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ABSTRACT 

Part III of the paper is devoted to the construction of an adaptive 
FEM solver in two spatial dimensions, which is able to handle the sin­
gularly perturbed elliptic problems arising from discretization in time. 
The problems of error estimation and multilevel iterative solution of 
the linear systems — both uniformly well behaved with respect to 
the time step — can be solved simultaneously within the framework 
of preconditioning. A multilevel nodal basis preconditioner able to 
handle highly nonuniform meshes is derived. As a numerical exam­
ple an application of the method to the bioheat-transfer equation is 
included. 

AMS CLASSIFICATION: 65F10, 65F35, 65M50, 65M60, 65N30. 

'This is Part III to the articles [6,7] with the same main title. 
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INTRODUCTION 

This paper condenses material of the author's thesis [8] and constitutes a 
direct continuation of Parts I [6] and II [7] 1, in which one can find detailed 
explanations of the proposed algorithm. 

The objective of this part III is to present a 2D version of the algorithm. 
We will consider an adaptive finite element solver for the arising singularly 
perturbed elliptic subproblems 

u + TAU = f. 

The singular perturbation results from the time step r of the discretization in 
time; standard adaptive finite element solvers like PLTMG [4] or KASKADE 
[12, 16, 21] run into difficulties for small time steps, which occur in transient 
phases. 

In view of Section 1.4 we have to construct two devices: 

• Error estimator 

• Linear solver 

Both devices have to behave well - uniformly in the time step r > 0. Using 
a multilevel iteration as linear solver, the question of a proper preconditioner 
arises. As it turns out this preconditioner is the key to the error estimator 
as well. 

Because of its use of orthogonal projections a recently presented precondi­
tioner for elliptic equations due to B R A M B L E / P A S C I A K / X U [9] — extended 
to the case of highly nonuniform meshes by YSERENTANT [30] — is ideally 
suited as conceptual base for our purposes. Moreover this concept is not re­
stricted to certain space dimensions, like hierarchical basis preconditioners, 
but is easily extended to higher dimensions. 

In Section 1 the singularly perturbed problem is stated. Details of trian-
gulations and FEM approximations, which will be used later on, are given. 
Furthermore we state a list of requirements which a preconditioner has to 
obey. 

Section 2 is devoted to the construction of a preconditioner on the base of 
the elliptic preconditioner of BRAMBLE/PASCIAK/XU [9]. We first deal with 
the case of an elliptic operator with no Helmholtz term and natural boundary 
conditions outside the Dirichlet boundary piece. The thus developed precon­
ditioner, which gives a smooth transient from diagonal preconditioning of 

^ h e y will be cited throughout this paper with leading roman numbers I resp. II. 
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the mass matrix to a preconditioner of the stiffness matrix, is thereafter ex­
tended to the presence of a Helmholtz term and general Cauchy boundary 
conditions. For the need of error estimation we present the precondition­
ing of quadratic elements. We close the section with a discussion of error 
estimation. 

In Section 3 some algorithmic details are given. They include such im­
portant issues as the optimal choice of certain parameters, the discussion 
of possible orders for the time discretization in dependence of the imposed 
accuracy, a stop criterion for the time error iteration, a stabilization of or­
thogonal projections and the direct solver on the coarsest triangulation in 
2D. The latter becomes important when the starting grid already consists of 
"many" nodes. 

Section 4 finally gives a real life application of our method to the bioheat-
transfer equation. This equation plays a prominent role in planning hyper­
thermia, a recent clinical method for the treatment of malignancies (cancer), 
which at this time is in an experimental status. This shows the full applica­
bility of our method to the given problem class. 

ADDENDUM TO PART II 

The author has recently proven that the conjecture of Remark II.2.9 is 
true. In fact, he proved [8, Lemma 2.1] for the Laguerre polynomials: 

LEMMA. 

a) \Ln{x)\ < 1 forxe [0,1], n > 0. 

b) Ln(l) ^ 0 forn > 1. 

Thus Theorem II.2.8 is true for all j > 1. 
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1. TRIANGULATIONS AND THE FINITE ELEMENT DISCRETIZA­

TION 

In this section we slightly generalize the parabolic problem considered in 
Par t II1. Furthermore the discretization of the 2D elliptic subproblems — 
which arise by using the time-stepping procedure of Part II — is discussed 
in detail. 

1.1. T H E P A R A B O L I C P R O B L E M 

We are concerned with linear scalar selfadjoint parabolic ini t ial-boundary 
value problems: 

Given a domain Ü C IRd with Lipschitz boundary dtt = T^ÜTc , a time 
Tan > 0, solve for x € H, t e]0, Tfin] 

i) ^ ( x ) ^ M + A ( x , ö ) u ( t , x ) = / ( x ) , 

; i - i ) 

iii) ( £ + «•))«(*,-) -£(•). 

iv) u(0, •) = u0. 

Here A(x, d) denotes a formally selfadjoint elliptic operator of second order, 

which has a principal part in divergence form: 

d 

A(x, d)u(x) = - ^ dk (aik{x)diu(x)) + q(x)u(x), 
i,k=l 

where a,-jt = ak{. The associated conormal derivative is defined as 

d d 

ö— = H nkaikdi, 

where n = ( n i , . . . ,nj)T denotes the outer unit normal on du. Boundary 

condition iii) is sometimes called Cauchy boundary condition. 

NOTATION. The norms of the Sobolev spaces Hs(tt) will be denoted by 
|| • ||s, their seminomas by | • | s , the norms of the spaces Ws'p(Cl) by || • ||SiP 

throughout this paper we use the notation introduced in Part II. 
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and the inner product of L2(H) will be denoted by (•,•). For a function 
V» € L°°(fi) = W0,oo(ß) with x/} > 0 a.e. we abbreviate 

^max = IIV'llo.oo and T / W = l/| |l/0||OiOO. 

We make the following assumptions: 

1. f2 has Lipschitz boundary, i.e., fi £ C0'1. Furthermore Tß is a closed 
subset of 9f2. 

2. ^ C a ^ E L ^ O ) . 

3. 0,(?,C > 0 a.e., moreover (j>toin > 0. 

4. A(x, d) is strongly elliptic, such that there are constants 0 < 8 < 1 < A 

for all £ € IRd and almost all x 6 ^ . 

5. / , u 0 e l 2 ( f t ) . 

6. g,( e H^dO). 

By means of assumption 6 and the known properties of the trace operator, 
we can take by a simple transformation the case that 

9^ = 0. 

For ease of representation we will assume mostly in this paper 

<f> = l . 

The extension to the case <f> ^ 1 will be discussed in Section 4.3.1. 

We introduce the space of weak solutions 

H1
D(n) = {u€H1(Sl)\u\rD=Q}, 

(the restriction is understood in the sense of traces) and consider the following 
continuous symmetric bilinear form a(-, •) on H^O,) x H})(Q,): 

a(u.v) = y^ / aikdiudkV dx + / quvdx + / (uv da, 
^Ja Ja hc 
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u,v G HJJ(Ü). The Hx
D(Q.)-ellipticity of the form a(-, •), i.e. the existence of 

a constant Ci > 0 such that 

a(u,u) > ci||u||i for all u G Hl
D(tt), 

follows from well known conditions given in the next Lemma, a proof may 
be found in [8, Lemma 1.1]. 

LEMMA 1.1. Each of the following cases guarantees the Hp(Q)-eUipticity 
of the form a(-, •): 

i) mes(Tc) = 0. In this case we estimate for u G H})(£1) 

c 

a M ^ i T 4 7 2 l K 

and 

a(u,u) > -p\\u\\2
0. 

Here d^ denotes the band width of a strip containing fi. 

ii) <?min > 0. In this case we estimate for u G H\)(Vt) 

a(u,u) > min(5,gmin)||u||J 

and 

a(u,u) >gminlMlo-

iii) mes(r£)) > 0. 

iv) mes(rc) > 0 and £„„„ > 0. 

The weak representation A of the differential operator A(x, d) with the 
given boundary conditions and the spaces H2a = DA<* can now be introduced 
like in Theorem II. 1.1. 

1.2. T H E SINGULARLY PERTURBED ELLIPTIC PROBLEMS 

As we have seen in Section II.2.2 the elliptic problems resulting from dis­
cretization in time of the parabolic problem can always be given in the fol­
lowing variational form: Find u G i/]j(0) such that 

(u,v) + Ta(u,v)=6*(v) + T6*1(v) for all v G Hl
D(Ü). 
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Here 0*,0* € L\ü) C H^iü) = (H^ü))*. In order to bound the energy 
norm for large values of r , we scale with 1 + r to get the equivalent problem: 
Find u £ H})(Q) such that 

(1.2) aT{u,v) = 6*r{v) for all v € Hl
D(ü), 

where we made use of the following notation: 

1 T 
i) aT(u,v) = --—(u,v) + —-—a(u,v), u,v € H},{Sl), 

1 + r 1 + T 

ü) e;(v) = Ti_öS(ü) +-l-öi(t ,) , « e « 
1 + r 1 + r 

REMARK 1.1. Note that this scaling is not invariant to a linear scale of 
the time variable. Thus the question of an appropriate scaling of given phys­
ical examples arises. This can be answered in a satisfying way as discussed 
in Section 4.3.2. 

Furthermore we get as the corresponding weak representation (cf. Section 
II. 1.1) the positive selfadjoint operator 

with the domain of definition 

n , A . J H\ r > 0 

The energy norm {{A1^2 • 110
 w m be denoted by || • ||A-

Case T = 0. In this case problem (1.2) reads as 

(u,v) = 6*{v) for all v € #£(Q). 

The corresponding energy norm is the L2-norm: 

|M|A = ||U||o, u € L2(Ü). 

Case T = oo. In this case problem (1.2) reduces to the stationary problem 

a{u,v) = 6*{v), veHjjiO). 

The corresponding energy norm is the energy norm of the elliptic operator 
A: 

NIA = NI*I . «€#£(«)• 
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1.3. TRIANGULATIONS AND THE FINITE ELEMENT SPACES 

1.3.1. Triangulations 

Let Q C IR2 be a bounded simply connected polygonal domain. This 
implies that 

üeC°'\ 
i.e., assumption 1 of Section 1.1 is fulfilled. 

A triangulation T of the polygonal domain f2 is given as the set of triangles 
resulting from a simplicial partition of Q. 

We start with a coarse triangulation T0 of fl with the property that the 
Dirichlet boundary piece I"^ is composed of edges of triangles T € To. The 
triangulation T0 is refined several times, giving a family of nested triangula­
tions T0,7i,..., Tj. A triangle of 7i+ 1 is either a triangle of Tk or is generated 
by subdividing a triangle of Tf. into four congruent triangles or into two tri­
angles by connecting one of its vertices with the midpoint of the opposite 
side. The first case is called a regular or red refinement and the resulting 
triangles as well as the triangles of the initial triangulation are called regular 
triangles. The second case is an irregular or green refinement and results in 
two so-called irregular triangles. 

However, the irregular refinement has the character of a closure which we 
force by the following rule: 

(Tl) Each new vertex of 7jt, i.e., a vertex which does not belong to T^-i, is 
a vertex of a triangle which was generated by regular refinement. 

The irregular refinement is potentially dangerous because interior angles 
are reduced. Therefore, we add the following rule: 

(T2) Irregular triangles may not be further refined. 

This rule insures that every triangle of any triangulation Tk is geometrically 
similar to a triangle of the initial triangulation TQ or to a green refinement 
of a triangle in T0. These triangulations are meanwhile standard and have 
been introduced by BANK et al. in [3, 4, 5]. 

The index of the final triangulation will always be denoted by j and will 
be fixed in most of the following considerations. 

By the depth of a triangle 

Te {]% 
k=0 

we mean the number of successive ancestors in the family of triangulations. 
If we add the rule 
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(T3) Only triangles of depth k — 1 are refined for the construction of Tk, 

we get the following expression for the depth of a triangle T € Ul—o Tk 

depth(T) = min{0 < k < j | T e %}. 

Equipped with rule (T3) we can uniquely reconstruct the sequence T l 5 . . . , 7}_j 
from the knowledge of the initial triangulation T0 and the final triangulation 
Tj alone, without knowing the actual dynamic refinement process leading 
to Tj in an adaptive algorithm, see [12]. However, if we choose the data-
structures representing the triangulation cleverly, the sequence T0, Tx, •.., Tj 
is implicitly given. For example this is the case in the adaptive FEM code 
KASKADE, cf. ROITZSCH [21, 22] or LEINEN [16]. 

1.3.2. Notation for Finite Element Spaces 

Corresponding to the triangulations 7jt we have finite element spaces Sk-
Sk consists of all functions which are linear on each triangle T G Tk and 
continuous on Ü. Furthermore they vanish on the Dirichlet boundary piece 
TJD. Because the triangulations are nested we have 

SQCS1 C.C Sj C i ^ ( O ) . 

Let A4 = {x\ , . . . , x$} be the set of vertices of triangles in %, which do 
not lie on the Dirichlet boundary piece T£>. 

The nodal basis. The set Tk = {ip[ ,... ,ip^} of nodal basis functions, 
where 

4k\x\k)) = 6u for 1 <i,l<nk, 

forms a basis of Sk- For ip € Tk we denote by x^ € A4 the supporting point 
of V>, i-e. 

tp(x^) = 1. 

Structuring of the nodal bases of varying index k. We set 

i) * = Ü r*. 
fc=0 

ü) *o = r0, 

iii) $k = rfc \ rjt_i, whenever 1 < k < j . 

It should be stressed that we split the set of nodal basis functions rather than 
the set of nodal points as done in hierarchical basis approaches. For ip G ^ 
we denote the set of indices, for which a nodal basis function ip occurs, by 

IU = {k\ $ 6 Tk}. 



Here we abbreviate the first resp. the last occurrence of tp in a set Fk by 

i) k% = minify, 

ii) k^ = raaxA'^,. 

The duality map. According to the Theorem of Frechet-Riesz the duality 
map 

Zk • Sk —> Sk 

u t-» u* = (u, •) 

is an isometrical isomorphism. 
Tie duai basis. On <S£ a natural basis is given by the canonical dual basis 
Ffc = {̂ *l ^ £ Tyt} to the basis Tk of <Sfc. As usual ip* is defined as the 
evaluation functional at x^: 

^:Sk -» IR 

u (-»• u(x^), 

such that ^»(v7) = <W f° r a ^ V'JV £ £*• The choice of these bases will be 
called the natural representation of the spaces Sk and <Sj*. 
The orthogonal L2-projections. The orthogonal £ 2 projections 7Tj. : L2(fl) —* 
£fc, for 0 < & < j are given for u £ £2(f2) as 

(7TfcU,z;) = (u,v) for all i> £ <Syt. 

1.4. T H E FINITE ELEMENT DISCRETIZATION 

The finite element (FEM) discrete solution uk £ Sk is given as the Galerkin 
approximation to the variational problem (1.2) 

(1.4) aT(uk,vk) = f*(vk) for all vk £ Sk. 

Here /* £ Sj denotes an approximation of 6* on Sj. Due to the Theorem of 
Frechet-Riesz there are symmetric positive definite linear operators Ak, Ak • 
Sk —+ Sk, such that for given u,v £ Sk 

(Aku,v) = a(u,v) 

resp. 
(Aku,v) = aT(u,v). 

For 0 < k < / we obtain the relations 

Ak = TT/t̂ /Ufc 
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and 

At = TTtA/U, = h -\ Au, 
" * 1 + r 1 + r ' 

where Ik denotes the identity on the space Sk- Problem (1.4) is now given as 

(1-5) Tkhkuk = r\sk. 

1.5. T H E SOLUTION PROCESS AND REQUIREMENTS FOR A PRECONDI-

TIONER 

Computationally problem (1.4) is realized for k = j as follows: We have 

which implies the equivalence of (1.4) and 

JTUj(x ,U)) aT(4J\^]) = /*(0p>) for all 1 < / < nr 

J'=I 

By introducing the mass matrix M = (m,;),-; with 

and the stiffness matrix A = (a,;),-/ with 

for 1 < i, I < rij, we gain as problem matrix AT the following convex combi­
nation of M and A: 

AT = ^ - M + - ^ - A . 
1 + T 1 + T 

Introducing the vectors u = (iij(x a)) J and / = (/*('0; )) w e obtain the 

computational problem 
(1.6) Ku = f. 

However, this linear equation on IRnj is just the natural matrix representation 
of the linear problem (1.5) in the case k = j 

(i.7) i^]U] = /*. 

This fact is the reason why we have stressed the importance of the natural 
representation of the dual pair (Sj,Sj), which will serve as a rather elegant 
method to describe the computational problem. 
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The large linear system (1.6) has to be solved iteratively. Since the involved 
matrices are symmetric positive definite a preconditioned conjugate gradient 
(CG) method is the method of choice. 

We require several features for a preconditioning matrix BT: 

(PI) The spectral condition number K — K ( B T A T ) ) should only grow in j 
like j 2 " , where 0 < v < 1. Further it should remain bounded indepen­
dently of the time step r > 0. These properties should neither depend 
(severely) on the shape of the domain under consideration nor on any 
quasi-uniformity of the triangulations. 

(P2) The cost of computing BTf should be proportional to the dimension n y 

By requirement (PI) the number £(e) of iterations necessary to reduce the 
error in the energy norm of AT by the factor e is bounded by 

£(e) < ±V£ log \ = o(r) , o <«/<!, 

independently of T. If we solve each of the linear problems only as accurate 
as the discretization on the corresponding triangulation is expected to be, 
we end up with an overall complexity of 

öCT+%), 0 < a < 1, 

in view of requirement (P2) — an idea due to DEUFLHARD et al. [12] and 
implemented in the adaptive FEM solver KASKADE. The exponent a is con­
nected with the progression of unknowns during refinement: a — 0 in the case 
of geometrical progression, whereas a = 1 in the case of pure arithmetical 
progression. Note that we do not propose to force the number of unknowns 
to progress geometrically — for a reason discussed in [8, Example 8.3]. 

Reliable time-step control requires that the locally arising systems of or­
dinary differential equations, as which our algorithm can be viewed in each 
time-layer, are smooth, thus leading to 

(P3) The matrix BT should depend smoothly on r > 0. 

Finally we do not want to analyze the problem in matrix notation but 
in the corresponding operator version (1.7). If we introduce the operator 
Q*j : Sj —> Sj, whose matrix in the natural representation of (Sj, Sj) is given 
by BT, the preconditioned CG-method can be written in its untransformed 
fashion as follows: 
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1.5.1. Preconditioned CG-method on (Sj,S*j). 

We want to solve 
ZjAjU = /*. 

Given a start iteration üo we set 

Po = r0 = Q*(f* -IjAjüo). 

For k = 0 , 1 , . . . we iterate 

ük+i = ük + akpk 

pk+i = rfc+1 - ßkPk 

with 

rfc+1 = 0*(r-IjA iu,+1) 
(^jAjrfc)(pfc) 

Of/. = 7 r-

* ~ (2-,-A f̂c) (©i^AiPfc) ' 

In the natural representation of (<Sj,<Sj) we directly get the computation­
ally available version of the preconditioned CG-method. We thus have to 
require that the operator 6* is in fact already given in that representation, 
that means 

(P4) The operator 0} should be given in such a form that directly allows to 
reconstruct the matrix B r without any further effort. 

1.6. QUADRATIC ELEMENTS 

For the use of error estimation the space of piecewise quadratic elements 
on Tj will be needed later on. Here we introduce the corresponding notation: 

The space SQ consists of all functions which are a quadratic polynomial 
on each triangle T G Tj and which are continuous on fi. Furthermore they 
vanish on the Dirichlet boundary piece YD, such that 

SQ C Hh(Sl). 

Let MQ be the set of midpoints of edges belonging to T3 but not to the 
Dirichlet boundary piece YD. Take the (quadratic) hierarchical basis YQ, 
which consists of those ip £ SQ, for which 

1>(x) = 0 
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for all x € ßfj and 
</>(£,/,) = 1 

for exactly one x^ G Afq, the supporting point of T/>. With VQ = spanTg we 
gain the direct composition 

SQ=SJ®VQ. 

The operators IQ, AQ , AQ : Sq —• 5Q and 2Q : SQ —> Sq have the analogous 
meaning to /_,-, Aj, Aj and Xj. 

2. T H E MULTILEVEL PRECONDITIONER 

The objective of this section is the construction of a preconditioner, which 
obeys the requirements (P1)-(P4) of Section 1.5. This will be done for piece-
wise linear as well as for piecewise quadratic elements, for which a precon­
ditioner is needed for the purpose of error estimation as we will see in the 
discussion of Section 2.4. 

2.1. A PRECONDITIONER FOR PIECEWISE LINEAR ELEMENTS 

We first restrict the discussion to forms a(-,-) which consists only of the 
principal part, i.e., q = 0 and ( = 0. Thus there is no Helmholtz term present 
and the boundary conditions on Tc are natural boundary conditions. 

However, we do not exclude mes(Tr)) = 0 in this section. This will be 
important for the discussion of the next Section 2.2. Thus the form a(-,-) 
might even be not H})(ti)-e\\\-ptic. 

For the finite element discretization of the purely elliptic problem 

AjUj = / on Sj 

two good preconditioners Bj are known: 

• the hierarchical basis preconditioner due to YSERENTANT [28], 

t the multilevel nodal basis preconditioner due to B R A M B L E / P A S C I A K / X U 

[9], also Xu [26, 27]. 

They are both based on a subspace decomposition of Sj, which means 

(2.i) s^SoeVxe.-.eVj, vfccsfc fori<fc<j. 
Both preconditioners lead to condition numbers K(BJAJ) = 0(j2). How­
ever, if we handle instead the problem resulting from time discretization of 
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a parabolic problem, we end up with the finite element equation (1.5) which 
is for k = j equivalent to 

(2.2) A jU j = / on Sj. 

A straightforward generalization of the preconditioners by just taking Aj 
instead of Aj is not possible since for r [ 0 the ellipticity constant of the 
problem, which seriously enters K(BJAJ), vanishes. On the other hand for 
T = 0 there is no need of preconditioning at all, since then Aj = Ij. 

YSERENTANT suggested in [29] a T-dependent version of his hierarchical 
basis preconditioner using local Courant-numbers, which allow locally to 
switch between the nodal and the hierarchical basis. However, this yields to 
a non-smooth dependence of the preconditioner on r which is not desirable 
in the context of time-discretization, compare the requirement (P3) for a 
preconditioner as discussed in the last section. The same is true for the 
corresponding modification due to OSWALD [19] of the multilevel nodal basis 
preconditioner. 

Xu suggested in [26] a natural r-dependent version of the multilevel nodal 
basis preconditioner depending smoothly on r. However, he considers only 
the case of quasi uniform triangulations and moreover it is not at all clear 
whether multiplying this r-dependent preconditioner by a vector can be 
realized within 0(rij) operations, as was required in (P2). This is also true 
if one uses Xu's ideas together with the version of the multilevel nodal basis 
preconditioner for highly nonuniform triangulations by YSERENTANT [30]. 

However, by some modifications of Xu's and YSERENTANT's constructions 
it is possible to overcome the above mentioned difficulties as will be shown in 
this section. Besides that we intend to clarify some aspects of their original 
constructions. 

2.1.1. A Preconditioner Based on an Orthogonal Splitting of the Finite 
Element Spaces 

B R A M B L E / P A S C I A K / X U specified the subspace decomposition (2.1) as fol­
lows 

Vk = (TTfc - *k-i)Sj for 1 < fc < j , 

and considered the symmetric positive definite operator 

J B- 1 = A07r0 + ^4 f c (7 r f c -7 r f c _ 1 ) . 
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LEMMA 2.1. (YSERENTANT [30, Theorem 4.6]) There are positive con­
stants KQ and K\ with 

i) (Bjlu,u) < (AjU,u) < fii(j + l)(Bjlu,u), where 

») Mo = -^Ko, 

iii) //i = Aifi, 

/or all functions u £ Sj. Furthermore fio 5; 1 < Mi holds. The constants o", A 
as introduced in assumption 4 of Section 1.1 describe the coefficient matrix 
an- of the elliptic operator A(x, d), whereas the constants K0,Ki depend only 
on the geometry of the initial triangulation T0 and they are independent of 
the maximal depth j of the final triangulation. 

REMARK 2.1. This Lemma is also valid for the case mes(rß) = 0. 
YSERENTANT assumes in his paper mes(r£>) > 0, but this assumption nowhere 
enters the proof of Lemma 2.1. Surely then Aj and Bj1 will only be positive 
semi-definite and 

l l ^ = ( ^ 0 1 ^ l l % 1 = (£71-,-)1/2 

will only be seminorms then. According to the above Lemma 2.1 these semi-
norms must have the same null-spaces, a fact which can also be seen by the 
Poincare inequality. This inequality specifies the null-space as span{l} C Sj. 

By the symmetry of Bj1 and Aj the symmetric positive definite operator 

e-1 = -!-/,• + ^—BJ1 

3 1 + T J 1 + T J 

should be spectrally close to Aj. Since Ij = 7r0 + DJUiC f̂c — ^fc-i) the repre­
sentation 

(2.3) 0 J 1 = AOTTQ + £ M * * - ^ - 0 
fc=i 

holds, where 

1 + r4fc 

(2-4) Xk = i ± p - . 
1 + r 
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COROLLARY 2.1. The following inequalities hold for all functions u € SJ: 

J^-.(Qfu,u) < (AjU,u) < nx{j + l)(Qfu,u). 

The constants ^o,Mi are taken from Lemma 2.1. 
Due to the properties of orthogonal projections 

i 

fc=l 

holds on Sj. Replacement by the operator 

r 

T 

+ T k=0 

1 + T 

T ^ 

= 7-—Aö1^ + Yl f̂eTfc, 

with 

f A*1 - KL if fc < j (2'5) ° * H v ifi = 7-, 
where 0 < k < j , changes only the constants. 

LEMMA 2.2. The following inequalities hold for all u € <Sj 

(0JM,U) < (QjU,u) < (1 + AA'i)(0 ju,u). 

f/ere K\ denotes the constant of Lemma 2.1. 

Proof. The left inequality is obvious since the added operator is symmet­
ric positive semi-definite. By using an inverse inequality like Lemma 3.3 of 
YSERENTANT [30] we get for u € Sj 

11*0*112 = I |AÖ1 /2MI2
AO 

< T - ^ - U + T A / ^ I I A Ö 1 7 2 ^ 
1 + T 

< AK.WA-^ouWl, 

since AÄ'i > 1. Here the the constant K\ of Lemma 2.1 is exactly the 
constant of the inverse inequality which only depends on the local shape 
geometry of the initial triangulation 7o. Hence 

(TT0U,U) < AKI(AQ1TTQU,U). 
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Therefore we get 

f j — A ö ^ o ^ u J + (TT0U,U) < (1 + AA'1)(Aö17r0u,ti), 

which in turn implies the right inequality. • 

2.1.2. A Computationally Available Spectrally Equivalent Preconditioner 

However, our computational problem is not problem (2.2), but as we have 
seen in Section 1.5 problem (1.7). Identification of problems (2.2) and (1.7) 
would mean to compute J" 1 , i.e in the natural representation of (Sj,Sj) to 
invert the mass matrix, a problem of the same complexity as (2.2) itself. 
Hence it would be far more desirable to get a cheap and easy representable 
expression for Qjlj1 to fulfill requirement (P4). However, the representation 

(2.6) x^V^'^W 

for u* G Sj, k < j , shows that the computation of ^ J " 1 can only be achieved 
by inverting Z^, i.e., a mass matrix of dimension n^. Thus we are led to 
replace Ik by an easily invertible I*, the duality map with respect to a new 
inner product (•, •)*, on Sk- A rather simple possibility of inverting 2^ is given 
when Tk is a diagonal matrix in the natural representation. This requires that 
the nodal basis functions of Tk are mutually orthogonal with respect to the 
new inner product, i.e., 

(2.7) {uA)k = (il>,il>)ku(x4,) = (ip,ijj)kip*(u) 

for ip 6 r*., u 6 <Sfc. Thus the new inner product (•, -)k has to be a weighted 
Euclidian product in the basis Tk- We now exploit the advantage of the usage 
of Tk by defining an operator fr̂  : Sj —* Sk through 

(2.8) ^I-V^-VUJ, 

in analogy to relation (2.6). Replacement of 7^ by rck in the preconditioner 
would only be reasonable if these operators are spectrally equivalent. Hence 
the remaining degrees of freedom in the new inner product, the weights, are 
chosen in a way that the new inner product resembles the L2 inner product 
as much as possible, which yields us to the construction of a discrete L2 inner 
product by using a quadrature rule with nodes in the vertices of 7}, i.e., for 
u,v € Sk 

(u,v)k =
 l-Y: \n E woo-

0 TeTfc r€;Vfcnr 
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This discrete I? product satisfies a stability property yielding the spectral 
equivalence mentioned above. One can prove (cf. [8, Lemma 6.3]) using 
standard techniques the following estimates. 

LEMMA 2.3. The inequalities 

(u,u) < (u,u)k < 4(u,u) 

hold for all u 6 Sk. 

The next definition is just an equivalent formulation of (2.8) and is due to 
Xu. 

DEFINITION 2.1. The L2 quasi-projection with respect to (u,v)k is given 
by the operator 

itk : L2(ü) - Sk 

for which 

(zku,v)k = (u,v) for u € L2(tt),v £ Sk. 

LEMMA 2.4. The I? quasi-projection xk is explicitly given as 

for u € L2(Q). We further have for all u 6 Sj 

(2.10) (Jrku,u) < (irku,u) < 4(^14,1*). 

Thus the L2 quasi-projections %k and the L2 projections irk are spectrally 
equivalent, uniformly with respect to k. Finally the operator ~K*k — irkZ~l : 
Sj —• Sk has the representation 

foru* eS*. 

Proof. Equation (2.7) states for u 6 L2(£l) and i/> € I\- that 

(TTkU,i>)k = (lp,^)k %ku(x^). 
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The definition of (-,•)*; implies (^,^)k = \HXi,eTeTk 

\T\ = (1,V0, which 
yields 

•KkU{X^) = -J- TT— = J- TT, 

i.e., (2.9). Next we define the operator crjt : <Ŝ  —>• Sk such that 

(<rfcu,u) = (u,u)fc 

for all u,u € <Sfc. It is straightforward to check that itk\sk = <7^1- Lemma 2.3 
states 

(u,u) < (<7fcU,u) < 4(u,u) 

for all u £ Sfc, which implies relation (2.10) for u £ <Sfc. Replacing u by 7T;.u 
we get (2.10) because of k^k = %k- • 

We replace %k by 2 ^ and end up with the following preconditioner of Aj 

(2.12) 0 , - - ^ - A ö ^ o + 2 £ ^ , 
1 + T fe=o 

which is spectrally equivalent to 0 j and for which QjT~x is computational 
available without inversion of the mass matrix. 

COROLLARY 2.2. The following inequalities hold for all functions u £ SJ: 

~{QJU,U) < (QJU,U) < 2(0jU,u). 

2.1.3. Reduction of the Number of Terms 

However, the realization of Qjljxu* for u* € <S* as suggested by the rep­
resentation (2.12) would need at least 

0(1» 
k=\ 

operations since every 7T/. needs #Tk = n^ summations. For non-geometrical 
progression of the nk, which we did not exclude, YH=i nj w m no^ ^ e ®(ni) 
as desired, in the case of pure arithmetical progression it is even 0{ri^). 

For this reason we finally look whether the number of operations can be 
reduced to an effort of 0(rij). This objective can be achieved by a proper 
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rearrangement of the terms in (2.12). For u € Sj 

Kj/0 
</<) 

(u,V>) 
vyip) 

holds with 

These numbers have a simple expression as the following Lemma shows. 

LEMMA 2.5. For if; £ ^ we /mve 

(2.13) tf(V0 = < 

Afco
a - A^i1^, whenever 0 < k^ < k^ < j 

\ko, whenever 0 < fc°, k^ = j . 

Proof. The set K^ of those depths that ij> occurs in the corresponding 
nodal basis is according to [8, Lemma 4.1.iii] given by 

IU = {k\kl<k< fcj}. 

Thus the sum 
A ; 1 

*M = E **, 

reduces to (2.13) due to its telescope nature. • 

Thus 0* = QßJX is given by 

(2.i4) e y = - ^ - ( X 0 A 0 ) - V k ) + 2 £ * w £ % 

u* G 5 ; . 

LEMMA 2.6. (BORNEMANN [8, Lemma 4.1.iv]). Suppose the family {Tk}k 
obeys the rules (Tl), (T2) and (TS) of Section 1. Then the estimate 

#tf < 2rij - n0 

holds no matter how the sequence {n*.}*. actually progresses. 
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This estimate shows that the sum in (2.14) consists of ö(nf) terms as de­
sired, which in turn suggests that Q*u* can be computed in 0(rij) operations. 
We constructed in [8] an implementation within the existing data structures 
of KASKADE [22], which really needs 0(rij) operations using an additional 
amount of storage of less than Arij reals and 3rij integers - no matter how 
the rik actually progress. 

Summarizing our results so far we can state the main Theorem of this 
section. 

THEOREM 2.1. For all functions u E Sj and for all numbers r > 0 the 
folloxoing inequalities hold 

J^-(Afu,u) < (ejU,u) < fa(j + l X A - 1 ^ ) 
J + 1 

where 

fio = TT"#0 and fa = 2A# 1 (1 + AA^). 

The constants S, A as introduced in assumption 4 of Section 1.1 describe the 
coefficient matrix a^ of the elliptic operator A(x,d), whereas the constants 
Ko,Ki depend only on the geometry of the initial triangulation TQ and they 
are independent of the maximal depth j of the final triangulation and of the 
parameter r . 

REMARK 2.2. The case r = 0 is the preconditioning of J j , the operator 
which is represented by the mass matrix in the natural bases Tj,r*. Here 
Theorem 2.1 states that 0^ = lit*- is a natural choice of a preconditioner. 
The operator 2K* is now given by 

since (V»,^) = | I S U P P ^1 = K ^ ' ^ ) ^or ^ ^ Tj. Hence 2ir* is represented in 
the natural bases by the matrix D - 1 where D = d i ag (m n , . . . , mn .n.) denotes 
the diagonal of the mass matrix M. Thus Lemma 2.4 gives in passing the 
result 

COROLLARY 2.3. The following holds for the diagonal preconditioner of 
the mass matrix: 

AC(D-XM) < 4 

21 



and 

a ( D - 1 M ) c [ i , 2 ] . 

WATHEN [24] proved these results with a different technique. 

REMARK 2.3. Since Aj —> Aj for r —> oo and in turn, assuming now 
mes(ro) > 0, 

0 , -> B3 = Aö^o + 2 £ (4"fc - 4-(fc+1)) frfc> 
fc=0 

Theorem 2.1 states that Bj is a good preconditioner for Aj. In fact the 
preconditioner 

advocated by YSERENTANT in [29] is spectrally equivalent to Bj\ 

3 
(CJU,U) < (BjU,u) < - (1 + AÜTI)(CJU,U). 

Comparison with Remark 2.2 shows that Oj provides a continuous transition 
from the diagonal preconditioner of the mass matrix to the multilevel nodal 
basis preconditioner of the stiffness matrix. 

REMARK 2.4. Using Theorem 2 of OSWALD [18] we can prove for the 
case of quasi-uniform triangulations that 

K ( 0 A ) = 0(1), 

with constants independent of r > 0 and j . 

2.2. EXTENSION TO HELMHOLTZ T E R M S AND GENERAL CAUCHY BOUND­

ARY CONDITIONS 

Until now we considered the bilinear form a(-,-) to consist only of the 
principal part, i.e., q = 0 and ( = 0. In this section we get rid of this 
restriction. 

Denote by 
1 r r , 

Ap = — — / + - — - A P 

1 + r 1 + r 
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the operator belonging to the principal part ap(-, •) of a(-, •), i.e., exactly the 

operator which we considered in Section 2.1. 

First assume q ^ 0 but £ = 0, which means tha t a Helmholtz term is 

present, but the Cauchy boundary conditions are still natural boundary con­

ditions. 

We have to consider the two cases 

Case I. m e s ( r o ) > 0 

Case II. gmin > 0, 

either of which makes the form a(-, •) i J ^ f ^ - e l l i p t i c by Lemma 1.1. 

Case I and II will give two different versions of preconditioning, which will 

be discussed next. For the discussion of Case II it is essential tha t we did 

not exclude mes(r£>) = 0 in Section 2.1. 

2.2.1. Version I of a Helmholtz Preconditioner 

By Lemma 1.1.iii Case I implies the i/jr,(fi)-ellipticity of the form ap(-, •), 

i.e., there is a constant C\p > 0 such that 

aP(u,u) > Cip\\u\\l 

for u € i?£,(fi). Thus we can estimate for u € H})(Q) 

aP(u,u) < a(u,u) < aP(u,u) + qm&x\\u\\l < ( l + - ^ ) aP(u,u). 
V CIP J 

This inequalities yield 

({AP)JU,U) < (A,u,u) < fl + ^ ) ((AP),U,U) 
V CIP J 

for u € Sj. Hence using the preconditioner Qj of Section 2.1 we obtain 

which has the desired form. 

REMARK 2.5 . For TD = dti, Tc = 0 we can estimate by Lemma 1.1.i as 

follows: For u £ H\(Vl) we obtain 

a(u, u)< f 1 + m** " J aP(u, u), 

which yields 

K (e jAj) < (i + 3S^L\ K (OJ{KP)J) . 
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2.2.2. Version II of a Helmholtz Preconditioner 

In Case II we proceed as follows: Denning for some 

0< •jmax 

the operator 

yields the estimate 

(2.15) 

for u € Sj. Putting 

A = - — d - I + — — AP, 
1 + T 1 + T 

9min /T \ ^ I K \ ^ 9max , 2.15) Ä ( A i U , w ) < ( A ^ u ) < ^{AjU,u) 

~ l + r(g + 4fc) 

1 + T 
and replacing the Â  of (2.4) in the derivation of Qj by this At we obtain a 
preconditioner Qj of Aj with 

K (Qjkj) < K (Qj(Ap)3) 

since we never used in Section 2.1 the specific form of the A ,̂ but only the 
fact that 

Afc+i > Afc > 0. 

By the above inequality we can estimate 

^ 0 A ) < f ^ (©.(AF),) , 
9min 

which distinguishes Qj as preconditioner of the required form. The actual 
choice of q should be made in order to gauge the estimate (2.15) as qmin/g = 
<?/<2max, i.e., q = y/q-aän<ima.xi the geometric mean of the two bounds. 

2.2.3. A Case of Doubt: Case I and Case II 

If both cases, I and II, are present the question arises which version should 
be taken? Algorithmically both versions are quite related since Version I can 
be interpreted as the case q = 0 of Version II, which gives Qj = Qj. So, what 
value of q should be taken? 

For r e = 0 we can answer this question definitely by means of Remark 
2.5: Version II should be taken if 

(2.16) 9min > -5-. 

An example of such a decision will be given in Section 4.3.2. 
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2.2.4. The Case of General Cauchy Boundary Conditions 

Now we consider ( ^ 0 and Tc ^ 0, assuming one of the above cases: I or 
II. 

Hence we have 
a(u,v) = a#(u,u) + / (uvda 

JTc 

for all u,v € Hp(Q). The — due to Case I or II #ß(Q)-elliptic — form 
a#(-, •) with 

%(« ,«) > CIH||U||? 

for u € iJß(fi) induces an operator A# for which we know by Sections 2.1 and 
2.2.1/2.2.2 a preconditioner (QH)J- Since we may estimate for u G Hp(fl) 
by the continuity of the trace operator H1^) —» Hl^{dVl) 

ÜH{U,U) < a(u,u) = an(u,u) + / (u2da 
JTc 

< aH(u,u) + (mSlX\\u\\HiP(dCl) 

< aH(u,u) + (m&xKtT&ce\\u\\l 

., I -, , s m a x ^ trace \ / \ 
< 11 + )aH(u,u), 

V C1H J 
we obtain the estimate 

^max-** trace 
« ((©*) A ) < [l + " ^ j /C ( ( ^ ( A ^ ) • 

This tells us that (&H)J should be an as good preconditioner as in the case 

2.3. A PRECONDITIONER FOR PIECEWISE QUADRATIC ELEMENTS 

As introduced in Section 1.6 we consider the space of piecewise quadratic 
elements SQ on the triangulation Tj. The hierarchical splitting 

SQ = S, © VQ 

shows that there is a unique decomposition of each u £ SQ into 
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where ui G Sj and UQ 6 VQ. Based on that decomposition we introduce a 
partly discrete norm corresponding to an inner product on SQ: For u G SQ 
we define 
(2-17) N|2

Q;A = \\uL\\\ + £ ( A Q V , 0 ) K M I 2 . 

This norm is in fact equivalent to the energy norm || • ||A on SQ. 

LEMMA 2.7. (BORNEMANN [8, Corollary 6.4]). There exists a positive con­
stant 7o such that 

7o||ufeA < N U < 4 | |uß ; A , 

for u € SQ. The constant 70 depends only on the geometry of the initial 
triangulation T0. 

Due to the Theorem of Frechet-Riesz there is a symmetric positive definite 
operator H\ : SQ —* SQ such that 

{HtiU,v) = {AjUL,vL) + Yl (^Q^^)UQ(X^)VQ(X^)^ 

for all a, v G SQ, which implies that 

{HAu,u) = ||u||J.A. 

LEMMA 2.8. (BORNEMANN [8, Lemma 6.8]). The inverse of HK is given 
by 

Hi1 = QQ, 

where 

for all u G SQ. 

Thus the operator QQ is a preconditioner of AQ. For ease of representation 
we restrict ourselves for the rest of this section to the case of q = 0, £ = 0, 
which was discussed in Section 2.1. The extension to the general case is 
obvious by means of Section 2.2. 

In view of Section 2.1.2 the representation (2.18) suggests to use the op­
erator QQ : SQ —> SQ, defined by 

QQU = QjlTjU + J2 (K '/ M^> 
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as computationally available preconditioner. Note that the operator Q3 can 
be defined on all L2(H) and that 

(2.19) 0Q« = 0,-«+ £ T - ^ W 

due to 7To = 7To7Tj and x^ = ftkftj for k < j . 
Therefore Theorem 2.1 and Lemma 2.7 immediately yield the following 

result. 

THEOREM 2.2. For all functions u £ SQ the following inequalities hold 

Q 

J±-(\fu,u) < (QQU,U) < ̂ (j + 1 ) ( A Q V u) 

C TV' 

where /J,Q = —-— and y!{ = 8AA\(1 + AK\). The constants 5, A as 
introduced in assumption 4 of Section 1.1 describe the coefficient matrix a,/. 
of the elliptic operator A(x, d), whereas the constants 70, A'o, Ki depend only 
on the geometry of the initial triangulation To and they are independent of 
the maximal depth j of the final triangulation and of the parameter r. 

2.4. E R R O R ESTIMATION 

In this section we explain our concept of deriving error estimates for the el­
liptic subproblems. It clearly splits into two independent parts. First proper­
ties of the Galerkin approximation play a prominent role, while in the second 
part only finite dimensional linear problems are involved, where precondition­
ing very naturally comes into play. We will see that a good preconditioner 
of the linear systems provides us with a good error estimation. 

2.4.1. Deviation Estimates Imply Error Estimates 

Let UQ G SQ be the solution of 

^QUQ = fQ 

and Uj € Sj be the solution of 

AjUj = fj. 

Let u € Hp(Q) be the solution of problem (1.2). 
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A detailed discussion in [8, Section 6.4.3] shows that it is reasonable to 
assume the existence of a ß £]0,1[ such that 

(2.20) | | ^ - u Q | | A < / ? | | u - U j | | A . 

If the initial triangulation % reflects enough structure of the problem, such 
that the adaptive refinement process produces adequate triangulations, the 
above inequality should hold at least for j > jo with some jo-

THEOREM 2.3. Whenever the above assumption holds, we obtain for any 
ü 6 Sj the error estimate 

\WQ - U\\A < \\u - u||A < I\WQ - «IIA, 

•where 

Proof. Orthogonality with respect to the inner product aT(-, •) yields 

(*) h-m = \\u-uQ\\i+\\UQ-ü\\i 
since u € SQ. Thus the left inequality is proven. Similarly we get 

(**) Hix - Uj||
3
A < ||u - u||2A = \\u - Uj\\l + \\Uj - ü\\l 

Thus by (*) and the assumption (2.20) 

Now (**) implies 

\w-m < h-ujWi + wuQ-m 
- (x + rqp) | |u« - * 

which yields the right inequality. • 

REMARK 2.6. The values of 7 behave quite moderately: For example 

7 < 2 for ß< \V& = 0.816. 

Thus the energy norm of the quadratic-deviation UQ — ü is a good estimator 
for the energy norm of the error u — u. However, we do not actually want to 
compute UQ. Here preconditioning comes into play. 
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2.4.2. The Linear and the Quadratic Deviation Estimate 

Consider the linear residual 

rJ = fj - A J Ä 

and the quadratic residual 

rQ = JQ- AQU. 

Because of the structure of Galerkin approximations and Sj C SQ we gain 

(2.21) TJ = TrjrQ. 

The linear-deviation estimate will be ||rj||@., where | | ^J | |A. = (&jrj,rj) a n d 

the quadratic-deviation estimate will be HTQUQ , where 

(rn ib)2 

\VQ\\%Q = {QQrQ,rQ) = (QJTrJrQ,TrjrQ)+ £ ' 

By the projection property (2.21) we gain 

IMI|g = IMI|; + £ vl, 
iperQ 

where we define 

1(̂ )1 

for every ip G T Q . 

THEOREM 2.4. For any ü € Sj we have 

ü^ll<slfc-*lfi<^IWII, 

and 

J--Lj-?Mk<hQ-i\ii<l^\MiQ. 

The constants jj,0, fi\ are from Theorem 2.1 and /J,Q , $ are from Theorem 

2.2. These constants are independent of r and j . 
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Proof. We only show the inequalities for \\UQ — u\\\. This norm looks in 
terms of the residual as 

\\uQ-m = {^QlrQ,rQ)-

By Theorem 2.2 this can be estimated from above and below with the given 
constants by 

( < V Q , r Q ) = | |rQ | | ! 

REMARK 2.7. We want to measure the quality of an estimate [e] for a 
quantity e. Suppose we can prove [e] = (e with £ € [CmhuCmax]- Now we 
introduce the quality indicator as the ratio of upper and lower bound, 

Smax 

Smin 

A good estimator is therefore characterized bysfti 1, since K = 1 would mean 
that we have computed the size exactly — with the exception of gauging. The 
above theorem now states that in the case of our deviation estimates 

K = \ / K ( 0 A ) . 

Thus we gain the same number which governs the number of PCG-iterations 
necessary for diminishing the error by a given factor. 

2.4.3. Refinement-Strategy 

The values rj^j, may serve as indicators for an edge-oriented refinement-
strategy, since there is a one-to-one correspondence between TQ and the 
edges of Tj which does not belong to the Dirichlet boundary piece To- The 
indicators n^ are in fact exactly the same as in [12], in the notation of [12] 

V* = (DQQ2 ro)L 
\ -«"« / ledge containing x^, 

Now, an edge containing x^ is marked for local refinement if 

Vi> ^ ^thresh-

We favor for the computation of thresh a procedure due to [2]: 
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It uses a simple heuristic prediction scheme to forecast what may happen 
to 77,/, if the edge containing x^ is subdivided. This forecast relies on the 
assumption that locally 

Vip = ciph/ as /ty -> 0. 

Here h^ denotes the length of the edge containing x^. Suppose this edge was 
generated by subdividing an edge with local error rj^d. A simple extrapola­
tion yields 

new _ "V1 

'h - „old 

as prediction for the error after a new subdivision of the edge. Clearly now, 
we should — in order of equidistributing the error — refine only those edges 
which have an 77^-value above the largest predicted new ?7new-value of the 
virtual next triangulation, hence 

new 
7/thresh = m a x 7U . 

V 

To avoid a refinement of too many triangles when the estimated error is near 
the given elliptic tolerance eps, we actually take with 

the value 

cut = max rf? 

eps 
^thresh = m a x ( c u t , \A?max CI 

where rjmax = max,/, 77̂ , and e is the actually estimated error. 
This procedure of computing T7thresh yields triangulations with far fewer 

nodal points than the procedure originally proposed in [12]. For detailed 
comparisons see [13]. 

3. ALGORITHMIC DETAILS 

Here we discuss in detail the consequences of the results of Section 2 for 
the time-stepping algorithm of Sections II.1.3 and II.3. 

However, we have so far constructed an error estimator and linear solver 
belonging to the || • ||A-norm and not to the L2~norm, at least for r ^> 0. 
This relies on the fact that there is no iterative linear solver, at least to the 
knowledge of the author, comparable to the CG-method, which reduces the 
error with respect to the L2-inner product. Since ||u||A > ||u||0 we can use 
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the || • ||^-norm as upper bound estimate for the L2-norm and control the 
time-error nevertheless in the I/2-norm. 

Usage of the || • ||A-norm for the stationary elliptic subproblems instead of 
the L2-norm has certain disadvantages with respect to the amount of work, 
but is the best we can do yet. The impact for the time-stepping procedure 
is discussed below. 

3.1. T H E AMOUNT OF W O R K AND QUALITATIVE STUDY OF THE O R D E R 

CONTROL 

The measures for the amount of work, which has been introduced in Section 
II. 1.2, should be chosen as 

A - j + 3 i - 9 1 

Here we made use of [17, Theorem 8], which states that rij grows for a correct 
sequence of triangulations like eps -2 , where eps denotes the accuracy for the 
elliptic || • ||A-norm error. Usage of the L2-norm would give instead 

3 X ( J - I ) ' 

compare with the ID result given in (II.3.9). 
Because of the use of the stationary ||-||A-norm we have to minimize instead 

of the term given in Section II.3.3.3 the term 

1 

(i - QY^/Q 

in view of the discussion in Section II.3.3.3 and the amount of work given 
above. This gives 

1 

instead of g2 = | as in (II.3.8). 
As in Section II.3.3.4 for the ID case we can study the order control mech­

anism in dependence of the imposed accuracy TOL. For the choice a = 0.9 
as in Section II.3.3.4 we get the dependence of the maximal suggested order 
from TOL as listed in Table I. 

It should be noted that ^ = 1 means that we compute solutions u1, u2 of 
order 1 and 2 resp. at any time step. Thus the time-step control is available 
anyway. 

32 



TABLE I. 

MAXIMAL ORDER fcmax IN DEPENDENCE OF THE 

IMPOSED ACCURACY TOL; || • | |A-NORM STATIONARY 

TOL 10-1 io-2 io-3 io-4 io-5 io-6 io-7 

^max 1 1 1 2 3 6 7 

RESULT 3 . 1 . For tolerances TOL > 10~3 the order control mechanism 
chooses the lowest possible order, since order switches do not pay off in terms 
of efficiency. For these tolerances we can restrict ourselves to the computation 
of ul,u2 at each time step because the order control would never decide to 
compute u3 . This result is still true if we choose a = 0.99. 

Quite a different result is obtained for the usage of the L 2 -norm, as shown 

in Table II. 

TABLE II. 

MAXIMAL ORDER fcmax IN DEPENDENCE OF THE 

IMPOSED ACCURACY TOL; || • | | 0-NORM STATIONARY 

TOL io-1 io-2 io-3 io-4 10~5 io-6 io-7 

^max l 2 3 5 6 7 7 

3.2. M I S C E L L A N E O U S A L G O R I T H M I C D E T A I L S 

3.2.1. Stop Criterion for the Linear Solver for the Time Error fji 

Approximation of the time error function r/i on the triangulation Tj gives 

the perturbed function fji £ Sj as discussed in Section II.3.1. However, in the 

2D case we compute f\\ only with an iterative solver, which has to be stopped 

efficiently. If we choose the starting value 

Vi,o = 0, 

which gives a residual r0 , the value 

IMI6j 

is a reasonable measure for the size of the error \\f]i\\\ = £/, due to Theorem 

2.4. In view of the control criterion ( I l . l . l l ( i i ) ) we iterate 

j)(,i, • • • , VI,L 
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until the following stop criterion is fulfilled: 

IWIe, < ^Ikolle, . 

We have 

ft] = Ik« lid, 
= 1 1 ^ +ft], 

where [61] is the estimate of the spatial perturbation of the time error as 
introduced in (II.3.2) and ft] is the estimate without the part due to the 
linear solver. In view of the stop criterion we replace (Il.l.ll(ii)) by the 
computationally available 

ft] < ̂ ItöJlo. 

3.2.2. Stabilization of the L2-Projection 

In the case of an inconsistent start function u0 the L2-projection into Sj 
may be unstable, hence our whole stationary problem becomes unstable for r 
small. Here we replace the L2-inner product by the discrete L2-inner product 
(•, -)k of Section 2.1.2 and assemble the mass matrix, stiffness matrix and the 
right-hand side with respect to that discrete inner product, which means the 
usage of the corresponding quadrature rule. Now the case r = 0 reduces to 
a simple stable interpolation. Moreover the local order of approximation is 
not touched for r > 0 since the quadrature rule is exact for piecewise linear 
functions on 7}, cf. Theorem 4.1.6 of ClARLET [10]. 

Because of the construction of our preconditioner no property of it is lost 
by usage of this quadrature rule. 

3.2.3. The Direct Solver 

The iterative solution process described in Section 1.5 as well as the pre­
conditioner itself requires a direct solution on the coarsest triangulation T0. 
Due to the complex geometries in applications, e.g., the one given in Section 
4, the number of nodal points in T0 may be quite big, about 200-1000. In 
3D the number would be even more big. Thus a sophisticated direct solver 
is indispensable. 

We choose a Cholesky decomposition solver, which exploits the envelope 
structure of its L-factor. In order to make this nearly optimal, it is necessary 
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to order the points in such a way, that the envelope is nearly minimal. The so-
called reverse Cuthill-McKee ordering accomplishes that in a rather efficient 
way, cf. e.g., the textbook of GEORGE/LiU [15]. 

For a number of nodal points in T0 below about 1000 this choice turns out 
to be superior to the use of a fully sparse solver together with the nested 
dissection ordering. 

4. A REAL LIFE APPLICATION: HYPERTHERMIA 

Numerous numerical experiments on model problems have proved the al­
gorithm to be very robust, reliable and efficient. Some of these computations 
including model problems of [1, 14] can be found in [8, Section 8.2]. These 
examples significantly back the developed theory. However, model problems 
tend to isolate the different kind of difficulties or to test for difficulties other 
than those arising in real applications. Thus we decided to include in this 
paper a real life application rather than a model problem. 

4.1. HYPERTHERMIA 

In order to prove the applicability of our method to real life problems, 
which combine the difficulties of complex problem geometry, discontinuous 
coefficients etc., we will present the solution of the so-called bioheat-transfer 
equation (BHT equation) in the framework of hyperthermia. 

Hyperthermia, i.e., the heating of tissue to temperatures approximately 
above 42 °C, is a recently developed clinical method for cancer therapy. It 
allows in combination with radiotherapy an improvement of the local control 
of the tumor. The deep heating of tissue is obtained by an electric field 
(E-field), which is generated by the radio waves of four antenna pairs. Their 
parameters (frequency 60 - 120 MHz, phase and amplitude) have to be se­
lected appropriately. It is essential to solve effectively and robust the BHT 
equation, which models the temperature distribution for a given E-field. 

We will show for a set of real life data, that our method would in prin­
ciple allow such an on line computation on a workstation. We will present 
computations for 2D cross sections generated by computer tomography (CT) 
data. 

4.2. T H E BIOHEAT-TRANSFER EQUATION 

The BHT equation was developed 1948 by PENNES [20] to model the heat 
transport in live tissue. A characteristic is a local, isotropic blood flow term. 
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In the case of hyperthermia the BHT equation reads as (cf. [23]): 

i) Q{X)C{X) ^ — = div(/c(x) grad T(i,x)J -

(BHT) 

x£dQ 

iii) T(0,x) = Ta. 

Here we denote, using Si-units: 

- QbCb g(x)u>{x)(T(t,x) -Ta) + 

+ l-a(x)\E(t,x)\> 

where t € [0, T^J, x € Q, 

= h [T(t,x) - Tboius) J 
\xedQ 

Q{x), Qb 

c(x), cb 

[kgl 
m3 

J i 

kgc 
'C. 

T(x,t), r o , Tbolus [ °C] 

K(X) 

u;(x) 

<j(x) 

| £ ( t ,x ) | 

W 
m°C 
m3 

kgs 
1 

m ü 
V 

.m. 
W 

m2 °C 

density of tissue, resp. blood. 

specific heat of tissue, resp. blood. 

temperature of tissue, blood, bolus. 

thermal conductivity of tissue. 

blood flow in tissue (perfusion). 

electric conductivity of tissue. 

magnitude of the electric field. 

heat flow at the boundary (body surface). 

Figure 1 shows the CT-data of a rectum malignancy of a patient, who has 
been treated at the Klinikum Rudolf Virchow, Freie Universität Berlin. 

The data of the involved tissues are given in Table III. The heat flow h for 
the Cauchy boundary condition (BHT.ii) is assumed to be 

A = 45 
W 

m2 °C 
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FIG. 1. CT-data of a rectum malignancy. 

TABLE III . 

DATA OF TISSUES 

tissue <?[1C 
3 kg/m3] c[103j/kg°C] «[W/m °C] w[ml/100g per min] ff[l/m 

blood 1.0 3.72 _ 
fat 0.9 2.36 0.210 5 0.21 
muscle 1.0 3.72 0.642 20 0.80 
bone 1.6 1.41 0.436 5 0.02 
intestine 1.0 3.81 0.550 30 0.60 
bladder 1.0 3.98 0.561 30 0.20 
tumor 1.0 3.72 0.642 20 0.80 
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and the bolus temperature (i.e. the temperature of the water bolus, which 
is cooling the patient) is assumed to be 

J- bolus — ^5 C • 

As temperature of the arterial blood we take 

Ta = 37 °C -

FIG. 2. Initial triangulation % of the CT cross section. 

The initial triangulation T0 (Figure 2) (351 nodal points, 642 triangles) of 
the CT cross section was created by TRIGEN from the PLTMG-package of 
BANK [3]. On this triangulation an optimal E-field was computed by the 
second author of [25] which we used for our example. 

4.3. COMPUTATIONAL DETAILS FOR THE BHT EQUATION 

4.3.1. Time Discretization and Preconditioning 

The abstract setting of the BHT equation is 

(4.1) t(x)?^^- + A(x,d)u(t,x) = f(x). 
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We briefly discuss the effect of ^ ^ 1. Since assumptions 2 & 3 of Section 
1.1 are fulfilled the semigroup setting of (4.1) is given by 

(4.2) $u' + Au = f 

with the bounded positive selfadjoint operator 

$ : L2{ü) -» L2(Ü) 

u *—> (jm. 

Since $ _ 1 is bounded positive selfadjoint as well we obtain the equivalence 
of (4.2) and 

with the transformed u = $1/2u. Now the operator Q-1!2A§~^2 has the same 
properties as A. Note that a likely transformation by dividing equation (4.1) 
through \ / ^ is impossible, since the principal part of A(x, d) would loose its 
divergence form. Taking the time discretization (II.2.11) for the transformed 
ü we get after back-transformation: 

i) ul = ($ + r A ) ~ 1 ( ^ o + r / ) , 

Ü) m = 1-TA{$ + TA)-2{V}-U°), 

iii) u2 = u1 + rji. 

All results are valid as if <f> = 1. 
We now have to find a preconditioner for the operator 

1 * T „ 
A$ = —— $ + — — A. 

1 + r 1 -f r 
We estimate with A of Section 2.2.4 

min (l,^min) (Au,u) < (A$u,u) < max ( l ,^m a x ) (Au,u) 

for u E H2. Thus we can take the same preconditioner (QH)J f° r (A$)j as 
for Aj. The conditioner number will grow at most like 

(4.3) K((eH)M^) < m a x ( 1 ^ m a x ) . ( ( 0 ^ A ^ • 
m m ( 1 , 0min) 
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FIG. 3. Triangulation at time step 10, t = 13 min 11 s. 

4.3.2. Time Scaling and Choice of q 

The grow factor of the condition number in (4.3) has for the above example 
the value 

max (1, 3.98 • 106) 6 

min(l,2.12.10«) ~ ' ' 

which is not feasible. The reason for this big value is the comparison with 
the value 1 in the denominator. Now we make use of the possibility of a 
time-scaling: Introducing t = iscai • t we get 

l ^ l i^XM) e(x)c(x)dT(i,x) 

In our example we choose 
iSMl = 3.0 • 106 

and obtain the grow factor 

max (1,1.33) _ 
min (1,0.71) ' ' 

Physically this scaling means that we take 3.0 • 106 s as time unit. 
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For the correct choice of q, i.e., the version of the Helmholtz preconditioner 
of Section 2.2, we observe that exactly Case II of Section 2.2 is the case, 
because of TQ = 0 and q^n > 0. We thus have to use Version II of Section 
2.2. In our example 

qmin = 2790 

and 

9max = 18600, 

hence q = y/q^nQm^x = 7200 is the correct value. 

FIG. 4. Isothermals (37 - 43°C) at time step 10, t = 13 min 11 s. 

REMARK 4.1 . Even in the case of Dirichlet boundary conditions this 
choice of q would be preferable compared to the choice q — 0. In this case 
Tß = 3ü, Tc = 0 would yield just the case of doubt mentioned in Section 
2.2.3. Hence we would have to refer to the decision criterion (2.16) of Section 
2.2.3: With 

dQ = 0.24[m] 

for the width of the vertical strip, i.e., the depth of the body, and 

8 = 0.21 
W 

m °C 
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we would get 

cimin = 2790 -?L- > 7 . 
[m3 °C 

Hence we would obtain a reduction of the condition number by a factor of 
3.8 • 102 by using q = 7200 instead of q = 0. This reduction can be observed 
in numerical examples. 

FIG. 5. Triangulation at time step 16, t = 58 min 41 s. 

4.4. COMPUTATIONAL RESULTS 

Here we present the computational results of the program KASTI02 for the 
BHT equation with the above described data. We have chosen the accuracy 

TOL = 7.5-10-2 , 

which corresponds to an accuracy of the temperature of ±0.25 °C, assuming 
an equidistributed error. 

We did the computations until a treatment time of 1 h = 3600 s. 
The triangulation computed at the problem time t = 13 min l i s (time 

step 10) is show in Figure 3. This triangulation contains 724 points and 

W 
m 3 o C 

26_ 

4 
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FIG. 6. Isothermals (37 - 43"C) at time step 16, t = 58 min 41 s. 

1304 triangles. The refinement occurred mainly at the boundary where the 
steepest temperature differences can be found. The corresponding solution 
is show in Figure 4, where the isothermals are plotted for 37 - 43 °C in 1 °C 
steps. 

tau[1.0«3 s] 
1* 

0.9-

0.8-

0.7 

0.6-

0.5-

0 

0.3-

0.2-

0.1-

0-

O06 0.1B 0.24 0.3 
- ^ t l m . 1 1 . 0 . 4 . ] 

FIG. 7. Development of time step. 
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Figure 7 shows the development of the time step r during the 16 time 

steps, Figure 8 the increase of the number of nodal points. 

noda3[ 10.000] 

0.38-

0.33-

0.28 

0.23-

0.19-

0.13-

0.09-

0.04-

0.05 0.1 0.15 0.2 0.25 0.35 
•>time[1.0e4 »] 

FIG. 8. Increase of number of nodal points. 

The triangulation computed at the problem time t = 58 min 41 s (time 

step 16) is show in Figure 5. This triangulation contains 3688 points and 6922 

triangles. The refinement occurred here also at the critical tissue boundaries 

like muscle/bone, fat/bladder and bladder/ tumor. The corresponding solu-

time[1.0«4 s] 
A 

0.36-

0.3-

0.24-

0.18-

0.12-

0.06-

0-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.S 
—T 1 1 1 1 r-> time-step numberflO] 

1T1 1T2 1.3 1.4 1.5 1.6 

FIG. 9. Development of real treatment time (—) and cpu-time (• • •). 

tion is show in Figure 6, where the isothermals are plotted for 37 - 43 °C in 
1 °C steps. We observe tha t the region above 43 °C at the tumor has spread 
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out, now surrounding it nearly. Also the top fat region, which is a region of 
high electric field, did get an temperature increase of about 2 °C-

Figure 9 contains the treatment time and the cpu time versus the time 
step number, we observe an increasing gain of time to react: For 58 min 41 
s treatment time the computation on the workstation (SPARC-station 1+) 
ended after 5 min 18.2 s. 

The distribution of the computational time to the different tasks is shown 
in Table IV. It shows that the bulk of the computational time is spend in the 
local integrations for the mass matrix and the stiffness matrix. Of course, this 
would change if we would make use of the local constancy of the coefficients. 
However, more general problems would show up just the indicated behavior. 

TABLE IV. 
AMOUNT OF C P U T I M E FOR THE COMPUTATIONAL TASKS 

task amount of CPU-time 

direct solver on coarse grid 1.0% 
PCG iterations for implicit Euler u1 6.2 % 
PCG iter, time error corrections 771 4.8 % 

refinement 2.1 % 
local error indicators 4.3% 

local integration 81.6% 
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