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M. Sarich1,3 Ch. Schuette1,2
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Abstract

Techniques for finding metastable or almost invariant sets have been
investigated, e.g., for deterministic dynamical systems in set-oriented nu-
merics, for stochastic processes in molecular dynamics, and for random
walks on complex networks. Most prominent algorithms are based on
spectral apporaches and identify metastable sets via the doimant eigen-
values of the transfer operator associated with the dynamical system under
consideration. These algorithms require the dominant eigenvalues to be
real-valued. However, for many types of dynamics, e.g. for non-reversible
Markov chains, this condition is not met. In this paper we utilize the
hitting time apporach to metastable sets and demonstrate how the well-
known statements about optimal metastable decompositions of reversible
chains can be reformulated for non-reversible chains if one switches from
a spectral approach to an exit time approach. The performance of the re-
sulting algorithm is illustrated by numerical experiments on random walks
on complex networks.

Keywords: metastability, hitting times, non-reversible Markov chain, directed
networks, random walk

Mathematical Subject Classification: 60J22 / 60J20, Secondary: 37M99

1 Introduction

In recent years techniques for finding metastable or almost invariant sets in
dynamical systems have attracted a lot of attention, for deterministic systems
[6] and set-oriented numerics [5, 7] as well as stochastic systems [18] with ap-
plications in molecular dynamics [19, 3]. These techniques allow to identify
metastability by discretization of the transfer operator or Frobenius Perron op-
erator of the underlying dynamics which results in the a stochastix matrix and
an associated Markov chain. Metastable or almost invariant sets are then iden-
tified via spectral approaches: the dominant eigenvectors of the matrix contain
essential information about the invariant measure of the system and about the
decomposiition of the system into metastable sets.
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There is a long list of articles on finding metastable decompositions of
Markov chains, via spectral approaches [9, 12, 10, 11, 8, 13, 19] and Markov
chain aggregation techniques [4, 15] as well as via exit time approaches [1, 2, 19].
However, by far most results are only available for reversible Markov chains, or
do not result in robust algorithms for finding metastable decompositions with
more than two sets.

In addition to the discussion about metastability in dynamical systems Markov
chain decompositions are key to finding good partitions of networks into mod-
ules: When wanting to find the strongly connected modules of a network, one
can do this via the metastable sets of an appropriately defined random walk on
the network, see [14, 17]. The Markov chain assoiated with the random walk is
reversible as long as the network is undirected; directed network lead to non-
reversible chains. Therefore many of the powerful algorithms for identifying
metastability cannot be used for finding modules in directed networks.

This situation calls for a generalization of the theory for decomposing meta-
stable Markov chains to non-reversible chains. This article presents such a gen-
eralization. It is shown that the well-known statement about optimal metastable
decompositions of reversible chains can be reformulated for non-reversible chains
if one switches from a spectral approach to an exit time approach: We can get
a lower bound to the metastability index of a decomposition by considering the
exit time distributions from metastable subsets such that decompositions with
strong metastability can be found by lower bound maximization. Furthermore,
we will see that the distribution of hitting times of test sets are almost constant
on any metastable set with sharp jumps between sets; consequently we can use
this property for identifying metastable sets. After establishing the underlying
theory we will show how to use the results algorithmically and demonstrate the
performance of the resulting algorithms in some numerical examples.

2 Setting

In all of the following we consider an irreducible aperiodic homogeneous Markov
chain (Xj) on state space X = {1, . . . , n} with transition matrix P and transition
probability p(x, y) for x, y ∈ X. We assume that µ denotes the invariant measure
of the chain so that µT = µTP . The invariant measure defines the µ-weighted
scalar product 〈u, v〉µ =

∑
x∈X u(x)v(x)µ(x) and the associated weighted 2-

norm ‖ · ‖µ. For any given set A ⊂ X we define the probability to stay in A
during one step by

P (A) = Pµ [X1 ∈ A|X0 ∈ A] ,

where the index µ indicates that X0 is distributed accoring to µ. Using the
weighted scalar product the probability to stay in A can be written

P (A) =
〈1A, P1A〉µ

µ(A)

where µ(A) =
∑
x∈X µ(x) = 〈1A,1A〉µ is the invariant measure of A and 1A

denotes the indicator function of set A.
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2.1 Metastability

Intuitively any metastable set should satisfy P (A) ≈ 1 with metastability the
stronger the closer P (A) is to 1. Consequently, the chain has a metastable
decomposition D = {A1, . . . , Am} into m disjoint sets with ∪iAi = X if the
metastability index M(D) of the decomposition,

M(D) =
1
m

(P (A1) + . . .+ P (Am)) ,

is close to one. Alternatively, if a set is metastable we intuitively also expect
that the exit time of the chain from the set is large. In order to analyse this
relationship let us first define the hitting time of a set B ⊂ X by τ(B) = min{k :
Xk ∈ B}, and its expectation value Ex(τ(B)) = E(τ(B)|X0 = x) when started
in x 6∈ B wrt the law of (Xj). Then, the expected exit time from A is given by
the hitting time τ(Ac) of the complement Ac = X \ A if started somewhere in
A, and the expected exit time is

Ex(τ(Ac)) = E(τ(Ac)|X0 = x), x ∈ A.

2.2 Networks

Consider a strongly connected graph/network G = (V,E), where V is the set
of n nodes and E the set of edges of the graph. We denote the adjacency
matrix of the network by (a(x, y))x,y∈V and the out-degree of a node x by
d(x) =

∑
y∈X a(x, y). If the network has weighted edges then a(x, y) denotes

the weight of the edge (x, y) ∈ E and a(x, y) = 0 if (x, y) 6∈ E. Whenever the
network is undirected the adjacency matrix is symmetric. Usually, in network
clustering one considers the standard random walk defined on the network, i.e.,
the Markov chain with one-step transition matrix directly given by the adjacency
structure / weights,

p(x, y) =
a(x, y)
d(x)

. (1)

The associated Markov chain is irreducible and aperiodic, and if reversible, it has
invariant measure µ(x) = d(x)/

∑
x d(x), i.e., nodes with high degree are visited

often, i.e., subnetworks with strong internal connectedness are metastable sets
of the associated chain. However, other random walks have been considered also
where p(x, y) is defined in terms of a(·, ·) in a different way [17].

3 Metastable Decomposition of Reversible Markov
Chains

Whenever the Markov chain is reversible, its metastability can be analysed
based on the leading eigenvalues of P . The chain (Xj) is said to be reversible
if the detailed balance condition µ(x)p(x, y) = µ(y)p(y, x) holds. Then, P is
symmetric wrt. 〈·, ·〉µ and thus all its eigenvalues are real-valued. The standard
random walk for any undirected network is reversible.

For reversible chains, several mathematical statements relating dominant
eigenvalues, the corresponding eigenfunctions and a decomposition of the state
space into metastable subsets are available [9, 12, 10, 13, 2, 19]. We will here
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consider the statement that is based on the metastability index M(D) of a
decomposition D = {A1, . . . , Am} of X, see [12], and for a more general version
[19]:

Theorem 1 Let P denote a reversible n×n transition matrix with lowest eigen-
value a = minσ(P ) > −1. Let with λm ≤ . . . ≤ λ2 < λ1 = 1 be its eigenvalues,
possibly counted according to multiplicity. Denote by vm, . . . , v1 the correspond-
ing eigenfunctions, normalized to ‖vk‖2 = 1. Let Q be the orthogonal projection
of Rn onto span{1A1 , . . . ,1Am

}. The metastability of an arbitrary decomposi-
tion D = {A1, . . . , Am} of the state space X can be bounded from above by

P (A1) + . . .+ P (Am) ≤ 1 + λ2 + . . .+ λm,

while it is bounded from below according to

1 + κ2λ2 + . . .+ κmλm + c ≤ P (A1) + . . .+ P (Am)

where

κj = ‖Qvj‖2µ =
m∑
k=1

1
µ(Ak)

〈vj ,1Ak
〉2µ.

and c = a (1− κ2) . . . (1− κn).

Theorem 1 states that the metastability of an arbitrary decomposition D
cannot be larger than 1+λ2+. . .+λm, while it is at least 1+κ2λ2+. . .+κmλm+c,
which is close to the upper bound whenever κj ≈ 1 for all j = 2, . . . , n.

Thus the metastability index of a decomposition A1, . . . , Am will be high if

• the eigenvalues λ2 ≥ . . . ≥ λm are all close to 1, and

• the dominant eigenfunctions v2, . . . , vm are almost constant on the metastable
subsets A1, . . . , Am implying κj ≈ 1.

The term c can be interpreted as a small correction whenever a ≈ 0 or κj ≈
1. It is demonstrated in [12] that the lower and upper bounds are sharp and
asymptotically exact.

Theorem 1 highlights the strong relation between a decomposition of the
state space into metastable subsets and dominant eigenvalues close to 1. Studies
on the relation between nearly uncoupled Markov chains and dominant eigen-
values yield similar statements, cf. [15, 9, 2, 16].

In view of Theorem 1, it is natural to ask, whether there is an optimal
decomposition with highest possible metastability. Several algorithms have been
proposed to solve the associated optimization problem. However, even if there
exists a unique optimal decomposition, the problem of finding it might be ill–
conditioned [19]. The reason for this is that there may be extended transition
regions between the metastable core sets for which a distinct assignment to one
of the metastable core sets does not make sense. This problem can be resolved
by relaxing the optimization to finding the core sets after identification and
extraction of the transition region [19].
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4 Metastable Decomposition of General Markov
Chains

Whenever we consider a directed network, the associated random walk in general
is not reversible. For non-reversible chains the above and comparable results do
not allow for finding a metastable decomposition. In order to do so we aim at
reformulating the result in terms of exit times instead of spectral elements.

4.1 Exit times from metastable sets

First we aim at a result that connects the probability to stay in a set A to the
mean exit time from it.

Lemma 1 For every set A ⊂ X we have that

EA[τ(Ac)]− 1
max
x∈A

Ex[τ(Ac)]
≤ P (A),

where
EA[τ(Ac)] =

1
µ(A)

∑
x∈A

µ(x)Ex[τ(Ac)].

denotes the µ-averaged exit time from A.

Proof. Define the mean exit time form set A starting in x by m(x) = Ex[τ(Ac)].
Then for any x ∈ A it is well-known that

m(x) = 1 +
∑
y∈A

p(x, y)m(y).

Inserting this into the definition of EA[τ(Ac)] we have

EA[τ(Ac)] = 1 +
1

µ(A)

∑
x,y∈A

µ(x)p(x, y)m(y).

Dividing by M := max
x∈A

Ex[τ(Ac)] yields

EA[τ(Ac)]− 1
M

=
1

µ(A)

∑
x,y∈A

µ(x)p(x, y)
m(y)
M︸ ︷︷ ︸
≤1

≤ 1
µ(A)

∑
x,y∈A

µ(x)p(x, y) = P (A).

�
Lemma 1 exhibits that we will have P (A) ≈ 1 if

• the mean exit time EA[τ(Ac)] from A is large, i.e., EA[τ(Ac)]−1 is a small
number, and

• Ex[τ(Ac)] is almost constant for all x ∈ A such that maxx Ex[τ(Ac)] ≈
EA[τ(Ac)].
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As a simple consequence of this lemma, we get the following lower bound to
the metastability index of an arbitrary decomposition

Theorem 2 Let A1, ..., Am be a decomposition of X. Then,

λ̂1κ̂1 + · · ·+ λ̂nκ̂n ≤
m∑
i=1

P (Ai)

where

λ̂i = 1− 1
EAi

[τ(Aci )]
, κ̂i =

EAi [τ(Aci )]
max
x∈Ai

Ex[τ(Aci )]
.

and EAi [τ(Aci )] as defined in Lemma 1.

Proof. We define mi(x) = Ex[τ(Aci )] and Mi := max
x∈Ai

Ex[τ(Aci )] and find

immediately that
EAi

[τ(Aci )]− 1
Mi

= λ̂iκ̂i.

Using Lemma 1 for every set Ai and summation over i = 1, ...,m completes the
proof. �
According to this result, a decomposition A1, ..., Am has a high metastability
index if

• all λ̂i are close to 1, that is, if the expected exit times of the sets Ai are
large on average with respect to the invariant measure, and

• all κ̂i are close to 1, that is, if the averaged expected exit time of each
set is close to the largest possible exit time from single points within the
respective set.

The latter condition is definitely fulfilled if each function mi(x) = Ex[τ(Aci )] of
exit times is almost constant on the respective set Ai since

κ̂i =
1

max
x∈Ai

mi(x)
1

µ(Ai)

∑
x∈Ai

mi(x)µ(x).

Note that κ̂i only measures the deviation of the µ-average of expected exit
time on the set Ai to its maximal value, but there is no explicit relation to the
minimal value. That is, the existence of states with rather small exit time from
set Ai do not affect the value of κ̂i as long as the invariant measure on these
states is low enough such that they do not strongly contribute to the average
exit time.

Summarizing we see that λ̂i and κ̂i take the roles of λi and κi in Thm. 1.

Example: For reversible chains, the lower bounds of Thms. 1 and 2 can be
compared directly. To this end we consider the reversible 4-state chain with
transition matrix

P =


0.4 0.6 0 0
0.5 0.5− δ δ 0
0 δ 0.4− δ 0.6
0 0 0.3 0.7

 ,
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Figure 1: Metastable decomposition of the reversible Markov chain discussed in
the text. Solid line: P (A1) + P (A2) as a function of δ. Dashed line: Spectral
bound 1 + λ2κ2 as a function of δ. Dashed-dotted line: Hitting time bound
λ̂2κ̂1 + λ̂2κ̂2 as a function of δ.

where 0 ≤ δ < 0.4 acts as a free parameter. For small δ the sets A1 = {1, 2} and
A2 = {3, 4} form a metastable decomposition. Figure 1 shows the dependence
of the metastability index on δ in comparison to the two lower bounds of Thms.
1 and 2.

4.2 Hitting times with respect to test sets

Next we will present conditions under which κ̂i is close to 1, i.e., the function
mi(x) = Ex[τ(Aci )] of exit times is almost constant on the respective set Ai.

As a preparation we need

Lemma 2 It holds

Ex[τ(D) | τ(D) > τ(y)] = Ex[τ(y) | τ(D) > τ(y)] + Ey[τ(D)].

Proof. Let

T = {(x0, x1, ..., xn) | n ∈ N, xn ∈ D,xi /∈ D, i < n, ∃k < n, xk = y}
denote the space or all finite trajectoies that lead from any initial point x to D
and hit y before D. For t ∈ T denote the length of the trajectory by n(t), so

n(t) = n− 1 ⇔ t = (x0, x1, ..., xn) ∈ ,̧xn ∈ D,xi /∈ D, i < n.

Then,
Ex[τ(D) | τ(D) > τ(y)] =

∑
t∈T

n(t)Px[t].

Let

T − = {(x0, x1, ..., xn) | n ∈ N, xn = y, xi 6= y and xi /∈ D, i < n}
and

T + = {(x0, x1, ..., xn) | n ∈ N, x0 = y, xn ∈ D,xi /∈ D, i < n}.
Then the concatenation ◦ : T − × T + → T

(r0, r1, ..., rk, y) ◦ (y, s1, ..., sl) = (r0, r1, ..., rk, y, s1, ..., sl)
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is obviously a bijection with n(t− ◦ t+) = n(t−) + n(t+). So,

Ex[τ(D) | τ(D) > τ(y)] =
∑

t−∈T −,t+∈T +

n(t− ◦ t+)Px[t− ◦ t+].

Now, Px[t−◦t+] = Px[t+|t−]Px[t−]. By the Markov property Px[t+|t−] = Py[t+].
That is,

Ex[τ(D) | τ(D) > τ(y)] =
∑

t−∈T −,t+∈T +

(n(t−) + n(t+))Px[t−]Py[t+]

=
∑

t−∈T −
n(t−)Px[t−]

∑
t+∈T +

Py[t+]︸ ︷︷ ︸
=1

+
∑

t+∈T +

n(t+)Py[t+]
∑

t−∈T −
Px[t−]︸ ︷︷ ︸

=1

= Ex[τ(y) | τ(D) > τ(y)] + Ey[τ(D)].

�
Now we can prove the main

Theorem 3 Consider x, y ∈ X and a test set D ⊂ X. Then, the following two
inequalities hold:

(i)
Ex[τ(D)] ≤ Ex[τ(y)] + Ey[τ(D)]

(ii)
|Ex[τ(D)]− Ey[τ(D)]|

max {Ex[τ(D)],Ey[τ(D)]} ≤ max
{

Ex[τ(y)]
Ex[τ(D)]

,
Ey[τ(x)]
Ey[τ(D)]

}
.

Proof. Let qx(D) = Px[τ(D) < τ(y)] and qx(y) = Px[τ(D) > τ(y)] = 1− qx(D)
denote the committor probabilities for the two sets D and {y}. Then,

Ex[τ(D)] = Ex[τ(D)|τ(D) < τ(y)]qx(D) + Ex[τ(D)|τ(D) > τ(Y )]qx(y).

Lemma 2 yields

Ex[τ(D)] = Ex[τ(D)|τ(D) < τ(y)]qx(D)+Ex[τ(y) | τ(D) > τ(y)]qx(y)+Ey[τ(D)]qx(y).

Clearly, Ex[τ(D)|τ(D) < τ(y)] ≤ Ex[τ(y)|τ(D) < τ(y)], so

Ex[τ(D)] ≤ Ex[τ(y)|τ(D) < τ(y)]qx(D) + Ex[τ(y) | τ(D) > τ(y)]qx(y) + Ey[τ(D)]qx(y)
= Ex[τ(y)] + Ex[τ(D)]qx(y) ≤ Ex[τ(y)] + Ey[τ(D)].

Hence,
Ex[τ(D)]− Ey[τ(D)] ≤ Ex[τ(y)].

By switching x and y the same calculation also yields

Ey[τ(D)]− Ex[τ(D)] ≤ Ey[τ(x)].

Now we consider two cases.

8



1. Assume Ex[τ(D)] > Ey[τ(D)]. Then,

|Ex[τ(D)]− Ey[τ(D)]|
max {Ex[τ(D)],Ey[τ(D)]} =

Ex[τ(D)]− Ey[τ(D)]
Ex[τ(D)]

≤ Ex[τ(y)]
Ex[τ(D)]

.

2. Is Ex[τ(D)] > Ey[τ(D)], we have

|Ex[τ(D)]− Ey[τ(D)]|
max {Ex[τ(D)],Ey[τ(D)]} =

Ey[τ(D)]− Ex[τ(D)]
Ey[τ(D)]

≤ Ey[τ(x)]
Ey[τ(D)]

.

Putting both cases together proves the assertion. �
Note that Theorem 3 (i) gives the triangle inequality for the distance

d(x, y) = Ex[τ(y)] if we also consider D to consist of a single element. So d(x, y)
describes an asymmetric distance measure and the symmetrization
m(x, y) = 1/2(d(x, y) + d(y, x)) is a metric.
Theorem 3 (ii) has an interesting consequence in the case that x, y ∈ M are
elements of a metastable set M and D is an arbitrary test set with D ∩M = ∅.
In this case, both ratios

Ex[τ(y)]
Ex[τ(D)]

and
Ey[τ(x)]
Ey[τ(D)]

should be very small, since the expected time to travel between elements within
a metastable set M should be much smaller than the expected time to leave the
metastable set and travel to another set D. Then, Theorem 3 implies that the
hitting time function

mD(x) = Ex[τ(D)]

should be almost constant on metastable sets, and this property should be robust
against the choice of the test set D.

4.3 Lower bounds using core sets

Next we want to add a quantitative estimate to our more qualitative argument
regarding the constancy of the exit times on metastable sets. To this end let us
study the exit time function

f(x) = Ex[τ(Ac)]

from a metastable set A. There may be states in A that belong to the transition
region, i.e., for which f(x) is not really large, perhaps the function f is not even
constant in the neighborhood of these states. However, assume that there is a
core set C ⊂ A with the property that C contains most of the measure of A,
and the communication of states in C is much quicker than the exit from A,
i.e.,

(A1) there is a small ε > 0 s.t. µ(C)
µ(A) = 1− ε, and

(A2) there are constants δ > 0 and M > 1 with δ/M � 1 s.t.

(a) Ex(τ(y)) ≤ δ for x, y ∈ C, and

(b) f(x) ≥M for all x ∈ C.
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Then, we find the following statement regarding the value of the quantity

κ̂(A) =
1

fmax

1
µ(A)

∑
x∈A

f(x)µ(x), fmax = max
x∈A

f(x).

associated with A in Theorem 2:

Theorem 4 Assume that the set A satisfies the conditions (A1) and (A2) given
above for a specific set C ⊂ A. Furthermore assume that there is a constant
K > 0 such that for all x ∈ A \ C we have

max
x∈A\C

{
Ex[τ(y)]
f(x)

,
Ey[τ(x)]
f(y)

}
≤ K,

for y ∈ A with f(y) = fmax, and K = 0 if A = C. Then

1− κ̂(A) ≤ δ

M
(1− ε) +Kε,

such that 1− κ̂(A)� 1 as long as Kε� 1. Moreover we get the estimate

1− λ̂(A) ≤ 1
M(1− ε) .

for

λ̂(A) = 1− 1
e(A)

, e(A) = EA(τ(Ac)).

Proof. From Thm. 3 we get with D = Ac for all x ∈ A that

fmax − f(x)
fmax

≤ max
{

Ex[τ(y)]
f(x)

,
Ey[τ(x)]
fmax

}
.

which implies that

1− κ̂(A) =
1

fmax

[
1

µ(A)

∑
x∈A

(fmax − f(x))µ(x)

]

≤ 1
µ(A)

∑
x∈A

max
{

Ex[τ(y)]
f(x)

,
Ey[τ(x)]
fmax

}
µ(x).

For x ∈ C condition (A2) yields

max
{

Ex[τ(y)]
f(x)

,
Ey[τ(x)]
fmax

}
≤ δ

M
,

while for x ∈ A \ C we have

max
x∈A\C

{
Ex[τ(y)]
f(x)

,
Ey[τ(x)]
fmax

}
≤ K.

With these estimates we get with condition (A1) that

1− κ̂(A) ≤ 1
µ(A)

(
µ(C)

δ

M
+Kµ(A \ C)

)
=

δ

M
(1− ε) +Kε.

Using condition (A2) again we find for e(A) = (
∑
x∈A f(x)µ(x))/µ(A) that

e(A) ≥ 1
µ(A)

(Mµ(C) + µ(A \ C) · 1) = M(1− ε) + ε ≥M(1− ε)

which implies the second assertion since 1− λ̂(A) = 1/e(A). �
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This result shows that for a decomposition D = {A1, . . . , Am} in which every
set Ai contains a core set Ci such that µ(Ci) ≈ µ(Ai), and mixing within C is
fast compared to exit times from Ai if starting from Ci, then D is a metastable
partition in the sense that the metastability index M(D) is very close to 1.

Example: Let us consider the 7-state Markov chain with the following tran-
sition matrix:

P =



0 1 0 0 0 0 0
0 0 1 0 0 0 0

0.99 0 0 0.01 0 0 0
0 0 0.5 0 0.5 0 0
0 0 0 0.02 0 0.98 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0


.

The chain is non-reversible with invariant measure

µT = (0.2210, 0.2210, 0.2232, 0.0045, 0.1116, 0.1094, 0.1094).

There clearly are two metastable sets with state 4 being a kind of transition state
that belongs more to state 5-7 than to 1-3. We therefore choose A1 = {1, 2, 3}
and A2 = {4, 5, 6, 7}. This choice leads to the metastability index

M({A1, A2}) = 0.995.

Furthermore direct computation leads to λ̂1 = 0.997, κ̂1 = 0.997, λ̂2 = 0.997,
and κ̂2 = 0.990, so that the lower bound to the metastability index as of Thm. 2
results as

1
2

[
λ̂1κ̂1 + λ̂2κ̂2

]
= 0.990.

In order to compute the lower bound resulting from Thm. 4 we choose the core
sets C1 = {1, 2, 3} and C2 = {5, 6, 7} such that δ(A1) = 3.53, M(A1) = 298,
δ(A2) = 8.14, M(A2) = 298, ε(A2) = 0.013, and K(A2) = 2.05 which results in
the estimate

1
2

[
λ̂1κ̂1 + λ̂2κ̂2

]
≥ 0.982.

4.4 Algorithmic considerations

The spectral result stated in Theorem 1 can be exploited to algorithmically
identify a metastable partition of a reversible Markov chain. First, we need to
calculate the dominant spectrum, so the eigenvalues 1 = λ1 > λ2 ≥ ... ≥ λn
that are close to 1 and the corresponding eigenvectors u1, ..., un. Then, we want
to find a partition of state space into sets such that the dominant eigenvectors
are as constant as possible on these sets. As mentioned above, this problem
can be ill-conditioned due to the existence of states in a transition region that
cannot be clearly assigned to a certain metastable set. The transition region
should be a set of states that the process typically leaves quickly into one of
the core sets [19]. In [17] it was discussed how -for reversible chains- we can
first identify the transition region such that we can next restrict the problem to
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partitioning the core sets only: we assume that we are provided with a reference
measure µr that allows us to find the tranation region via

T = {x ∈ X | (PT )αµr(x) < µr(x)},
where α ∈ N is the approximate average timescale on which the transition region
is left by the Markov chain. Such a measure exists, e.g., when the Markov
chain depends on a parameter that controls the metastability of the process: we
have the original Markov chain with transition matrix P and another Markov
chain with reduced metastability, transition matrix Pr, and unique stationary
distributions µ and µr, see, e.g., [17] for random walks on networks, or [19] for
molecular dynamics with temperature embedding.

If the Markov chain is non-reversible, we will claim that the transition region
need to be left quickly either forward or backward in time. That is, assuming
µ > 0 we can define the transition matrix Pb of the time-reversed Markov chain
with entries

pb(x, y) =
µ(y)
µ(x)

p(y, x)

and the transition region as

T = {x ∈ X | (PT )αµr(x) < µr(x) or (PTb )αµr(x) < µr(x)}. (2)

This is equivalent to claiming that the core sets are attractive sets in forward and
backward time. If we do not have a parameter for controlling the metastability
of the process, we simply choose µr to be a uniform distribution in our finite
state space.

Having restricted the clustering problem to C = X \ T , the state space
without transition region, there exist optimization-based algorithmic strategies
for finding partitions on which the dominant eigenvectors are almost constant
[9, 12, 10]. Another idea is to associate with every state x ∈ C the vector u(x) =
(u1(x), ..., un(x)) ∈ Rn and apply aa appropriate cluster analysis technique to
the points (u(x))x∈C in Rn, for example the k-means algorithm. In the general
case of a non-reversible Markov chain, the eigenvalues and eigenvectors might
not be real-valued and it is not clear how to use this spectral information for
clustering in this case. In the next section, we will further discuss this issue
using a simple network example. Our mathematical results motivate to replace
the m leading eigenvectors by m hitting time functions with respect to suitable
test sets. ”Suitable” here means that the test sets should not lead to redundant
information in terms of hitting times, for example, the sets should not be too
close to each other. So the idea is to compute for n sets D1, ..., Dn the hitting
time functions mi = mDi and use the same algorithmic strategies [9, 12, 10] on
the functions mi instead of the eigenvectors ui. We will later also use a k-means
clustering of the points (m(x))x∈C in Rn with m(x) = (m1(x), ...,mn(x)). Note
that for such approaches the hitting time functions should be normalized as the
eigenvectors are. If the transition matrix P of the Markov chain is known, a
hitting time function mi can be computed as the solution of the following linear
system

(P − Id)mi = −1 on X \Di,

mi = 0 on Di.

Moreover, the value of a hitting time function mi(x) = Ex[τ(Di)] at a certain
point x ∈ X could also be estimated by Monte Carlo simulation. In this sense
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a hitting time function can also be evaluated locally. These two properties
clearly yield computational advantages over the calculation of the dominant
eigenvectors, even in the reversible case.

Summarizing, we find the following algorithmic blueprint:

1. We choose a number n of test sets and a metastability parameter α ∈ N.

2. Given P, Pb, and µr we compute the transition region T as in (2).

3. We consider a test setD1 = {x1} consisting of a single state x1 ∈ C = X\T
that is chosen randomly and compute the hitting time function m1.

4. For i = 2, ..., n we choose the test set xi = arg max
x∈C

min
j=1,..,i−1

mj(x) and

compute the hitting time function mi with respect to Di = {xi}.
5. We normalize the functions mi and fully partition C by clustering the

points m(x) = (m1(x), ...,mn(x)) ∈ Rn with x ∈ C, for example using
k-means.

5 Numerical Examples

In this section, we will use our algorithmic strategy to identify metastable sets
for a random walk on a network, see Section 2.2. First, let us illustrate the
relation between the spectral and hitting time based approach using an undi-
rected network that is shown in Figure 2 where the induced random walk is a
reversible Markov chain.

Figure 2: Undirected network with 8 strongly connected modules and a loosely
connected transition region.
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5.1 Reversible chain

The first step of the algorithm identifies the transition region as in Fig. 2 and in
Fig. 3 the values of the three dominant eigenvectors of the random walk on the
core sets C = X\T are shown in comparison to three hitting time functions with
respect to test sets generated by the algorithm. Here we restrict the functions
to the region C = X \ T that we want to partition.
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Figure 3: Upper panel: The 3 dominant non-trivial eigenvectors, shown in the
reduced state space C = X \ T . Lower panel: 3 hitting time functions in C as
generated by the algorithm.

As expected from Thm. 1 and Thm. 3 the eigenvectors and hitting time
functions are almost constant on the metastable sets. The k-means method
described in the previous section delivers in both cases the clustering that is
visualized in Figure 4.

5.2 Non-reversible chain

Our second example should underline the difficulty of extending spectral meth-
ods to non-reversible cases where loops and cyclic structures are present. We
consider the directed network that is illustrated in Figure 5.

The network consists of 3 cycles of length 5 that are connected via one tran-
sition node. Additionally, the two upper cycles in Fig. 5 share one undirected
edge. When applying the proposed method based on hitting time functions for
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Figure 4: Identification of 8 modules by k-means using an embedding of 3
eigenvectors or 3 hitting time functions into R3.

Figure 5: Directed network with 3 cycles that are metastable for the standard
random walk.

finding metastable cluster in the network, we get the result for 2 and 3 sets as
illustrated in Fig. 6.

If we calculate the values

λ̂i = 1− 1
EAi

[τ(Aci )]

from Theorem 2 for the three cycles that had been identified as cluster as shown
in Fig. 6, we find
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Figure 6: Left: Clustering into 2 sets. Right: Clustering into 3 sets.

i λ̂i color
1 0.7529 red
2 0.7529 green
3 0.8696 blue

On the other hand, the eigenvalues of the random walk on the network are
complex and the eigenvalues with the largest real part are given by

i λi
1 1
2 0.7156 + 0.0053i
3 0.7156 - 0.0053i
4 0.3593 + 0.8579i
5 0.3593 - 0.8579i
6 0.3260 + 0.6374i
7 0.3260 - 0.6374i

That is, we have one complex conjugate pair of eigenvalues that has a dom-
inating real part that is at least not far away from 1; this agrees with the
metastability of the 3 cycles. The following table shows the values of the real
part of the dominant eigenvector on the cluster and the transition region found
by the hitting time apporach.

Real part of first non-trivial eigenvector on blue cluster

x 1 2 3 4 5
Re(u2(x)) -0.0534 -0.0196 0.0035 0.0185 -0.1011

Real part of first non-trivial eigenvector on red cluster

x 6 7 8 9 10
Re(u2(x)) 0.3340 0.2626 0.2039 0.1561 0.1177
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Real part of first non-trivial eigenvector on green cluster

x 11 12 13 14 15
Re(u2(x)) -0.1596 -0.1362 -0.2329 -0.2092 -0.1843

Real part of first non-trivial eigenvector on transition region

x 16 17 18
Re(u2(x)) -0.2357 -0.2357 -0.2357

We can see that the sign structure [9, 12] of the real part of the eigenvector
does not coincide with the clustering. In particular, the eigenvector changes its
sign on the most metastable set (blue in Fig. 6) and achieves its minimal value
minRe(u2(x)) = −0.2357 in the transition region, where for reversible Markov
chains typically values close to 0 are expected.

This example emphasizes the difficulty of a metastable spectral clustering for
non-reversible Markov chains that show a strongly cyclic behavior within and
between metastable sets. On the other hand, as motivated by the theoretical
results and demonstrated by this example our developed approach based on
hitting time analysis is well applicable in such cases.

6 Conclusion

In this article, we discussed the relation of metastable or almost invariant sets
of a Markov chain to spectral properties of its transition matrix on the one hand
and to properties of hitting and escape times on the other. While the spectral
approach is restricted to reversible Markov chains, in general, the hitting time
approach proposed herein can also be applied to the non-reversible case.

When wanting to find modules or cluster in a network this extension is nec-
essary since for a network the associated random walk is only reversible if the
network is undirected. Even if the Markov chain is reversible and both ap-
proaches are applicable we highlighted computational advantages of the hitting
time approach.

Finally, we illustrated the theoretical results and algorithmic ideas on two
network examples. The first example was undirected, underlining the close
relation of the two approaches in the reversible case. The second example was
a directed network with loops and strongly cyclic structures where the spectral
information does not allow for identifiyng the metastable partition that can well
be computed from appropriate hitting time functions in the way demonstrated.
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