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Figure 1: Comparison of a solvent excluded surface (SES) and a ligand excluded sur-
face (LES) on the example of ketosteroid isomerase (PDB-Id: 1OGZ). To simplify the
comparison, both surfaces have been cut. (a) SES of isomerase with probe radius 1.4 Å.
The spherical probe is depicted in red. (c) LES of isomerase for the ligand equilenine,
computed with 0.25 Å grid spacing and 200 orientations. The ligand (red) is depicted
in its active position. (b) Overlaid surface cuts, showing differences between SES and
LES.

Abstract

The most popular molecular surface in molecular visualization is the solvent
excluded surface (SES). It provides information about the accessibility of a biomolecule
for a solvent molecule that is geometrically approximated by a sphere. During a
period of almost four decades, the SES has served for many purposes – includ-
ing visualization, analysis of molecular interactions and the study of cavities in
molecular structures. However, if one is interested in the surface that is accessible
to a molecule whose shape differs significantly from a sphere, a different concept
is necessary. To address this problem, we generalize the definition of the SES by
replacing the probe sphere with the full geometry of the ligand defined by the ar-
rangement of its van der Waals spheres. We call the new surface ligand excluded
surface (LES) and present an efficient, grid-based algorithm for its computation.
Furthermore, we show that this algorithm can also be used to compute molecular
cavities that could host the ligand molecule. We provide a detailed description of
its implementation on CPU and GPU. Furthermore, we present a performance and
convergence analysis and compare the LES for several molecules, using as ligands
either water or small organic molecules.
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1 Motivation
In molecular sciences, the use of molecular surfaces has a long tradition, starting with
the van der Waals (vdW) surface and the solvent accessible surfaces (SAS) described
by Lee and Richards in 1971 [26]. A few years later, in 1977, Richards defined the
solvent excluded surface (SES), which he simply named molecular surface [40]. Only
one year later, Greer and Bush [12] proposed the first method to depict parts of the 3D
structure of the SES by computing the height field of the molecule with respect to a
particular direction. In 1983, Pearl and Honegger [37] proposed a three-dimensional
grid method to compute the complete SES, before in 1985 Conolly [6] presented a
method to directly compute a triangular surface from the analytical surface description
of the SES. Since the first three-dimensional representations of the SES, there has been
a large number of publications dealing with the computation and the visualization of the
SES. However, the fundamental problem that almost no molecule, not even water, has
a spherical shape, has so far not been addressed in the computation and visualization
of molecular surfaces.

To address this, we propose a new molecular surface, called ligand excluded surface
(LES). It represents the surface of a receptor that is accessible to a specific individual
ligand, which is represented by its spatial configuration of atom spheres (rather then a
single ‘approximating’ sphere). Thus receptor and ligand are geometrically represented
in the same manner. An example of an LES is shown in Fig. 1, which also demonstrates
the difference to the SES. We present an algorithm for computing the LES based on a
grid representation. We define the LES as an implicit function of a distance field. In
order to approximate this distance field well, we need to take into account a possibly
large number of orientations of the ligand. Since a brute-force approach that places the
ligand at all positions of the grid with a large number of orientations would be compu-
tationally too expensive, we apply a two-phase approach that significantly reduces the
computational effort. Moreover, we implement this method on the GPU, which further
speeds up the computation.

The algorithm for computing the LES can be easily extended to also compute cav-
ities that are large enough to host the ligand molecule (see, for example, Fig. 5). In
addition to the geometry of the cavities, we also obtain information about how the lig-
and is positioned inside the cavities. This might be of particular interest when applying
our method for subsequent docking simulations.

2 Related Work
Since our contributions concern both molecular surfaces and cavity analysis, we have
split the related work with regard to these subfields.

2.1 Molecular Surfaces
Since the ligand excluded surface is most closely related to the solvent excluded sur-
face, we will focus here on previous work dealing with SES. As mentioned before, the
SES was originally defined by Richards in 1977 [40]. Since then, many approaches
have been proposed to compute and visualize this surface. These approaches either
compute an implicit representation of the surface or a piecewise parametric descrip-
tion.
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Figure 2: Difference between the SES (left) and the LES (right) for an enzyme (PDB-
Id: 4DFR). The LES was computed for methotrexate (red). Each surface point is col-
ored according to its minimal distance to the other surface.

Most implicit representations use a grid structure on which the implicit surface
is defined [2, 17, 35, 37]. This is done by marking the grid points as lying either
inside or outside the SES or by computing a distance function giving the minimal
distance of each grid point to the SES. A triangular mesh of the SES can then be
computed using the marching cubes algorithm [31] or it can be rendered directly using
ray casting [13]. Instead of using a grid structure to represent the implicit surface,
Parulek et al. [34] apply a ray casting approach that computes the distance function to
the SES interactively for small molecules. Another way to approximate the SES is to
use Gaussian models [21, 33].

The computation of a parametric description of the SES was first addressed by
Connolly [6], who also presented an algorithm to triangulate the surface. More effi-
cient algorithms were later proposed by Sanner et al. [41] (reduced surface algorithm)
and Totrov and Abagyan [45] (contour-buildup algorithm). Due to the advent of com-
modity multi-core hardware and the advances in GPUs, it was worthwhile to consider
the matter again. In 2009, Krone et al. [20] presented a ray casting approach to ren-
der the SES based on the reduced surface algorithm. One year later, we presented a
CPU-parallelized version of the contour-buildup algorithm which also applied ray cast-
ing for the visualization of the SES [30]. With both approaches, it became possible to
compute and render the SES of dynamic molecules with several thousands of atoms at
interactive speed. A further acceleration can be achieved by a GPU implementation of
the contour-buildup algorithm [23].

Since the LES, as defined in this work, cannot be computed analytically, we approx-
imate the implicit description of the surface using a discrete signed distance function.
The surface can then be rendered directly or triangulated using marching cubes.
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2.2 Cavity Analysis
Methods for computing molecular cavities sometimes are classified according to the
particular type of cavity (void, pocket and tunnel). We do not make this distinction
and refer to all of these types as ‘cavity’. Instead, we subdivide the methods according
to whether the primary structures being computed are volumetric representations of
the cavities or molecular paths, which can be considered as centerlines of the cavities.
While it is easy to compute a volumetric representation from a path representation, the
opposite is generally not true.

One of the first approaches to compute a volumetric representation of cavities was
presented by Levitt and Banaszak [27]. Their approach creates a regular grid. A point
on this grid is defined as cavity point if it lies outside the molecule and at least for
one of the three main axes, the protein is hit in both directions. Finally, neighbored
cavity points are clustered to define a cavity. A similar strategy was used by a few
other approaches that consider more axes, define the protein grid points differently, or
cluster cavity points in a different way [16, 19, 47]. Laskowski [24] identifies cavities
by placing spheres between two non-intersecting atoms. If other atoms intersect this
sphere, its radius is decreased until no atom is intersected anymore. Spheres of appro-
priate size describe cavities. Brady et al. [5] also place spheres from which the final
cavities are computed. However, they start with an initial coating that is iteratively
extended layer by layer, until no more spheres can be placed. Alpha shapes have also
been used to compute molecular cavities [3, 9]. Recently, a computation of internal
cavities using alpha shapes was presented that is more robust regarding perturbations
of atom radii [44]. A meta-approach to cavity analysis was presented by Huang [18],
who combined several approaches [5, 19, 24, 25] to improve the prediction quality. An-
other approach uses volume rendering to determine cavities [22]. Here, the molecule
is represented as a continuous density sampled on a grid. The density can be efficiently
computed and the cavity analysis is interactive, such that it can be applied to analyze
molecular dynamics trajectories.

One of the earliest methods to compute molecular paths was presented by Smart et
al. [43]. Starting from a user-defined point inside a cavity, their method computes a path
to the outside of the molecule using simulated annealing. Petřek et al. [39] also com-
pute paths from a cavity to the outside by utilizing shortest paths on a weighted graph
that is computed from the distance field of the molecule. In a subsequent work [38],
they improve their method by using the Voronoi diagram of the atom positions for the
graph computation. Further works employing Voronoi diagrams of points include the
ones by Yaffe et al. [48] and Medek et al. [32]. More recently [29], we developed an
approach based on the Voronoi diagram of spheres, which takes correctly into account
the size of the atoms. In a subsequent work [28], we extended this approach to dynamic
molecular paths computed from molecular trajectories. Two of the few approaches that
compute possible molecular paths based on the correct geometry of a ligand are the
methods by Cortes et al. [7, 8] and Haranczyk & Sethian [14]. While Cortes et al. use
rapidly exploring random trees, Haranczyk & Sethian sample the ligand orientation
space to compute possible molecular paths.

The cavities we compute are volumetric representations given by the ligand struc-
ture on a discrete grid. Additionally, at each grid point the possible orientations of the
ligand are known. This information can be used to quickly compute and display the
cavity surfaces.
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3 LES Definition
Informally, the LES of a receptor can be defined as the surface enclosing the space
around the receptor that is not accessible to a specific ligand. Below we give a mathe-
matical definition of the LES.

We start with some formalization: Let the receptor molecule r, for which we want
to compute the LES, consist of n atoms with positions pr

i ∈R3 and atomic radii rr
i ∈R,

with i = 1...n. Furthermore, let the flexibility of the ligand l be given by a set of c
conformations and let the ligand consist of m atoms with positions pl

jk ∈ R3 and radii
rl

j ∈R, with j = 1...m and k = 1...c. The state of the ligand is given by a conformation
k, a translation T , and an orientation R, which is given by a rotation. We define the state
of the ligand as valid if no ligand atom intersects any atom of the receptor molecule.
This can be formulated using a binary function Ir,l : (N,R3,SO3)→ {0,1}, which is 1
if the state is valid and 0 otherwise.

Ir,l(k,T,R) =

{
1,
∥∥∥pr

i − (Rpl
jk +T )

∥∥∥≥ rr
i + rl

j,∀i = 1...n,∀ j = 1...m

0, else.

Now we can define the ligand excluded surface as the surface that encloses all points in
R3 that are not reachable by a valid ligand state. This can be mathematically described
by a ligand-dependent distance function dr,l with

dr,l(p) = max
k=1...c,

T∈R3,R∈SO3

 max
j=1...m

rl
j−
∥∥∥p− (Rpl

jk +T )
∥∥∥ , Ir,l(k,T,R) = 1

−∞, else.

The ligand excluded surface is then given as implicit function of all points p with
dr,l(p) = 0. Note that dr,l is not completely equal to the Euclidean distance function of
the LES, but they are equal inside the LES and within a local distance outside the LES.
Furthermore, for a ‘ligand’ consisting of a single atom, the LES is equal to the SES;
thus the LES is a generalization of the SES.

In contrast to the SES, the ligand excluded surface cannot be computed in an an-
alytical way. We can only approximate the surface geometrically by discretizing the
space of ligand states. Since we use a finite set of c conformations, the dynamics of
the ligand is already discretized. Additionally we need to discretize the orientations
and positions of the ligand. To do so, we introduce two parameters, the number o ∈ N
of sample orientations and the spacing g ∈ R of the cubic grid being used for uniform
sampling of the positions.

4 Algorithm
First, we give an overview of the computation of the ligand excluded surface (LES)
(Sect. 4.1). Then, the two phases (Sect. 4.2 and Sect. 4.3) for the construction of the
discrete distance function defining the LES are described in detail. We conclude with
a description about how we can exploit our approach to compute cavities (Sect. 4.4).
Note that the distance field we compute only correctly approximates the distance func-
tion defined in Sect. 3 in the local vicinity of of the LES.
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Figure 3: Illustration of our algorithm: (a) The gray spheres depict the receptor molecule and
the grid points show the discretization of the space around the molecule. Red dots mark sample
positions where the ligand inscribed sphere (red circles) cannot be placed without intersecting the
receptor; blue dots mark sample positions where the ligand bounding sphere (blue circles) can
be placed without intersecting the receptor. The red and blue dots are the result of phase I of the
algorithm. The yellow dots mark the remaining sample positions, which need to be processed in
phase II. (b) The distance field after completing phase I. The resulting implicit surface is equal to
the SES of the ligand bounding sphere. The yellow spheres depict the ligand molecule enclosed
by its ligand bounding sphere. (c) The distance field and resulting LES after completing phase II.
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4.1 Overview
Instead of directly computing the LES, we compute a signed distance field that is neg-
ative inside the LES and positive outside. Thus, the LES is implicitly defined by the
zero level set of this distance field. To compute the LES, we do not need the exact
distance field; it needs to be exact only in the vicinity of the LES. We compute the
distance field iteratively on a discrete grid. In order to approach the correct distance
field values close to the LES, we apply a two-phase approach.

In the first phase, a sphere completely enclosing the ligand is used to update the
distance field at positions of the grid where the ligand can rotate around its center
without ever intersecting any atom of the molecule. In the following, we call this
sphere ligand bounding sphere. For the positions at which we can place the ligand
bounding sphere (blue points in Fig. 3(a)), we update the distance field for all grid
points inside the bounding box of the ligand bounding sphere. The resulting distance
field is depicted in Fig. 3(b) together with its implicit surface. This implicit surface is
a discrete representation of the SES for a probe sphere equal to the ligand bounding
sphere. Note that after computing the distance field, the largest distance value will be
equal to the radius of the ligand bounding sphere. This value is set at all positions where
the ligand bounding sphere could be placed. In addition to modifying the distance field,
we also mark the positions where the ligand bounding sphere could be placed. These
positions do not need to be considered any further. In the first phase, a second sphere
is used to conservatively mark grid points at which no ligand can be placed without
intersecting the molecule, including grid points inside the molecule but also some grid
points close to the LES. These grid points are depicted in Fig. 3(a) as red points.

The second phase of our approach completes the computation of the distance field
in the vicinity of the LES. It uses all information computed in the first phase, in partic-
ular the grid positions that are neither marked blue nor red. These are marked as yellow
points in Fig. 3(a) and represent the remaining sampling positions to be considered. At
these positions, it will now be tested whether the ligand can be placed without inter-
secting with any atom sphere of the molecule. To approach the distance field as well as
possible, the ligand will be rotated at each of these positions. Furthermore, if the ligand
is flexible, more than one conformation can be considered. For each rotation and each
conformation for which the ligand does not intersect any atom of the molecule, the
distance field of all grid points inside the bounding box of the ligand will be updated.
Note, however, that the distance values will be updated only if the values increase. The
result of phase II is illustrated in Fig. 3(c).

4.2 Phase I
In phase I, we sample the discrete grid with two spheres. The first one is a small sphere
that is inscribed in the ligand atom spheres and is therefore referred to as ligand in-
scribed sphere (see red spheres in Fig. 3(b)). The second sphere is usually much larger
than the first one and completely contains all ligand atom spheres. In the following, we
refer to it as ligand bounding sphere (see blue spheres in Fig. 3(b)). These spheres are
used to initialize the distance field and to make later computations more efficient.

4.2.1 Ligand Bounding Sphere

We define the ligand bounding sphere as the smallest sphere completely containing
all ligand atom spheres. If pb ∈ R3 is the position and rb ∈ R is the radius of the
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ligand bounding sphere, then
∥∥pb− pl

i

∥∥+ rl
i ≤ rb, for all i = 1...m, and no smaller

sphere exists for which the inequality also holds. The minimal bounding sphere of a
set of spheres can be tangent to more than four input spheres, but it is already defined
uniquely by at most four spheres. An illustration of the ligand bounding sphere is
depicted in Fig. 3(b) as blue circle. We compute the minimal bounding sphere using
a simple iterative algorithm. More efficient algorithms have been proposed [10], but
since the number of atoms in a ligand is generally small and the computation has to be
performed only once per conformation, the simple algorithm is sufficient. We start by
computing the minimal bounding sphere of four randomly selected input spheres [11].
Then, the bounding condition of this bounding sphere is checked for all remaining
input spheres. If a sphere is not enclosed by the current bounding sphere, the sphere is
interchanged with one of the previous four selected spheres such that the radius of the
new minimal bounding sphere becomes maximal. This procedure is repeated until all
input spheres are enclosed by the current bounding sphere.

We compute the ligand bounding sphere for each ligand conformation separately.
Then, the overall ligand bounding radius rmax ∈ R is the maximum of the radii of all
ligand bounding radii rb computed for all conformations. The sphere with radius rmax
can be used to determine positions on the grid, where all ligand conformations, no
matter what orientations they have, can be placed without intersecting any receptor
atom sphere. This is illustrated in Fig. 3(b).

4.2.2 Ligand Inscribed Sphere

The ligand inscribed sphere is also computed for each ligand conformation separately.
To determine the ligand inscribed sphere for a single conformation, we place the sphere
at the center of the ligand bounding sphere. We then determine the maximal radius such
that the sphere is completely enclosed by the atoms of the ligand. The ligand inscribed
sphere is illustrated as red circle in Fig. 3(b). Note that the ligand inscribed sphere has
a negative radius, if the center of the ligand bounding sphere lies completely outside
the ligand conformation.

From the ligand inscribed spheres of all ligand conformations we compute the ra-
dius rmin ∈ R as the minimum radius of the ligand inscribed spheres over all confor-
mations. The sphere with radius rmin will be used to exclude grid positions from being
tested with either the ligand bounding sphere or the ligand geometries. The reason for
this is that if a sphere with radius rmin intersects the protein atoms, all ligand confor-
mations placed at the same position, no matter what orientations they have, will also
intersect the protein atoms (see Fig. 3(a)).

The two spheres with radii rmax and rmin allow us to speed up the surface computa-
tion as will be described next.

4.2.3 Distance Field Initialization

In phase I, we uniformly sample the ligand positions and initialize the discrete distance
function. Note that we use the same samples for the ligand positions and the distance
function. In addition, we detect all positions for which we have to investigate all ligand
conformations and orientations.

To compute the discretization of the sample positions and the distance field, we first
compute the minimal axis-aligned bounding box of the atom spheres of the receptor
molecule. This box is then extended in all directions by rmax. Afterwards, the box is
uniformly sampled in all directions with a user-defined grid spacing g.

8



The distance field is initialized with the negative value of the maximal atomic ra-
dius rr of the receptor. Then we iterate over all sample positions T and perform at
each position an intersection test of the receptor atom spheres with the minimal lig-
and inscribed sphere with radius rmin. If an atom i intersects the sphere, which means
that ‖pr

i −T‖ < rr
i + rmin, all ligand conformations and orientations also intersect this

atom. Hence, the position can be ignored for further investigations. In case that the
minimal ligand sphere does not intersect the receptor, we perform a second intersec-
tion test with the maximal ligand bounding sphere having radius rmax. If this sphere
does not intersect the receptor atom spheres, all ligand conformations and orientations
at this position are valid, that is, they do not intersect the receptor. In this case, we
set the distance value at this position to rmax. For all remaining positions T̃ , where the
maximal ligand sphere intersects the receptor and the minimal ligand sphere does not,
we have to investigate all ligand orientations and conformations. These positions are
marked by yellow points in Fig. 3(a).

Finally, we iterate over all sample positions T at which the distance field has a
value equal to rmax. If one of the 26 neighboring grid points has a distance that is
smaller than rmax, we update the distance function in the neighborhood of the maximal
ligand bounding sphere using the distance function that is depicted in Fig. 4(a). This
function has a value of rmax in the center, 0 at the border of the sphere, and outside
the sphere, the values take on the negative distance to the sphere border. The new
distance at a neighboring position p is set to the maximum of the old distance and
rmax−‖p−T‖. After this phase, the implicit function defined by the current distance
function represents the discrete SES with probe radius rmax (see Fig. 3(b)).

4.3 Phase II
In the second phase of the algorithm, the discrete distance function is refined in the
vicinity of the LES. For this, we consider all the sample points (yellow points in
Fig. 3(a)) that might contribute to this refinement. At all these points, all conformations
of the ligand are placed one after another and the distance field is updated accordingly.
Of course, considering only a single orientation per ligand conformation will lead to
large errors in approximating the LES. Therefore, we use a user-defined number o of
orientations for each ligand conformation. These orientations should be sampled such
that the space of all orientations is well represented. In the following, we describe this
sampling before we describe the final refinement step.

4.3.1 Precomputation of Ligand Orientations

To obtain the most different ligand orientations, the computation of the orientations is
done for each conformation separately. Consider a single conformation with m atoms
whose positions are pl

i ∈R3 and atomic radii are rl
i ∈R, with i= 1...m. For the purpose

of sampling the ligand orientations, we transform the ligand such that the center of its
ligand bounding sphere lies in the origin. The transformed atom positions p̃l

i ∈ R3 are
given by p̃l

i = pl
i − pb, for all i = 1...m. Due to transforming the ligand such that its

bounding sphere center lies in the origin, for each rotation of the transformed ligand, all
atoms are always inside the ligand bounding sphere with radius rb. For the computation
of the o orientations, we first uniformly sample points on the surface of the unit sphere.
The vectors from the center of the unit sphere to the sampled points represent the
axes for the rotations of the orientations. Furthermore, the angles for the rotations
around each axis are uniformly sampled. We initially compute õ = 10 ·o orientations.
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Afterwards, the differences between orientations are computed and the most significant
o orientations are selected. Thus we aim at maximizing the minimal distance between
the ligand orientations. This allows us to filter unnecessary orientations due to, for
example, symmetry properties of the ligand. Let R j be the initial sampled rotations
with j = 1...õ, õ� o. We approximate the difference between the orientations by the
root mean square metric (RMSM) of the atom positions. Let D∈Rõ,õ be the symmetric
matrix that stores the distances between the orientations, then

d j,k =

√
m

∑
i=1

(R j p̃l
i−Rk p̃l

i)
2.

with d j,k being the matrix element in row j and column k. The goal is to find the o most
different orientations of the õ orientations. This can be mathematically formulated by
finding the set of o orientations where the minimal distance becomes maximal. We
approximate the solution to this optimization problem using k-means clustering, which
is much faster than computing the optimal solution. The k-means clustering algorithm
starts by randomly selecting o orientations as cluster centers. Then, each orientation
Ri is assigned to the cluster center R j with the minimal distance di, j. This creates
o clusters of orientations. In each cluster, the orientation whose maximal distance
within the cluster becomes minimal is computed. If this orientation is different to the
previous selected center, the orientations are interchanged. Then the assignments and
the new cluster centers are recomputed. This is repeated until no cluster center changes
anymore. To achieve an even better solution, the algorithm can be run several times.
The best solution is then the one with the maximal minimal distance.

4.3.2 Distance Field Refinement

Now that we have computed a discretization of the grid as well as the orientations of
the ligand conformations, we can describe the final part of the algorithm. During this
last step, we need to perform intersection tests between the ligand and the receptor
molecule for all orientations R and all conformations k at the precomputed positions
T̃ . If the ligand does not intersect the protein for a certain position, orientation, and
conformation, the distance function is updated in its local neighborhood using a dis-
tance function similar to those depicted in Fig. 4(b) and (c). In detail we perform the
following steps.

1: for k = 1...c do
2: for all orientations R do
3: for all ligand positions T̃ do
4: if Ir,l(k, T̃ ,R) = 1 then
5: for all distance samples p ∈ R3 do

6: dr,l(p) = max
(

dr,l(p), max
j=1...m

rl
j−
∥∥∥p− (Rpl

jk + T̃ )
∥∥∥)

7: end for
8: end if
9: end for

10: end for
11: end for

Note that the values of the distance function are only updated if they become larger.
During the distance updates, points reachable by a ligand become positive and unreach-
able points stay negative, but might still increase. Since the ligand excluded surface is
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Figure 4: Illustration of local discrete distance fields. (a) The bottom image shows the
local distance field of the ligand bounding sphere (top), which is used in phase I of the
algorithm. (b) and (c) Local distance fields (bottom) for two ligand orientations (top).
These distance fields are used in phase II.

the surface which separates positive and negative values, it is defined by the implicit
description dr,l(p) = 0.

4.4 Cavity Structure
Apart from computing the LES, our sampling approach can also be used to extract the
cavity structure of the receptor. Since we have already computed all valid and invalid
ligand states, we simply need to store this information. To do so, we maintain a bit
array of length c ·o at each sample point. In this bit array, for each ligand conformation
and orientation, we store whether it is valid or not. If the conformation and orientation
is valid, we set the bit to 1. If it is not valid, it is set to 0. Note that for sample points
where we can place the maximal ligand bounding sphere, all bits of the array are set to
1. On the other hand, all bits of the array are set to 0 if the minimal ligand inscribed
sphere intersects the receptor molecule. Thus we only have to store this bit array for
all sample points T̃ (see yellow points in Fig. 3(a)).

All points with at least one bit set to 1 define valid sample points of a cavity. How-
ever, usually we are only interested in positions that represent real cavities. Therefore,
we remove sample points that are outside the molecule by utilizing ambient occlusion
as it was done before [29]. For each sample position with at least one valid ligand state,
we cast a set of uniformly distributed rays from this position. The ambient occlusion
value for this sample is the quotient of the number of rays that hit any receptor atom
sphere and the overall number of rays. Thus, the higher the ambient occlusion value
the less ambient light is received at this position and the deeper the sample lies inside
the receptor molecule. All sample points with a value less than a user-defined threshold
are removed from the following considerations.
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Figure 5: Cavities of hexameric insulin (PDB-Id: 3MTH) for methylparaben, com-
puted with the LES algorithm (with 200 orientations). The three main cavities are
depicted by their boundaries, together with methylparaben. The insulin molecule is
depicted by its secondary structure.

The remaining sample positions are then clustered to get the cores of the cavities.
Two neighboring sample positions belong to the same cluster if at least one entry is
1 at the same position in both bit arrays. This means, for all samples of the same
cluster, the ligand can move from one sample position to a neighboring one without
changing the orientation or conformation. At a sample position, the ligand can change
its orientation or conformation to another valid state. Each cluster defines a core of
a cavity. Additionally, small clusters can be filtered out according to a user-defined
minimal cluster size.

From the cores of a cavity, its surface can be easily generated using again a discrete
distance field. This is also initialized with a negative value, for example −rr. Then the
distance field is updated according to the maximum of all distance functions of valid
ligand states of the cavity. The surface of the cavity is then defined as the implicit
surface given by this distance field. Due to the fact that we store for each sample point
its valid states, we can easily compute trajectories of the ligand from inside the cavity
to the outside or vice versa.

5 Implementation
In this section, we describe implementational details for the two most expensive steps
of the algorithm.
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5.1 Intersection Tests
During the execution of the algorithm, many intersection tests between spheres have
to be carried out. In phase I, we need intersection tests between the minimal ligand
inscribed sphere and the maximal ligand bounding sphere with the atom spheres of
the receptor. In phase II, intersection tests between the ligand atoms and the receptor
atoms need to be computed. Without using a data structure to reduce the number of
intersection tests, n ·m sphere-sphere intersections tests need to be carried out for a
single receptor ligand intersection test in the worst case, where n is the number of
receptor atoms and m the number of ligand atoms. We can stop if the first intersection
has been found, but if the molecules do not intersect, all intersection tests are needed.
Hence, a data structure is required to reduce the number of intersection tests.

Since the receptor molecule is static, we can store the atoms in a 3-dimensional
grid. In each cell of this grid, we record all receptor atoms that intersect with the cell.
For molecular data, typically a uniform grid is used with a grid size of approximately 1
Å. Then, in order to compute the intersection of a sphere with the atoms of the receptor,
all grid cells are accumulated that intersect with the sphere. Only atoms stored in all
accumulated grid cells need to be tested for intersection, which enormously reduces the
number of intersection tests. Since the atom spheres of a molecule cannot be arbitrarily
dense, because they have a fixed minimal distance to each other, the number of atoms
that need be tested is much smaller than n. With this, the complexity for an intersection
test of a single sphere with the receptor molecule reduces from linear to constant [46].

In addition to the usage of a 3-dimensional grid as accelerator, we can further speed-
up the intersection tests by computing them in parallel. This is possible since intersec-
tion tests of spheres with the receptor molecule are independent of each other. On the
CPU, we can use OpenMP. Faster computations can be achieved by running the inter-
section tests on the GPU. In order to be platform independent, we used OpenCL [1].
In our implementation, each thread computes the intersection of one sphere with the
receptor molecule. Here, the grid is stored using two arrays, one containing an integer
value for each cell that represents an index to the second array with floating point val-
ues. The second array stores all spheres per cell, where each sphere consists of four
values, three for the position and one for the radius. The integer array maps to the first
sphere of the corresponding cell. All remaining spheres of the cell are stored in the
consecutive entries. The end of the list is indicated by a sphere with negative radius.

5.2 Distance Field Updates
The distance field updates are the most expensive part of the algorithm. Recall that
distance field updates are needed for two types of instances, that is, for the maximal
ligand bounding sphere and for the ligand conformations with different orientations. If
we place any of these instances at a particular sample position, updating the distance
field means that for each point in the distance field, we have to compute the distance to
the boundary of this instance. For the maximal ligand bounding sphere, this boundary
is the sphere surface. For a ligand conformation, this boundary is the van der Waals
surface of the ligand atoms, which is the surface enclosing all ligand atom spheres.

Since the distance field defining the LES is negative inside the LES and positive
outside, the signs of the distances we compute to the instance boundaries need to have
inversed signs. That is, we need to have positive distances inside the instance and
negative distances outside. Recall that we have initialized the distance field with the
negative maximal atom radius of the receptor. If we wanted to compute the correct
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distance field, we would have to initialize the distances with −∞. However, since we
are not interested in the distance field itself but only in the implicit surface defined by
dr,l(p) = 0, only the grid points close to the LES need to have the correct values. For all
other grid points, it suffices to have the correct distance sign. Once we have computed
the distance of a particular grid point to the instance boundary, the distance is updated
only if the new distance value is larger than the current one. That is, the values of the
distance field only increase.

Now, if s is the number of grid points and we update the distance field in the naı̈ve
way, that is, all grid points for each instance at each sample position, the time complex-
ity is O(s2). Even for medium-sized grids, this would result in very long computation
times. Hence, in the following, we describe two ways to reduce this run time.

5.2.1 Local Distance Fields

The first observation is that we do not have to update the whole distance field, but
only a part that is in the local neighborhood of the sample point. Here, the size of the
neighborhood is defined by the particular instance. In fact, it is sufficient to consider
all those grid points p that are inside the axis-aligned bounding box of the instance plus
those points within a distance ‖p− pbb‖∞

≤ g to the bounding box (see Fig. 4). Thus,
the instance will be completely surrounded by grid points with negative distance to the
instance.

Since we use the same points for the distance field and the sample points of the
instances, we can precompute the distances for the local neighborhood of each instance.
To do so, we compute local distance fields placed in the origin with the same grid
spacing g. We do this for each instance, that is, for the maximal ligand bounding
sphere and all ligand conformations and orientations (see Fig. 4). Then, during an
update step, the local distance field only needs to be moved to the current position and
we can compare the values of the global distance field with those of the local distance
field directly. The maximum of these two values determines the new value.

Since the average size s̃ of the local distance field is usually much smaller than s,
the run time reduces from s2 to s̃ · s. However, since s̃ is a fixed fraction of s, that is,
s̃ = αs, where α is constant, the complexity of the algorithm remains O(s2).

5.2.2 Use of KD-Tree

A second observation can be used to further reduce the number of grid points that need
to be updated: The only grid points defining the implicit surface dr,l(p) = 0 are the
ones in whose neighborhood the sign of the distance values changes. Furthermore,
recall that the distance values only increase over the duration of the algorithm. Hence,
if a grid point p has a positive value and all of its 26 neighbors also have positive
distance values, p will not contribute to the definition of the implicit surface. Hence,
we do not need to consider p any further.

For this purpose, we maintain a KD-tree that only contains those sample points that
possibly need further updates. Using the KD-tree, these points can be quickly queried.
Furthermore, we dynamically update the KD-tree by removing all samples that become
positive and also have only positive neighbors. Thus, if we have placed an instance at a
particular sample point T , we use the KD-tree to quickly identify the grid points in the
local neighborhood of T with respect to the instance size and only update those points,
if needed.
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5.2.3 Parallel Distance Updates on the GPU

While we used the KD-tree to accelerate the CPU implementation, for the GPU we
implemented a parallel distance field update. For this, the OpenCL kernel gets three
inputs: the overall distance field, the local distance field, and a set of valid ligand
positions for this field. Each thread corresponds to one sample point of the ligand
distance field. The thread iterates over the ligand positions and detects in each step
the corresponding sample point in the distance field. If the value in the distance field
is smaller than the value in the ligand distance field, it is replaced by the new value.
Note that this can lead to concurrent accesses of different threads on the same sample
point in the distance field. However, as mentioned before, the values in the distance
function can only increase. Thus, if we run the OpenCL kernel several times, the
distance values converge to the correct result. To ensure the correct result, we use a
single boolean variable, which is initialized with ‘false’ before each call of the kernel.
If during the call a distance value has changed, the variable is set to true. The kernel is
called again as long as the variable is ‘true’. Thus we call the kernel at least two times
and in practice on average three to four times.

6 Visualization
The results of the above algorithms are a discrete scalar field describing the distance
function in the local vicinity of the LES, and the cavities given by all their valid ligand
states. In this section, we briefly describe how we render the LES and the cavities.

The LES can be visualized either by extracting a triangular mesh with the march-
ing cubes algorithm [31] or by direct isosurface ray casting [13]. With todays GPU
implementations of marching cubes, the surface can be generated nearly as fast as with
direct ray casting. With some additional effort, the triangular surface can be colored
according to arbitrary molecular properties. It can also be used to measure the area of
the surface and its enclosed volume. Since the discrete distance function describing
the LES is a signed distance function which is positive outside the LES and negative
inside, ray casting the LES can be further accelerated. Outside the LES, the distance
in the distance field is always smaller or equal to the minimal Euclidean distance to
the LES. Hence, instead of a constant step size for the direct isosurface ray casting, we
can directly use the distance in the discrete field. This is similar to the classical sphere
tracing by Hart [15], which is usually faster than a ray casting with constant step size.

The cavities can be visualized both by its cores and their surfaces. To render their
surfaces, we construct for each cavity a distance field similar to the LES distance field
and render it in the same way (Fig. 5). The cavity cores are visualized by placing at
each core sample position a small sphere (Fig. 6). For the sphere rendering, we use a
modern GPU-based ray casting [42]. The depth perception of all representations can
be improved by ambient occlusion or surface cuts.

7 Results
All results have been produced on an Intel Xeon X5650 E5540 2.66 GHz with 6 cores
and an Nvidia GeForce GTX 680. For measuring the quality and performance, we used
several molecules from the PDB [36] as well as two other data sets.
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(a) (b) (c)

Figure 6: SES and LES with cavity cores of a dendritic core multi-shell nanotrans-
porter: (a) SES, (b) LES of morphine, (c) LES of fentanyl. In the image, the probe
sphere and the ligands have been scaled by a factor of 3. The surface of the nanotrans-
porter is depicted in yellow, the cut of the surface is gray, and the cavity cores are
colored according to their clustering.

7.1 Parameters
Although the surface definition is independent of parameters, the algorithm requires
parameters due to the discretization. The two parameters used for the LES computation
are the grid spacing g and the number of orientations o. In Fig. 7, we have plotted
how the enclosed volume and the surface area change depending on the number of
orientations. For this we used ketosteroid isomerase with ligand equilenine (PDB-
Id: 1OGZ, Fig. 1). We computed the LES with 10 to 200 orientations by increasing the
number of orientations by 5 in each step. From 200 to 1,000 orientations, we increased
the number of orientations by 100 each, and from 1,000 to 10,000 orientations, a step
size of 1,000 orientations was used. For each number of orientations, we generated a
triangular mesh of the LES and computed its surface area and the enclosed volume. It
can be observed that the main changes in surface area and volume occur between 10
and 1,000 orientations. Furthermore, it can be observed that for a smaller grid spacing
the changes are more rapid than for larger grid spacings.

In our experiments, we generally used 200 or fewer orientations. Only in the case
of the HIV-protease with inhibitor amprenavir we were not able to find the binding
site with this number of orientations. With 1,000 orientations, however, we found the
binding site even with a grid spacing of 0.75 Å (Fig. 9).

The cavity analysis only needs one parameter, which determines when a sample
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Figure 7: For the graphs shown above, the LES of ketosteroid isomerase (PDB-
Id: 1OGZ; also see Fig. 1) with respect to the ligand equilenine was computed for
different grid spacings and an increasing number of orientations. Note, however, that
the used orientations were independent of each other. The graphs in the two images
plot the enclosed volume (top) of the LES and the surface area (bottom) of the LES
against the number of ligand rotations used for computing the LES.

point is considered to lie outside the molecule. To determine the degree of burriedness
we used ambient occlusion by casting a fixed number of rays. We always used 100
rays. The user can then set a threshold at what ambient occlusion value a sample point
is considered to lie outside the molecule.

7.2 Performance
Let s ∈ N be the number of sample positions which is defined by the grid spacing g
and the size of the receptor. Note that s grows cubically when linearly decreasing g.
Because of the grid data structure, the cost of each intersection test with the receptor
molecule is constant, Hence, the intersection tests have a complexity of O(c · o · s).
An upper bound for the number of values in the local distance field of the ligand is
α · s, where α is the ratio of the volume of the local field and the overall distance field.
Hence the updates of the distance field have a complexity of O(c · o ·α · s2). The k-
means clustering is the most expensive part for the computation of the orientations. It
grows polynomially with o. However, compared to the rest of the algorithm, in practice
the computation of the orientations is negligible.

The maximal memory requirements for the algorithm are given by the following
data structures. The global distance field with a space complexity of O(s), the local
distance field with O(α · s), the grid data structure of the receptor molecule with O(n),
the KD-tree with a worst case complexity of O(s), and the ligand orientations at all
sample points with a complexity of O(s · o · c). For the intersection tests on the GPU,
the grid of the receptor molecule and a set of spheres are required. For the distance
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updates on the GPU, the global and local distance fields and a set of update positions
given by sample indices are required. Based on performance tests, for each call of an
OpenCL kernel, we set the number of spheres for the intersection tests to 65,536 and
the number of positions for the distance updates to 1,024.

In phase I we detect all sample positions that have to be investigated for each ligand
conformation and orientation. This preprocessing accelerates the algorithm because
many of the sample positions can be ignored in phase II. The amount of acceleration
depends mainly on the size of the ligand and the ratio between this size and the size of
the receptor, but also on the geometrical complexity of the receptor. During our tests,
we observed that for water, which has a bounding radius of 1.52 Å, approximately
90% of the sample positions can be ignored in phase II. For morphine, with a bounding
radius of 5.44 Å, still around 75% of the sample positions can be ignored and for
fentanyl, whose bounding radius is 8.47 Å, approximately 68% can be ignored. For all
tested ligands, on average the number of sample points was higher than 60%. Note that
the percentages for each ligand were averaged over a couple of receptors of different
size, ranging from 272 atoms to 58,870 atoms.

Detailed timings for all parts of the algorithm are given in Table 1. In all our ex-
amples, we observed that the computations for common receptor-ligand systems were
6 to 10 times faster on the GPU compared to the CPU with KD-tree. On the CPU, the
use of the KD-tree accelerated the computation by a factor of at least two. Further-
more, we observed that the intersection tests can be slower than the distance updates,
although the complexity of the distance updates is worse (see, for example, 1HPV or
the nanotransporter with morphine).

Most of the memory is required to store the valid ligand orientations at each sam-
ple position. For the nanotransporter and morphine in Table 1, this structure requires
approximately 50 MB. For 1HPV and amprenavir with a grid spacing of 0.25 Å, ap-
proximately 3 GB are required. However, this memory is only temporarily needed if
cavities are computed. The largest memory consumption on the GPU is due to the
global distance field. For the nanotransporter and morphine, this field requires approx-
imately 25 MB. For 1HPV and amprenavir with a grid spacing of 0.25 Å, approxi-
mately 66 MB are required. Detailed memory requirements for the data sets in Table 1
are given in table 2.

While the SES can be computed interactively, the computation of the LES usually
takes several minutes up to hours depending on the grid spacing and the number of
orientations (see Table 1). On the other hand, the LES better reflects the actual acces-
sibility of a certain ligand, which can be seen in Figs 1, 2, and 6.
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8 Feedback by Domain Scientists
Apart from an evaluation in terms of computational complexity and performance, we
carried out a small survey about the usability of the proposed new molecular surface
by performing a structured interview about potential advantages and disadvantages of
the LES. We interviewed four senior experts from different labs, working in molecular
dynamics simulation and dealing with a wide range of applications. In the following
we summarize the most important statements.

Advantages: All experts agreed that the LES provides valuable ligand-specific in-
formation. In particular, the LES can help identify binding sites that have so far been
unknown from experimental data. Furthermore, the LES allows one to discard cavities
that are poor candidates as hosts for a ligand. Thus, more expensive methods com-
puting the binding free energies or molecular dynamics simulations using force fields
can be applied more effectively. If a protein can bind different ligands, the LES might
also enable the identification of different binding sites for different ligands. The pure
visualization of the LES is of interest, because in many applications of molecular mod-
eling, the chemical intuition of the observer is an important addition to fully automatic
methods. This intuition is even further supported by the identified cavities.

Disadvantages: If both the protein and the ligand are highly flexible, the compu-
tation of the LES is expensive. Then it might be favorable to use the SES to identify
binding sites and cavities and compute the LES only for a few time steps or locally
near the binding site.

9 Discussion
The most crucial parameter of our algorithm is the number of orientations. We tried
to investigate the quality of the results depending on the number of orientations by
plotting the surface area and the enclosed volume versus the number of orientations
(Fig. 7). It is clear that both curves will converge, but the plots gives us a good indi-
cation, how fast this convergence will be. What can be clearly seen is that the largest
changes occur between 10 and 1,000 orientations. This suggests that with less than
1,000 orientations the LES can be very well approximated. In our experiments, we
typically used 200 or even less orientations and were able to reproduce most known
cavities. In rare cases, however, it might be necessary to use more than this number or
even more than 1,000 orientations. Hence, if the run time is of minor importance, we
suggest using between 500 and 1,000 orientations.

More important in terms of run time is the choice of the grid spacing. The run
time grows quadratically with the number of grid points, which again grows inversely
cubically with the grid spacing. For grid-based cavity analysis, commonly a minimal
grid spacing of 0.5 Å is used. We either used a grid spacing of 0.5 Å or 0.25 Å. While
the latter is clearly favorable in terms of precision, in our experiments, we measured
an approximate 28-fold run time. Furthermore, in all our experiments, a grid spacing
of 0.5 Å was sufficient to find the known binding sites. Hence, we suggest using a grid
spacing of 0.5 Å.

If the ligand binding site is very tight and the flexibility of the ligand is high, it
might be necessary to use a large number of conformations. Since the run time de-
pends linearly on the number of conformations, this is expensive. In this case, it might
be possible to reduce the complexity by taking into account the redundancy in the con-
formations.
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Figure 8: LES (blue) depicted for four selected time steps of a simulation trajectory of
β -lactamase (data courtesy of Gregory L. Bowman and Philipp L. Geissler [4]). During
the simulation, the active site of the β -lactamase opens. The sequence of images shows
the computed positions of the CBT ligand (yellow) closest to the active site.

10 Conclusion and Future Work
We have defined a new type of molecular surface, the ligand excluded surface (LES),
which naturally extends the definition of the solvent excluded surface (SES). Instead
of approximating the ligand by a probe, the LES considers the complex geometry of a
ligand described by its van der Waals atoms. Thus, the LES represents a more accurate
approximation of the regions accessible to the ligand than the SES. We have presented
a grid-based algorithm to compute an approximation of the LES. This algorithm has
a complexity of O(s2), where s is the number of grid points. Despite this complexity,
we show that it is feasible to calculate the LES for typical receptors and ligands in a
reasonable time. This is possible because we identified the most time-consuming parts
of the algorithm and optimized these parts algorithmically but also by parallelizing
them on the CPU and the GPU.

We have also shown that with a minor extension of the algorithm, the cavity struc-
ture of the molecule with respect to the ligand can be computed with almost no run-
time overhead. In addition to the positions, we also obtain the possible orientations and
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conformations of the ligand. This information might be exploited to steer molecular
docking simulations, where the ligand binding path into the active site is detected (see
Fig. 8).

It is obvious that with the calculation of the LES, a new computational challenge is
associated. Below we outline some ideas on how the computation could be improved
and extended.

First, the fixed user-defined number of orientations might be eliminated by mea-
suring the error rate between increasing numbers of orientations. For this, we might
start with a few orientations and subsequently add more orientations while at the same
time measuring the rate of change of the volume. As long as the change is larger than a
predefined fraction, we would continue adding more orientations. This strategy, how-
ever, requires a suitable way to successively pick new orientations from a large set of
orientations such that the distances between neighbored orientations remains similar.
But it is not obvious, how the selection can be done most efficiently.

Currently, each sample position with at least one valid ligand state belongs to ex-
actly one cavity core. However, it is possible that the ligand cannot continuously
change from one valid state to another valid state at the same sample position with-
out intersecting the receptor molecule. Hence, the cavity cores might have to be split
at such positions which also means that a sampling position can belong to different
cavities and, thus, that the cores can overlap. In the future, we want to handle such sit-
uations more correctly. For this, it is necessary to define valid changes of orientations
and conformations within a sample position.

Despite our algorithmic optimizations, the run time of the algorithm can still be
very long, particularly for large molecules and a small grid spacing. In terms of cav-
ity analysis, one is often only interested in cavities existing in certain regions. Thus,
it might be sensible to restrict the cavity computation to user-defined regions. Fur-
thermore, a combination of our approach with one that approximates the ligand by a
sphere, such as our molecular path computation [29], might significantly speed up the
computation.

We would also like to investigate whether the use of tetrahedral meshes with the
same number of grid points as for hexahedral meshes improves the surface quality and
leads to a faster convergence.

The focus of this work was the definition and computation of a purely geometry-
based representation of the accessibility of a receptor with respect to a ligand molecule.
The definition of the LES could be extended further by considering physico-chemical
properties, such as the binding affinity of the ligand. By considering only those posi-
tions and orientations for which the binding affinity is high, the LES might even better
reflect the true accessibility of the ligand.
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Figure 9: LES of HIV protease (PDB-Id: 1HPV) for ligand amprenavir (red) with
different grid resolutions. For the computation of the LES, four ligand conformations
with 1,000 orientations were considered. For a grid spacing of 1.0 Å, the ligand binding
site was not found.
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