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The Cycle Embedding Problem

Ralf Borndörfer, Marika Karbstein, Julika Mehrgardt, Markus Reuther, and
Thomas Schlechte

Abstract Given two hypergraphs, representing a fine and a coarse “layer”, and a
cycle cover of the nodes of the coarse layer, the cycle embedding problem (CEP)
asks for an embedding of the coarse cycles into the fine layer. The CEP is NP-hard
for general hypergraphs, but it can be solved in polynomial time for graphs. We
propose an integer programming formulation for the CEP that provides a complete
description of the CEP polytope for the graphical case. The CEP comes up in railway
vehicle rotation scheduling. We present computational results for problem instances
of DB Fernverkehr AG that justify a sequential coarse-first-fine-second planning
approach.

1 The Cycle Embedding Problem (CEP)

Let G = (V,A,H) be a directed hypergraph with node set V ⊆ E×S, i.e., a node v =
(e,s) ∈V is a pair of an event e ∈ E and state s ∈ S, arc set A⊆V ×V , and hyperarc
set H ⊆ 2A, i.e., a hyperarc consists of a set of arcs (this is different from most
of the hypergraph literature). Each hyperarc h ∈ H has cost ch ∈ Q. The following
projections discard the state information:

[v] := e for v = (e,s) ∈V ([v]−1 = {w ∈V | [w] = [v]}),
[a] := ([u] , [v]) for a = (u,v) ∈ A,
[h] := {[ai] | i = 1, . . . ,k} for h = {ai | i = 1, . . . ,k} ∈ H.
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2 Borndörfer et.al.

We call G = (V,A,H) the fine (composition) layer and [G] := ([V ] , [A] , [H]) with
[V ] := {[v] |v ∈V}, [A] := {[a] |a ∈ A}, and [H] := {[h] |h ∈H} the coarse (config-
uration) layer. W.l.o.g., we assume [V ] = E. If A = H then we equate G = (V,A,H)
with the standard graph G = (V,A).

A set K ⊆ A is a cycle packing (partition) in G if

1. |δ−(v)∩K| = |δ+(v)∩K| ≤ (=)1, i.e., each node has at most (exactly) one
incoming and at most (exactly) one outgoing arc and

2. there exists H ′ ⊆ H such that K =
⋃

h∈H ′ h and ∀a ∈ K∃!h ∈ H ′ : a ∈ h, i.e., the
arc set K can be partitioned into hyperarcs; we say that H(K) = H ′ is supported
by K (there may be several supports).

K decomposes into a set of cycles C1, . . . ,Ck. Let C ∈ K ⊆ A be a cycle in G. We
denote by l(C) = |C| the length of cycle C. These definitions carry over to cycles
and sets of cycles in [G]. It is easy to see that a cycle packing (partition) can only
support hyperarcs h with |h∩ δ−(v)| ≤ 1 and |h∩ δ+(v)| ≤ 1 for all v ∈ V and we
henceforth assume that every h ∈ H satisfies this property. We say that [h] ∈ [H] is
embedded into h ∈ H and h ∈ H embeds [h]. Our aim is to embed a coarse cycle
partition into the fine layer.

Definition 1. Let M ⊆ [A] be a cycle partition in [G]. The CEP is to find a cost
minimal cycle packing K ⊆ A in G such that

1.
∣∣[v]−1 ∩V (K)

∣∣ = 1 for [v] ∈ [V ], i.e., the cycle packing M visits every event in
exactly one state and

2. there exist fine and coarse supports H(K) and H(M) such that [H(K)] = H(M),
i.e., every hyperarc of H(M) is embedded into a hyperarc of H(K).

We call 1 the uniqueness-condition and 2 the embedding-condition and refer to the
data of the cycle embedding problem as (G,H,c, [G] ,M). Note that the embedding-
condition 2 implies [K] = M. It further follows that the decomposition of K into
cycles C1, . . . ,Ck gives rise to a decomposition of cycles

[
C1
]
, . . . ,

[
Ck
]

for M.

[C]
2

[C]
1

cycle partition in [G]G

CEP

C2

C1

cycle embedding

C2

C1

infeasible

Fig. 1 Example of the cycle embedding problem. Left: A fine graph G and a hypercycle in [G].
Right: A feasible cycle embedding and an infeasible set of hyperarcs which does not satisfy the
uniqueness-condition 1.
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[G]
CEP

G

Fig. 2 (CEP) instance without an integer solution

An example for the CEP is illustrated in Figure 1. We refer the reader to the master
thesis of Mehrgardt [1] for further details and for proofs of the following results.
For CEPs on standard graphs (the case A = H) the problem can be decomposed by
considering each cycle of the coarse cycle partition M individually. For each such
cycle one can define a “start node”. Solving a shortest path problem for each state
of the start node in the fine layer yields a polynomial time algorithm. In general,
however, the problem is hard.

Theorem 1. The cycle embedding problem can be solved in polynomial time for
standard graphs; for hypergraphs, it is NP-hard.

The CEP defined by the data (G,H,c, [G] ,M) can be formulated as the following
integer program. (Note that h ∈ δ+/−(v)⇔∃!a ∈ h : a ∈ δ+/−(v).)

min cT x (CEP)

s.t. ∑
h∈δ−(v)

xh− ∑
h∈δ+(v)

xh = 0, ∀ v ∈V (flow)

∑
h∈H:[h]=b

xh = 1, ∀ b ∈ [H](M) (embedding)

xh ∈ {0,1} ∀ h ∈ H.

There is a binary variable xh for each hyperarc h∈H indicating whether all arcs of h
are contained in the cycle packing K. The (embedding)-constraints together with the
integrality constraints define an assignment of every hyperarc in [H](M) to exactly
one hyperarc in H w.r.t. the given projection. The (flow)-constraints ensure that the
solution is a cycle packing. Both conditions together ensure a unique assignment of
events to states, i.e., the cycle packing K visits every event in exactly one state.

Figure 2 shows an instance of the CEP in the graph case for which the LP relaxation
of this IP formulation is not integral. Consider the coarse graph [G] on the left of this
figure. It contains exactly one cycle with three nodes; we have M := [A] and [H] =
[A]. The fine graph G is shown on the right. The only cycle in G contains six arcs
while the cycle in [G] contains three arcs. Therefore, there exists no feasible solution
for the CEP. However, setting xh = 1

2 for all h ∈ H is a feasible solution of the
LP relaxation of (CEP). This suggests to consider some kind of length constraints.
Indeed, the uniqueness-condition 1 can be reformulated as follows.
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[a]

cycle with switch [a] in [G]

CEP

G

[a]

cycle with switch [a] in [G]

CEP

G

Fig. 3 Switch in a basic CEP

The uniqueness-condition 1 can be reformulated as follows.

Lemma 1. Let K be a cycle packing in G with cycles {C1, . . . ,Ck} and let [K] be a
cycle partition in [G]. Then

∣∣[v]−1∩V (K)
∣∣= 1∀ [v] ∈ [V ] ⇔ `(

[
Ci]) = `(Ci)∀ i ∈ {1, . . . ,k}. (1)

Proof. “⇒” Let [C] be a cycle in the coarse graph. Since the [C] cover the same
l(C) = l([C]).
“⇐” Suppose [v]−1∩V (K)= /0, i.e., all v∈ [v]−1 are not covered by any hyperarc h∈
K. Thus [v] is not covered by [K], which contradicts with the embedding-condition 2.
Suppose

∣∣ [v]−1 ∩V (K)
∣∣ > 1 for one [v] and

∣∣ [w]−1 ∩V (K)
∣∣ = 1 for all other [w] ∈

[V ]\ [v]. Then K covers ∑k
i `(Ci)+ 1 nodes, but K covers ∑k

i `(
[
Ci
]
) = ∑k

i `(C
i) by

assumption. ut

Using this observation, we can come up with inequalities that prohibit cycles in G
with different lengths than the corresponding cycles in [G]. Consider for some cycle
C ∈M the set U (C) := {C̃ cycle in G | [C̃] =C, `(C̃) 6= `(C)} of cycles that project
to the cycle C in [G] but have a different length than C. Then, the cycles in U (C)
can be eliminated as follows:

∑
h:h∩C̃ 6= /0

xh 6 `(C)−1 ∀C ∈M, C̃ ∈U (C). (2)

We call (2) infeasible cycle constraints. For the basic CEP these inequalities are all
that it needed. More precisely, the CEP is a basic CEP if H = A and |S|= 2, this is
the simplest non-trivial problem variant.

Theorem 2. The LP relaxation of (CEP) plus all infeasible-cycle constraints (2)
provide a complete description for the basic CEP.

W.l.o.g. we can restrict G to the set of arcs and hyperarcs which projections are
contained in the cycle partition M of [G]. We can further assume that every node
v ∈ V of G has at least one incoming and one outgoing arc (otherwise those nodes
can be deleted).
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The feasibility of a basic CEP can also be characterized combinatorially in terms
of switches. A coarse arc [(u,v)] ∈ [A] is a switch w.r.t. state s if δ−(v) = {(u,v)},
u = (e, s̃), v = ( f ,s), s̃ 6= s, i.e., each fine cycle containing node v = ( f ,s) has to use
arc b that switches from state s̃ to state s, see Figure 3. The following theorem gives
a complete characterization of the feasibility of the basic CEP that is easy to check:

Theorem 3. A basic CEP has a feasible cycle embedding if and only if every coarse
cycle has a state with an even number of switches.

Proof. “⇒” Let C be a cycle in G. Assume the number of switches for [C] w.r.t.
both states are odd. Let v = (e,s) be covered by C. Traversing the cycle in forward
direction until we again reaches event e has to end in state s′ 6= s, i.e., C is not an
embedding of cycle [C].
“⇐” Let C be a cycle in G and assume the number of switches for [C] for state s is
even. We construct a feasible cycle embedding by stating at a node v = (e,s) ∈ V
with a state s for that the number of switches is even. We only move to nodes of
different states if it is mandatory. After | [C] | steps we end up at the starting node v
again since we changed the state a even number of times. ut

2 Application to Rolling Stock Rotation Planning

We aim at embedding a set of cycles, representing railway vehicle rotations com-
puted in a coarse graph layer, into a finer graph layer with a higher level of detail.
Our exposition resorts to a hypergraph based model of the rolling stock rotation
problem (RSRP) proposed in our previous paper [2]. For ease of exposition, we dis-
cuss a simplified setting without maintenance and capacity constraints. In the fol-
lowing we define the (RSRP), introduce aspects of vehicle composition, and show
how the results of Section 1 can be utilized in a two-step approach for the RSRP. Let
V a set of nodes, A⊆V ×V a set of directed standard arcs, and H ⊆ 2A a set of hy-
perarcs, forming an RSRP hypergraph that we denote by G = (V,A,H). The nodes
represent departures and arrivals of vehicles operating a set of timetabled passenger
trips T , the arcs represent different ways to operate a timetabled or a deadhead trip
by a single vehicle, the hyperarcs represent vehicle compositions to form trains. The
hyperarc h ∈ H covers trip t ∈ T if every standard arc a ∈ h represents t. We denote
the set of all hyperarcs that cover t ∈ T by H(t) ⊆ H. There are costs associated
with the hyperarcs. The RSRP is to find a cost minimal set of hyperarcs H0 ⊆ H
such that each timetabled trip t ∈ T is covered by exactly one hyperarc h ∈ H0 and⋃

h∈H0
h⊆ A is a set of rotations, i.e., a packing of cycles. The RSRP is NP-hard [2].

A key concept is the orientation, that describes the two options (O = {Tick,Tack})
how vehicles can be placed on a railway track. Deutsche Bahn Fernverkehr AG
distinguishes the position of the first class carriage of the vehicle w.r.t. the driving
direction. Tick (Tack) means that the first class carriage is located at the head (tail)
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of the vehicle. Every node of v ∈ V has the form v = (e,o), where e refers to an
arrival or departure event of a vehicle operating a trip with an orientation o ∈ O. A
hyperarc h∈H models the connection of the involved tail and head nodes by a set of
vehicles considering technical rules w.r.t. changes of the orientation. The hyperarcs
of H are distinguished into those which implement a change of orientation caused by
the network topology and those which implement an additional turn around trip that
is necessary to establish dedicated orientations. The idea of our two step approach
for the RSRP is to discard the orientations of the nodes in a first coarse planning
step and to subsequently solve a CEP that arises from the solution of the first step
in order to arrive at a solution in the fine layer including orientations. Evaluating
this two-step approach investigates the question whether the topology of a railway
network offers enough degrees of freedom to plan turn around trips subordinately.
Let [G] = ([V ] , [A] , [H]) be the hypergraph that arises if we discard the orientation
by the projection procedure as it was defined for the CEP in Section 1. If we prevent
ourselves from producing infeasible cycles in the first (coarse) step we increase the
chance to end up with a CEP with a feasible solution in the second (fine) step. For-
bidding such cycles is the main idea of our two-step approach. Let [C] be the set of
all cycles in ([V ] , [A]) that cannot be embedded if we consider the cycles as input
for the basic CEP. Using a binary decision variable for every hyperarc [h] ∈ [H], the
model that we solve in the first step is the following coarse integer program:

min ∑
[h]∈[H]

c[h]x[h], (MP)

∑
[h]∈[H](t)

x[h] = 1 ∀t ∈ T, (3)

∑
[h]∈[H]([v])in

x[h]− ∑
[h]∈[H]([v])out

x[h] = 0 ∀ [v] ∈ [V ] , (4)

∑
[h]∈[H]([c])

x[h] ≤ | [C] |−1 ∀ [C] ∈ [C] , (5)

x[h] ∈ {0,1} ∀ [h] ∈ [H] . (6)

The objective function of model (MP) minimizes the total cost. For each trip t ∈ T
the covering constraints (3) assign one hyperarc of [H] (t) to t. The equations (4) are
flow conservation constraints for each node [v]∈ [V ] that define a set of cycles of arcs
of [A]. Inequalities (5) forbid all cycles of [C]. Finally, (6) states the integrality con-
straints for our decision variables. We solve model (MP) with the commercial solver
for mixed integer programs Cplex 12.4. Since the number of inequalities (5) is
exponential we handle these constraints dynamically by a separation routine that is
based on an evaluation of integer solutions using Theorem 3 from the previous sec-
tion, i.e., we check the switches in every cycle to see if it can be embedded or not.
We evaluate this two-step approach by comparing two algorithmic variants to verify
whether inequalities (5) are necessary and/or useful. The first variant “with ICS” is
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with ICS without ICS

instance trips | [H] | cuts fine / coarse slacks | [H] | fine / coarse slacks

1 267 1434 16 2 / 2 0 1434 2 / 4 199
2 617 3296 5 4 / 4 0 3292 4 / 5 208
3 617 3296 2 3 / 3 0 3292 4 / 5 14
4 617 3302 13 6 / 6 0 3292 2 / 5 285
5 617 3296 2 4 / 4 0 3294 3 / 4 29
6 a 884 4779 2 5 / 5 0 4775 5 / 6 15
7 1443 78809 6 38 / 38 1 78807 39 / 44 63
8 a 1443 29321 0 23 / 23 0 29321 23 / 23 0
9 1443 25779 2 33 / 33 1 25777 31 / 33 30
10 1443 14427 1 20 / 20 0 14421 21 / 22 12
11 1443 11738 2 17 / 17 0 11728 15 / 16 29
12 1713 14084 99 8 / 11 0 14074 1 / 11 1392
14 2319 15807 2 16 / 17 0 15787 17 / 17 43
15 2421 15829 4 18 / 19 0 15789 16 / 18 61
16 3101 40707 4240 40 / 42 74 40705 48 / 59 259
17 15 80 1 2 / 2 0 76 - / 1 15

Table 1 Comparison between embedding results of CEP models with or without separation of
cycles that can not be embedded.

to solve the model MP as described and to solve the arising CEP in the second step.
The only difference to the second variant “without ICS” is that we solve the model
without constraints (5). Table 1 reports computational results for 16 instances with
different numbers of trips (second column). Column “cuts” denotes the number of
constraints (5) that were separated in the first step, while column “|H|” denotes the
number of hyperarcs that appeared in the CEP of the second step. The columns “fine
/ coarse” and “slacks” report about the number of cycles that could be embedded vs.
the number of cycles that were given to the CEP of the second step as well as the
number of trips that could not be covered by the cycle packing in G. The instances
were created to provoke that the arising CEPs are infeasible. Namely, we increased
the time necessary to perform a turn around trip by approximately ten times the
times in the real world data. This worst-case scenario substantially constrains the
number of possible turn around trips. Our computational results show that by utiliz-
ing constraints (5) the RSRP can still be tackled by a two-step approach to produce
feasible solutions. This gives evidence that railway vehicle rotation planning can
indeed be done in two steps, embedding a coarse initial solution into a fine model
layer.
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