



3.4 Evaluation of symmetric push-sum protocol Jens V. Fischer

Algorithm 5 Symmetric Push Sum Protocol for Histogram

Lo: initial local value(s)
Ho: [{Keyl, undef}, {Key2, undef}, ...]: initial empty histogram

initialize
H = dnitialize(Lo, Ho)

every interval time units
Q = getNode()
H divede2(H)
Q! { H, true }

upon event received { H’, r } from I
if r is true then

divide2(H)

{ H, false }

f

in Section The function initialize(L, H) calculates the contribution
of the nodes’ value(s) to the possibly multiple buckets of the histogram
and populates the histogram with these initial values. As in the push-sum
protocol, the local estimate for every bucket j is computed as a tuple of sum
s;j and the weight wj, resulting in buckets the form {Key, {s;, w;}}.

At the beginning of every cycle, a peer () is selected and the histogram
is prepared for the data exchange. The function divide2(H) divides the
sum s; and the weight w; of all buckets by two. The prepared histogram
is then sent to ). Upon receiving a message, the node checks whether the
message is a request (r is true), or if it is a reply. If it is a request, the node
prepares its local estimate of the histogram with divide2 (H) and sends it
to the requesting node. Irrespective of whether it is a request or reply, the
local estimate is then updated with the received histogram, using the merge
procedure given in Listing

Note, that it is only possible to extract the global average from a histogram,
if one keeps track of how many nodes contribute to each bucket.

3.4 Evaluation of symmetric push-sum protocol

In this section, the properties of the (symmetric) push-sum protocol towards
the aspects of robustness introduced in Section[2.4]are discussed. If not stated
otherwise, cf. to [6} 23, [28] for the whole section.

Communication Model. The push-sum protocol has been shown to be
robust in terms of message interleaving in asynchronous environments. The
symmetric push-sum protocol, which adds a reply mechanism to the push-
sum protocol, has the same properties with regard to message interleaving.

20



3.4 Evaluation of symmetric push-sum protocol Jens V. Fischer

Listing 1 Histogram: Merge procedure

merge(H1, H2) ->
zipwith(fun merge_bucket/2, Histograml, Histogram2).

merge_bucket ({Key, undef}, {Key, Value2}) ->
{Key, Value2};

merge_bucket({Key, Valuel}, {Key, undef}) ->
{Key, Valuel};

merge_bucket ({Key, Valuel}, {Key, Value2}) ->
{Key, merge_avg(Valuel, Value2)}.

merge_avg({Suml, Weightl}, {Sum2, Weight2}) ->
{Suml+Value2, Weightl+Weight2}.

Message delays may reduce convergence speed, but the mass conservation
property is always guaranteed as long as all messages have been received.

Message Loss. In principal, the loss of a message directly results in the loss
of weight and therefore the violation of the mass conversation property. How
much a mass loss affects the accuracy of the estimated aggregate depends on
when during the gossiping the message loss occurs. The later the mass loss
occurs, i.e. the more the local estimates already converges to the true global
average, the smaller the effect on the accuracy of the estimated aggregate.
Message loss in the earlier stages of the gossiping process, on the other hand,
affects estimation of the global aggregate. It does not completely invalidate
the results but reduces the accuracy of the estimates.

If nodes are able to detect message loss, the originating node will be able to
reintegrate the values from the lost message into its local estimate. This way,
no mass is lost and mass conversation is still ensured. In order to keep the
estimation as accurate as possible, one should use every possibility to detect
message loss, even if it might not be possible to detect all lost messages. The
only exception would be a one-sided optimisation for low message overhead,
as the detection of message loss might increase the number of messages.

Node Failures. Node failures affect the accuracy of the aggregation. The
local value z; of anode i is used to initialise its sum s;. Once the gossiping has
started, shares of the node 7 are distributed to other nodes and incorporated
into their local sums and weights. When node 1 fails, its shares still remain
in the system, which violates the mass conservation property.

With regard to the effect of the mass conservation violation on the accuracy,
what was said about message loss holds for node failures as well: The more
the local estimates have already converged, the smaller the effect on the
accuracy of the estimation.

In the proposed form, neither the push-sum protocol nor the symmetric

21



3.5 Periodic Restarting Jens V. Fischer

push-sum protocol support node failure. The next section discusses, how
periodic restarting can provide a mechanism to deal with node failures.

3.5 Periodic Restarting

As discussed in Section 3.2} the periodic restarting is a mechanism to deal
with the dynamics of changing values. But the periodic restarting fulfils a
dual purpose, it is also a mechanism of dealing with failed nodes.

Periodic restarting of the protocol was first proposed in [20] for the push-
pull gossiping algorithm, but it can be applied to the (symmetric) push-sum
protocol as well. The term "round" is used to refer to the differed repetitions
of the protocol. A round is defined as the period of time until the protocol is
restarted.

A round proceeds as follows: At the beginning of every round, the sum s; is
initialised with the currentlocal value x; and the weight w; is set to 1. The local
estimates are then aggregated as sum and weight through Algorithm 4, until
the local estimates have converged to the global aggregate. The termination
of a round can be determined either by predefined criteria like minimum
and maximum number of cycles or, preferably, by a convergence criterion.
The criterion will be referred to as the new-round criterion. An example for
a convergence criterion would be

Ve—u<z<c:|luy—v,-1| <e

where c is the current cycle and u is a system parameter. In words: Compare
the change of the local estimate v over the last u cycles and terminate, when
the change is smaller than a predefined «.

In a naiv implementation, the value delivered to the application querying
for the aggregation result would always be the current estimate. This would
imply that every time a new round is started, the estimation error would
suddenly spike, until the values of the new round have converged. This can
be optimised (cf. [4]) by always keeping the properly converged aggregation
result from the previous round. When queried, the previous result can be
returned while a new result is computed in the current round.

This can be further optimised by deploying an additional (weaker) version
of the new-round criterion, e.g. by comparing only the last w < u rounds or
using a larger ¢ (this will be referred to as the best-value criterion). Upon
a query for the aggregation result, the previous estimate would only be
returned when the estimate of the current round does not fulfil the best-
value criterion. By varying the parameters of the convergence criteria, the
trade-off between accuracy and more up to date results can be fine-tuned.

Periodic Restarting and Node Failures. As detailed in the last section,
when a node fails after the value of the node has already become part of the
aggregation process, the mass conversation property is violated. The data

22



3.5 Periodic Restarting Jens V. Fischer

from a failed node keeps impacting the current round and when the round
finishes, it will stay in the system as data from the last round. This means
that all traces will have left the system two rounds after a node failure (upper
bound). When using the discussed optimisations, the impact of the failed
node will vanish even faster in practice. As soon as the current estimate has
sufficiently converged according to the best-value convergence criterion, the
estimates of the current round will be returned to a query. This means that
a failed node’s information stops impacting the result even before the next
round finishes.

Applying the concept of periodic restarting is a major improvement of
the (symmetric) push-sum protocol with regard to robustness against node
failures.

23



4 The General Structure of a Gossiping Operation Jens V. Fischer

4 The General Structure of a Gossiping Operation

To develop a gossiping framework it is useful to further examine the general
structure of a gossiping operation. On the basis of the analysis performed in
the previous sections, a breakdown into phases is provided in this section.
This breakdown should be sufficiently general to capture most gossiping
algorithms and sufficiently specific to provide a basis for implementation. A
gossiping operation is defined as the interaction between two nodes in one
cycle.

As discussed in Section a push-pull scheme offers the best overall
performance. It is also the more general scheme: if one would want to imple-
ment a pure pull scheme this would be possible in a push-pull framework
by simply leaving the the push party empty. It wouldn’t be possible however,
to implement a push-pull scheme in a pure push framework. Consequently,
from here on, a push-pull scheme is assumed.

Node P: Requester Node Q: Responder

Phase 2:
Phase 1: Request / Push Phase

~Sxcy,
> Pp
9 [-a}
A

Phase 4:
Reply / Pull Phase
oa'(_a\X

Phase 3:
Prepare-Reply Phase

\

Phase 5: &
Integrate-Reply Phase

Figure 2: Phases of a gossiping operation

Figure 2| depicts the breakdown of a gossiping operation into phases. Two
peers are considered, P and (). P acts as a requester, initiating the gossiping
operation. This corresponds to phases one, two and five. Kermarrec and
Steen [31] call this the active thread. The other node, ), acts in a more passive
role as a responder (phase three), called the passive thread. In one cycle, each
node is exactly once in the active requester role. How often a node is in the
passive role differs, due to the random choosing of the peers. However, on
average, each node is once in the passive role as well (see Section [2.3).

Phases of a Gossiping Operation. In the prepare-request phase, P selects the
data to be exchanged and a peer () to exchange the data with. Most gossiping
algorithms assume that they can select a peer uniformly at random from the

24



4 The General Structure of a Gossiping Operation Jens V. Fischer

entire set of peers, which can be achieved by means of a membership protocol
(see Section [2.2). The selection of the exchange data is entirely application
dependent and might involve some preprocessing at P.

P then sends the data to () in the request phase or push phase. To distinguish
the messages from phases two and four, different message tags are used. For
phase two, the message tag p2p_exch is used.

In the third phase, the prepare-reply phase, ) receives the request. It then
integrates the data and prepares a reply with its own data. The integration
of the data is again dependent on the application, but it usually includes
some form of processing the data, for example merging the received data
with its own data.

The data is then sent back to P with the p2p_exch_reply message tag in
the reply (or pull) phase.

In the last phase, the integrate-reply phase, P receives the reply to the request
from the first phase with the data from () and integrates the data with its
own data. The data processing in this phase is not necessarily identical to
the data processing in phase three.

Logical coupling of Phases. It is important to clarify two aspects concern-
ing the logical and temporal coupling between the different phases of a
gossiping operation. First, the logical and temporal coupling between a
prepare-request and an integrate-reply phase within one node. Every p2p_-
exch_reply is the response to an earlier p2p_exch request. Depending on
the atomicity guarantees given by the implementation, a received p2p_-
exch_reply might however not be the answer to the last p2p_exch request
issued.

Second, there is no logical and temporal coupling whatsoever between
the prepare-reply and the other phases within one node. A p2p_exch can be
received at any point within a cycle and the gossiping implementation needs
to be able to handle this.

25



5 A Gossiping Framework for Scalaris Jens V. Fischer

5 A Gossiping Framework for Scalaris

This section will give an overview of the design of the gossiping framework
and discuss the most important implementation decisions. The implement-
ation is based on the analysis provided in the first part: The framework is
designed to allow the implementation of gossip based dissemination (see
Section2.1) and gossip based aggregation (Section[3) protocols. Anti-entropy
gossiping was not considered, because it is not relevant to Scalaris (see page
H). The communication scheme used by the framework is push-pull gossiping
(Section[2.1.T), as this offers the best speed of convergence. The general struc-
ture of a gossiping operation used as basis for the framework was established
in Section 4

The membership protocol used for the peer selection is Cyclon (Section[2.2.1).
The framework also allows for the periodic restarting of gossip protocols by
offering round handling (Section 3.2} Section 3.5).

Components of the Framework. The gossiping framework comprises three
kinds of components, using the behaviour feature of Erlang:lZ]

First, the gossiping behaviour (interface) gossip_beh.erl. The behaviour
defines the contract that allows the callback module to be used by the beha-
viour module. The behaviour defines the contract by specifying functions
the callback module has to implement. An overview of all callback functions
with short descriptions is given in Appendix

Second, the callback modules. A callback module implements a concrete gossip-
ing protocol by implementing the gossip_beh.er1,i.e. by implementing the
functions specified in the gossip_beh.er1l. The callback module provides
the protocol specific code. For this thesis, gossip_load.er1 has been im-
plemented as an example callback module (see Section [6).

Third, the behaviour module gossip.erl. The behaviour module provides
the generic code of the gossiping framework. It calls the callback functions
of the callback modules defined in gossip_beh.er1l. The generic parts of
the framework include the following;:

¢ The integration into Scalaris by implementing gen_component, hand-
ling the startup within a node and interacting with other components
of Scalaris like the ring maintenance

* The abstraction of large parts of the message handling by translating
the messages to function calls to the callback module and handling the
data exchange with peers

¢ The selection of peers

¢ The starting of new cycles

7 Although the naming of the components of a behaviour is inconsistent in the literature,
most common is behaviour, callback module and behaviour module, cf. [1}3}, 9]]. Logan, Merritt and
Carlsson [34] are using behaviour interface, behaviour implementation (for the callback module)
and behaviour container (for the behaviour module) instead.

26



5.1 Communication Model Jens V. Fischer

¢ The handling of rounds and the leader determination for the periodic
restarting of the protocol
¢ The starting and stopping of gossiping tasks during the startup of
Scalaris as well as later on
¢ Providing an API for value extraction
The functioning of the framework is discussed in detail in the following
sections.

Relationship Between Callback and Behaviour Module. The relation
between behaviour and callback module could be modelled as either a one-to-
one or a one-to-many relation. In a one-to-one relation, a process is spawned
for each callback module. The behaviour module and the callback module
are both executed in the context of this process. This amounts to creating an
instance of the behaviour module for each callback module. This model is
used for example for Erlang’s gen_server behaviour module.

For the gossiping framework it was decided to model it as a one-to-many
relation. That is to say, the behaviour module is implemented as single pro-
cess (per node) and all the callback module run in the context of this single
process. This increases the complexity of the code, as the behaviour module
needs to handle different callback modules, but has the advantage of redu-
cing the number of spawned processes and allowing for a better grouping
of messages.

Startup. The framework is started as part of the startup procedure of a
Scalaris node. The framework maintains a list of callback modules in the
CBMODULES macro which are started together with the framework. It is also
possible to individually start and stop callback modules later, see Section5.6|
for details.

5.1 Communication Model

Scalaris is an asynchronous environment in the sense described in Section[2.4;
no restrictions are placed upon the timing of message delivery and compu-
tations.

The general pattern for communication between the behaviour module and
a callback module is the following: From the behaviour module to a callback
module communication occurs as a call to a function of the callback module.
These calls have to return quickly, no long-lasting operations, especially no
receiving of messages, are allowed. Therefore, the answers to these function
calls are usually realised as messages from the respective callback module
to the behaviour module, not as return values of the function calls. The
communication is therefore not only asynchronous in the classical sense that
it does not allow blocking the caller. It is also asynchronous in the means of
communication as it uses function calls as well as message sending.

The asynchronous communication yields the known advantages, such

27



5.2 Interaction with the Callback Modules Jens V. Fischer

as responsiveness and better resource utilisation. Without asynchronous
communication, every call to a callback module would block the whole beha-
viour module, even if the callback needs to execute long running operations
like requesting local information from another process. With asynchronous
communication, on the other hand, multiple callback modules can issue
requests concurrently. Without this, it would not be possible to implement
the behaviour module as a single process.

5.2 Interaction with the Callback Modules

The general structure of a gossiping operation was established in Section 4]
and depicted in Figure 2} This section describes how the different phases are
implemented in the behaviour module.

For the gossiping framework, only the phases one, three and five are im-
portant. The sending and receiving of messages (in phases two and four) is
handled by Scalaris” communication layer and gen_component (which the
framework implements). The gen_component delivers the messages via mes-
sage handlers to the gossiping framework, which implements two message
handlers: on_inactive() and on_active(). The first handles messages
during the startup of the framework and when the framework has been deac-
tivated. The on_active handler handles messages during normal operation.

Callback Behaviour
Module Module

W
W
— function call —
select_datao
—-—--message — — 4//
u

—————————————— er}
~~~~~ e {se\ected—p?frl,fe»—"’

le—-

\

Figure 3: Prepare-Request Phase

Prepare-Request Phase. The prepare-request phase is shown in Figure 3| It
consists of peer and data selection. The selection of the peer is usually man-
aged by the framework. At the beginning of every cycle the behaviour module
requests a peer from the Cyclon module of Scalaris, which is then used for
the data exchange. The peer selection is governed by the select_node()

28



5.2 Interaction with the Callback Modules Jens V. Fischer

functiorﬂ returning false causes the behaviour module to handle the peer
selection as described. Returning true causes the behaviour module to ex-
pect a selected_peer message with a peer to be used by for the exchange.
How many peers are contracted for data exchanges every cycle depends on
the fanout () config functionﬂ

The selection of the exchange data is dependent on the specific gossiping
task and therefore done by a callback module. It is initiated by a call to
select_data(). When called with select_data(), the respective callback
module has to initiate a selected_data message to the behaviour module,
containing the selected exchange data. Both peer and data selection are
initiated in immediate succession through periodical trigger messages, so
they can run concurrently. When both data and peer are received by the
behaviour module, a p2p_exch message with the exchange data is sent to
the peer, that is to say to the gossip behaviour module of the peer.

Callback Behaviour
Module Module
{DQD_eXch,
PData}

selec

t_rep1
y-data (PData) — function call =
ok
* ‘ —-—--message — —

{selected,l’eply—_ -----------

j-——" 7"

Figure 4: Prepare-Reply Phase

Prepare-Reply Phase. Upon receiving a p2p_exch message, a node enters
the prepare-reply phase (see Figure[d) and is now in its passive role as responder.
This phase is about the integration of the received data and the preparation of
the reply data. Both of these tasks need to be handled by the callback module.
The behaviour module passes the received data with a call to select_reply_
data(QData) to the correspondent callback module, which merges the data
with its own local data and prepares the reply data. The reply data is sent
back to the behaviour module with a selected_reply_data message. The
behaviour module then sends the reply data as a p2p_exch_reply message

8 For the sake of clarity and readability, all signatures of functions given in this section
may have been simplified, this is to say they have fewer arguments than the real functions in
the code. The same is true for messages, which by convention in Scalaris always are n-tuples
starting with a message tag, followed by an arbitrary number of arguments. Only the message
tag or a simplified version of the message, lacking some arguments, is given. An overview of
all callback functions is given in Appendix

? For the sake of readability, a fanout (see Section of one is assumed for rest of the
description.

29



5.2 Interaction with the Callback Modules Jens V. Fischer

back to the original requester.

Callback Behaviour
Module Module
xch_replys
{pzp’goata}

ta)
— function call = M
—-—:-message — — > ’\k‘

4 v

Figure 5: Integrate-Reply Phase

Integrate-Reply Phase. Figure [5|shows the interaction of the behaviour
module and a callback module in the integrate-reply phase, which is triggered
by a p2p_exch_reply message. Every p2p_exch_reply is the response to
an earlier p2p_exch (although not necessarily to the last p2p_exch request,
see Section [5.3). The p2p_exch_reply contains the reply data from the
peer, which is passed to the correspondent callback module with a call to
integrate_data(QData). The callback module processes the received data
and signals to the behaviour module the completion with an integrated_
data message. On a conceptual level, a full cycle is finished at this point
and the behaviour module counts cycles by counting the integrated_data
messages. Due to the uncertainties of message delays and local clock drift it
should be clear however, that this can only be an approximation. For instance,
a new cycle could have been started@ before the reply to the current request
has been received (phase interleaving) and, respectively, replies from the
other cycle could be "wrongly" counted as finishing the current cycle (cycle
interleaving).

Instantiation. Many of the interactions conducted by the behaviour mod-
ule are specific to a certain callback module. Therefore, all messages and
function concerning a certain callback module need to identify with which
callback module the message or call is associated. This is achieved by adding
a tuple of the module name and an instance id to all those messages and
calls. While the name would be enough to identify the module, adding the
instance id allows for multiple instantiation of the same callback module
by one behaviour module. This tuple of callback module and instance id is
also used to store information specific to a certain callback module in the
behaviour module’s state (see Section [5.5/for more details).

10 The starting of a new cycle is equivalent to receiving a gossip_trigger message.

30



5.3 Atomicity and Coupling Jens V. Fischer

5.3 Atomicity and Coupling

The framework deliberately does not give any atomicity guarantees. Guaran-
teeing atomicity (for instance for certain phases) on the level of the frame-
work would need to be very general. For instance, one could guarantee the
atomicity of the entire prepare-request phase. This would render the asyn-
chronous communication between the behaviour module and the callback
module superfluous and greatly deteriorate performance.

Furthermore, gossiping algorithms are expected to be robust and this usu-
ally implies weak atomicity requirements, e.g. if the data transformation
operations are idempotent they do not need a fixed succession. If a gossiping
algorithm has certain atomicity requirements they should be implemented at
the level of the callback module, to keep the performance impact as minimal
as possible.

The one exception is the trigger_lock: As long as a callback module has
not answered the call to select_data() with a selected_data message,
all new gossip_trigger messages are ignored. So the behaviour module
guarantees the atomicity of the prepare-request phase of a specific callback
module with regard to trigger messages for this callback moduleF_TI This
prevents the filling of the message queue especially during startup and the
starting of new rounds.

Logical Coupling of Phases. It is important to clarify the logical and tem-
poral coupling introduced in Section 4] First, the temporal coupling between
a prepare-request and an integrate-reply phase within one node. Because the
framework does not give any atomicity guarantees, a new p2p_exch request
can be sent to a peer before the current request has been answered. Therefore
there can be no guarantee that a received p2p_exch_reply is the answer to
the last p2p_exch request issued.

Second, because there is no logical and temporal coupling between the
prepare-reply and the other phases within one node, a p2p_exch request can
be received at any point in time and a callback module should be prepared
to satisfy such a request (i.e. a call to select_reply_data())independently
of the other phases. If the gossip task to be implemented needs to impose
restrictions on when a select_reply_data() call can be answered, this is to
be implemented by the callback module. The callback module can, however,
use the possibility to postpone calls to this end (by returning the special
value retry). The behaviour module will then queue the request and retry
later.

! To be perfectly clear: Saying that the atomicity is only guaranteed for trigger messages
means that other messages for the same callback module, such as a p2p_exch request, can
interleave with the prepare-request phase!

31



5.4 Rounds Jens V. Fischer

5.4 Rounds

Rounds are an important mechanism to deal with dynamic values and node
failures at the level of callback modules(see Section Section [3.5). The
behaviour module offers rounds as a service to all callback modules. It is up
to them to decide if they can and want to use that information.

Upon every received p2p_exch and p2p_exch_reply message, the beha-
viour module checks if the criteria for starting a new round are met. Three
criteria are used, they need to be provided by the respective callback module
(in form of "configuration" functions):

1. Convergence: Implements the new-round convergence criterion dis-
cussed in Section 3.5/and considered the actual convergence criterion.
Function: round_has_converged()->boolean().

2. Minimum number of cycles: Provides a lower bound for the duration
of a round.

Function: min_cycles_per_round()->non_neg_integer()

3. Maximum number of cycles: Provides a upper bound for the duration
of a round.

Function: min_cycles_per_round()->non_neg_integer()

Leader Selection. When the above criteria are a met, a new round can
be started. The decision about starting a new round is made by one node,
the leader, and this decision is then disseminated to the other nodes. The
determination of the leader is done by using the higher layers of Scalaris,
namely the key ranges of anode. The leader is defined as the node responsible
for the hashed zero key. The behaviour module keeps track of the key ranges
of its node by subscribing to the ring maintenance of Scalaris and uses this
information to determine if a given node is the leader or not.

The leader then starts a new round by sending new_round messages to
every peer he encounters with a round lesser than his own round counter
(every p2p_exch and p2p_exch_reply message contains the round the mes-
sage belongs to). Every node receiving a round greater than its own enters
the new round and starts distributing the round information to every peer
with a lesser round. With this simple gossip based dissemination scheme the
round information can be distributed with logarithmic speed. Resetting of
the round counter is not necessary, as Erlang uses arbitrary-sized integerslT_ZI

When a new round is entered (or started) by the behaviour module, the
correspondent callback module is notified with a call to notify_change(
new_round) so it can act accordingly. If the callback module in question
does not need any handling of rounds it can simply ignore the call.

Entering a new round is not a synchronous event across all nodes, therefore
p2p_exch and p2p_exch_reply requests from old rounds will reach the

12 If every round would take one second (in practice its considerably longer), a 64bit
counter would suffice ~ 292 billion years (assuming signed integers in two’s complement:
2%% — 1 = 9223372036854775807 sec ~ 292 billion years).

32



5.5 State of Behaviour Module Jens V. Fischer

framework. This will happen during the propagation phase of a new round
and can also happen later due to message delay. The framework detects,
whether a requests is from an old round and passes it, specially marked, to
the respective callback module. A callback module might keep track of the
data from previous rounds, hence it might still be able to satisfy the request.

5.5 State of Behaviour Module

The behaviour module uses a simple key value store to store state information.
The behaviour module uses the pdb_beh of Scalaris, which allows to switch
the process database (pdb) implementation between process dictionary
and etsH In production, the process dictionary is preferable due to its
better performance characteristics, while ets is easier to debug (it can by
accessed from different processes). The state is kept in one flat table, entries
that need to be kept for every callback module use a tuple of the keyword
and the callback moduleE] as key:.

When a gossiping task is stopped, all the entries concerning the callback
module are deleted from the behaviour module’s state, except for cb_status,
where a tombstone is set to handle requests for already stopped modules.
The framework provides a remove_all_tombstones () function for cleanup
purposes.

Table 1: State of gossip.erl

Key Value
cb_modules list of started callback modules
msg_queue the message queue
range the key range of the dht_node
status uninit | init
{reply_peer, Ref} the requester from a p2p_exch message
{trigger_group, Interval} list of callback modules

" {cb_state, CBModule} the state of a callback module
{cb_status, CBModule} unstarted | started | tombstone
{cycles, CBModule} the current cycle of a callback module
{trigger_lock, CBModule} locked | free
{exch_data, CBModule} {Peer, Data} | {undefined, Data} |
{round, CBModule} the current of a callback module

5.6 Usage of the Framework

A gossiping task, i.e. a callback module, can be started with the function
start_gossip_task(CBModule, Args) and stopped with the function
stop_gossip_task(CBModule). The parameter CBModule refers to the tuple

3 The process dictionary and ets are both simple key value stores provided by Erlang.
The process dictionary islocal to one process, while ets can be shared between processes.
! The callback module is actually identified by a tuple of the module name and an instance

id, see Section

33



5.7  Evaluation of the Framework Jens V. Fischer

of module name and instance id (see Section [5.2) identifying the callback
module. In case of start_gossip_task() itis also possible to provide only
a module name, an instance id is then generated. The parameter Args rep-
resents a list of arguments passed to the init() function of the callback
module.

To query the framework for values from a gossiping task, one has to send a
message of the form {get_values_best, CBModule, SourcePid} to the
framework. The reply to the query is sent back to the requester identified
by SourcePid with the message {gossip_get_values_best_response,
BestValues}. BestValues is a data structure holding the values, specified
by the respective callback module.

Internally, the query is forwarded and answered by the callback module
specified by CBModule. What "best values" means is dependent on the call-
back module, but in general it refers to the idea of properly converged values
in a gossip based aggregation protocol (see Section [3.5).

5.7 Evaluation of the Framework

In the previous sections, the main design decisions have been presented. In
this section, the framework is evaluated against the aspects of robustness
introduced in Section 2.4l

Asynchronous Communication. As discussed in Section 5.1} all commu-
nication in Scalaris in general and the framework in particular is organ-
ised asynchronously. The framework places no restrictions upon the timing
of message delivery and computations. With regard to asynchronicity, the
framework evidently fulfils the requirements.

Message Loss. As described in Section 2.4} gossiping algorithms have to
work even under conditions of message loss. But message loss can affect
the accuracy of the given algorithm, especially in the case of aggregation,
where the accuracy of the aggregation result is concerned (see Section 3.4).
Consequently, it is important to avoid message loss as much as possible. The
gossiping framework deploys several mechanism to this end.

The only messages considered in this discussion are p2p_exch and p2p_-
exch_reply messages. Within a gossiping operation, these are the only
messages sent to other nodes, all other messages such as messages to the
Cyclon process or from a callback module are local messages between differ-
ent processes of one node (i.e. one VM), which are considered even more
reliable than TCP.

The most important measure for avoiding message loss is the use of TCP
in Scalaris, which achieves reliable point-to-point connections. There are
still possibilities for message loss, e.g. when a message is delivered to the
communication layer of Scalaris and the node then crashes or when messages
are routed through other nodes that crash. As gossiping only uses point-to-

34



5.7  Evaluation of the Framework Jens V. Fischer

point connections, the latter does not apply to gossipinﬂ and the former
usually amounts to a node failure.

Failure of nodes, however, can cause message loss. The framework uses
Cyclon for peer sampling, so references to crashed nodes remain in the
system for a short period of time and a node might try to initiate a data
exchange with a failed node. In this case, message delivery fails. Scalaris is
able to detect this and notify the sender with a send_error message about
the failed message delivery. When the framework receives such a send_
error message it informs the correspondent callback module with a call
to notify_change(exch_failure) along with the originally sent message.
If the gossiping task has a way to deal with failed messages it can use this
callback to act accordingly.

Message loss may also occur during the startup of the framework, when an
already initiated gossip process tries to exchange data with a not yet initiated
one. Such a message is handled by the on_inactive() message handler
of the behaviour module, which uses the same mechanism of send errors
described above to notify the sender that a data exchange is not possible at
the moment.

This mechanism can also be triggered manually by a callback module
by returning send_back toa select_reply_data() orintegrate_data()
call, which causes the behaviour module to produce a send error for the
corresponding p2p_exch and p2p_exch_reply messages.

In summary, although complete reliability in message delivery cannot be
guaranteed, the framework provides useful mechanism to reduce message
loss and to reduce the impact of message loss.

Node Failures. For the selection of peers the framework relies on Scalaris’
implementation of Cyclon (see Section as peer sampling service, so
it depends largely on Cyclon’s properties. With regard to node failures the
most important aspect is how fast a failed node disappears from the set of
known nodes, so that the behaviour module stops trying to initiate data
exchanges with these. As described in Section [2.2.1]it takes at most a number
of cycles equal to the cache size (the number of nodes known to the Cyclon
process) to detect dead nodes. Within this time frame a failed node can cause
message loss or rather send_erros messages, as described in the last section.

Note that it is not necessary do have any special precautions for a failure
of the leader. If the node responsible for the zero key fails, the key ranges
are reassigned and the framework is notified about any changes by the ring
maintenance.

The second important aspect to consider is whether a node failure produces
any "garbage", that is to say if any information about a crashed node remains

15 Except in the case of the bulkowner messages used in the global startup and shutdown
of the behaviour module and gossip tasks. Bulkowner messages are a mechanism of DHT
based group communication used in Scalaris, for details see [16], ch. 5)

35



5.7  Evaluation of the Framework Jens V. Fischer

in the state of the behaviour module. There are only two incidents where
information about a peer is stored: First, in the prepare-request phase. When
a peer is requested from Cyclon it might be stored in the state of the beha-
viour module until the correspondent callback module selected the exchange
data. This is repeated at the beginning of every cycle, so any reference to a
node only remains until the next cycle. The second time information about
a peer is stored is during the integrate-reply phase, where the behaviour
module stores the requester in its state before the select_reply_data()
call. Upon the selected_reply_data message, it uses this information for
the reply and deletes it from its state. The deletion is only dependent on
process local messages, when the behaviour module tries to send the reply,
the information about the peer is already deleted from the state, hence no
information remains, even if the peer has failed.

Note that there is no need to consider the failure of a callback module with
respect to garbage. As described above (see page27), the behaviour module
and the callback module execute in the same process, so it is assumed that
they can not fail independently of each other.

With regard to node failures, it can be concluded that the framework ensures
fast removal of references to dead nodes and that the failing of a node does
not produce residual "garbage". Additionally the framework offers rounds as
a means to periodically restart a gossiping protocol, which will be discussed
in the evaluation of the gossip_load module (see Section[6.5).

Testing. Three kinds of tests have been performed on the behaviour mod-
ule: First, the consistency of the type specifications has been verified through
Dialyzer, the "Discrepancy Analyzer for Erlang" programs, a static analysis
tool provided with Erlang.

Second, dynamic type checking has been performed. Using Scalaris” own
property testing tool tester, the functions of the framework are tested with
a wide range of automatically generated input values. The "For Testing"
section at the end of the behaviour module provide several functions for
tester, such as value creator, type checking and feeder functions. The value
creator and type checking functions are used for the creation and checking
of values not natively supported by tester. The feeder functions are used
to restrict the input values to certain functions. The dynamic type checking
is implemented in the type_check_SUITE.

Third, integration tests of the behaviour module and the gossip_load
callback module have been conducted, see Section [6.5]for details.

36



6 Gossiping Load Information in Scalaris Jens V. Fischer

6 Gossiping Load Information in Scalaris

The gossip_load module is an example implementation of a callback mod-
ule. It implements the symmetric push-sum protocol with the extensions
discussed in Section[3] The algorithm is used to compute aggregates of the
load information, which is measured as the count of items currently in a
node’s key range.

The aggregation of load information is used in Scalaris for two purposes:
First, for passive load balancing. When a node joins, the gossiped load in-
formation is used to decide where to place the new node. The node will be
placed so that the standard deviation of the load is reduced as much as pos-
sible. Second, gossiping is used for system monitoring. The local estimates
can be viewed for example in the Web Interface of every Scalaris node.

Different metrics are computed on the load information: The average load
gives the arithmetic mean of the load information of all nodes. The maximum
and minimum load are provided and the standard deviation gives information
about the variation of values. Two size estimates (i.e. estimates of the number
of all nodes) are given: First, based on leader election, i.e. the sum s; is set
to s; = 1 at all nodes and the weight w; is set to w; = 1 at the leader and
w = 0 at all other nodes (see Section[3.2). The size estimate is then calculated
as s/w. Second, based on the key ranges of the nodes. The average of the
key ranges of all nodes is aggregated and the size estimate is calculated as
address space of keys /average key range.

The histogram computation introduced in Section [3.3]is used to compute a
histogram of the load per key range. The load is measured as number of items
per node. The key address space is divided into a number of predefined
buckets and at every node the contribution of this node to one or multiple
buckets is counted. The thus initialised histograms are then aggregated
using the algorithm provided in Algorithm 5} Figure[6|shows an example
histogram, calculated on the same setup as described in Section[6.5]

The gossip_load module is initialised during the startup of the gossiping
framework, continuously aggregating load information in the background.
Additionally, it is possible to start instances of the gossip_load module for
the purpose of computing different sizes histograms (see Section [6.4).

6.1 Interaction with the Behaviour Module

Prepare-Request Phase. When called with select_data( )Efor the first
time (or for the first time in a new round), the gossip_load module requests
the current load information from its local node. Once initiated, it prepares
the load data for the data exchange, which basically divides all average values
by two. The exchange data is then sent back to the behaviour module in a

16 See Appendix E]for an overview of all callback functions.

37



6.1 Interaction with the Behaviour Module Jens V. Fischer

1650

1600

1550

1500

1450

Number of items / Node

1400 -

1350

1300
0 27128

Key Range

Figure 6: Load per Key Range

selected_data message. The gossip_load module relies on the behaviour
module to select a peer, thus it returns false to the select_node() call.

Integrate-Reply Phase. Upon the integrate_data(QData) call, the
gossip_load module needs to check its status. If in uninit, i.e. when it
is requesting load information from the dht_node process, the call returns
with retry, instructing the behaviour module to repeat the call later. The
next thing to check is the round. The gossip_load module always keeps
data from one earlier round (see Section [6.2]for details), which can be used
to satisfy requests for old rounds. If the request is from the current round
or a valid previous roundm then the received data is merged with the own
current or previous data respectively. In the case of average values, the values
and weights are added up (see Algorithm[4), for the minimum and maximum
the respective values are selected. The histograms are merged according
to the merge procedure given in Listing |1l The gossip_load module then
concludes the phase with an integrated_data message to the behaviour
module.

7 A previous round is valid, if the round counter of the received exchange data and the
round counter of the previous round match. Only in this case can the gossip_load module
satisfy the request. This is not always the case, e.g. if a previous round has not converged or
during the startup of a later joining node.

38



6.2 Periodic Restarting Jens V. Fischer

Prepare-Reply Phase. The prepare-reply phase is initiated by a call of the
behaviour module to select_reply_data(PData), which checks the round
information and merges back the received data in the same way as described
for integrate_data(). Next, the reply data is selected analogously to the
exchange data selection in select_data(). The phase is finished by sending
the reply data to the behaviour module in a selected_reply_data message.

6.2 Periodic Restarting

As described in Section 3.5, rounds are an important mechanism to improve
the robustness of the protocol through periodic restarting.

The main criterion for starting a new round is the convergence of the cur-
rent local estimates of the gossiped values. On every merge, i.e. upon every
call to select_reply_data() orintegrate_data(), the estimates before
and after the merge are compared against a convergence epsilon. If the dif-
ference is less than the convergence epsilon, a counter is incremented. When
meeting a predefined target value (convergence_count_new_round), a call
to round_has_converged () will return true and the behaviour module
will be allowed to start a new round. Note that the convergence count can be
incremented multiple times during each cycle, as there are on average two
merges per cycle.

Additionally, the min_cycles_per_round() and max_cycles_per_
round () functions provide simple numerical upper and lower cycle bounds
for starting a new round.

The gossip_load module always keeps the data from one earlier round,
implementing the optimisations discussed in Section[3.5 The data from the
previous round might be needed to satisfy queries for the aggregation results,
i.e. get_best_values requests, if the current round has not converged yet.
The data from the previous round is also used to potentially satisfy p2p_exch
and p2p_exch_reply requests for old rounds, as described in Section
When a new round starts, the previous load data is only replaced with
the load data from the current round, if the current round has converged.
Note, that in all non-leader nodes, entering a new round is not necessarily
equivalent to a converged current round. This can be due to difference in the
convergence speed at different nodes because of the probabilistic nature of
gossiping, but also happens in nodes currently joining. To avoid that already
slight differences in the convergence speed lead to not replacing the old
data, the best-values criterion (convergence_count_best_values)is used
instead of the new-round criterion (convergence_count_new_round) when
deciding on the convergence of rounds in non-leader nodes.

39



6.3 State of gossip_load Jens V. Fischer

6.3 State of gossip_load

The state of the gossip_load module is maintained in ets tables, one for the
current round and one for the previous round (because multiple tables are
used it is not possible to use the process dictionary). When a gossip_
load instance is stopped, both tables are deleted. Table 2| gives an overview
about a gossip_load state table.

Table 2: State of gossip_load

Key Value

convergence_count convergence counter

instance the dinstance -1id

leader true | false

load_data #load_data record

merged the merged counter
no_of_buckets the number of histogram buckets
prev_state the table id of the previous state
range the key range of the dht_node
request true | false

requester the pid of the requester

round the current round

status uninit | init

6.4 Usage of gossip_load

The gossip_load module is supposed to be used through the API of the
framework, see Section The API functions need to identify the gossip_
load instance. The standard gossip_load instance, which is running con-
tinuously in the background, is identified by {gossip_load, default}.

Additionally, the gossip_Tload module allows for the computation of histo-
grams on a per request basis. With request_histogram(Size, SourcePid),
a histogram with Size number of buckets can be requested. The histogram
will be sent back to SourceP1id, as soon as all the values have properly con-
verged.

6.5 Evaluation of gossip_load

Asynchronous Communication. The symmetric push-sum protocol was,
amongst other things, chosen for is robustness against message interleaving
in asynchronous settings. The implementation of the gossip_load module
relies on this property to fulfil the asynchronicity requirements.

Message Loss. Losing messages, especially in the early phases of a round
when the values haven't converged yet, affects the correctness of the results.
The gossip_load module uses the notifications from the behaviour mod-
ule about failed data exchanges. When the module is called with notify_
change (exch_failure, Data) it merges the data with its own data the

40



6.5 Evaluation of gossip_load Jens V. Fischer

same way it merges data from a peer in the select_reply_data() and
integrate_reply () calls. This prevents mass conservation violations and
thus ensures, that the data still converges to the correct global value.

The most common case for this mechanism to take effect is during the
starting of a gossip_load instance. As there can be no guarantees that the
startup happens synchronously at all nodes, one node might already request
a p2p_exch while the gossip_load instance at the contacted node is still
during startup.

If the exchange failure is due to a crashing node, this mechanism prevents
at least some weight loss at the other nodes, although it cannot prevent the
incorrectness introduced by the node failure itself (see section [3.4).

The deployed mechanism provides a significant improvement of the bare
algorithm from section [3.2|and also of the current implementation of the
load monitoring in Scalaris. It can not, however, achieve complete robustness
against message loss.

Node Failure. As discussed in Section the information from a failed
node keeps impacting the accuracy of the aggregation results for no longer
than two rounds. The gossip_load module uses the discussed optimisa-
tions in the round handling (see Section , returning values from the last
round to a get_values_best request if the current round has not converged
sufficiently according to the best-values criterion (convergence_count_
best_values). This means that in practice, a failed node stops impacting
the load information even before the next round finishes.

Periodic restarting presents a simple and effective way of dealing with
node failures. This concept was already deployed in the current implement-
ation of load information gossiping. The contribution of the gossip_load
implementation with regard to rounds lies first in the improvement of the
round handling, e.g. by adding the the possibility to satisfy requests from
old rounds. Second, it lies in the demonstration of the practical applicability
of periodic restarting to the (symmetric) push-sum protocol.

Convergence Speed. As stated in the introduction, an experimental eval-
uation is out of the scope of this work. However, one experiment has been
conducted for demonstration purposes. The setup was the following: 256
Scalaris nodes have been started on one machine and 100000 items have been
written. The time interval for the cycles needed to be set to an unusual high
value of 60s, normally an interval of 1s is used in Scalaris. This was necessary
to allow for a quasi-parallel execution on only one machine, shorter time
intervals would have led to extrem asynchrony in the cycles on different
nodesEgI The local estimates have then been extracted at the end of every
cycle at all nodes. Figure [/ shows convergence speed as the reduction of

'8 Note that asynchrony in the cycle count is not a problem per (see Section [3.4). The
objective here was to demonstrate the convergence speed as accurately as possible, not the
robustness.

41



6.5 Evaluation of gossip_load Jens V. Fischer

standard deviation of all local estimates as a function of the cycles. The graph
clearly shows that the convergence speed in the this experiment was well
within expected bounds of speed logarithmic to the network size given in
Section

400

350

w
o
o

N
%
o

Standard Deviation of the Average
= N
w o
o o

-
o
o

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Cycles

Figure 7: Convergence Speed of Average Function

Testing. The same static and dynamic consistency and type testing as
described in Section 5.7/ has been performed on the gossip_load module.

Additionally, gossip_SUITE provides integration tests of the gossip_load
module with the behaviour module. They test the correct working of the
load information aggregation as well as the histogram computation. The
basic idea is to start a test setup of Scalaris, write some entries and query
the local load information from all nodes. With the the knowledge of the all
values the true values for the load metrics and the histogram are computed.
Gossiping is then started and the results from the gossip based aggregation
are compared against the true values.

42



7 Conclusion Jens V. Fischer

7 Conclusion

Gossiping has been shown to be a useful answer to the problems of informa-
tion dissemination and aggregate computation in peer-to-peer systems. The
main advantages lie in the robustness, the scalability and the uniform load
distribution while still being reasonably fast.

The symmetric push-sum protocol was chosen as an aggregation algorithm
based on the analysis of different algorithms. It was extended to allow the
computation of simple histograms and optimised for the use in dynamic
conditions. The latter was achieved by improving the concept of periodic
restarting and applying it to the symmetric push-sum protocol.

Based on the analysis of the different classes of gossiping protocols, a
general structure of a gossiping operation was conceptualised. This was
used to implement a generic gossiping framework. The framework facilitates
the implementation of arbitrary gossip based information dissemination
and aggregation algorithms. As a communication scheme for the gossiping
push-pull was chosen because of the superior performance characteristics.

The evaluation of the framework showed, that it is well equipped to work
in asynchronous environments, provides useful mechanisms to reduce and
deal with message loss and that it removes references to dead nodes quickly.

The functionality of the framework was demonstrated by implementing
load monitoring as an example callback module. The evaluation showed that
the deployed mechanisms provide a significant improvement with regard to
message loss and that the periodic restarting is an effective way of dealing
with node failures.

Both the framework and the load monitoring implementation have already
been incorporated into the production code of Scalaris.

Future Work. As mentioned in the introduction, Scalaris already uses sev-
eral gossiping protocols. The gossiping framework provides a basis for uni-
fying the use of gossiping protocols. To this end, the existing gossiping
protocols need to be reimplemented on the basis of the framework. This
includes T-Man for topology construction and maintenance, the data center
detection and computation of Vivaldi Coordinates.

The framework also provides a basis for extending the use of gossiping
protocols in Scalaris. In the implementation of active load balancing, which
is currently in development, global aggregates of different additional load
metrics such as execution time of transactions, CPU utilisation and memory
usage are needed as input to the load balancing algorithms. They can be
implemented using the framework.

Another useful extension would be the computation of value distribution
characterisations like quantiles and histograms. This can be implemented as
gossip based aggregation using q-digests as presented in [41]] and experi-
mentally evaluated in [18]. Q-digest are an approximative approach to fully

43



7 Conclusion Jens V. Fischer

decentralised computation of quantiles, ranks or histograms, using tree-like
summaries that can be computed locally and merged upon exchange.

For the aggregation of load information the use of approaches that allow
for continuous aggregation of changing values should be considered. In the
opinion of the author, the most interesting approach presented so far is Flow
Updating [24) 25](also cf. [2]). Besides allowing for continuous aggregation,
Flow Updating also promises resilience against message loss and, in the
extended version[25], against node failures. Flow updating assumes a rel-
atively static partial view, which is at odds with the dynamic partial view
provided by Cyclon. This could be remedied by the use of a second partial
view (this idea is inspired by [33]). This second view would be filled from
the Cyclon cache in a reactive fashion, i.e. when a node fails its reference
is replaced with a reference from the first partial view. This would result
in a relatively static view, suitable for Flow Updating, without losing the
robustness of Cyclon.

44



Appendix A Overview of Callback Functions Jens V. Fischer

Appendices

A Overview of Callback Functions

A.1 Type Definitions

State :: any()
The State of the callback module. No restrictions are based on the data
type, it depends entirely on the callback modules.

Data, QData, PData :: any()

The data to be exchanged in the gossip operations between peers. No
restrictions are based on the data type, it depends entirely on the callback
modules.

RoundStatus :: current_round | old_round

The RoundStatus indicates whether a request is from the current or a
previous round.
Round :: non_neg_integer ()

The Round a request belongs to.

A.2 Startup and Shutdown

init(Instance) -> {ok, State}.
init(Instance, Argl) -> {ok, State}.
init(Instance, Argl, Arg2) -> {ok, State}.
Instance :: { CBModule::module(),
InstanceId:: atom() | uid:global_uid() }.
Called by the behaviour module upon startup.
Init function with additional arguments.
The Instance is the tuple of module name and instance id described in
Section[5.2} Usually used to initialise the state of the callback module.

shutdown(State) -> {ok, state_deleted}.

Called by the behaviour module upon stop_gossip_task(CBModule).
It should be the opposite of init () and do any necessary cleaning up.

A.3 Gossip Operation

select_node(State) -> {boolean(), Statel.

45



A.3  Gossip Operation Jens V. Fischer

Called by the behaviour module at the beginning of every cycle.

Should return true, if the peer selection is to be done by behaviour mod-
ule, false otherwise. If false is returned, the behaviour module expects
a selected_peer message.

select_data(State) -> {ok, State}.

Called by the behaviour module at the beginning of a cycle.

The callback module has to select the exchange data to be sent to the peer.
The exchange data has to be sent back to the behaviour module as a mes-
sage of the form {selected_data, Instance, ExchangeData}.

select_reply_data(PData, Ref, RoundStatus, Round, State) ->
{discard_msg | ok | retry | send_back, State}.
Ref :: pos_integer()

Called by the behaviour module upon a p2p_exch message.

Passes the PData from a p2p_exch request to the callback module. The
callback module has to select the exchange data to be sent to the peer.
The Ref is used by the behaviour module to identify the request.

The RoundStatus and Round information can be used for special handling
of messages from previous rounds.

The selected reply data is to be sent back to the behaviour module as
a message of the form {selected_reply_data, Instance, QData,
Ref, Round}.

integrate_data(QData, RoundStatus, Round, State) ->
{discard_msg | ok | retry | send_back, State}.
Round: :non_neg_-integer ()

Called by the behaviour module upon a p2p_exch message.

Passes the QData from a p2p_exch_reply to the callback module.

Upon finishing the processing of the data, a message of the form {integrated_
data, Instance, RoundStatus} is to be sent to the behaviour module.

handle_msg(Message, State) ->
{ discard_msg | ok | retry | send_back , State}.
Message: :comm:message ()

Called by the behaviour module upon messages of the form {cb_reply,
CBModule, Msg}.

Passes the message Msg to the callback module, used to handle messages
for the callback module.

get_values_best(State) -> BestValues.
BestValues :: any()

46



A.4  Config Functions Jens V. Fischer

Called by the behaviour module upon {get_values_best} messages.
The callback module has to return the "best" values. What the "best" values
are depends on the gossip algorithm in question, but in general it refers
to the idea of properly converged values in a gossip based aggregation
protocol (see Section [8.5). The data type of BaseValues depends on the
concrete callback module.

get_values_all(State) -> AllValues.
Allvalues :: any()

Called by the behaviour module upon {get_values_all} messages.
The callback module has to return "all" values. What "all" values are de-
pends on the gossip algorithm in question, but in general it refers to the
idea that a callback module might keep values from multiple rounds (see
Section3.5). The data type of Al1Values depends on the concrete callback
module.

web_debug_info(State) ->
{KeyValuelList::[{Key::string(), Value::string()},...],
Statel}.

Called by the behaviour module upon {web_debug_info} messages.
The callback module has to return debugging infos, to be displayed in the
Scalaris Web Debug Interface.

A.4 Config Functions

fanout() -> pos_integer().

The fanout, i.e. the number of peers contacted per cycle (see Section [2.1)).
trigger_interval() -> pos_integer().

The time interval in ms after which a new cycle is triggered.
min_cycles_per_round() -> non_neg_integer().

The minimum number of cycles per round.
max_cycles_per_round() -> pos_integer().

The maximum number of cycles per round.

round_has_converged(State) -> {boolean(), State}.

Implements the new-round convergence criterion (see Section|3.5). Returns
true if the round has converged, false otherwise.

47



A.5 Notifications Jens V. Fischer

A.5 Notifications
notify_change(new_round, NewRound, State) -> {ok, state()}.
NewRound :: pos_integer()

Notifies the the callback module about the beginning of round NewRound.

notify_change(leader, {MsgTag, NewRange}, State) -> {ok, state()}.
MsgTag :: is_leader | no_leader
NewRange :: intervals:interval()

Notifies the the callback module about a change in the key range of
the node. The MsgTag indicates whether the node is a leader or not, the
NewRange is the new key range of the node.

notify_change(exch_failure, {MsgTag, Data, Round}, State) -> {ok,

state()}.
MsgTag :: p2p_exch | p2p_exch_reply
Round :: pos_integer()

Notifies the the callback module about a failed message delivery, including
exchange Data and Round from the original message.

48



Appendix B Source Code Jens V. Fischer

B Source Code
B.1 Google Code

Scalaris is hosted at Google Code, the official project page can be found at:
https://code.google.com/p/scalaris/
The relevant files and the links to the final version t
® src/gossio.erl: the behaviour module, main part of the framework:
https://code.google.com/p/scalaris/source/browse/trunk/src/
gossip.erl?spec=svn6108&r=6108
¢ src/gossip_beh.erl: the behaviour (interface) for the callback mod-
ules:
https://code.google.com/p/scalaris/source/browse/trunk/src/
gossip_beh.erl?spec=svn6108&r=6108
* src/gossip_load: example callback module, implementing load in-
formation aggregation:
https://code.google.com/p/scalaris/source/browse/trunk/src/
gossip_load.erl?spec=svn6108&r=6108
* test/gossip_SUITE.er1l: Test suite, providing integration tests:
https://code.google.com/p/scalaris/source/browse/trunk/test/
gossip_SUITE.er1?spec=svn6108&r=6108

B.2 Github

A version with nicer formatting, including syntax highlighting, can be at the
authors Github repository:

https://github.com/jvf/scalaris
The relevant files and the links to the final version:

* src/gossio.erl: the behaviour module, main part of the framework:
https://github.com/jvf/scalaris/blob/gossip_thesis_submission/
src/gossip.erl

e src/gossip_beh.erl: the behaviour (interface) for the callback mod-
ules:
https://github.com/jvf/scalaris/blob/gossip_thesis_submission/
src/gossip_beh.erl

* src/gossip_load: example callback module, implementing load in-
formation aggregation:
https://github.com/jvf/scalaris/blob/master/src/gossip_load.
erl

* test/gossip_SUITE.er1: Test suite, providing integration tests:
https://github.com/jvf/scalaris/blob/gossip_thesis_submission/
test/gossip_SUITE.erl

19 The final version is the latest revision within the deadline of the thesis.

49


https://code.google.com/p/scalaris/
https://code.google.com/p/scalaris/source/browse/trunk/src/gossip.erl?spec=svn6108&r=6108
https://code.google.com/p/scalaris/source/browse/trunk/src/gossip.erl?spec=svn6108&r=6108
https://code.google.com/p/scalaris/source/browse/trunk/src/gossip_beh.erl?spec=svn6108&r=6108
https://code.google.com/p/scalaris/source/browse/trunk/src/gossip_beh.erl?spec=svn6108&r=6108
https://code.google.com/p/scalaris/source/browse/trunk/src/gossip_load.erl?spec=svn6108&r=6108
https://code.google.com/p/scalaris/source/browse/trunk/src/gossip_load.erl?spec=svn6108&r=6108
https://code.google.com/p/scalaris/source/browse/trunk/test/gossip_SUITE.erl?spec=svn6108&r=6108
https://code.google.com/p/scalaris/source/browse/trunk/test/gossip_SUITE.erl?spec=svn6108&r=6108
https://github.com/jvf/scalaris
https://github.com/jvf/scalaris/blob/gossip_thesis_submission/src/gossip.erl
https://github.com/jvf/scalaris/blob/gossip_thesis_submission/src/gossip.erl
https://github.com/jvf/scalaris/blob/gossip_thesis_submission/src/gossip_beh.erl
https://github.com/jvf/scalaris/blob/gossip_thesis_submission/src/gossip_beh.erl
https://github.com/jvf/scalaris/blob/master/src/gossip_load.erl
https://github.com/jvf/scalaris/blob/master/src/gossip_load.erl
https://github.com/jvf/scalaris/blob/gossip_thesis_submission/test/gossip_SUITE.erl
https://github.com/jvf/scalaris/blob/gossip_thesis_submission/test/gossip_SUITE.erl

Bibliography Jens V. Fischer

Bibliography

[1] Ericsson AB. OTP Design Principles. 2013. urL: http://www.erlang.
org/doc/design_principles/des_princ.html.

[2] PauloSérgio Almeida et al. “Fault-Tolerant Aggregation: Flow-updating
Meets Mass-distribution”. In: Proceedings of the 15th International Confer-
ence on Principles of Distributed Systems. OPODIS’11. Toulouse, France:
Springer-Verlag, 2011, pp. 513-527.

[3] Joe Armstrong. Programming Erlang: software for a concurrent world.
Pragmatic Bookshelf, 2013.

[4] Nicola Bicocchi, Marco Mamei and Franco Zambonelli. “Handling dy-
namics in gossip-based aggregation schemes”. In: Computers and Com-
munications, 2009. ISCC 2009. IEEE Symposium on. IEEE. 2009, pp. 380-
385.

[5] Ken Birman. “The Promise, and Limitations, of Gossip Protocols”. In:
SIGOPS Oper. Syst. Rev. 41.5 (Oct. 2007), pp. 8-13.

[6] Francesco Blasa et al. “Symmetric Push-Sum Protocol for decentralised
aggregation”. In: Proceedings of AP2PS 2011, the Third International
Conference on Advances in P2P Systems. IARIA, 2011, pp. 27-32.

[7] Stephen Boyd et al. “Randomized gossip algorithms”. In: [IEEE/ACM
Trans. Netw. 14.SI (June 2006), pp. 2508-2530.

[8] Miguel Castroetal. “SCRIBE: A large-scale and decentralized application-
level multicast infrastructure”. In: IEEE Journal on Selected Areas in
Communications (JSAC 20 (2002), p. 2002.

[9] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly Media,
2009.

[10] Cassandra Community. Anti-entropy Overview. 2014. urL: http://
wiki.apache.org/cassandra/ArchitectureAntiEntropy.

[11] Frank Dabek et al. “Vivaldi: a decentralized network coordinate sys-
tem”. In: Proceedings of the 2004 conference on Applications, technologies,
architectures, and protocols for computer communications. SIGCOMM ’04.
Portland, Oregon, USA: ACM, 2004, pp. 15-26.

[12] Mads Dam and Rolf Stadler. “A generic protocol for network state
aggregation”. In: In Proc. Radiovetenskap och Kommunikation (RVK. 2005,
pp- 14-16.

[13] Alan Demers et al. “Epidemic algorithms for replicated database main-
tenance”. In: Proceedings of the sixth annual ACM Symposium on Prin-
ciples of distributed computing. PODC "87. Vancouver, British Columbia,
Canada: ACM, 1987, pp. 1-12.

[14] Stefan Edlich et al. “NoSQL”. In: (2011).

50


http://www.erlang.org/doc/design_principles/des_princ.html
http://www.erlang.org/doc/design_principles/des_princ.html
http://wiki.apache.org/cassandra/ArchitectureAntiEntropy
http://wiki.apache.org/cassandra/ArchitectureAntiEntropy

Bibliography Jens V. Fischer

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P.T. Eugster et al. “Epidemic information dissemination in distributed
systems”. In: Computer 37.5 (2004), pp. 60-67.

Ali Ghodsi. “Distributed k-ary System: Algorithms for Distributed
Hash Tables”. PhD Dissertation. Stockholm, Sweden: KTH—Royal
Institute of Technology, Oct. 2006.

Carl Hewitt, Peter Bishop and Richard Steiger. “A universal modular
actor formalism for artificial intelligence”. In: Proceedings of the 3rd
international joint conference on Artificial intelligence. Morgan Kaufmann
Publishers Inc. 1973, pp. 235-245.

Marie Hoffmann. “Approximate Algorithms for Distributed Systems”.
MA thesis. Freie Universitat Berlin, 2013.

Basho Technologies, Inc. Riak Glossary. 2014. urL: http://docs.
basho.com/riak/ latest / theory /concepts/glossary/
#Active-Anti-Entropy-AAE-.

Mark Jelasity, Alberto Montresor and Ozalp Babaoglu. “Gossip-based
aggregation in large dynamic networks”. In: ACM Trans. Comput. Syst.
23.3 (Aug. 2005), pp. 219-252.

Mark Jelasity et al. “Gossip-based Peer Sampling”. In: ACM Trans.
Comput. Syst. 25.3 (Aug. 2007).

Mark Jelasity and Ozalp Babaoglu. “T-Man: Gossip-Based Overlay
Topology Management”. In: Engineering Self-Organising Systems. Ed. by
SvenA. Brueckner et al. Vol. 3910. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2006, pp. 1-15.

Paulo Jesus, Carlos Baquero and Paulo Sérgio Almeida. “Dependability
in Aggregation by Averaging”. In: CoRR abs/1011.6596 (2010).

Paulo Jesus, Carlos Baquero and Paulo Sérgio Almeida. “Fault-Tolerant
Aggregation by Flow Updating”. In: Proceedings of the 9th IFIP WG
6.1 International Conference on Distributed Applications and Interoperable
Systems. DAIS "09. Lisbon, Portugal: Springer-Verlag, 2009, pp. 73-86.

Paulo Jesus, Carlos Baquero and Paulo Sergio Almeida. “Fault-Tolerant
Aggregation for Dynamic Networks”. In: Proceedings of the 2010 29th
IEEE Symposium on Reliable Distributed Systems. SRDS "10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 37—43.

R. Karp et al. “Randomized rumor spreading”. In: Proceedings of the
41st Annual Symposium on Foundations of Computer Science. FOCS "00.
Washington, DC, USA: IEEE Computer Society, 2000, pp. 565—.

Srinivas Kashyap et al. “Efficient gossip-based aggregate computa-
tion”. In: Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. PODS "06. Chicago, IL, USA:
ACM, 2006, pp. 308-317.

51


http://docs.basho.com/riak/latest/theory/concepts/glossary/#Active-Anti-Entropy-AAE-
http://docs.basho.com/riak/latest/theory/concepts/glossary/#Active-Anti-Entropy-AAE-
http://docs.basho.com/riak/latest/theory/concepts/glossary/#Active-Anti-Entropy-AAE-

Bibliography Jens V. Fischer

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

David Kempe, Alin Dobra and Johannes Gehrke. “Gossip-Based Com-
putation of Aggregate Information”. In: Proceedings of the 44th Annual
IEEE Symposium on Foundations of Computer Science. FOCS ’"03. Wash-
ington, DC, USA: IEEE Computer Society, 2003, pp. 482—.

A. Kemper and A. Eickler. Datenbanksysteme: Eine Einfiihrung. Olden-
bourg Wissenschaftsverlag, 2011.

Anne-Marie Kermarrec, Laurent Massoulié and Ayalvadi J. Ganesh.
“Probabilistic Reliable Dissemination in Large-Scale Systems”. In: IEEE
Trans. Parallel Distrib. Syst. 14.3 (Mar. 2003), pp. 248-258.

Anne-Marie Kermarrec and Maarten van Steen. “Gossiping in dis-
tributed systems”. In: SIGOPS Oper. Syst. Rev. 41.5 (Oct. 2007), pp. 2—-
7.

Jodo Carlos Antunes Leitao et al. “X-BOT: A Protocol for Resilient
Optimization of Unstructured Overlays”. In: Proceedings of the 2009
28th IEEE International Symposium on Reliable Distributed Systems. SRDS
’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 236-245.

Joao Leitao, José Pereira and Luis Rodrigues. “HyParView: A Member-
ship Protocol for Reliable Gossip-Based Broadcast”. In: Proceedings of
the 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks. DSN "07. Washington, DC, USA: IEEE Computer Society,
2007, pp. 419-429.

Martin Logan, Eric Merritt and Richard Carlsson. Erlang and OTP in
Action. Manning, Nov. 2010.

Laurent Massoulié et al. “Peer Counting and Sampling in Overlay
Networks: Random Walk Methods”. In: Proceedings of the Twenty-fifth
Annual ACM Symposium on Principles of Distributed Computing. PODC
'06. Denver, Colorado, USA: ACM, 2006, pp. 123-132.

Alberto Gonzalez Prieto and Rolf Stadler. “A-GAP: An adaptive pro-
tocol for continuous network monitoring with accuracy objectives”.
In: Network and Service Management, IEEE Transactions on 4.1 (2007),
pp- 2-12.

Antony Rowstron and Peter Druschel. “Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems”. In:
Middleware 2001. Springer. 2001, pp. 329-350.

Thorsten Schiitt, Florian Schintke and Alexander Reinefeld. “Scalaris:
Reliable Transactional P2P Key/Value Store”. In: Proceedings of the
7th ACM SIGPLAN Workshop on ERLANG. ERLANG "08. Victoria, BC,
Canada: ACM, 2008, pp. 41-48.

T. Schiitt et al. “Gossip-based topology inference for efficient overlay
mapping on data centers”. In: Peer-to-Peer Computing, 2009. P2P "09.
IEEE Ninth International Conference on. 2009, pp. 147-150.

52



Bibliography Jens V. Fischer

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

T. Schiitt et al. “Self-Adaptation in Large-Scale Systems: A Study on
Structured Overlays across Multiple Datacenters”. In: Self-Adaptive and
Self-Organizing Systems Workshop (SASOW), 2010 Fourth IEEE Interna-
tional Conference on. 2010, pp. 224-228.

Nisheeth Shrivastava et al. “Medians and beyond: new aggregation
techniques for sensor networks”. In: Proceedings of the 2nd international
conference on Embedded networked sensor systems. SenSys '04. Baltimore,
MD, USA: ACM, 2004, pp. 239-249.

Angelos Stavrou, Dan Rubenstein and Sambit Sahu. “A Lightweight,
Robust P2P System to Handle Flash Crowds”. In: IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS (JSAC. 2004, pp. 6-17.

Ion Stoica et al. “Chord: A Scalable Peer-to-peer Lookup Protocol for
Internet Applications”. In: IEEE/ACM Trans. Netw. 11.1 (Feb. 2003),
pp- 17-32.

A.S. Tanenbaum and M. van Steen. Verteilte Systeme: Grundlagen und
Paradigmen. 1 : Informatik. Pearson Education Deutschland GmbH,
2003.

Demerew Ketsela Tesfaye. “Gossip vs. Tree-based Monitoring under
Different Networking Conditions”. PhD thesis. Master’s thesis, KTH
Royal Institute of Technology, 2010.

Robbert Van Renesse, Kenneth P. Birman and Werner Vogels. “As-
trolabe: A Robust and Scalable Technology for Distributed System
Monitoring, Management, and Data Mining”. In: ACM Trans. Comput.
Syst. 21.2 (May 2003), pp. 164-206.

M. Van Steen. Graph Theory and Complex Networks: An Introduction.
Maarten Van Steen, 2010.

Spyros Voulgaris, Daniela Gavidia and Maarten van Steen. “CYCLON:
Inexpensive Membership Management for Unstructured P2P Over-
lays”. In: Journal of Network and Systems Management 13.2 (2005), pp. 197—
217.

Fetahi Wuhib et al. “Decentralized computation of threshold crossing
alerts”. In: 16 th IFIP/IEEE Distributed Systems Operations and Manage-
ment (DSOM’05. 2005, pp. 24-26.

Fetahi Wuhib et al. “Robust monitoring of network-wide aggregates
through gossiping”. In: Network and Service Management, IEEE Transac-
tions on 6.2 (2009), pp. 95-109.

53



	List of Figures
	List of Tables
	List of Algorithms
	List of Code Fragments
	Introduction
	Fundamentals of Gossiping
	Gossip Based Information Dissemination
	Basic Dissemination Algorithm
	Related Work

	Membership Management
	Example Membership Protocol: Cyclon
	Related Work

	Cycles
	Robustness in Practical Settings

	Gossip Based Aggregation
	Related Work
	Computing Averages
	Histograms
	Evaluation of symmetric push-sum protocol
	Periodic Restarting

	The General Structure of a Gossiping Operation
	A Gossiping Framework for Scalaris
	Communication Model
	Interaction with the Callback Modules
	Atomicity and Coupling
	Rounds
	State of Behaviour Module
	Usage of the Framework
	Evaluation of the Framework

	Gossiping Load Information in Scalaris
	Interaction with the Behaviour Module
	Periodic Restarting
	State of gossip_load
	Usage of [style=erlin]gossipload
	Evaluation of [style=erlin]gossipload 

	Conclusion
	Appendices
	Overview of Callback Functions
	Type Definitions
	Startup and Shutdown
	Gossip Operation
	Config Functions
	Notifications

	Source Code
	Google Code
	Github

	Bibliography


