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Gas network extension planning for
multiple demand scenarios

Jonas Schweiger

Abstract

Today’s gas markets demand more flexibility from the network operators which in turn
have to invest into their network infrastructure. As these investments are very cost-intensive
and long-living, network extensions should not only focus on one bottleneck scenario, but
should increase the flexibility to fulfill different demand scenarios. We formulate a model
for the network extension problem for multiple demand scenarios and propose a scenario de-
composition. We solve MINLP single-scenario sub-problems and obtain valid bounds even
without solving them to optimality. Heuristics prove capable of improving the initial solutions
substantially. Results of computational experiments are presented.

1 Introduction
Recent changes in the regulation of the German gas market are creating new challenges for
gas network operators. Especially the unbundling of gas transport and trading reduces the
influence of network operators on transportation requests. Greater flexibility in the network is
therefore demanded. Traditional, deterministic planning approaches focus on one bottleneck
scenario. Stochastic or robust approaches, in contrast, can consider a set of scenarios and
therefore lead to more flexible network extensions.

Gas transmission networks are complex structures that consist of passive pipes and active,
controllable elements such as valves and compressors. For planning purposes, the relationship
of flow through the element and the resulting pressure difference is appropriately modeled
by nonlinear functions and the description of the active elements involves discrete decisions
(e. g., whether a valve is open or closed) (see [4, 5] for the details of our model and algorith-
mic approach to solve deterministic models). The resulting model is thus an Mixed-Integer
Nonlinear Program (MINLP).

In this presentation, we focus on additional pipes as extension candidates. A new pipe
allows flow but also couples the pressures at the end nodes, possibly rendering previously fea-
sible transport requests (also known as nominations) infeasible. An additional valve retains
all possibilities of the original network. Opening the valve, corresponds to building the exten-
sion pipe and is therefore penalized the cost for the extension. Closing the valve, forbids flow
over the pipe which effectively removes the pipe from the system. Details on the approach for
topology optimization for a single-scenario can be found in [1].

To approach the optimization over a finite set of scenarios (i. e., transport requests), we
propose a scenario decomposition. Section 2 describes the model. The decomposition method
is presented in Section 3 together with some details about primal and dual bounds and results
on the ability to reuse solutions from previous optimization runs over the same scenario. Sec-
tion 4 presents the results of computational experiments. Section 5 provides an outlook on
planned future work on the topic.

1



2 Planning for multiple demand scenarios
Assume a gas network, a set of scenarios ω ∈ Ω, i. e., nominations, and a set of extensions
E (each extension consisting of a pipe and a valve) is given. We denote set of characteristic
vectors of feasible extension sets for scenario ω with

F ω =
{

χE ∈ {0,1}E
∣∣∣ Extensions E ⊆ E make ω feasible

}
In our situation, a closed form description of F ω is not at hand. However, we assume mono-
tonicity in the sense that adding extensions to an element of the set is still feasible:

x1 ∈F ω , x2 ∈ {0,1}E , x2 ≥ x1 =⇒ x2 ∈F ω .

Especially in the context of gas network planning this property cannot be taken for granted but
adding valves to all extensions ensures monotonicity in our application.

For a specific scenario ω the extension planning problem can now be stated as

min cT xω (SSTP)

s.t. xω ∈F ω

This formulation hides the difficulties in describing and optimizing over the set F ω . Our
approach uses problem (SSTP) as sub-problem and assumes a black-box solver to be available
(e. g., from [1]).

In the multi-scenario extension planning problem we seek for a set of extensions of mini-
mal cost such that the resulting network allows a feasible operation in all scenarios. We stress
that in the different scenarios not all extensions that have been built have to be actually used;
in fact, using them might not even be feasible. The multi-scenario problem can then be stated
as:

min cT y (MSTP TS Node)

s.t. xω ∈F ω for all ω ∈Ω (1)

xω ≤ y for all ω ∈Ω (2)

y ∈ {0,1}E (3)

This is a two-stage stochastic program. y are the first stage variables which indicate which
extensions are built. Finding a feasible operational mode for the scenarios given the extensions
selected by y is the second stage problem.

3 Scenario decomposition
The algorithmic idea is scenario decomposition. First, we solve the scenario sub-problems (SSTP)
independently and in parallel. If one scenario sub-problem is infeasible, the multi-scenario
problem is infeasible.

Branching on the y variables is used to coordinate the scenarios. To this end, we identify
extensions that are selected in some but not all scenarios. Two sub-problems, i. e., nodes in the
Branch&Bround tree, are created: one with the condition ye = 0 and one with the condition
ye = 1. In the two nodes, sub-problems have to be modified accordingly. For ye = 0, variable
xω

e is fixed to zero. For ye = 1, extension e is built and using it does not incur additional cost.
Each node of the Branch&Bround tree is identified by the sets E0 and E1 of extensions that

are fixed to 0 and 1, respectively. The modified single-scenario problem for scenario ω then
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reads:

min ∑
e6∈E1

cexω
e + ∑

e∈E1

ce (SingleScenω )

s.t. xω ∈F ω

xω
e = 0 for all e ∈ E0

The following lemma states that adding more elements to E0 and E1 might only deteriorate
the objective function value.

Lemma 1 Let E1
0 ⊆ E2

0 and E1
1 ⊆ E2

1 and c∗i the optimal value of (SingleScenω ) with respect
to (E i

0,E
i
1). Then c∗1 ≤ c∗2.

Dual bounds for the single-scenario problems can be instantly translated into dual bounds
for the multi-scenario problem.

Lemma 2 Let the objective function coefficients be non-negative, i. e., c ≥ 0. Then any dual
bound for problem (SingleScenω ) for any scenario is also a dual bound for problem (MSTP TS Node).

We propose three ways to get or enhance feasible solutions: First, by construction the
union of all extensions used in the different scenarios constitutes a primal solution for the
multi-scenario problem. Therefore, we construct a solution to (MSTP TS Node) in every
node by setting y = maxω∈Ω xω

e where xω
e is taken as the best solution for scenario ω .

Second, we observed that checking if a certain subset of extensions is feasible is typically
very fast. This observation is used by a 1-opt procedure that takes the best current solution
to (MSTP TS Node), removes one extension, and checks all scenarios for feasibility.

Third, in stochastic programming optimal single-scenario solutions often lack flexibility
and do not occur in optimal solutions to the stochastic program (e. g., [7]). To benefit from all
solutions the solver provides us, we access its solution pool and store all sub-optimal solutions
for the scenarios. This has two benefits. The solver might be able to used them as start
solutions in the next node. On the other hand, we construct the “best known” solution so far
by solving an auxiliary MIP.

3.1 Reusing solutions
The Branch&Bround procedure solves slight modifications of the same problem over and over
again. In some important cases, not all scenarios need to be solved again since we already
know the optimal solution. As an example, take the extreme case where a scenario is found to
be feasible without extensions. Clearly, the procedure should never touch this scenario again.

In order to decide whether a solution from a previous node can be reused, we need to take
the fixations under which the solution was computed and the current fixations into account. In
addition to the current fixations E0 and E1, we define the sets ES

0 and ES
1 as the extensions that

were fixed to the respective values when solution S was computed. We assume ES
i ⊆ Ei, i. e.,

currently more extensions are fixed than when solution S was computed. Abusing notation,
we identify the solution with the set of extensions it builds.

We start with the simple observation, that if all the extensions in a solution are already
built (i. e., ye is fixed to 1), then the solution is optimal for the restricted problem:

Lemma 3 If S ∈F ω and S⊆ E1, then S an optimal solution for (SingleScenω ) for fixings E0
and E1.

If a solution is optimal for (ES
0 ,E

S
1 ) and all extensions in E1 are part of the solution, then

the solution is still optimal.

Lemma 4 Let S ∈F ω be an optimal solution to (SingleScenω ) given the fixations ES
0 and

ES
1 . If E1 ⊆ S and S∩E0 = /0, then S is an optimal solution to (SingleScenω ) for fixings E0 and

E1.
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This is the situation, for example, after branching in the root node. In the 1-branch, a scenario
which uses this extension does not need to be recomputed. In the 0-branch, solutions that did
not use the extensions remain optimal.

The situation becomes tricky if a solution does not use extensions that are already built but
still uses unfixed extensions. The following lemma generalizes Lemma 4.

Lemma 5 Let S ∈F ω be an optimal solution given the fixations ES
0 and ES

1 . If E1 \ES
1 ⊆ S

and S∩E0 = /0, then S is an optimal solution to (SingleScenω ) for fixings E0 and E1.

4 Computational Results
We tested our approach on realistic instances from the gaslib-582 testset of the publicly avail-
able GASLIB [2, 5]. The GASLIB contains network data and flow scenarios that are distorted
versions of the real data from the German gas network operator Open Grid Europe GmbH.
The approach is implemented in the framework Lamatto++ [3]. Methods to solve the single-
scenario problems and to generate suitable extension candidates were developed in the FORNE

project. We used a time limit of 600 seconds for the sub-problems which is reduced to 300 in
the 1-opt heuristic. The total timelimit for set to 10 hours.

First, we composed 5 instances with 4 nominations each. 3 instances of the 5 are solved to
optimality with in the timelimit. 1 instance ended with a final gap of 37 % and one ended with
an error. Second, we composed 3 instances of 8 nominations each. 1 instances was solved to
optimality in only 1340 seconds. The other two report errors. Most errors are contradicting
primal and dual bounds (dual bound higher than primal bound). This might be caused by
numerical difficulties in the solution of the sub-problems, which are frequently observed and
might cause false infeasibles. Despite of the, poor robustness of the code, the experiments
show the potential of our approach.

5 Outlook
We presented a method for capacity planning with multiple demand scenarios. Even though
developed in the context of gas network planning, the few assumptions on the problem struc-
ture suggest the generalization to other capacity planning problems.

In a journal version of this paper, we also want to consider active elements (compressors,
which can increase the pressure, and control valves, which can reduce it) as extension candi-
dates. They possess 3 states: active, bypass, and closed. In case the element is not used in
active mode, the abilities needed can be covered by a much cheaper valve. Then the binary
“build”-“not build” decision is replaced by the three possibilities “build as active element”,
“build as valve”, and “do not build”.

The computational experiments show the potential of our approach. To prove the effec-
tiveness of the approach, we plan to further improve the code and conduct a rigorous compu-
tational study on a larger testset. The components of the algorithm will be evaluated.

Last, we want to mention that Singh et. al. [6] present an approach for capacity planning
under uncertainty based on Dantzig-Wolfe decomposition. A comparison of our approach to
theirs is future work.

Acknowledgements The author is grateful to Open Grid Europe GmbH (OGE, Essen/Germany)
for supporting this work. Furthermore, the author wants to thank all collaborators in the
FORNE project and all developers of Lamatto++.
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Jessica Rövekamp, Martin Schmidt, Rüdiger Schultz, Robert Schwarz, Jonas Schweiger,
Klaus Spreckelsen, Claudia Stangl, Marc C. Steinbach, Ansgar Steinkamp, Isabel Wegner-
Specht, and Bernhard M. Willert. From Simulation to Optimization: Evaluating Gas Net-
work Capacities. Book in preparation, 2014.
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