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Abstract

This report collects a number of proposals to determine the lowest eigensolutions

of the scalar Helmholtz equation. The basic routine of all discussed algorithms
is the standard Rayleigh quotient minimization process. The minimization is
performed in a direct multilevel manner, and a subspace iteration is used to
determine simultaneously a couple of eigensolutions. As smoother the nonlin-

ear Gauß-Seidel, the nonlinear conjugate gradient method and a preconditioned
version of this method are compared with respect to their efficiency. The nu-
merical examples are based on realistic 1D and 2D models of integrated optics
components.



1 Introduction

The most prominent example of the modern optical information techniques is
the use of optical fibers in telecomunication networks. Today, nearly all long dis-
tance networks and even local networks are realized using optical fibers, because
they are suprerior to the conventional electrical transmission lines in nearly all

technical parameters, where the most important ones are the low transmission
loss (below 1 dB/km) and the large transmission bandwith (some dozen Gbit/s
in the infrared region). This development has been started in the early 1970 th
with the first low-loss optical fiber (the Corning Glass C0-fiber). At the same

time, the improvements of lasers and the developement of coherent optics had
created a need for waveguide structures with which to build optical components
and connect them to optical circuits. These optical waveguides should allow the
planar fabrication of components and the integration into planar optical circuits

which at the same time was already proven to be of great advantage in electronic
circuits. These integrated optical circuits should combine the advantages of an
effecient production process with the large transmission capabilities of an optical

signal processing. But until today, most of all comercial used circuits are expen-
sive hybrid assemblies, i. e. , combinations of pure optical (e. g. photodiode) and
pure electronical components (e. g. transistor) based on different semiconductor
materials. This depends on the initial fabrication difficulties caused by the very

high technological demands. Nevertheless, after a period of the stabilization of
the technology during the last decade, the idea of integrated optical circuits be-
comes more important again and some experts expect a breakthrough in the near
future (‘fiber to the home’).

Apart from the technological progress, there is a need for better physical mod-
els and for faster and more reliable numerical simulation tools. An essential
prerequisite for the design of integrated optical components like switches, mod-
ulators, lasers, couplers, gratings etc. is the knowledge of the eigensolutions of

the optical field in some cross sections of the component. In many cases (e. g. di-
rectional coupler), the pure knowledge of the lowest few eigenmodes allows the
design of the component. Within the rich variety of components, we find such

with simple geometries, e. g. step-index fibers with a circular refractive index
profile, and such with very complex geometries, e. g. some kinds of switches or
branches. It is the aim of this paper to supply the component designer with
effective algorithms to solve the arising multi-scale problems.

An essential aspect is that depending on the various working principles of the
components to investigate, there are different accuracy demands on the eigen-
values and eigenvectors to be met by a numerical solution. Even the case of a
component supporting some very closely neighboring modes (directional coupler)

has to be solved with high accuracy, which means for the design tasks to an
relative eigenvalue error of 10−6 to 10−8.

2



2 General Problem

We investigate the Helmholtz eigenproblem

−Δui − εDui = λiui, i = 0, 1, . . .(1)

in a convex domain Ω ⊂ R2 equipped with homogeneous Dirichlet boundary

conditions. The function εD ∈ C(Ω) is a piecewise continuous, bounded complex
function representing the normalized dielectric function with 0 < �(εD).
The adjoint problem
The complex conjugate version of (1) defines the adjoint problem with solutions

w∗

−Δw∗
i − εDw

∗
i = λiw

∗
i .(2)

and (compare with (1))

w∗
i = ui.(3)

Using the standard L2 scalar product for complex functions,

(u, v) =
∫
Ω
uv dx

we obtain the Helmholtz equation in weak form

a(v, u) = λ · (v, u), u, v ∈ H1
0 (Ω),(4)

with a(v, u) = (∂xv, ∂xu) + (∂yv, ∂yu)− (v, εDu).

and its adjoint version

a∗(v, w∗) = λ · (v, w∗), w∗, v ∈ H1
0 (Ω),(5)

with a∗(v, w∗) = (∂xv, ∂xw
∗) + (∂yv, ∂yw

∗)− (v, εDw
∗).

It is, due to this symmetry,

a∗(v, w∗) = (∂xw
∗, ∂xv) + (∂yw

∗, ∂yv)− (w∗, εDv)(6)

= a(w∗, v).

For the discussion of some problems it is convenient to use the complex symmetric

representation operator A : H1
0 (Ω)→ H1

0 (Ω) defined by

a(v, u) = (v, Au) v ∈ H1
0 (Ω),(7)

from which we obtain an abstract formulation of our problem

Aui = λiui.(8)
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Orthogonality
Equations (4) and (5), specialized to test functions v = w∗

j and v = ui, respec-
tively, yield the system

a(w∗
j , ui) = λi(w

∗
j , ui)(9)

a∗(ui, w
∗
j ) = λj(ui, w

∗
j ).(10)

The difference between the complex conjugate of (10) and (9) gives the usual
orthogonality relation

(λi − λj)(ui, uj) = 0.

If the eigensolutions ui and uj belong to different eigenvalues we find

(ui, uj) = 0 if λi �= λj .

Boundedness

We discuss the bounds of the Rayleigh quotient like expression

λc
R(u) =

a(u, u)

(u, u)
(11)

for any possible choice u ∈ H1
0 (Ω) (the superscript c reminds that this is not the

usual form of the generalized Rayleigh quotient which should use one factor u in
(11) as the complex conjugate of the other one).
The real part of λc

R supplies a lower bound for the real part of all eigenvalues

�(λc
R) = �

(
a(u, u)

(u, u)

)

= �
(
(∇u,∇u)− (u, εDu)

(u, u)

)

=
(∇u,∇u)− (u,�(εD)u)

(u, u)

≥ −(u,�(εD)u)
(u, u)

≥ −max(�(εD)) .(12)

In the same way, we obtain

	(λc
R) = −

(u,	(εD)u)
(u, u)

and therefore

min (	(εD)) ≤ −	(λc
R) ≤ max (	(εD)) .(13)
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Orthogonality between residual and approximate eigensolution
An approximate eigensolution ua may be given and we look for an related ap-
proximate eigenvalue λa. We define the condition such that the L2-norm of the

related residual r

Aua − λaua = r(14)

becomes a minimum ‖r‖2 → min

(r, Aua)− λa(r, ua) = (r, r) → min .

A differentiation with respect to λa yields the orthogonality condition

(r, ua) = 0 ,(15)

which supplies (from (14))

(ua, Aua)− λa(ua, ua) = 0(16)

and therefore

λa =
a(ua, ua)

(ua, ua)
.(17)

This shows that λa obtained in this way is exactly the Rayleigh quotient like
expression λc

R defined in (11).

Generalized Rayleigh Quotient
The generalized Rayleigh quotient is defined as

λR(u) =
a(u, u)

(u, u)
.(18)

It becomes stationary, if u is an eigensolution of the Helmholtz equation, i. e. ,
it is ∂λR = 0 for all functions v ∈ H1

0 (Ω)

∂λR(u; v) =
d

dt

∣∣∣∣∣
t=0

λR(u+ tv)

=
2

(u, u)
(a(u, v)− λR(u, v)) .

For a discussion of the convergence rate we need the Taylor series expansion up
to the term of second order

λR(u+ tv) = λR(u) + ∂λR(u; v)t+
1

2
∂2λR(u; v)t

2 + · · · ,(19)
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where the second derivative is

∂2λR(u; v) = ∂ (∂λR(u; v))

=
d

dt

∣∣∣∣∣
t=0

∂λR(u+ tv)

=
2

(u, u)
(a(v, v)− λR(v, v))− 8(u, v)

(u, u)2
(a(u, v)− λR(u, v)).

Condition of the Eigenvalue Problem
The condition analysis follows the one given in [7]. We assume that an eigenpair
u, λ of (8) is given and a small pertubation in form of an additional operator
t · C, t ∈ R changes the original problem to

(A + tC)u(t) = λ(t)u(t).

Differentiation at t = 0 yields

Au̇+ Cu = λ̇u+ λu̇.

A scalar multiplication from left with the adjoint eigenvector of the unperturbed
system gives for the left hand side

(u,Au̇) + (u, Cu) = (A∗u, u̇) + (u, Cu)

= (λu, u̇) + (u, Cu),

and for the right hand side

(u, λ̇u) + (u, λu̇) = (λu, u̇) + λ̇(u, u) ,

and finally we obtain

λ̇ = ∂λ(A;C) =
(u, Cu)

(u, u)
.(20)

As long as the Taylor series expansion holds, it is

λ(t) = λ + ∂λ(A;C)t+ · · · ,

and the deviation Δλ of the perturbed eigenvalue from the original one is in first
order

Δλ =
(u, Cu)

(u, u)
.(21)
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This result can further be approximated with

|Δλ| =

∣∣∣∣∣(u, Cu)

(u, u)

∣∣∣∣∣
≤ ‖u‖2 ‖C‖

|(u, u)|
= κ‖C‖ .(22)

Here, κ denotes the condition number

κ =
‖u‖2
|(u, u)| =

(u, u)

|(u, u)| ,

which is 1 if the eigenvector and its adjoint are parallel. For normal matrices A,
the result (22) is not only of first order but exact, see e. g. [5], chapter 2.

Residual based error estimation
From a different point of view we can use the same consideration to estimate the
iteration error. Assume that an approximate eigenpair ua, λa is given, which does

not fulfills (8) exactly, but leads to a residual r

Aua − λaua = r .

Now we can define an operator which causes a weak perturbation of the original
equation with a normalized vector ‖ua‖ = 1

Aua − r = λaua

Aua − r (ua, ua) = λaua

Aua −Cua = λaua ,

where the linear operator C : H1
0 (Ω)→ H1

0 (Ω) is defined for fixed vectors ua and

r as

Cv = r(ua, v) ,

with ‖C‖ = sup{‖Cv‖ : v ∈ H1
0 , ‖v‖ ≤ 1} = ‖r‖. This means we consider the

given approximated eigenpair as the exact solution of a nearby partial differential

equation. Now, using (21) we can estimate the eigenvalue error in first order to

Δλ =
(u, Cu)

(u, u)

=
(u, r(u, u)u)

(u, u)

=
(u, r)

(u, u)
.(23)
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The numerator of the right hand side of the last equation can be rewritten as

(u, r) = (u,Aua)− λa(u, ua)

= a(u, ua)− λa(u, ua)

=: r(u) .

Unfortunately, the exact solution u is not available, so that we have go back to
(22) to obtain an applicable residual based estimate

|Δλ| ≤ κ‖C‖ = κ‖r‖.(24)

3 Self-Adjoint Problem

Error analysis for the self-adjoint problem
In the case of a purely real dielectric function εD the operator A becomes self-
adjoint and hence we can represent any approximate eigenfunction ua (which is

assumed to be normalized) by a spectral decomposition using the orthonormal
eigenfunctions ei

ua =
∑
i

αiei , (ua, ua) = 1 .

Here we use a numbering of the modes, which assignes the mode under investiga-
tion to λ0, its next neighbor λ1 etc. The spectral decomposition of the residual
becomes

r = (A− λR)ua

=
∑
i

αi(λi − λR)ei

= α0(λ0 − λR)e0 + (λ1 − λR)

⎛
⎝α1e1 +

∑
i≥2

λi − λR

λ1 − λR
αiei

⎞
⎠ ,

where in the last equation all factors

qi =
λi − λR

λ1 − λR

≥ 1 for i > 1 .

Therefore we can represent the true eigensolution, which belongs to the λ0, with
the help of a smoothing operator S : L2(Ω)→ H1

0 (Ω) by

ua − 1

λ1 − λR
Sr = u0(25)

=

(
α0 − α0

λ0 − λR

λ1 − λR

)
e0

= α0

(
λ1 − λ0

λ1 − λR

)
e0,
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where (25) defines S. A comparison between the spectral decomposition of ua and
u0 shows that the operator S has the following properties

• it leaves the spectral component which belongs to λ0 and the nearest

neighbour, λ1, unchanged Se0 = e0, Se1 = e1
• it dampes all higher spectral components, Sei = (1/qi)ei, i > 1.

With these properties we have ‖Sr‖ ≤ ‖r‖ for all r and ‖S‖ = 1. Now it follows,

using the inverse triangle inequality

(u0 − ua, u0 − ua) =
(Sr, Sr)

(λ1 − λR)2
(26)

≥ ‖ua‖2 − ‖u0‖2(27)

‖u0‖2 ≥ ‖ua‖2 − (Sr, Sr)

(λ1 − λR)2
(28)

≥ 1− ‖r‖2
(λ1 − λR)2

.(29)

From (15), (23), (25) and(29) we obtain the desired estimate concerning the
eigenvalue error

|Δλ| =
|(u, r)|
(u, u)

=
1

(u, u)

∣∣∣∣∣(ua, r) − (Sr, r)

λ1 − λR

∣∣∣∣∣
≤ 1

(u, u)

(r, r)

|λ1 − λR|
≤ ‖r‖2
|λ1 − λR|

1(
1 − ‖r‖2

(λ1−λR)2

) .(30)

Further we get an estimate for the error of the approximated eigensolution

‖u0 − ua‖ ≤ ‖r‖
|λ1 − λR| .(31)

Both (30) as well as (31) contain the spectral distance |λ1 − λR| as significant

factor. Usually, only an estimate for the eigenvalue of the nearest neighbour is
available, e. g. via (24), which is always applicable, such that we have a deviation
Δλ1 from λ1 to take into account. A small deviation Δλ1 � |λ1 − λR| causes an
influence on the critical term like

1

|λ1 − λR| ±Δλ1
=

1

|λ1 − λR|
1

1± Δλ1

|λ1−λR|

≈ 1

|λ1 − λR|
(
1∓ Δλ1

|λ1 − λR|
)
,
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which transforms the uncertainty Δλ1 of λ1 into a realistic estimation

|Δλ|Δλ1 �=0 ≈ |Δλ|Δλ1=0

(
1 +

|Δλ1|
|λ1 − λR|

)
.

Minimax definition of the eigenvalues
The minimax defintion of the k-th eigenvalue [6], vol. 2, chap. 7, supplies a useful

frame to construct a numerical algorithm. The smallest eigenvalue is character-
ized by the smallest Rayleigh quotient

λ(u) = min
u∈H1

0

a(u, u)

(u, u)
.

The k-th eigenvalue is determined, without the knowledge of the k− 1 preceding

eigenvalues, by

λk(uk) = max
vi

min
u∈V

a(u, u)

(u, u)

subject to the constraints (u, vi) = 0,

where vi, i = 1 . . . k − 1, is any set of k − 1 linearly independent functions from

the space of admissible functions V = H1
0 .

4 Discussion of the Rayleigh-Quotient-Minimization

From these definitions we get the discrete problem through restriction onto Vh ⊂
H1

0

Discretization: λ(uh) = min
vh∈Vh

a(vh, vh)

(vh, vh)
, Vh ⊂ H1

0 .

As the subspace Vh lies in H1
0 , the minimum property of the Rayleigh quotient

is passed to the discrete formulation. If the numerical agorithm to detemine
the lowest eigenvalue and eigenvector is based on this property, one obtains in a
straight forward way the Rayleigh quotient-minimization procedure proposed by

Faddejew and Faddejewa [1] in 1963

R(uh + tvh) = min
t∈R

a(uh + tvh, uh + tvh)

(uh + tvh, uh + tvh)
,

i. e. , the Rayleigh quotient is one dimensional minimized in direction of the
function vh. The use of all nodal basis functions results in the nonlinear Gauß-
Seidel-minimization, the use of global, mutually orthogonal basis functions leads

to the nonlinear cg-minimization (Bradwick, Fletcher 1966 [4], Polak
1971 [3] ).
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A multigrid formulation (McCormick 1992, [2]) is obtained, if additional nodal
basis functions vH ∈ VH of a coarser space VH ⊂ Vh as search directions are added

R(uh + tvH) = min
t∈R

a(uh + tvH, uh + tvH)

(uh + tvH, uh + tvH)

= min
t∈R

a(uh, uh) + 2t · a(uh, vH) + t2a(vH, vH)

(uh, uh) + 2t · (uh, vH) + t2(vH, vH)
.

With the help of the mapping πh, which converts the nodal value representation

of a given vector vh into the related finite element function vh with basis functions
Ψi,

πh : R
N → L2, πhvh = vh =

∑
i

vh(i)Ψi

one obtains an algorithmically direct accessible form of the representation of fine

grid quantities on the coarse mesh

a(uh, vH) = 〈Ahuh, π
−1
h vH〉

= 〈Ahuh, π
−1
h πHπ

−1
H vH〉

= 〈(π−1
h πH)

∗Ahuh, vH〉.
Altogether, this gives the restrictions

Ahuh → IHh · (Ah · uh), Mhuh → IHh · (Mh · uh),

where IHh means the usual restriction operator. Through the additional restric-

tion one has to realize approximately twice the effort to perform one V-cycle, in
comparison with the linear procedure, if numerator and denominator are updated
recursively.

Algorithmic realization of the minimax-principle
So far we have concentrated on the minimization of the discrete Rayleigh quotient,
i. e. , we have approximated the lowest eigenvector. In order to approximate the
next few eigenvectors, we apply the minimax-principle in the following way. As-

sume, a space of k−1 linear independend approximations Sk−1 = (s1, s2, . . . , sk−1)
is given. Now we carry out one step of the minimax procedure in modified form

λk(uk) = max
si∈Sk�1

min
u∈Vh

a(u, u)

(u, u)

subject to the constraints (u, si) = 0, i = 1 . . . k − 1 .

Here we have restricted the whole space over which to maximize to the space

Sk−1. If we have found a function u, which fulfills the minimum condition, we
have to obey the maximum condition for all k − 1 linear independend vectors
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v ∈ Sk−1. With αi ∈ R, i = 1 . . . k, the task to determine the maximum can be
formulated as

λk(sk) = max
α1,...,αk

a(
∑k

i=1 αisi,
∑k

i=1 αisi)

(
∑k

i=1 αisi,
∑k

i=1 αisi)

= max
α∈Rk

aRitz(α, α)

(α, α)Ritz
.

This shows, that the determination of the maximum required in the minimax-
principle is the same as to solve a new eigenproblem of the dimension k. This

Ritz-projection step and the different proposals for a multi-level minimization
of the Rayleigh quotient are the basis of the algorithmic proposals in in the
following two sections. In the following we consider only the case of the self-
adjoint eigenproblem. The more general symmetric complex eigenproblem will

be the topic of future work.
The basic procedure of all proposed algorithms is the one-dimensional minimiza-
tion along a given function p. This procedure, lineMin, is described in Fig. 1
using a pseudo code notation. It determines the scale-factor T, and updates the

vectors Ax,Mx and the numbers xAx, xMx. Note, that the procedure itself does
not know the current solution vector approximation. All information necessary
is contained within these vectors and numbers.
In order to test the behavior of the Rayleigh quotient minimization in the context

of typical applications from integrated optics, we investigated at first 1D models
two different classes of problems. The first class concerns single and multimode
waveguides, which are characterized by a clear separation of the lowest modes.

The second class concerns coupler structures being in fact multimode waveguides
too, but posses low eigenvalues, which are very close to each other. All iterations
have been performed with uniform refinement.

4.1 Nonlinear Gauß-Seidel

Fig. 2 demonstrates the application of the line search procedure lineMin in the
classic way, resulting in the standard node based minimization routine [1].
The algorithmic realization of the multigrid procedure is explained in Fig. 3.

Note, that the smoother, which is in this case the nonlinear Gauß-Seidel-smoother
can be exchanged by a cg-based smoother discussed later.
Fig. (4) and (5) show the typical iteration behavior using an example from the first

problem class (slab waveguide). As expected, the number of iterations remains
asymptotically constant and the convergence rate is excellent.

Convergence in case of modes with close eigenvalues
In some applications from the second class of problems, the nonlinear Gauß-
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function (Ax,Mx, xAx, xMx, T ) = lineMin(A,M,Ax,Mx, xAx, xMx, p)

β = (Ax)′p;
b = (Mx)′p;

γ = p′Ap;
c = p′Mp;

q = b · γ − β · c;
r = c · xAx− γ · xMx;

s = xMx · β − b · xAx;

t1,2 =
r

2q
·
(
1±

√
1− 4qs

r2

)
;

Ax1,2 = Ax+ t1,2Ap;

xAx1,2 = xAx+ 2t1,2β + t21,2γ;

Mx1,2 = Mx+ t1,2M p;

xMx1,2 = xMx+ 2t1,2b+ t21,2c;

RQ1,2 =
xAx1,2
xMx1,2

;

i = i(min
1,2

RQi);

Ax = Axi;

xAx = xAxi

Mx = Mxi;

xMx = xMxi;

T = ti;

end;

Fig. 1. Line search procedure
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function (Ax,Mx, xAx, xMx, d) = NLGS(A,M,Ax,Mx, xAx, xMx)

d = 0;

for i = 1 : N // all nodes

p = 0;
p(i) = 1;

(Ax,Mx, xAx, xMx, t) = lineMin(A,M,Ax,Mx, xAx, xMx, p);
d = d+ t · p;

end;

end;

Fig. 2. Nonlinear Gauß-Seidel minimization

Seidel-minimization becomes qualitatively slower than before. In order to analyze

this behavior, let us consider a linearized minimization procedure. If we are close
to the exact eigenvalue, we can expand the Rayleigh quotient into a Taylor series
up to the terms of second order (see (19)) and the requirement

∂λR(u+ tv)

∂t
= 0

is approximately fulfilled by

t = − ∂λR(u; v)

∂2λR(u; v)
.

In general, we have a situation, where ∂λR(u; v) is close to zero for all v and
|∂2λR(u; v)| � |∂λR(u; v)|. In this case, the numerator ∂λR(u; v) dominates the

nodal correction. The spectral decomposition of the eigenvector approximation u
with the help of the orthonormal set of eigenfunctions ei gives the representation

∂λR(u; v) =
2

(u, u)
(a(u, v)− λR(u, v))

=
2

(u, u)

(∑
i

αi(λi − λR)(ei, v)

)
.

This shows that the nodal correction depends on the search-direction v and on
the spectral distance between the Rayleigh quotient and the neighbouring modes.
If Δλ denotes the spectral distance between the neighbouring modes, we have

if Δλ→ 0 then t→ 0 .
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function (Ax,Mx, xAx, xMx, d) = RQMinMG(l, Al,Ml, Axl,Mxl, xAx, xMx)

dl = 0;

dNewl = 0;
// initialize

if l = 1 // exact solution on the coarsest grid

λl(x1) = min
v∈V1

x′1A1 x1
x′1M1 x1

else

//presmooth

(Axl,Mxl, xAx, xMx, dNewl) = NLGS(Al,Ml, Axl,Mxl, xAx, xMx);

dl = dl + dNewl

//restriction

Al−1 ← Al;

Ml−1 ← Ml;

Axl−1 ← Axl;

Mxl−1 ← Mxl;

(Axl−1,Mxl−1, xAx, xMx, dl−1) = RQMinMG(l− 1, Al−1,Ml−1,

Axl−1,Mxl−1, xAx, xMx);

//prolongation

dl−1 → dNewl;

dl = dl + dNewl;

Axl = Axl + Al · dNewl;

Mxl = Mxl +M · dNewl;

//postsmooth

(Axl,Mxl, xAx, xMx, dNewl) = NLGS(Al,Ml, Axl,Mxl, xAx, xMx);

dl = dl + dNewl;

end;

Fig. 3. Multigrid procedure using the nonlinear Gauß-Seidel smoother
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The convergence rate diminishes when the neighboring eigenvalues becomes closer.
The refractive index distribution of an test-problem characterized by very close
neighboring modes is given in Fig. 7. The coefficients given here do not belong to

any real problem, because the coefficient-jumb is much larger than in real prob-
lems, but the model is well suited to test the iteration behavior of the different
algorithms. The related iteration numbers are shown in Fig. iter1D. The nonlin-

ear Gauß-Seidel procedure discussed so far needs on the second level a very large
number of iterations, which makes the method for practical purposes to slow.

4.2 Nonlinear CG

In order to have an alternative minimization procedure, we consider the nonlinear
conjugate-gradient based minimization [4] and [3].

function (Ax,Mx, xAx, xMx, d) = NLCG(A,M,Ax,Mx, xAx, xMx)

RQ =
xAx

xMx
;

d = 0

for i = 1 : cgSteps

g1 =
2

xMx
(Ax− RQMx);

if i == 1

p = −g1;
else

ε1 =
(g′1 − g′2)g1

g′2g2
;

p = −g1 + ε1p1;

end;

(Ax,Mx, xAx, xMx, t) = lineMin(A,M,Ax,Mx, xAx, xMx, p);
d = d+ t · p;
p1 = p;
g2 = g1;
RQ = xAx

xMx ;

end;

Fig. 6. Nonlinear conjugate-gradient minimization (Polak-Ribiere)

The nonlinear cg-minimization in its multigrid version, with 3 smoothing steps at
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each level, applied to our model problem supplies a more stable iteration (Fig.8)
than the nodal based minimization. Moreover, the number of iterations needed

to meet the desired accuracy (a relative error of 10−7 in the eigenvalue) is lower.

4.3 Preconditioned Nonlinear CG

Preconditioning of conjugate gradient methods has been proved to be of great
advantage not only for linear systems but also for the Rayleigh quotient minimiza-
tion [9]. As we have the nonlinear cg and the nonlinear Gauß-Seidel available, we
construct a preconditioned cg combining both methods in generalization of the

linear preconditioning.
This combination is represented in Fig. 9. The nodal based minimization is
imbedded within the conjugate-gradient frame like it is the usual way to perform
a preconditioned cg-routine. In contrast to the way of preconditioning described

in [9], which uses a linear system solution, we propose a complete nonlinear
method.
In this way, the structure of the cg-method is maintained.

5 Subspace Iterations

From the analysis of the iteration behavior it became clear that the convergence
rate diminishes when the eigenvalues occur in clusters. This remains true inde-
pendent of the iteration procedure used to minimize the Rayleigh quotient. A
common idea to overcome this difficulty is to embed the single-vector iteration

into a subspace iteration such that the closely neighboring modes are iterated
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simultaneously. Within this section we we want to discuss possible realizations
of such subspace iterations based on the minimization routines (nonlinear cg,

nonlinear Gauß-Seidel, preconditioned nonlinear cg).

5.1 Simultaneous Nonlinear CG

Fig. 10 demonstrates the structure of cg-based simultaneous multigrid Rayleigh
Quotient minimization procedure. The only difference with respect to the stan-
dard procedure Fig. 6 lies in the use of the orthogonalization algorithm orthoL2,
which makes the current search direction orthogonal to all preceeding col − 1

ones. In order to complete the discussed minimax-approach, a Ritz-step has to
be added after each minimization run.

5.2 Simultaneous Nonlinear Gauß-Seidel

In contrast to the nonlinear cg, it becomes impossible to orthogonalize the single
search direction of the nodal based nonlinear Gauß-Seidel with respect to the
preceeding vectors of the subspace S, if the basis vectors of the subspace was

already mutually orthogonal. Instead of using search directions with numbers
of degrees of freedom larger than the dimension of the subspace, which would
make the orthogonalization possible, we propose an orthogonalization after a the
complete run over each level.
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function (Ax,Mx, xAx, xMx, d) = NLPCG(A,M,Ax,Mx, xAx, xMx)

d = 0;

for i = 1 : cgSteps

RQ =
xAx

xMx
;

g1 =
2

xMx
(Ax− RQMx);

Axc = Ax;

xAxx = xAx;

Mxc = Mx;

xMxx = xMx;
// dummies

(Axc,Mxc, xAxc, xMxc, pg1) = NLGS(A,M,Axc,Mxc, xAxc, xMxc);

if i == 1

p = −pg1;
else

ε1 =
(g′1 − g′2)pg1

g′2pg2
;

p = −pg1 + ε1p1;

end;

(Ax,Mx, xAx, xMx, t) = lineMin(A,M,Ax,Mx, xAx, xMx, p);

d = d+ t · p;
p1 = p;

g2 = g1;

pg2 = pg1;

end;
end;

Fig. 9. Preconditioned nonlinear conjugate-gradient minimization
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function (Ax,Mx, xAx, xMx, d) = NLCGn(col, S, A,M,Ax,Mx, xAx, xMx)

// It is assumed that x is L2 -orthogonal to all n

// column-vectors of the subspace S

RQ =
xAx

xMx
;

for i = 1 : cgSteps

g1 =
2

xMx
(Ax− RQMx);

if i == 1

p = −g1;
else

ε1 =
(g′1 − g′2)g1

g′2g2
;

p = −g1 + ε1p1;

p = orthoL2(col, S, p);

end;

(Ax,Mx, xAx, xMx, t) = lineMin(A,M,Ax,Mx, xAx, xMx, p);
d = d+ t · p;
p1 = p;
g2 = g1;
RQ = xAx

xMx ;

end;

end;

Fig. 10. Subspace nonlinear conjugate-gradient minimization (Polak-Ribiere)
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function (Ax,Mx, xAx, xMx, d) = NLGSn(col, S, A,M,Ax,Mx, xAx, xMx)

d = 0;

xAx0 = xAx;

xMx0 = xMx;

Ax0 = Ax;

Mx0 = Mx;

for i = 1 : N // all nodes

p = 0;
p(i) = 1;

(Ax,Mx, xAx, xMx, t) = lineMin(A,M,Ax,Mx, xAx, xMx, p);
d = d+ t · p;

end;

//defect correction via reorthogonalization

d = orthoL2(col, S, d);

// correction of Ax,Mx,xAx,xMx

Ax = Ax0 + Ad;

Mx = Mx0 + Md;

xAx = xAx0 + 2dAx0 + dAd;

xMx = xMx0 + 2dMx0 + dMd;

end;

Fig. 11. Subspace nonlinear Gauß-Seidel minimization
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5.3 Simultaneous Nonlinear Preconditioned CG

The preconditioned nonlinear cg demonstrated here uses the nonlinear Gauß-

Seidel smoother as preconditioner. The algorithm differs only slightly from the
basic routines. The standard preconditioner NLGS has to be replaced by its
subspace variant NLGSn. In comparison with the unpreconditioned subspace cg,
the procedure does not need an explicit orthogonalisation of the search direction

p, because the preconditioned gradient pg1 is already orthogonalized.

6 Discussion and Application of the Algorithms in 2D

The main field of applications of the algorithms described so far will be the analy-
sis of the lowest eigenmodes of 2D cross-sections of integrated optics components.
As example we investigate the four lowest modes of a strip-loaded coupling struc-

ture . This problem has been turned out to be a difficult one [8].
The geometry and the initial triangulation are given in Fig. 15. The normalized
dielectric coefficients are εD = 16.43222 in air, εD = 165.1258 in cladding and εD =

187.728 in guide and substrate. These numbers results from a vacuum-wavelength
of 1.55μm. The intensity plot of the fundamental mode, given in Fig. 16, shows
that the essential part of the solution is concentrated in the waveguide slab, but
a slight part is distributed around the ribs. Fig. 13 shows the related number

of iterations for all four modes simulated simultaneously versus the number of
nodes. The preconditioned cg-version needs the smallest number of iterations,
followed by the standard multigrid cg-minimization and the point Gauß-Seidel
minimization. However, if we consider the accumulated CPU-time Fig. 14, it

turns out, that the minimization using the pure cg-method is the most effective
one.

Conclusions

The following results have been presented:
1. An effective implementation of the multilevel based Rayleigh quotient

minimization was developed.
2. The efficiency of the nonlinear cg-method as basic minimization proce-

dure has been confirmed.

3. The multilevel minimization algorithm has been extended to a subspace-
multilevel minimization procedure.

4. In analogy to linear preconditioned cg-algorithms a hybrid method con-
sisting of the nonlinear cg-method with an embedded nodal basis smoother

has been proposed.
5. Numerical experiments based on realistic integrated optics components

have shown the applicability of the proposed algorithms.
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function (Ax,Mx, xAx, xMx, d) = NLPCG(col, S, A,M,Ax,Mx, xAx, xMx)

d = 0;

for i = 1 : cgSteps

RQ =
xAx

xMx
;

g1 =
2

xMx
(Ax− RQMx);

Axc = Ax;

xAxx = xAx;

Mxc = Mx;

xMxx = xMx;
// dummies

(Axc,Mxc, xAxc, xMxc, pg1) = NLGSn(col, S, A,M,Axc,Mxc, xAxc, xMxc);

if i == 1

p = −pg1;
else

ε1 =
(g′1 − g′2)pg1

g′2pg2
;

p = −pg1 + ε1p1;

end;

(Ax,Mx, xAx, xMx, t) = lineMin(A,M,Ax,Mx, xAx, xMx, p);

d = d+ t · p;
p1 = p;

g2 = g1;

pg2 = pg1;

end;
end;

Fig. 12. Preconditioned nonlinear conjugate-gradient minimization
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Fig. 14. Accumulated CPU-time vs. number of nodes.
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