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Abstract

We employ the adaptive resolution approach AdResS, in its recently developed Grand Canonical-

like version (GC-AdResS) [Wang et al. Phys.Rev.X 3, 011018 (2013)], to calculate the excess

chemical potential, µex, of various liquids and mixtures. We compare our results with those ob-

tained from full atomistic simulations using the technique of thermodynamic integration and show

a satisfactory agreement. In GC-AdResS the procedure to calculate µex corresponds to the process

of standard initial equilibration of the system; this implies that, independently of the specific aim

of the study, µex, for each molecular species, is automatically calculated every time a GC-AdResS

simulation is performed.
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I. INTRODUCTION

The chemical potential represents an important thermodynamic information for any system,

in particular for liquids, where the possibility of combining different substances for forming

optimal mixtures is strictly related to knowledge of the chemical potential of each component

in the mixture environment. In this perspective, molecular simulation represents a powerful

tool for predicting the chemical potential of complex molecular systems. Popular, well es-

tablished methodologies in Molecular Dynamics (MD) are Widom particle insertion (IPM)

[1] and thermodynamic integration (TI) [2]. IPM is computationally very demanding often

beyond a reasonable limit even in presence of large computational resources, but upon con-

vergence, is rather accurate. TI is computationally convenient but specifically designed to

calculate the chemical potential and thus it may not be optimal for employing MD for study-

ing other properties. In fact TI requires artificial modification of the atomistic interactions

(see Appendix). Recently we have suggested that the chemical potential could be calculated

by employing the Adaptive Resolution Simulation method in its Grand Canonical-like for-

mulation (GC-AdResS) [3–5]. AdResS was originally designed to interface regions of space

at different levels of molecular resolution within one simulation set up. This allows for large

and efficient multiscale simulations where the high resolution region is restricted to a small

portion of space and the rest of the system is at coarser level. The recent version of the

method, GC-AdResS, given its theoretical framework, should automatically calculate the

chemical potential during the process of initial equilibration: in this work we prove that this

is indeed the case and report results for the chemical potential for various liquids and mix-

tures of particular relevance in (bio)-chemistry and material science. We compare our results

with those from full atomistic TI and find a satisfactory agreement. This agreement allows

us to conclude that every time a multiscale GC-AdResS is performed, µex is automatically

calculated for each liquid component and implicitly confirm that the basic thermodynamics

of the system is well described by the method. Moreover, in recent work AdResS has been

merged with the MARTINI force field [6, 7]. In this context, the possibility of checking the

consistency of a quantity like the chemical potential can be used as a further argument for

the validity of the method in applications to large systems of biological interest. Below we

provide the basic technical ingredients of GC-AdResS which are relevant for the calculation

of the chemical potential, more specific details can be found in [4, 5].
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II. FROM ADRESS TO GC-ADRESS

The original idea of AdResS is based on a simple intuitive physical principle:

• Divide the space in three regions, one with atomistic resolution (AT) and one with

coarse-grained (spherical) resolution (CG) interfaced by a smaller region with an hy-

brid treatment, which is usually called transition region or hybrid region.

• Couple the molecules in the different regions through a spatial interpolation formula

on the forces:

F i,j = w(r i)w(r j)F
AT
i,j + [1− w(r i)w(r j)]F

CG
i,j (1)

where i and j indicates two molecules, FAT is the force derived from the atomistic

force field and FCG from the corresponding coarse-grained potential, r is the center

of mass (COM) position of the molecule and w is an interpolating function which

smoothly goes from 0 to 1 (or vice versa) in the transition region (∆) where the lower

resolution is then slowly transformed (according to w) in the high resolution (or vice

versa), as illustrated in Fig.1.

• In the transition region a thermodynamic force acting on the COM of each molecule

and a locally acting thermostat are added to assure the overall thermodynamic equilib-

rium at a given temperature. The thermodynamic force is defined in such a way that

pAT + ρ0

∫
∆
F th(r)dr = pCG, where pAT is the target pressure of the atomistic system

(region), pCG is the pressure of the coarse-grained model, ρ0 is the target molecular

density of the atomistic system (region) [3]. An additional locally acting thermostat

is added to take care of the loss/gain of energy in the transition region.

In [5] we have defined necessary conditions in ∆ such that the spatial probability distribution

of the full-atomistic reference system was reproduced up to a certain (desired) order in

the atomistic region of the adaptive system. We have defined the mth order of a spatial

(configurational) probability distribution of N molecules, p(r 1, · · · , rN), as:

p(m)(r 1, · · · , rm) =

∫
p(r 1, · · · , rm, rm+1, · · · , rN) drm+1 · · · drN (2)

The first order, often mentioned in this work corresponds to the molecular number density

ρ(r). Moreover we have shown that, because of the necessary conditions, the accuracy in
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FIG. 1. Pictorial representation of the adaptive box and molecular representation. Here it is shown

the case of the tetrahedral molecule used as a test case in the original development of AdResS. The

region on the right, is the low resolution region (coarse-grained), the central part is the transition

(hybrid) region ∆, where the switching function w(x) (in green) is defined, and the region on the

left, is the high resolution region (atomistic). It must be noticed that differently from the original

AdResS, in GC-AdResS the range of definition of w(x) is extended of an amount of Rc. The

extension of this additional region is equal to the cut-off radius of the atomistic interactions and

w(x) takes the constant value of 1. The consequence is that molecules in the atomistic region

interact with the rest of the system always and only via well defined atomistic interactions. This

characteristic, in turn, allows to write an exact Hamiltonian for the atomistic region and thus treat

the system in a Grand-Canonical fashion (see Eq.12 of Ref.[5])

.

the atomistic region is independent of the accuracy of the coarse-grained model, thus, in

the coarse-grained region, one can use a generic liquid of spheres whose only requirement

is that it has the same molecular density of the reference system. In the simulation set up,

F th is calculated via an iterative procedure using the molecular number density in ∆. The

iterative scheme consists of calculating F k+1
th (r) = F k

th(r) + 1
ρ2
0κT

∇ρk(r) (κT the isothermal

compressibility), and the thermodynamic force is considered converged when the target den-

sity ρ0 is reached in ∆. As a result, F th(r), acting in ∆, assures that there are no artificial

density variations across the system, thus it allows to accurately reproduce the first order

of the probability distribution in the atomistic region. Higher orders can be systematically

achieved by imposing in ∆ a corrective force. For example, the COM-COM radial distribu-

tion function correction for the second order [4]. Next it was proved that indeed the target
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Grand Canonical distribution, that is the probability distribution of a subsystem (of the

size of the atomistic region in GC-AdResS) in a large full atomistic simulation is accurately

reproduced. A large number of tests were performed and the reproduction by GC-AdResS

of the probability distribution was numerically proved up to (at least) the third order, more

than sufficient in MD simulations. Within this framework it was finally shown that the

sum of work of F th(r) and that of the thermostat corresponds to the difference in chemical

potential between the atomistic and coarse-grained resolution; this subject is treated in the

next section.

III. CALCULATION OF EXCESS CHEMICAL POTENTIAL

In Ref. [5] it has been shown that the chemical potential of the atomistic and coarse-grained

resolution are related by the following formula:

µCG = µAT + ωth + ωQ (3)

with µCG the chemical potential of the coarse-grained system (in GC-AdResS this corre-

sponds to a liquid of generic spheres), µAT the chemical potential of the atomistic system,

ωth =
∫
∆
F th(r)dr the work of the thermodynamic force in the transition region, ωQ the

work/heat provided by the thermostat in order to slowly equilibrate the inserted/removed

degrees of freedom in the transition region. ωQ is composed by two parts, one, called ωextra,

which compensates the dissipation of energy due to the non-conservative interactions in ∆,

and another, ωDOF, which is related to the equilibration of the reinserted/removed degrees

of freedom (rotational and vibrational). While the determination of ωDOF is not required for

our final aim (that is the calculation of the excess chemical potential, as explained later on),

the calculation of ωQ is very relevant. However this calculation is not straightforward and

we have proposed to introduce an auxiliary Hamiltonian approach where the coarse-grained

and atomistic potential are interpolated, and not the forces as in the original AdResS. Next,

we impose that the Hamiltonian system must have the same thermodynamic equilibrium of

the original force-based GC-AdResS system; this is done by introducing a thermodynamic

force in the auxiliary Hamiltonian approach, which, at the target temperature, keeps the

density of particles across the system as in GC-AdResS. In the auxiliary Hamiltonian ap-

proach we have the same equilibrium as the original adaptive (and full atomistic) system
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and the difference between the work of the original thermodynamic force and the work of

the thermodynamic force calculated in the Hamiltonian approach gives ωextra (further details

about this point are given in the Appendix B). Moreover we have proven numerically, for the

case of liquid water, that ωextra =
∫
∆
∇w(r)〈w(UAT−UCG)〉rdr , where UAT and UCG are the

atomistic and coarse-grained potential. It must be noticed that the auxiliary Hamiltonian

approach shall not be considered a Hamiltonian approach to adaptive resolution simulation.

In fact, as discussed in Ref.[5] the equilibrium is imposed artificially and per se does not

have any physical meaning (for more details, see discussion in the Appendix B). In the

next section of this work we show analytically that the formula above is exact (at least)

at the first order w.r.t. the probability distribution of the system as defined in Eq.2. The

result above implies that ωQ can be calculated in a straightforward way during the initial

equilibration within in the standard GC-AdResS code. It must be noticed that, within the

AdResS scheme, an approach similar to the auxiliary Hamiltonian has been recently pro-

posed and applied to liquids and mixtures (of toy models so far) by Potestio et al. [8, 9]

(see also [10] where such an approach is commented). At this point according to (3), if one

knows µCG, then GC-AdResS can automatically provide µAT. However we need to do one

step more, in fact the quantity of interest is not the total chemical potential, but the excess

chemical potential µex
AT which corresponds to the expression of (3) where the kinetic (ideal

gas) part is subtracted. Regarding the kinetic part, one can notice that the contribution

coming from the COM is the same for the coarse-grained and for the atomistic molecules,

thus it is automatically removed in the calculation of (3). The kinetic part of µAT due to

the rotational and vibrational degrees of freedom corresponds in our case to ωDOF and in

principle can be calculated by hand (chemical potential of an isolated molecules). However

such a calculation may become rather tedious for large and/or complex molecules but in our

case it is actually not required. In fact the Gromacs implementation of AdResS considers

the removed degrees of freedom as phantom variables but thermally equilibrate them any-

way [11]. Thus the heat provided by the thermostat for the rotational and vibrational part

is the same in the atomistic and coarse-graining molecules and is automatically removed in

the difference. Finally, the calculation of µex
CG can be done with standard methods, TI or

IPM, which for simple spherical molecules, like those of the coarse-grained system, requires
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a negligible computational cost. In conclusion, we have the final expression:

µex
AT = µex

CG −
∫

∆

Fth(r)dr −
∫

∆

∇rw(r)〈w(UAT − UCG)〉rdr (4)

IV. ANALYTIC DERIVATION OF wextra

In this section we derive analytically the equivalence: ωextra =
∫
∆
∇rw(r)〈w(UAT−UCG)〉rdr

and define its conceptual limitations. We consider a potential coupling between the atomistic

and coarse-grained resolution as the spatial interpolation of the atomistic and coarse-grained

potential, as done instead for the forces in the standard AdResS:

U =
∑
i<j

w(r i)w(r j)U
AT
i,j +

∑
i<j

[1− w(r i)w(r j)]U
CG
i,j , (5)

where UAT
i,j and UCG

i,j are the atomistic and coarse-grained interaction potential between

molecule i and j, respectively, defined by

UAT
i,j =

∑
α∈i

∑
β∈j

UAT(rα − r β), UCG
i,j = UCG(r i − r j), (6)

where α and β denotes the atom indexes of the corresponding molecule. The COM of the

molecule is defined as:

r i =
∑
α∈i

mα∑
α∈i mα

rα, (7)

where mα is the mass of atom α of molecule i. The potential interpolation (6) provides an

auxiliary Hamiltonian to the AdResS system, and the corresponding intermolecular force is

given by:

F i,j = w(r i)w(r j)F
AT
i,j + [1− w(r i)w(r j)]F

CG
i,j −∇rw(r i)w(r j)(U

AT
i,j − UCG

i,j ). (8)

We refer to the AdResS simulation using force scheme (8) as auxiliary Hamiltonian AdResS,

and all properties of this approach will be added a superscript “H”. We define the force of

changing representation by

F rep,i =
∑

j

∇rw(r i)w(r j)(U
AT
i,j − UCG

i,j ). (9)

We use the same notation as in our previous work [5]. The thermodynamic variables for the

atomistic and coarse-grained regions are denoted by (N1, V1, T ) and (N3, V3, T ), respectively.
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We assume that the transition region is an infinitely thin filter (that is a much smaller region

than the atomistic and coarse-grained region) that allows molecules to change resolution as

they cross it. Therefore, it is reasonable to assume that:

V = V1 + V3 (10)

N = N1 + N3 (11)

where V and N are the total volume and total number of molecules of the system. In this

work, we adopt the same assumptions as those listed in Sec.III.C of Ref. [5], i.e. we assume

the system to be in the thermodynamic limit, and molecules are short-range correlated

(short-ranged must be intended as a range comparable to the size of the transition region).

The thermodynamic force for GC-AdResS (F th) and for the auxiliary Hamiltonian AdResS

(FH
th), enforce the system to have a flat density:

ρ∆ = ρAT = ρCG = ρ0 (12)

ρH
∆ = ρAT = ρCG = ρ0 (13)

Where ρ0 is the equilibrium number density of the system defined by ρ0 = N/V . As shown

in Refs.[3, 5], F th provides the balance of the grand potential or equivalently

pAT = pCG − ρ0 ωth (14)

where ωth denotes the integral of the thermodynamic force F th.

Instead when we consider the auxiliary Hamiltonian approach, the third term on the

R.H.S. of Eq. (8) is not symmetric w.r.t molecule i and j, therefore, the Newton’s action-

reaction law (momentum conservation) does not hold anymore. As a consequence, the

pressure relation between the AT and CG resolution (14) does not hold and should be

derived again. Now assume, for simplicity and without lost of generality, that the system

changes resolution only along the x direction. We impose an infinitesimal increment of the

volume ∆V to the AT region, and apply the same decrement of the volume −∆V to the

CG region. The volume of the transition region is kept constant as if it is an ideal “piston”

that moves toward the CG region by an amount ∆L. We assume ∆V = ∆L · S, where S

is the cutting surface area. The displacement ∆L should be infinitesimal, i.e. much smaller

than the size of the transition region. This is achievable by taking the limit of ∆L → 0,
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while keeping the system size fixed. It must be noticed that also the displacements of

the molecules are infinitesimal, so it can be reasonably assumed that the resolution of the

molecules remains the same under a displacement of ∆L. Therefore, the change of the free

energy of the system is approximately:

∆A ≈AAT(N1, V1 + ∆V, T )−AAT(N1, V1, T ) + ACG(N3, V3 −∆V, T )−ACG(N3, V3, T )

+

∫
∆

dr ρ0S ·∆L · [FH
th(r)− 〈

F rep(r)
〉 ]

(15)

where AAT and ACG are the free energies of the AT and CG region, respectively. The

expression of Eq.15 as a sum of different terms is justified by the hypothesis of treating

the system in the thermodynamic limit, and by the hypothesis that the interactions are

short-ranged compared to the size of the transition region. N1 and N3 is the numbers of

molecules in the AT and CG region, and V1 and V3 is the volume in the AT and CG region,

respectively; T is the temperature of the system. The last term is originated by the work

done of the ideal piston. This latter is composed by two parts, the first corresponding to

the work done by the thermodynamic force, and the second corresponding to the work done

by the force of changing representation (which does not vanish due to the violation of the

Newton’s action-reaction law). The first and second term of Eq. (8) being forces based on

pairwise interactions only, do not contribute to the difference of energy; in fact their total

work is zero (as long as the transition region move infinitesimally along x). The notation 〈·〉
in Eq. (15) denotes the ensemble average, which will be specified soon. It is straightforward

to show that

∆A ≈ −pAT∆V + pCG∆V − ρ0∆V (ωH
th − ωrep), (16)

where wH
th is the integral of the thermodynamic force FH

th, and ωrep is the work of changing

representation, which can be explicitly written down as:

ωrep =

∫
∆

dr 〈F rep(r)〉 =

∫
∆

dr ∇rw(r)
〈
w(r ′) [

∑
α,β

UAT(rα − r ′
β)− UCG(r − r ′)]

〉
r ′;r

(17)

The average is performed over all possible positions of the second molecule (i.e. r ′), at

fixed position of the first molecule (i.e. r) in the pairwise interaction. In case of molecules

containing more than one atom, the average is also made over all possible conformations

9



in the atomistic resolution. In the thermodynamic limit, the equilibrium volume of the AT

region maximize the free energy, i.e. ∆A/∆V = 0, which yields

pCG − pAT = ρ0(ω
H
th − ωrep). (18)

Comparing the expression above with that obtained for GC-AdResS (Eq. (14)), we have:

ωrep = ωH
th − ωth, (19)

which relates the thermodynamic force of the auxiliary Hamiltonian AdResS and the GC-

AdResS.

In Ref. [5] we proved that under proper assumptions, when the flat density profile is en-

forced by the thermodynamic force, the chemical potential difference between the different

resolutions is given by

µCG − µAT = ωth + ωDOF + ωextra (20)

The same argument can be applied to the auxiliary Hamiltonian approach, and yields the

chemical potential difference between the AT and CG resolutions

µCG − µAT = ωH
th + ωDOF (21)

In the auxiliary Hamiltonian, we do not have the term wextra in the above formula (be-

ing the term wextra in GC-AdResS, generated by the non-conservative effect of the force

interpolation). By comparing (20) with (21), we have the relation

ωextra = ωH
th − ωth, (22)

which also relates the thermodynamic force of the auxiliary Hamiltonian AdResS and GC-

AdResS.

From Eq. (19) and (22), we find the extra work of the thermostat in GC-AdResS being

identical to the work of changing representation of the auxiliary Hamiltonian approach:

ωextra = ωrep, (23)
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which basically proves the statement at the beginning of this section. The ensemble average

on the R.H.S. of Eq. (17) is performed in the ensemble of the system treated with the

potential interpolation approach, and the question is if the ensemble average is equivalent

if it is performed in the simulation where the force interpolation approach is used. It is

obvious that the spatial probability distribution corresponding to the system treated with the

potential interpolation is consistent with the force interpolation at least up to the first order.

It is also possible to systematically obtain equivalence in the ensemble average operation

at higher orders of accuracy of the probability distribution, as, for example, it is done for

the radial distribution function in Ref. [4]. However, here we do not consider higher order

corrections, because it has been numerically shown that actually the ensemble average of

F rep dose not depend on in which ensemble it is calculated [5]. Therefore, we use Eq. (23) to

calculate ωextra, and measure the ensemble average by the standard AdResS. As previously

discussed, in the Gromacs implementation, the CG molecules also keep the atomistic degrees

of freedom even though they are in the CG region, therefore, the kinetic part of µAT and

µCG are identical, and ωDOF vanishes. Therefore, by inserting Eq. (23) into (20), we have

µex
AT = µex

CG −
∫

∆

drF th(r)−
∫

∆

dr ∇rw(r)
〈
w(r ′) [

∑
α,β

UAT(rα − r ′
β)− UCG(r − r ′)]

〉
r ′;r

(24)

The extension of Eq.24 to multicomponent systems is reported in the Appendix C, while in

the next section we apply the method to the calculation of µex to liquids and mixtures.

V. RESULTS AND DISCUSSION

We have calculated µex for different liquids and mixtures, choosing cases which are rep-

resentative of a large class of systems. Hydrophobic solvation in methane/water and in

ethane/water mixtures, hydrophilic solvation in urea/water, a balance of both in water/tert-

Butyl alcohol (TBA) mixture, other liquids, e.g. pure methanol and DMSO (and their

mixtures with water), non aqueous mixtures in TBA/DMSO and alkane liquids such as

methane, ethane and propane. Moreover, systems as water/urea are commonly used as

cosolvent of biological molecules [12] while systems as tert-Butyl alcohol/water play a key

role in modern technology [13], thus they are of high interest per se. All technical details of

each simulation are presented in the Appendix A.
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Results are reported in Table I, where the comparison with values obtained using full atom-

istic TI and available experiments, at the same concentrations, of our calculation is made;

in our previous work we have already shown that value of the chemical potential of liquid

water obtained with IPM is well reproduced by GC-AdResS, however the computational

cost of IMP was very large, thus we do not consider calculations done with IPM in this

paper. The agreement with full atomistic TI simulations is satisfactory in all cases, and

thus it proves the solidity of GC-AdResS in describing the essential thermodynamics of a

large class of systems. We also compare the obtained values with those available in litera-

ture [15, 18]. Although the concentration of the minor component in the mixtures that we

consider, is higher than the concentrations considered in Refs.[15, 18], we are anyway in the

very dilute regime and thus the chemical potential should not change in a significant way;

we have verified such a supposed consistency for one relevant system (see discussion about

Fig.3). The chemical potential of k-th liquid’s component in a mixture is calculated as (see

Appendix C):

µex,k
AT = µex,k

CG −
∫

∆

F k
th(r)dr −

∫
∆

∇rw(r)〈w(UAT − UCG)〉r ,kdr (25)

where F k
th(x) is the thermodynamic force applied to the molecules of the k-th component;

this assures that, at the given concentration, the density of molecules of species k, in the

transition region, is equivalent to the density of the same liquid’s component in a reference

full atomistic simulation. The ensemble average is taken over the position of the second

molecule, provided that the first molecule is of species k, and located at position r .

A complementary information to Table I are Fig. 2 and 3. In Fig. 2 we have studied

the behavior of µex as a function of the interaction cut-off. In fact the current version of

GC-AdResS, employs the reaction field method for treating electrostatic interactions in the

atomistic region, and the cut off is likely to play a role in some of the systems investigated.

Fig.2, for the case of DMSO/water mixture, confirms our intuition and suggests that we

could systematically improve the accuracy by increasing the cut-off, and at a value of about

1.5 nm, µex converges. In any case, at a values of 1.4 nm, which is the one routinely used

in full atomistic simulations and used by us, the value obtained with GC-AdResS is already

satisfactory. The cut-off radii used for other systems are reported in Appendix A. A further
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Liquid component Mole fraction of solute GC-AdResS TI Experiment

water – −22.8± 0.2 −22.1 ± 0.3 −23.5 [14]

methane – −4.6± 0.1 −5.2± 0.1 –

ethane – −8.2± 0.3 −8.8± 0.1 –

propane – −8.5± 0.1 −9.5± 0.2 –

methanol – −20.1± 0.1 −20.6 ± 0.4 −20.5 [15]

DMSO – −32.2± 0.3 −34.7 ± 0.7 −32.2 [16]

methanol in methanol/water mixture 0.01 −18.1± 0.2 −19.7 ± 0.2 –

methane in methane/water mixture 0.006 9.1± 0.1 8.5± 0.2 –

urea in urea/water mixture 0.02 −56.1± 0.6 −58.2 ± 0.5 −57.8 ± 2.5 [17]

ethane in ethane/water mixture 0.006 7.2± 0.2 7.4± 0.3 –

TBA in water/TBA mixture 0.001 −19.5± 0.3 −20.8 ± 0.6 −19.0 [18]

DMSO in DMSO/water mixture 0.01 −31.4± 0.5 −33.2 ± 0.3 –

TBA in TBA/DMSO mixture 0.02 −24.8± 0.4 −24.0 ± 0.5 –

TABLE I. The excess chemical potential of different liquids and mixtures in kJ/mol calculated from

GC-AdResS and TI of full atomistic simulations. Experimental values for systems at the same

concentrations used in simulation are also reported for comparison. For pure systems (water and

methanol) we compare our values with those obtained in literature using the same force field and

computational code. For mixtures, most of the values from literature (simulation and experiments)

are available at lower concentrations (see Refs.[15, 18]); However, since we are always in a very

dilute regime the chemical potential does not change significantly. We have provided evidence for

the TBA/water mixture that such consistency holds (see Fig.3). Note that the chemical potential

of water in dilute mixtures is the same of pure water and is not reported above.

question that may arise is the capability of our method to predict the behavior of µex as a

function of the concentration, above all in the very dilute regime. In Fig.3 we have performed

such a study for the case of TBA/water mixture, we show a good agreement between GC-

AdResS and TI and show that at a very dilute concentration our calculated value is close

to that of experiments, moreover the trend, regarding the TI calculations, is consistent with

that reported in Ref.[18].
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FIG. 2. Excess chemical potential of Dimethyl sulfoxide (DMSO) in water as a function of

cut-off radius calculated using GC-AdResS. The value obtained from thermodynamic integration

calculation in also shown, with a gray region indicating the standard deviation. This value was

calculated using a cut-off radius of 1.4 nm. It was seen that the value does not change significantly

if the cut-off radius is varied.
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FIG. 3. Excess chemical potential of tert-butyl alcohol (TBA) in water for different concentrations

(in logarithmic scale), calculated using GC-AdResS. The results are compared with thermodynamic

integration values. At mole-fraction xTBA = 0.001, the experiment value is shown.

In essence, according to the results obtained, GC-AdResS allows an on-the-fly determination

of µex of each component of a liquid, whenever a simulation is performed, without extra

computational costs. Moreover, Fig.4 shows the action of the thermodynamic force and of

the thermostat in the transition region ∆ for TBA-water; the molecular density is sufficiently

close to that of reference (the largest difference is below 20% and the average difference is

14



 0

 20

 40

 60

 80

 100

 120

 140

 0.5  1  1.5  2  2.5  3

ρ(
x)

 [ 
kg

/m
3  ]

x [nm]

Full Atomistic Ref.
AdResS

 700

 750

 800

 850

 900

 950

 1000

 1050

 1100

 0.5  1  1.5  2  2.5  3

ρ(
x)

 [ 
kg

/m
3  ]

x [nm]

Full Atomistic Ref.
AdResS

FIG. 4. Top: Molecular density profile in ∆ for TBA/water mixture; Bottom, the same plot for

water. Among all the systems considered, in this case the action of the thermodynamic force

and that of the thermostat leads to the largest deviation from the reference all atomistic average

density; however even in this case the discrepancy is negligible. The mole-fraction is xTBA = 0.02,

and the cut-off radius is 0.9 nm.

below 10%), and thus it assures that in the atomistic region there are no (significant) artificial

effects on the molecular density due to the perturbation represented by the interpolation

of forces in ∆. In Fig.5 we report various radial distribution functions for TBA-water in

the atomistic region of the adaptive set up. The agreement with data from a full atomistic

simulation is highly satisfactory. Moreover, it must be underlined that, on purpose, we have

chosen extreme technical conditions, that is, a very small atomistic and coarse-grained region

(0.5 nm) and a relatively large transition region (2.7 nm). Even in these conditions we prove

that local properties as those of Fig.4 and Fig.5, together with a relevant thermodynamics

quantity as µex are well reproduced. This example shows the key features of GC-AdResS,

that is, a multiscale simulation where the chemical potential of each component is obtained
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FIG. 5. Top: TBA-TBA radial distribution function; Middle: the same plot for TBA-water;

Bottom: for water-water. Red: the results of the AdResS simulation. The g(r) is calculated only

in the atomistic region. Blue: the results of a full-atomistic reference simulation that has the same

simulation region as AdResS. The mole-fraction is xTBA = 0.02, and the cut-off radius is 0.9 nm.
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without extra computational costs and with high accuracy in a simulation where other

properties are also calculated with high accuracy. It must be also noticed that the system

corresponding to the figures is, among all the system considered, the case where the action

of the thermodynamic force and of the thermostat produces the less accurate agreement

with the reference data.

VI. EFFICIENCY

In order to show the numerical efficiency of our approach, we compare the time taken to do

a full GC-AdResS simulation and the time for a thermodynamic integration calculation for

different systems with varied concentration of TBA in water. The total time required for

an GC-AdResS simulation consists of the time taken to obtain a converged thermodynamic

force and the time taken to obtain the coarse-grained chemical potential. The time taken to

complete TI procedure at each value of λ is summed up to obtain the total time. In this work,

the TI is done in two stages, first the van der Waals interactions are coupled followed by the

electrostatic coupling. At each stage, 21 equally distributed values of λ are used, therefore,

in total 42 simulations were performed to calculate each TI chemical potential value. In an

AdResS simulation, the initial guess of the thermodynamic force largely determines the time

for convergence. We started with a randomly chosen initial guess (−42 kJ/mol, we picked

a small value because the TBA molecule is hydrophilic) for system with the highest mole

fraction of TBA. For all the other systems, we used the converged thermodynamic force

obtained from the first system as an initial guess. The convergence was much faster in all

the other cases using this approach. Table II shows the number of iterations required for the

thermodynamic force convergence in GC-AdResS and total time required for GC-AdResS

and TI calculation. The advantage of GC-AdResS over TI is that we get two values of

excess chemical potential for both solute and solvent in a single calculation, while in TI, the

whole process has to be repeated to get the excess chemical potential of other component.

For very dilute systems (xTBA = 0.001), however, one has to take a very large systems in

GC-AdResS (see the Appendix A for system size). It takes a large amount of time for the

thermodynamic force to reach convergence, and hence TI is always a better option at such

low concentrations with a much smaller system size at the same mole fraction.
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GC-AdResS TI

xTBA No. of iterations Time(hrs.) Time(hrs.)

0.200 20 52.4 30.8

0.160 5 15.1 31.0

0.120 5 16.3 29.9

0.040 8 27.2 26.7

0.020 8 28.8 26.6

0.001* 20 252 202

TABLE II. Time required for a full GC-AdResS and thermodynamic integration (TI) calculation

for tert-butyl-alcohol(TBA) in water at different mole-fractions. The “*” means that a larger

system was used for the very dilute system (xTBA = 0.001), see Appendix A for details. All the

simulations were performed on a workstation that has two Quad-Core AMD Opteron(tm) 2376

Processors.

VII. CURRENT COMPUTATIONAL CONVENIENCE: A CRITICAL APPRAISAL

The natural question arising from the discussion above is whether or not GC-AdResS is a

more convenient technical tool for calculating µex compared to TI. Currently the answer is

neither negative nor positive, although the current work is the first step towards a potentially

positive answer for the future. In fact, the fastest version of AdResS is implemented in the

GROMACS code [20]; using the Gromacs version 4.5.1 a speedup of a factor four with re-

spected to full atomistic simulations has been reported for aqueous mixtures [12, 19]. In this

case GC-AdResS was more convenient than TI because in one simulation one could obtain

the chemical potential of each liquid component and at the same time calculate structural

properties (e.g. radial distribution functions). However in the successive version of GRO-

MACS 4.6.1 the performance of atomistic simulations (above all of SPC/E water) has been

highly improved while the corresponding implementation of AdResS is not optimized yet.

At the current state, AdResS can only assure a speed up factor between 2 and 3 for large

systems (30000 molecules) compared to full atomistic simulations (except for pure SPC/E

water systems). As a consequence for the calculation of µex, TI is in general computation-

ally less demanding than AdResS . Another point that must be considered (in perspective)
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for a fair comparison between TI and GC-AdResS, is the following: even if AdResS is op-

timized, in any code, TI has the advantage that one can use one single molecule in the

simulation box to mimic the minor component of a mixture. In our case, instead, we must

treat, technically speaking, a true mixture with a certain number of molecules of the minor

component immersed in the liquid of the major component. Thus, at low concentrations,

GC-AdResS simulations require larger systems than those required by TI, moreover, because

of the low density of the minor component, the convergence of the corresponding thermo-

dynamic force requires long simulations. Thus, for very dilute systems, if one is interested

only in the chemical potential, TI shall be preferred to GC-AdResS, however if the interest

goes beyond the calculation of the chemical potential, (e.g. radial distribution functions)

then (optimized) GC-AdResS would still be more convenient. When the concentration be-

comes higher, GC-AdResS may become preferable for both tasks: general properties of the

mixture and chemical potential, not only because in this case one requires larger systems,

but also because the convergence of the thermodynamic force of the minor component is

much faster. Moreover, we would have the flexibility of calculating the chemical potential

of both components in one simulation run, whereas in TI, one needs to run two separate

simulations in order to get the chemical potential of both components. The results reported

in the previous section about the current efficiency of GC-AdResS are rather encouraging,

however currently there is not a clear convenience in using GC-AdResS instead of TI for

calculating µex; in any case the technical aspects of code optimization must be reported and

we must make clear that the aim of this work is to show that the automatic calculation of

µex, independently from the simulation code in which is implemented and its computational

cost, is a “conceptual” feature of GC-AdResS.

VIII. CONCLUSION

We have shown the accuracy of GC-AdResS in calculating the excess chemical potential for

a representative class of complex liquids and mixtures. For any system, the initial equilibra-

tion process, that is the determination of the thermodynamic force, automatically delivers

the chemical potential. The only additional calculation required is that of µex
CG which implies

the use of IPM or TI, but for a liquid of simple spheres, thus computationally negligible.

The essential message is that GC-AdResS would be, per se, a reliable multiscale technique
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to calculate the chemical potential and, in perspective, upon computational/technical opti-

mization it may become an efficient tool for calculating µex compared to current techniques

in MD such as TI.
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Appendix A: Technical details of the simulations

The potential energy function and the force field parameters for all the molecules were taken

from GROMOS53A6 parameter set. Liquid water was described by the SPC model [21],

methanol was described by the model developed by Walser et al [22], urea by the model

described in [17], tert-butyl alcohol by the parameter set of [18] and DMSO was described

by the model given by Geerke et.al. [23]. For liquid methanol simulations, GROMOS43A1

parameter set was used, as it was shown to be more accurate for calculating excess free

energy of solvation of methanol in methanol [15].

In all the AdResS simulations, the resolution changes only on x direction. For each system,

30 iterations were performed to obtain a converged thermodynamic force and a flat density

profile. Each iteration consisted of 200 ps of equilibration which was followed by 200 ps of

data collection. The simulations were performed at NVT conditions where the temperature

was kept constant at 298 K. Simulations of liquid methane and ethane were performed at

111.66 K and 184.52 K respectively. As it was discussed in [5], there is no requirement

of a coarse-grained model that resembles the structural and thermodynamic properties of

a full atomistic model. It was shown numerically that the proper exchange of energy and

molecules was independent from the molecular model used in the coarse-grained region,
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System ǫ(kJ/mol) σ(nm)

methane 0.65 0.40

ethane 0.20 0.50

propane 0.65 0.55

methanol 0.65 0.40

DMSO 0.30 0.50

methanol in methanol/water 0.65 0.40

methane in methane/water 0.65 0.40

urea in urea/water 0.65 0.40

ethane in ethane/water 0.65 0.45

TBA in TBA/water 0.65 0.60

DMSO in DMSO/water 0.65 0.50

TBA in TBA/DMSO 0.40 0.60

DMSO in TBA/DMSO 0.30 0.50

TABLE III. WCA parameters for different coarse-grained molecules used in this work

showing the convenience of GC-AdResS. In this work, a generic WCA potential was used in

the coarse-grained region. The interaction potential between the coarse-grained particles is

given by

U(r) = 4ǫ

[(σ

r

)12

−
(σ

r

)6
]

+ ǫ, r ≤ 21/6σ. (A1)

The parameters σ and ǫ were chosen such that the radial distribution functions of particles

reproduce a liquid structure. For water molecule, the parameters used in this study are

ǫ = 0.65 kJ/mol and σ = 0.30 nm. Table III shows the WCA parameters for other molecules

used in this work. For interactions between solute and solvent, σ values were obtained by

averaging over the individual parameters. The solute-solvent ǫ is the same as the solute-

solute ǫ.

To obtain the chemical potential of coarse-grained component, insertion particle method was

used, where a trajectory of 8 ns was obtained and the coordinates were written after every

0.4 ps. The insertions of the molecule were performed 4,000,000 times in each frame at ran-
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dom locations and with random orientations of the molecule. The excess chemical potential

value was calculated by averaging over the last ten iterations after the thermodynamic force

has converged and the statistical uncertainty is determined by the standard deviation in the

data.

The excess chemical potential of the solute or the excess free energy of solvation was calcu-

lated using the thermodynamic integration (TI) approach. In the thermodynamic integra-

tion, the interaction of solute with the rest of the molecules in the systems is a function of

a coupling parameter λ, which indicates a level of change taken place between states A and

B. The interactions are switched off as λ is continuously decreased in the stepwise manner.

Simulations conducted at different values of λ allow to plot a ∂Ui(λ)
∂λ

curve, from which µex

is derived [24].

µex
iB − µex

iA =

∫ 1

0

〈
∂Ui(λ)

∂λ

〉
λ

dλ (A2)

where Ui is the interaction energy of particle i with the remaining particles and 〈·〉 denotes

the canonical (NVT) or isobaric-isothermal (NPT) ensemble average. We computed the

excess free energy using a two-stage approach as described in [25], first coupling van der

Waals interactions to transform the non-interacting molecule into a partially-interacting

uncharged molecule, then coupling Coulomb interactions from an uncharged interacting

molecule to fully-interacting molecule. The resulting free energy ∆Gfinal is the sum of ∆G

values obtained from the two procedures,

∆Gfinal = ∆Gele + ∆Gvdw (A3)

where ∆Gvdw is the free energy change associated with introducing the van der Waals

interactions and ∆Gele is the free energy change associated with introducing Coulomb in-

teractions. We evaluated the above integral for 21 values of λ (evenly spaced between 0 and

1) in both the procedures. At each value of λ, first a steepest descent energy minimization

was performed followed by 200 ps of NPT equilibration and 400 ps of data collection un-

der constant volume and temperature conditions, in accordance with AdResS simulations.

During the van der Waals coupling, soft-core interactions were used with soft-core param-

eters αLJ = 0.5, σ = 0.3 and the power of λ in soft-core equation was taken as 1. Free

energy estimates and the errors were calculated through Bennet’s acceptance ratio method

(BAR) [26]. For both the AdResS and full-atom simulations, the system size was kept same.
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System Nsolute Nsolvent System size (nm3) AT + HY region (nm3)

water — 13824 30.2× 3.8 × 3.8 14.6 × 3.8× 3.8

methane — 2000 9.0 × 3.7× 3.6 6.0× 3.7× 3.6

ethane — 2000 12.0× 3.9 × 3.7 7.0× 3.9× 3.7

propane — 1433 10.0× 4.5 × 4.5 7.0× 4.5× 4.5

methanol — 4000 12.0× 4.6 × 4.5 7.4× 4.6× 4.5

DMSO — 1500 15.0× 3.6 × 3.3 7.0× 3.6× 3.3

methanol/water 128 12672 29.5× 3.7 × 3.7 14.6 × 3.7× 3.7

methane/water 40 6960 10.0× 4.8 × 4.7 7.0× 4.8× 4.7

urea/water 50 2500 9.7 × 2.9× 2.8 6.8× 2.9× 2.8

ethane/water 40 6960 10.0× 4.7 × 4.6 7.0× 4.7× 4.6

TBA/water (xTBA = 0.001) 40 39960 50.1× 5.8 × 4.3 7.0× 5.8× 4.3

TBA/water (xTBA = 0.02) 80 4400 10.0× 3.6 × 4.2 7.0× 3.6× 4.2

TBA/water (xTBA = 0.04) 180 4300 10.0× 4.3 × 3.7 7.0× 4.3× 3.7

TBA/water (xTBA = 0.12) 538 3942 10.0× 4.4 × 4.6 7.0× 4.4× 4.6

TBA/water (xTBA = 0.16) 717 3763 10.0× 4.9 × 4.6 7.0× 4.9× 4.6

TBA/water (xTBA = 0.20) 896 3584 12.0× 4.6 × 4.5 7.0× 4.6× 4.5

DMSO/water 50 4950 12.0× 4.0 × 3.3 7.0× 4.0× 3.3

TBA/DMSO 80 4400 10.0× 7.3 × 7.2 7.0× 7.3× 7.2

TABLE IV. Summary of AdResS and full-atom systems.

Table IV gives a detailed summary of each system studied.

In all the simulations, a leap-frog stochastic dynamics integrator with a time step of 2 fs and

an inverse friction coefficient of 0.1 ps was used. All bond-lengths were constrained using

the LINCS algorithm. For liquid water, methanol, methanol/water, methane/water and

ethane/water a cut-off radius of 0.9 nm was used for van der Waals and Coulomb interactions,

while for rest of the systems, a cut-off radius of 1.4 nm was used. For the TBA/water system,

the chemical potential converges at cut-off 0.9 nm for mole-fraction xTBA = 0.02. Since it

would be too expensive to do the convergence tests for all concentrations, we simply use a
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large cut-off 1.4 nm for the concentration dependency study of TBA/water. Electrostatic

interactions were calculated using the reaction-field term [27] with a dielectric permittivity

of 54 for urea in SPC water [17], 64.8 for TBA in SPC water [18], 61 for other solutes in

SPC water, 19 for methanol and 46 for DMSO as the solvent [15].

Appendix B: Technical Aspects of the Auxiliary Hamiltonian AdResS

In principle when the auxiliary Hamiltonian approach is used, one can perform microcanoni-

cal simulations and thus can avoid the use of a thermostat. In this case, the thermodynamic

force of the auxiliary Hamiltonian would not carry any effect of the thermostat, and thus

the difference between the work of the thermodynamic force of GC-AdResS and that of the

auxiliary Hamiltonian is exactly the work that the thermostat does in GC-AdResS in order

to compensate energy dissipation. The question is whether the energy is conserved in the

auxiliary Hamiltonian approach. We have checked that the conservation holds for systems

without electrostatics (methane,ethane,propane), thus for such systems the procedure is

straightforward. Instead, for systems with electrostatic interactions, even for full atomistic

simulations, due to the fact that the force fields are designed for employing the reaction

field method, the energy cannot be conserved and the coupling to a thermostat is required.

This is a well known problem reported in the manual of Gromacs. However, in our case, for

both, the auxiliary Hamiltonian and GC-AdResS the energy drift due to the reaction field

method is the essentially same because they have equivalent electrostatic interactions, thus

the energy drift due to the use of the reaction field method is automatically removed when

we consider the difference between the thermodynamic forces of the two approaches, that is

the force of changing resolution.

Appendix C: Extension of the chemical potential derivation to multi-component sys-

tems

In this section we extend the chemical potential expression of Eq. (24) to multi-component

systems, i.e. we show the derivation (and limitations) of Eq. (25). For simplicity and without

lost of generality, we assume that the system is formed by two components A and B, and

the number of molecules are NA and NB, respectively. We further denote the number of
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molecules A in the atomistic, transition, and coarse-grained regions by NA
1 , NA

2 and NA
3 ,

respectively and equivalently for type B, NB
1 , NB

2 and NB
3 . By assuming, as usual, that the

size of the transition region is negligible compared with the atomistic and coarse-grained

regions, we have the following constrains:

V = V1 + V3 (C1)

N = NA + NB (C2)

NA = NA
1 + NA

3 (C3)

NB = NB
1 + NB

3 (C4)

We determine and apply the thermodynamic forces to each component, which are denoted

by FA
th and FB

th; thus we impose the correct density profile to the system:

ρA
∆ = ρA

AT = ρA
CG = ρA

0 (C5)

ρB
∆ = ρB

AT = ρB
CG = ρB

0 (C6)

Similarly to Eq. (14), for pure systems, for a mixture in GC-AdResS we have:

pCG − pAT = ρA
0 ωA

th + ρB
0 ωB

th (C7)

Following the same argument of Sec. IV, we have

pCG − pAT = ρA
0 (ωA,H

th − ωA
rep) + ρB

0 (ωB,H
th − ωB

rep), (C8)

where the work of changing representation for molecule A is defined by

ωA
rep = ωAA

rep + ωAB
rep =

∫
∆

dr〈FAA
rep(r)〉+

∫
∆

dr〈FAB
rep(r)〉, (C9)

ωB
rep = ωBA

rep + ωBB
rep =

∫
∆

dr〈FBA
rep(r)〉+

∫
∆

dr〈FBB
rep(r)〉. (C10)

Where ωAA
rep denotes the work of changing representation for a molecule of A, due to the

interaction with molecules of type A only. Instead ωAB
rep denotes the work of changing rep-

resentation for a molecule of A, due to the interaction with molecules of type B only. The
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same terminology holds for ωBA
rep and ωBB

rep . The explicit expressions are:

〈FAA
rep (r)〉 = ∇rw(r)

〈
w(r ′)

[ ∑
α,β

UAT
AA(rα − r ′

β)− UCG
AA (r − r ′)

]〉
r ′,A;r ,A

(C11)

〈FAB
rep(r)〉 = ∇rw(r)

〈
w(r ′)

[ ∑
α,β

UAT
AB(rα − r ′

β)− UCG
AB (r − r ′)

]〉
r ′,B;r ,A

(C12)

〈FBA
rep(r)〉 = ∇rw(r)

〈
w(r ′)

[ ∑
α,β

UAT
BA(rα − r ′

β)− UCG
BA (r − r ′)

]〉
r ′,A;r ,B

(C13)

〈FBB
rep(r)〉 = ∇rw(r)

〈
w(r ′)

[ ∑
α,β

UAT
BB (rα − r ′

β)− UCG
BB (r − r ′)

]〉
r ′,B;r ,B

(C14)

The notations are self-explanatory; for example UAT
AB denotes the expression for atomistic

interactions between one molecule of type A and one of type B (UAT
AA andUAT

BB are similar),

while UCG
AB is the equivalent for coarse-grained interactions. Notation 〈·〉r ′,B;r ,A denotes

the ensemble average performed with respect to position r ′ of molecule B, provided that

a molecule A takes the position r (the same applies for other combinations on indices

r ′, r , A, B). If molecules contain more than one atom, then the average is also taken over

all possible conformations. Therefore, the physical meaning of (for example) force 〈FAB
rep(r)〉

is that of an average force at r acting on a molecule of type A due to the interaction with

molecules of type B. Although we have UAT
AB = UAT

BA and UCG
AB = UCG

BA , it should be noted

that we do not have ωBA
rep = ωAB

rep in general. From Eq. (C7), (C8), (C9) and (C10), we have

ρA
0 (ωA,H

th − ωA
th − ωAA

rep − ωAB
rep ) + ρB

0 (ωB,H
th − ωB

th − ωBA
rep − ωBB

rep) = 0 (C15)

We denote the work done in the transition region on the two types of molecules by ωA
0

and ωB
0 , respectively. The chemical potential difference between the AT and CG resolution,

can be derived following the same procedure presented in Sec.III.C of Ref.5 which can be

extended to the two component system in a straightforward way. Such a procedure leads to:

µA
AT(NA

1 , NB
1 , V1, T ) = µA

CG(NA
3 , NB

3 , V3, T )− ωA
0 (C16)

µB
AT(NA

1 , NB
1 , V1, T ) = µB

CG(NA
3 , NB

3 , V3, T )− ωB
0 (C17)

In the thermodynamic limit, these numbers maximize the Helmholtz free energy. In this

context the chemical potential, e.g. µA
AT, is the free energy increment due to the insertion of

one molecule of type A into the infinitely large A–B mixture.

Similarly to the case of the one component system, from Eq. (C16) and (C17), we write
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down for GC-AdResS:

µA
CG − µA

AT = ωA
th + ωA

DOF + ωA
extra (C18)

µB
CG − µB

AT = ωB
th + ωB

DOF + ωB
extra (C19)

ωA
th and ωB

th are the integral of the thermodynamic force FA
th and FB

th, respectively. ωA
extra is

the energy dissipation due to molecule A that changes resolution in the transition region,

and ωB
extra is defined similarly. The energy dissipation can be further divided as:

ωA
extra = ωAA

extra + ωAB
extra (C20)

ωB
extra = ωBA

extra + ωBB
extra (C21)

ωAA
extra is the energy dissipation of a molecule A produced by non-conservative interactions

between molecule type A and type A only. Similarly ωAB
extra is the energy dissipation of a

molecule A due to the non-conservative interactions with molecules of type B. The defini-

tions are similar for ωBA
extra and ωBB

extra. It should be noticed that, we do not have ωBA
extra = ωAB

extra

in general. For the expression of the chemical potential, the same argument as above, is

applied to the auxiliary Hamiltonian approach, and yields

µA
CG − µA

AT = ωA,H
th + ωA

DOF (C22)

µB
CG − µB

AT = ωB,H
th + ωB

DOF (C23)

By using Eq. (C18), (C20) and (C22), we have

ωAA
extra + ωAB

extra = ωA,H
th − ωA

th. (C24)

Using Eq. (C19), (C21) and (C23), we have

ωBA
extra + ωBB

extra = ωB,H
th − ωB

th. (C25)

By inserting Eq. (C24) and (C25) into Eq. (C15), we have

ρA
0 (ωAA

extra + ωAB
extra − ωAA

rep − ωAB
rep ) + ρB

0 (ωBA
extra + ωBB

extra − ωBA
rep − ωBB

rep) = 0 (C26)

It is natural to conclude that ωAA
extra = ωAA

rep , because these two terms exclusively involves

A–A interaction. The same is true for B–B interaction: ωBB
extra = ωBB

rep . The physical meaning

27



of ωAB
extra, ωAB

rep , ωBA
extra and ωBA

rep , leads to identify of ωAB
extra with ωAB

rep , and ωBA
extra with ωBA

rep . It

follows that (for example) for component A, the excess chemical potential difference is:

µA,ex
CG − µA,ex

AT =

∫
∆

FA
th(r)dr +

∫
∆

〈FAA
rep (r)〉dr +

∫
∆

〈FAB
rep(r)〉dr (C27)

and this proves Eq. (25).
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