
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Heilbronner Str. 10, D-10711 Berlin - Wilmersdorf

Gerhard W� Zumbusch

Visualizing Functions of the
h�p�Version of Finite Elements

Technical Report TR 94-5 (July 1994)

Visualizing Functions of the h-p-Version of Finite Elements

Gerhard W. Zumbusch
∗

Abstract

Results from finite-element-calculations are usually visualized by
colored surface- and contour-line-plots or polygonal patches or simply
displaced lines and grids. In computer graphics however more ad-
vanced techniques like texture-mapping and NURBS are well estab-
lished and there exist efficient algorithms and implementations. We
show that these techniques are not only easy to use, but form a very
natural and far more efficient approach for visualization of higher order
finite-element’s solutions like in p- and h-p-version. Texture-mapping
is useful for displaying vector-valued data, too.

Key Words

computer graphics, FEM, p-version, multivariate interpolation
AMSMOS, MSC 1991 subject classification

Primary 65N30, 41A10.

∗Konrad–Zuse–Zentrum Berlin, Heilbronner Str. 10, D-10711 Berlin-Wilmersdorf, Ger-
many. Zumbusch@ZIB-Berlin.De

Contents

1 Introduction 3

1.1 Contour Lines . 4
1.2 Mesh Plots . 5

1.3 Surface Plots . 6

2 NURBS 10

2.1 Trimming Bivariate NURBS 11

2.2 Display and Print . 12
2.3 Adaptive Tesselation . 15
2.4 Polynomial Degrees . 17
2.5 Non-Conforming Tesselations 20

3 Texture Mapping 22

3.1 Linear Mapping . 22
3.2 Solution Dependent Mapping 24

4 Beyond Graphics 27

References 29

� Introduction

The Finite Element Method is a generally accepted and widely used method
for the solution of many problems in engineering and science. There are many
different approaches and a vast number of computer codes implementing

them. Some of them can be categorized under the terms of h-, p- and h-p-
version. The first part of this text deals with higher degree polynomial shape
functions, which can occur in all finite element versions, but are essential for
the p- and h-p-version.

Let us assume that we have calculated a solution of our problem with a
finite element code. This solution typically resides in a real space Φ : Ω ⊂
R

d → R
s. In the case that we are able to reduce the data of interest (the

solution) to a single set of numbers, we can analyze the result easily. If

we perform eigenvalue computations or some postprocessing like calculation
of the maximum or an integral of specific components of the solution, we
get only a couple of numbers. In all other cases, e.g. if we just want to

analyze eigensolutions, we have to visualize a solution over the domain Ω.
This is easy in one space dimension d = 1, drawing lines and graphs. In
this text we consider the two-dimensional case (d = 2). The corresponding
graphical representations can be subsumed under the subject of surface plots.

If we want to visualize more than one component of the solution (s > 1)
simultaneously, we can use common techniques like arrow plots or a more
sophisticated approach with texture maps.
We want to show that traditional visualization of finite elements can easily

be extended by state of the art techniques of computer graphics. This permits
visualization without loss of information and with a lower amount of data in
the context of higher degree polynomial shape functions by e.g. NURBS. In
addition the visualization can be extended to transmit additional information

via texture mapping, too. We stress algorithmic and implementational details
that are important for performance and for correctness of the results. For a
background in computer graphics, see e.g. [FDFH90].

3

In the first part of the paper we review common methods of visualization
of surfaces Φ : Ω ⊂ R

2 → R. We do this with the fact in mind, that Φ is

not a piecewise linear function, which is often assumed in current visualiza-
tion packages, especially in the context of finite elements. The second part
is concerned with NURBS for the exact representation of Φ and with the

visualization of NURBS. In the third part we combine the visualization with
texture mapping and show some applications, where additional information
is transmitted via texture mapping.

1.1 Contour Lines

Fig. 1. Contour line plot on a triangle, black&white, vector/plotter style, in the plane

and in 3D orthographic projection.

A very early graphical representation of surfaces are contour lines. They
require only line drawing devices like pen plotters and do not need any hidden
line or hidden surface computations. The calculation of the contour lines

itself for arbitrary functions Φ is a non-trivial task. For piecewise linear Φ the
algorithm is rather simple and numerically stable. This was done in figure 1.
In the case of piecewise quadratic and cubic Φ a numerically stable algorithm
is possible, if data is represented in the right way. For implementations in

the case of regular grids see [RAW90] and in the case of irregular, triangular
tesselations see [PS77]). For higher polynomial degrees all algorithms are
only approximative and heuristic for algebraic reasons and may be inefficient.
For pen plotter devices there is the additional task of connecting contour

line segments and optimizing plotter paths. This is not necessary for raster

4

devices used nowadays. Nevertheless drawing contour lines is the cheapest
visualization method, measured in the number of graphics operations.

1.2 Mesh Plots

Fig. 2. Mesh plot on a triangle; black&white, vector/plotter style, drawn transparent

and with hidden lines by painter’s algorithm and in a co-ordinate box.

Another method of plotting surfaces is the drawing of mesh plots. A regular
mesh in the domain Ω is projected onto the solution-manifold in R3. In most
cases the pictures are very comprehensive, but sometimes it is difficult to

grasp at the first glance whether some visible parts of the surface represent
the upper or lower side. If there are different colors or textures available, the
lower side can be presented in a visually distinguishable way.
Algorithmically there are different approaches. The simplest is: Draw the

mesh transparently. This results in rather complicated pictures. The more

5

Fig. 3. Mesh plot on a triangle with contour lines beneath and above.

sophisticated methods use hidden line algorithms. Algorithms for plotter

devices have to implement a skyline buffer which accumulates maximum and
minimum skyline for the drawing from front to back. An emerging difficulty
is a correct labeling of the drawing interacting with the surface in R3. Labels
of axis may be hidden by the surface or hide it themselfes. They may also

be placed into cuts of the surface. Being unable to erase parts of the picture
is a general problem of plotter devices.
A cheaper algorithm which is only applicable for raster devices is a sim-

plified version of painter’s algorithm. Just draw the lines and redraw the

patches between them from back to front. This utilizes no buffer and book-
keeping but the possibility of erasing areas in the picture. Labels can be
drawn under (before) and over (after) the mesh. For this algorithm much
more pixels (resolution dependend) have to be manipulated. The pictures

shown in figure 2–3 have been produced by a more complicated version of
painter’s algorithm which actually sorts all patches and lines, both for display
and for print. For this we used the matlab package [Mat92].

1.3 Surface Plots

Using raster devices the step from mesh plots to surface plots is not a big one.
Pen plotters do not appreciate filled patches anyway. We apply the painter’s
algorithm as for the mesh plots. Now we utilize different colors or gray-scales

filling the patches which were erased (filled with background color) for the

6

Fig. 4. Surface plot on a triangle. Produced with hidden surface removal by painter’s

algorithm (interpolated intensities).

Fig. 5. Surface plot on a triangle. The elevation is mapped to the intensity via a color

lookup table.

mesh plots. We have a new degree of freedom if we choose the color of the
patches not uniform, but varying over the surface. We could have colored
the lines for the mesh plot, too, but this would not be very impressive in

print, since most printers have difficulties separating different colored lines.
A standard way of assigning colors is via a color lookup table. This is

commonly used for color displays with a restricted frame buffer depth and
therefore a restricted number of colors that can be displayed simultanously.

There arise two questions: How do I assign the indices of the lookup table to

7

Fig. 6. Surface plot on a triangle. One co-ordinate is mapped to the intensity via a color

lookup table.

Fig. 7. Surface plot on a triangle. The surface is considered as a real object with

lightening model and with texture mapping (texture j sinπx1 sinπx2j).

the surface and what colors do I put into the lookup table. Some examples
are shown here.
The examples can be classified into groups by the geometric properties

parametrizing the lookup table. We choose elevation which is the value of the
solution itself, one axis of the picture (depth) and the geometric properties of
the surface in R3. Colors are calulated via geometric normals to the surface
in combination with an ambient, diffuse and speculiar light reflection model

using Gouraud-shading. Another classification is by the color lookup tables,

8

which can be quasi-continuous over the whole spectrum or some parts of it
or discontinuous, yielding geometrical effects like contour bands.

In figure 7) texture mapping is used. This technique will be used in chapter
3 for visualizing additional information, but is also useful for piecewise linear
functions Φ.

9

� NURBS

If the graphical results of the piecewise linear representations are not satis-

fying and we want to increase precision, we have to supply additional data.
This can be done either by increasing the number of linear patches or by
using patches with a higher level of precision. The decision is analogous to

the decision in finite element methods whether to do an h- or an p-refinement
(possibly both, h-p). If we use higher order polynomials in the numerical cal-
culation, linear patches with only continuous surfaces (not differentiable) do
not suffice anyway. In order to improve the patches, we can choose polynomi-

als and rational functions, which are both heavily used in computer graphics.
Continuously differentiable surfaces emerge from the calculus of (graphical-
) G1-continuous functions, which equal standard C1-continuous modulo a
proper parametrization [Boe88]). Surfaces emerging from non-conforming

global finite-element-solutions are not continous and surfaces from conform-
ing finite-elements with second order operator need not be continously dif-
ferentiable. The surfaces are be in all cases piecewise differentiable on every
local finite-element.

We now concentrate on the exact graphical representation of higher order
polynomial shape funtions in finite element context. The solution may be
represented by any set of complete polynomials well suited for graphical com-

putations [Zum93]. If we use central projection, starting with polynomials,
we have to do the remaining parts of computation with rational functions.
Hence we can operate on rational functions anyway. They transform to ratio-
nal functions of the same degree under central perspective transformations.

Orthographic perspective is considered a special case of central perspective.
Another argument for rational functions is that they are already efficiently
implemented in many graphic subsystems.
central projection in projective co-ordinates

�x =

⎛
⎜⎜⎜⎜⎝

x1

x2

x3

1

⎞
⎟⎟⎟⎟⎠

�→ A�x =

⎛
⎜⎜⎜⎜⎝

�a1�x
�a2�x
�a3�x

�a4�x

⎞
⎟⎟⎟⎟⎠

≡

⎛
⎜⎜⎜⎜⎝

�a1�x/�a4�x
�a2�x/�a4�x
�a3�x/�a4�x

1

⎞
⎟⎟⎟⎟⎠

10

with transformation matrix

A =

⎛
⎜⎜⎜⎜⎝

�a1
�a2
�a3
�a4

⎞
⎟⎟⎟⎟⎠

∈ R4,4

2.1 Trimming Bivariate NURBS

Fig. 8. A bivariate NURBS on a square, automatically resolved into patches and a

triangular trim curve for it, hardcopy from screen.

Unfortunately in most cases only the bivariate rational functions (= bivariate

NURBS, see [Far90]) for the rectangle are implemented in graphical subsys-
tems [McL91, Hew92], but we need them on the triangle. NURBS on the
triangle are in some sense simpler, because they are determined by a lower
number of coefficients (control points). But NURBS on the triangle are com-

pletely contained in the space of NURBS on the rectangle of the same degree
and the double area. Hence we can compute the coefficients of the NURBS
on the rectangle instead of the ones on the triangle. For graphical represen-
tation we have to remove one half of the rectangle which can be done by

trimming. This is shown in the sequence of figures 8 and 9. The NURBS is
defined in parameter space on [0, 1]2 → R

3. We can restrict this space to a
domain T ⊂ [0, 1]2 → R

3. The domain T can be defined as the interior of
an oriented closed curve called “trimming curve”. In our case T will be the

triangle T = {(x1, x2)|x1, x2, 1− x1 − x2 ≥ 0}.

11

Fig. 9. The bivariate NURBS trimmed to a NURBS on a triangle, additionally with

texture mapping.

Fig. 10. A NURBS on a triangle with texture mapping in the interactive scene viewer

tool (IRIS Inventor).

We use the term NURBS in the sense of one spline per finite element patch.
Usually the term “spline” is connected with the coupling of these splines on
different patches (e.g. G1 continouity). But in our context properties like
continuity are delivered (or maybe not) by the solution itself. In this section

we use hardcopys form screen rather than patch-wise prints.

2.2 Display and Print

12

Fig. 11. A solution on an L-shaped domain with quadratic triangle shaped elements.

Fig. 12. A solution on an L-shaped domain with quadratic triangle shaped elements,

printed with plain lines and with extended lines.

Now using the graphical subsystem for displaying NURBS, we also rely on its
printing capabilities. We show different settings of the postscript driver of the
package IRIS Inventor [Wer92], which uses the package IRIS GL [McL91, Sil]
for display (now available as Open GL and Open Inventor). The printer

driver of IRIS Inventor is also available in the visualization package Explorer
[Hal93a, Hal93b]. A very similar approach to NURBS is permited by the
graphical system Starbase [Hew92].
The display of the figures on screen exploiting special graphics hardware

is fast, but the output of the printer drivers in comparison to is very slow.

13

Fig. 13. A solution on an L-shaped domain with quadratic triangle shaped elements,

printed with wobbly lines and with warped lines. Some lines are intentionally left out for

an impression of a sketch.

Fig. 14. A solution on an L-shaped domain with quadratic triangle shaped elements.

The time expense depend on the hidden-line algorithm, and more on the
bandwith of the graphics channel which is usually narrow compared with the
huge amount of data. The pictures in figure 11–13 are drawn by painter’s

algorithm. The grahical objects are sorted and drawn from back to front.
Objects on the front may cover objects behind them drawn earlier. In the
case of two objects overlapping each other, the sorting fails and at least one
object has to be splitted into parts.

Painter’s algorithm results in relatively small data files. Nevertheless the

14

processing of this data consumes an equal amount of printer/processor time
as the processing of a much larger but better structured file of a screen

dump, which only needs transfer bandwith. One argument for the patch-
wise printing is the resolution. Resolution is only bounded by the precision
of number representation, which grows logarithmically in file size. Resolution

much greater than printer’s resolution is only usefull for filtering. Hardcopy
resolution is restricted by the number of pixels saved. Filtering and other
techniques only can enhance quality of pictures with low resolution a little bit.
On the other hand patch-wise printing may be implemented in a numericaly

unstable way. The postscript printer drivers used for printing figure 11 does
make errors (sorting errors due to implementation), which are clearly visible.
The used drivers for the screen show no visible errors, though they use related
algorithms. Hence printer drivers sometimes have low quality.

Another point to be mentioned is sorting. Painter’s algorithm for patch-
wise drawing requires sorting of patches, the (hardware) Z-buffer for pixel
drawing does not. Hence in general the complexity of painter’s algorithm
grows with n log n Operations whereas Z-buffer is optimal with n operations

for n equal-sized patches. The graphical packages mentioned use a general
sorting for painter’s algorithm which makes them potentially slow. Taking
advantage of the structure of finite-elements (no intersection, back to front

with known neighbourhoods) would reduce sorting down to an n operation
process, too. In finite-elements one could look for a point on the boundary
of the domain which is the point farthest away. Proceeding from one ele-
ment only to its neighbours reduces the problem to local sorting. Additional

knowledge of hierarchies in finite elements faciliates a kind of hierarchal sort-
ing. Often a previous hierarchy has been sorted already so there is only little
additional work left.

2.3 Adaptive Tesselation

A general problem concerning higher degree polynomials we mentioned in

chapter 1.1. We have to render an higher order surface. We can do this
directly. But if the degree p of the polynomials exceeds three we cannot find
the roots and do some of the computations symbolically for algebraic rea-
sons. We also can render the surface by linear patches. We apply adaptive

subdivision of patches until the area of display is resolved fine enough (dis-

15

Fig. 15. A solution on an L-shaped domain with quadratic triangle shaped elements. It

is automatically resolved into patches. We show a global view and a detail of the adaptive

tesselation. The picture enlargement triggers a finer tesselation.

Fig. 16. Quadratic triangle shaped elements, geometric complexity for adaptive control

of the tesselation is set to 0.01 and to 0.7.

play space), or the object itself is resolved fine enough (object space). We
postponed this problem to the graphical software package (here Iris GL). We

only supply the coefficients of the polynomial function Φ in a suitable polyno-
mial basis. We choose a parameter c ∈ [0, 1] for adaptivity in display space,
called “geometric complexity”. In this implementation it is unfortunately
independent from real geometric complexity of the surface, like curvature or

other more heuristic measures. A more general approach to adaptivity on

16

Fig. 17. Quadratic triangle shaped elements, geometric complexity for adaptive control

of the tesselation is set to 0.01 (detail) and to 0.9.

Fig. 18. L-shaped domain with quadratic triangle shaped elements, only vertices of the

elements, the cheapest representation, shaded print/ hardcopy.

this kind of surfaces is contained e.g. in [Hoh91].

2.4 Polynomial Degrees

Here we try to show the influence of the polynomial degrees onto the pic-
ture and onto the visual impression (figures 19 and 20). The influence of
polynomial degrees on the approximation properties are clear analytically.
In the case of regular functions we get an approximation error of O(〈α√).
This means that we need a lot of linear patches to approximate an higher

17

Fig. 19. A solution on an L-shaped domain with linear triangle shaped elements, addi-

tionally texture mapping with projection into co-ordinate plane.

Fig. 20. The solution calculated with quadratic and cubic ploynomials, represented by

quadratic and cubic triangle shaped elements.

order surface (figure 23). Using higher order patches reduces data drasti-
cally. One effect which is visible (and obvious) is, that linear elements can
be represented by a linear patch, whereas higher polynomials are subdivided

into (many) linear patches.
We now show the influence of the polynomial degrees onto the tesselation

(figures 21 and 22). The graphical object of the figures itself comes from
h-p-version with non-uniform degree p and is a rather rare one in graphical

representation. Up to rounding errors, the functions on the boundary of the

18

Fig. 21. L-shaped domain with linear, quadratic and cubic triangle shaped elements. Lin-

ear shape functions are not resolved into smaller patches because they are drawn exactly.

Adaptive tesselation, global view and detail.

Fig. 22. Two different views of an L-shaped domain with linear, quadratic and cubic

triangle shaped elements. Linear shape functions have got a constant brightness due to

reflection calculation.

patches are equal, because the global function is approximated continuously.

Hence the dense subdivision of quadratic elemements which have an edge in
common with a linear element do not produce errors in continuity. A key
point is either a stable (unambigous) representation of the polynomials or
a high precision of the coefficients. Relying on precision, excessive subdivi-

sion or excessive enlargement of the picture will result in such display errors.

19

Fig. 23. Approximation of sinx (bottom) by 8 equidistant (linear) lines (middle) and by

2 quadratic curve segments (top). Rendering errors due to lack of coefficients’ precision.

Such errors will always occur on edges of two triangles with different repre-

sented polynomials or different subdivided polynomials, which is the case for
different polynomial degrees.

2.5 Non-Conforming Tesselations

If we consider non-conforming tesselations, we come into the same kind of
trouble concerning continuity. Non-conformity means that two neighboured
elements may have in common only some part of an edge, not the whole

one. This does not make more trouble than the conforming case, a sufficient
precision of coefficients and graphical computations supposed. But there is a
general problem: If we stress the term numerically stable, which e.g. means
that the behaviour of the algorithm on one edge only depends on the data

of that edge, we come into trouble. One has the problem that the different
elements obtain very different sets of coefficients on the same edge, even for a
stable basis like the NURBS. This leads to acceptable low, but certain errors.
This errors become unacceptable, if there are questions like: Is this specific

pixel filled or is it not? Hence the global surface may become non-continuous
under some view transformations, which can be visible.
A general solution for this problem is not a change of the NURBS basis.

There are two alternatives: One can use the original representation of data

of the finite element method and do the adaptive tesselation in a global

20

conforming way. This can be done in a approach like [WR92]. Another way is
used in [RR93a, RR93b], where the NURBS basis is retained, but additional

information concerning topology of the tesselation is supplied. The renderer
“knows”, that the surface is continuous and that specific functions have to be
equal on an edge. In the case of critical decisions for drawing, an algorithm

can use this information by some kinds of modified skyline algorithms, which
cannot miss a pixel.

21

� Texture Mapping

We want to show results using a second technique of computer graphics,
which is not directly related to NURBS, texture mapping. Some figures have
already shown texture mapping, but only in connection with a linear mapping

in R2 and using simple maps. Texture mapping is algorithmically simple, but
computationally intensive. At a first glance one would omit texture mapping
therefore for finite element visualization. We have arguments against: For a
hardware supported texture mapping [Sil] it is no problem to cope with the

complexity of finite elements, although a simple line drawing (without hidden
lines) performs faster of course. But using hardware Z-buffer, additional
texture mapping (sometimes also in hardware) is not a big deal and it has the
same measure of complexity O(n). Another point, which we will make more

clear in the following is that we are able to transmit additional information
via texture mapping. It is a natural generalization of the linear color lookup
tables, which nearly everybody uses already. The pictures in this section
were made with the use of Inventor [Wer92]. The postscript printer drivers

we did use are not capable of texture mapping, but other drivers are. A
better quality printer driver (but pixel oriented) is contained in the package
AVS [UFK+90].

3.1 Linear Mapping

Like in the previous sections we use a linear mapping of coordinate space R2

into the periodic parameter space of the texture [0, 1]2. We always use the
same geometry and the same mapping but change the texture. There are
libraries full of textures. We choose some characteristic color textures. They

are simply pixmaps generated by scanning photographs or purely synthetic.
Sometimes they are modified and processed for periodicity of the picture
which excludes gaps when mapping them.
Some pictures like the rock example (figure 25) give a realistic impression

of an artificial object in R3 which is the solution. The feature texture map-
ping extends the imagination of the surface plots. Another alternative is the
application of geometric textures like the brick-pattern (figure 25) or grids
(figure 27). Here we can easily perceive curvature and relative height. Com-

pared to classic line plots with parallel lines we can recognize here curvature

22

Fig. 24. L-shaped domain with quadratic triangle shaped elements, textured with clouds

and with marble.

Fig. 25. L-shaped domain with quadratic triangle shaped elements, textured with faces

of rock and with bricks.

in both directions because of the lines running in two orthogonal directions.
We have a widening and a thickness of the lines when they are near to the
observer. This is a very intutive effect similar to a textured membrane (a
balloon) put onto the surface. Choosing a proper texture, one add text and

annotations onto the texture, inscriptions like name of the axis and numerical
values, and graphics like contour lines.
A general problem is the printing of the pictures. One problem is the

impact of the reversal of black and white to realistic lightening models. One

problem is the proper transfer of colors from screen to print. It is possible

23

Fig. 26. L-shaped domain with quadratic triangle shaped elements, textured with

Munch’s painting “Scream”.

Fig. 27. Texture with grid lines, often used for the pictures here.

to reverse all colors, which would have been disastrous for real textures like

the Munch painting (figure 26). Another method is to only change black
and white which is bad in cases of near black or near white pictures. One
also can substitute the black color of the border by white, which changes the
appearance of the picture, too. For optimal results one only can tune the

colors either for print or for display on the screen.

3.2 Solution Dependent Mapping

24

Fig. 28. L-shaped domain with quadratic triangle shaped elements, different scaling of

the texture, streched in x2- and shrunken in x1-direction, resulting in parallel lines.

Fig. 29. L-shaped domain with quadratic triangle shaped elements, different scaling

of the texture, scaling in x1- and x2-direction by the solution itself which equals an one

dimensional color lookup table.

We continue with linear texture mapped views of the geometric object. Now
we modify the parameters of the linear mapping R3 → R

2. We choose the

geometric map of figure 27. We can distort the map in the x1, x2-plane
which leads to line plots instead of grid plots (figure 28). The lines can
have different thickness and focal points in the picture. The focal point
depends on the resolution of the texture in relation to its magnification and

the related texture filter. Here we use the standard bilinear filter which is

25

Fig. 30. L-shaped domain with quadratic triangle shaped elements, different scaling of

the texture, x1 in x1-direction and the solution in x2-direction/ one component of the

solution in x1 and the other in x2-direction, no elevation (in x3-direction).

Fig. 31. L-shaped domain with quadratic triangle shaped elements, different scaling of

the texture, one component of the solution in x1 and the other in x2-direction, the first

one in x3-direction and the second one in x3-direction.

bilinear interpolation in texture co-ordinate space. More interesting is the

usage of the third dimension which is the solution itself for the mapping. The
simplest case (figure 29) is the scaling (x3, x3). Both texture co-ordinates
are choosen as x3. This means a color that is only solution dependent.
Geometrically this is a one dimensional color lookup table indexed by the

height of the surface. We could play the same game as in chapter 1.3, creating

26

colored contour bands and so on.
We choose more complicated mappings like mixtures of coordinates x1,

x2 and a two-component solution which exploits full two dimensions of the
texture. This only delivers different views of the same geometric object of
the surface. Depending on the parameters and the actual mapping they may

lead to new insights, but are at first difficult to handle and rather confusing.
A real new opportunity which is only possible by texture mapping is the

visualization of vector valued solutions. In our case we take a solution (f1, f2)
defined on a domain of R2, which is a two dimensional manifold in R4. This

is rather complicated to imagine. Nevertheless some effects of it can be
visualized. Using texture mapping, we now have a chance to show both com-
ponents, which traditionally is done by smale arrows. Both techniques have
to visualize two components in every point of the domain in R2. The arrows

show a magnitude and an angle. Here we use the grid texture. This shows
the interaction of both components in cartesian coordinates. We could have
used a pattern of concentric circles or a system of meridians, also showing
angles and magnitude in polar coordinates. Another promising technique is

the convolution of textures along streamslines. This also visualizes vector
fields, but it requires a different renderer.

� Beyond Graphics

We have used only a smal set of techniques of computer graphics. Much
more techniques are available and some of them are or become implemented
these days fast enough for interactive applications in data visualization. We
can only point out some features which may be useful. There are techniques

developed for the use in flight simulators and the design in automobile in-
dustry today, which deliver even more advanced visualization techniques.
One is volume rendering instead of surface modelling. This enables to use
clusters of particles or fog of different intensities for visualization. Another

one is a improved texture mapping facility with adaptive resolution textures,
which resolve the pattern only in a size small enough, not in full detail. An
additional improvement is 3-D texture mapping. 3-D textures enhance the
number of parameters for the texture and use three dimensional arrays of

pixels (voxels).

27

A real problem is the quality of the pictures. It is amazing that the al-
gorithms for display on the screen are usually better or as good as the ones

for printing. Printing now is some orders of magnitude slower than real-time
graphics on screen, which would allow a higher quality. Techniques like anti-
aliasing and filtering, not to mention a correct hidden line algorithm, are

standard. State of the art algorithms perform these tasks in a very efficient
way, but in our opinion quality goes first. Connected with this is the ques-
tion of the optimal resolution and the optimal set of colors for a print. Both
questions depend on many parameters like the question of reproduction of

the prints, but in general the printer drivers should be improved.

Acknowledgements

The author wants to express his appreciation for helpful discussions with
and corrections by H. C. Hege and D. Stalling. He also wants to thank the
remaining members of the Devision “Visualization and Parallel Computing”

for technical support and collaboration.

28

References

[Boe88] W. Boehm. On the definition of geometric continuity. Comput.
Aided Design, 20(7):370–372, 1988.

[DLY89] P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adap-
tive hierarchical finite element code. IMPACT Comput. Sci. En-
grg., 1:3–35, 1989.

[Far90] G. Farin. Curves and Surfaces for Computer Aided Geometric
Design – A Practical Guide, 2nd ed. Academic Press, San Diego,
1990.

[FDFH90] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Com-
puter Graphics - Principles and Practice. Addison-Wesley, 2nd
edition, 1990.

[Hal93a] M.-A. Halse. IRIS Explorer Module Writer’s Guide. Silicon
Graphics, Inc., Moutain View, CA 94039-7311, 1993.

[Hal93b] M.-A. Halse. IRIS Explorer User’s Guide. Silicon Graphics, Inc.,
Moutain View, CA 94039-7311, 1993.

[Hew92] Hewlett-Packard Company, 1000 N.E. Circle Blvd., Corvallis, OR

97330. Starbase Graphics Techniques, 1992.

[Hoh91] A. Hohmann. An adaptive continuation method for implicitly de-

fined surfaces. Preprint SC 91–20, Konrad-Zuse-Zentrum, Berlin,
1991.

[Mat92] The Math Works, Inc., Natick, Mass. 01760. Matlab, High-

Performance Numeric Computation and Visualization Software,
1992.

[McL91] P. McLendon. Graphics Library Programming Guide. Silicon

Graphics, Inc., Moutain View, CA 94039-7311, 1991.

[PS77] M. J. D. Powell and M. A. Sabin. Piecewise quadratic approxi-
mations on triangles. ACM Trans. Math. Software, 3(4):316–325,

1977.

[RAW90] C. Reinsch, V. Apostulecu, and K. Weidner. Das
LRZ-Graphiksystem, Benutzer-Manual, Teil II. Leibniz-

Rechenzentrum, Barer Str., D-80333 München, Germany, 9th edi-
tion, 1990.

[RR93a] L. Rose and D. Ramey. Advanced Visualizer User’s Guide, Ver-
sion 4.0. Wavefront Technologies, Inc., Santa Barbara, CA 93103,
3nd edition, 1993.

[RR93b] L. Rose and D. Ramey. Wavefront File Formats, Version 4.0.
Wavefront Technologies, Inc., Santa Barbara, CA 93103, 1st edi-

tion, 1993.

[Sil] Power series, technical report. Technical report, Silicon Graphics,

Inc., Moutain View, CA 94039-7311.

[UFK+90] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel,

J. Vroom, R. Gruwitz, and A. van Dam. The application vi-
sualization system: A computational environment for scientific
visualisation. IEEE Computer Graphics and Applications ?, 9,
1990.

[Vis93] Abt. Visualisierung und Paralleles Rechnen. Handbuch zur Vi-

sualisierung am ZIB. Technical Report TR 92-7, Konrad-Zuse-
Zentrum, Berlin, 1993.

[Wer92] J. Wernecke. IRIS Inventor Programming Guide. Silicon Graph-
ics, Inc., Moutain View, CA 94039-7311, 1992.

[WR92] A. Wierse and M. Rumpf. GRAPE - Eine objektorientierte
Visualisierungs- und Numerikplattform. Informatik Forsch.
Entw., 7, 1992.

[Zum93] G. W. Zumbusch. Symmetric hierarchical polynomials for the
h-p-version of finite elements. Preprint SC 93-32 ZIB, 1993.

30

