
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

GUILLAUME SAGNOL, RADOSLAV HARMAN

Optimal Designs for Steady-state
Kalman filters

ZIB Report 14-39 (October 2014)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782



Optimal Designs for Steady-state Kalman filters

Guillaume Sagnol, Radoslav Harman

Abstract

We consider a stationary discrete-time linear process that can be ob-
served by a finite number of sensors. The experimental design for the
observations consists of an allocation of available resources to these sen-
sors. We formalize the problem of selecting a design that maximizes the
information matrix of the steady-state of the Kalman filter, with respect
to a standard optimality criterion, such as D− or A−optimality. This
problem generalizes the optimal experimental design problem for a lin-
ear regression model with a finite design space and uncorrelated errors.
Finally, we show that under natural assumptions, a steady-state optimal
design can be computed by semidefinite programming.

1 Introduction

We consider a stationary discrete-time linear process with a state vector
xt ∈ Rn:

xt = F xt−1 + Lνt, (t = 1, 2, . . .) (1)

where F is an n × n transition matrix, L is an n × ` noise selection
matrix, and νt ∼ N (0, I`) is a process noise. In addition, we assume

x0 ∼ N (x̂0,Σ0). Uncorrelated observations y
(1)
t , . . . ,y

(s)
t of the process

are available at each time step:

∀i = 1, . . . , s, y
(i)
t = Hixt + v

(i)
t

where the ith observation matrix Hi is ri×n and the measurements errors
satisfy v

(i)
t ∼ N (0, σ2

i Iri). We can group the measurements at time t,
which gives a multidimensional observation

yt = Hxt + vt (2)

of size r =
∑s
i=1 ri, with H = [HT

1 , . . . , H
T
s ]T , and vt ∼ N (0, R) where

R is the r × r block diagonal matrix whose ith diagonal block is σ2
i Iri .

The random vectors {x0,ν1, . . . ,νt, . . . ,v1, . . . ,vt, . . .} are assumed to be
mutually independent.

In this article, we are concerned with the case where the variance σ2
i

depends on the quantity wi of resources dedicated to the ith observation.
More precisely, we assume that σ2

i = 1
µi(wi)

, where µi is a nondecreasing,
concave and continuous function mapping R+ onto itself, and such that
µi(0) = 0. The interpretation for wi = 0 is that σ2

i = +∞, meaning that
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y
(i)
t is unobserved if no resource is allocated to the ith observation point.

The vector w = [w1, . . . , ws] ∈ Rs+ will be called a measurement design,
or simply a design for the dynamic process (1)-(2).

The problem studied in this paper is the optimal allocation of resources
to the s observation points, when the resources are limited and the design
w must be selected within a compact set W ⊂ Rs+ prior to the beginning
of the dynamic process.

The process described by Eq. (1)-(2) contains the natural ingredients
to run a Kalman filter, cf. Eq. (4)-(8), which yields at each time t an
unbiased estimator x̂t of xt that is linear with respect to the observations
y1, . . . ,yt, and with Loewner-minimum covariance matrix in the class of
all linear unbiased estimators of xt; see, e.g., [13, Section 5.2]. Under
standard assumptions (see Section 2), the information matrix Mt, which
is defined as the inverse of the variance-covariance matrix Σt of the error
(x̂t − xt), converges to a constant matrix M∞. This limit depends only
on the design w (and not on the initial state x0 or the measurements
y1,y2, . . .), and is the unique positive definite solution X of the discrete
algebraic Riccati equation (written here in information form):

X =
(
FX−1FT + LLT

)−1
+M(w), (3)

where M(w) :=
∑s
i=1 µi(wi)H

T
i Hi. To stress this dependency, we de-

note by M∞(w) the unique positive definite solution X of (3). A natural
approach hence consists in choosing w ∈ W so as to maximize an appro-
priate scalarization Φ

(
M∞(w)

)
of the steady-state information matrix.

The main result of this paper (Theorem 3.5) shows that under natural
conditions on Φ(), µi() and W, this problem can be solved using semidef-
inite programming (SDP).

The problem of maximizing Φ
(
M∞(w)

)
overW is in fact a generaliza-

tion of a classical problem which has been extensively studied by statisti-
cians: in the standard optimal experimental design problem, the quality of
a design w is measured by a function of the form w → Φ

(
M(w)

)
, where

M(w) =
∑s
i=1 wiH

T
i Hi. This corresponds to the expression of M∞(w)

when no information can be gained from the observation of a dynamic
process (so “LLT → +∞”), and µi(wi) = wi for all i. The approach pre-
sented in this paper thus extends the standard optimal design theory to
deal with the situation where information can be gained from the knowl-
edge of the system dynamics. We refer the reader to Pukelsheim [10] for a
comprehensive monograph on the theory of optimal experimental designs.

Related Work The results presented in this paper answer a question
raised in [14] by Singhal and Michailidis, who have considered a problem
applicable in telecommunications, where F = In and each Hi has a single
nonzero entry per row. The authors propose to use Second-Order Cone
Programming to maximize the smallest element of the diagonal steady-
state information matrix, i.e., they use the criterion of E−optimality. In
contrast, the semidefinite programming approach of the present paper
allows one to handle non-diagonal covariance matrices.

Steady-state sensor optimization problems have also been considered
elsewhere: for example [5] use a gradient descent to minimize a bound of
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the steady-state covariance matrix. Another related article is the sensor
scheduling problem studied in [9], where the authors consider a continuous
time model dxt

dt
= Fxt+Lvt. In [9], the design weights wi are interpreted

as probabilities to activate the ith sensor at time t, and are optimized by
semidefinite programming with respect to a specific criterion, which is in
fact weighted A−optimality.

Notation Throughout this article, we denote by Sn (S+
n ,S++

n ) the set of
n × n symmetric (positive semidefinite, positive definite) matrices. The
symbol � denotes the Löwner ordering (A � B ⇐⇒ B − A ∈ S+

n ), and
A ≺ B means that B −A ∈ S++

n .

2 The optimal design problem in a filter-
ing context

Assume (temporarily) that wi > 0 for all i ∈ {1, . . . , s}, so that R < +∞
and the Kalman filter equations read (see e.g. [13]):

x̂t+1|t = F x̂t, (4)

Σ̂t+1|t = FΣtF
T + LLT , (5)

Kt = Σ̂t+1|tH
T (HΣ̂t+1|tH

T +R)−1, (6)

x̂t+1 = x̂t+1|t +Kt(yt+1 −Hx̂t+1|t), (7)

Σt+1 = (In −KtH)Σ̂t+1|t, (8)

where x̂t+1|t is the a-priori estimator of xt+1 based on the observations

up to the time t, Σ̂t+1|t is the covariance matrix of x̂t+1|t, the matrix Kt

is the so-called optimal Kalman gain, x̂t+1 is the a-posteriori estimator
of xt+1 based on the observations up to the time t + 1, and Σt+1 is the
covariance matrix of x̂t+1.

Provided that (i) R is positive definite; (ii) the pair (F,L) is con-
trollable [8, Section C3], i.e. rank[L,FL, . . . , Fn−1L] = n; and (iii) the
pair (F,H) is detectable [8, Section C4], that is, rank[FT − λIn, HT ] = n
for all λ ∈ C such that |λ| ≥ 1, it is well known that the the sequence
of covariance matrices of the a-priori estimator of the state

(
Σ̂t+1|t

)
t∈N

converges to a constant matrix Σ−∞, that is the unique positive definite
solution of the discrete algebraic Riccati equation (DARE), see [13, Sec-
tion 7.3]. In this article, we work with information matrices rather than
with covariance matrices, and so we shall consider an alternative Riccati
equation in information form (3), which we call I-DARE. To derive it, note
that the correction equation (8) of the Kalman filter is sometimes given
under an alternative form, which can be obtained by using the Woodbury

matrix identity: Σt+1 =
(

Σ̂−1
t+1|t +HTR−1H

)−1

. This gives a simple up-

date formula for the information matrix Mt := Σ−1
t of the filter, which
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implies the I-DARE, see Eq. (3):

Mt+1 = Σ̂−1
t+1|t +HTR−1H =

(
FM−1

t FT + LLT
)−1

+

s∑
i=1

µi(wi)H
T
i Hi︸ ︷︷ ︸

M(w)

.

Now, let us remove the assumption that wi > 0 for all i ∈ {1, . . . , s}:
Recall that wi = 0 means that the sequence (y

(i)
t ) is unobserved. Hence

we define the reduced observation matrix Hw = [HT
i1 , . . . , H

T
iq ]T , where

{i1, . . . , iq} := {i ∈ {1, . . . , s} : wi > 0}. Similarly, Rw is the block
diagonal matrix whose kth diagonal block is 1

µik
(wik

)
Irik . The equations

of the Kalman filter are now obtained by substituting Hw for H and Rw

for R in Equations (4)–(8). This leaves the I-DARE (3) unchanged, since
HT

wR
−1
w Hw =

∑
i: wi>0 µi(wi)H

T
i Hi =

∑s
i=1 µi(wi)H

T
i Hi = M(w).

Now, for the rest of this article we assume that

A1. The pair (F,L) is controllable.

A2. The subset of detectable designs, W+ := {w ∈ W : (F,Hw)
is detectable} is nonempty.

A3. The criterion Φ : Sn+ 7→ R+ is isotonic (i.e., A � B =⇒ Φ(A) ≥
Φ(B)), continuous, concave, and Φ(M) = 0 if and only if M is
singular.

Assumption A3 is satisfied by most common criteria used in optimal

design, such as ΦD : M → detM
1
n , ΦE : M → λmin(M) or ΦA : M →

n/ traceM−1, see [10]. An isotonic criterion Φ is said to be strictly isotonic
if in addition it satisfies A 6= B,A � B =⇒ Φ(A) > Φ(B). For example,
ΦE is isotonic but not strictly isotonic.

Assumptions A1 and A2 ensure that Equation (3) has a unique positive
definite solution, which we denote by M∞(w), for all w ∈ W+:

Lemma 2.1. Equation (3) has a positive definite solution if and only
if the design w is detectable, i.e. w ∈ W+. Moreover, this solution is
unique.

We omit the proof of this result for the sake of length. 1. The idea
is to show that there is a one-to-one correspondence between the positive
definite solutions of the standard DARE and its counterpart in informa-
tion form I-DARE; then we can conclude by using known results on the
DARE (see e.g. [13, Theorems 23 and 25]).

So the problem of maximizing Φ
(
M∞(w)

)
over W+ is well defined,

and can be rewritten as follows:

sup
w∈Rs, X∈Sn

Φ(X) (9)

s. t. X =
(
FX−1FT + LLT

)−1
+

s∑
i=1

µi(wi)H
T
i Hi

X � 0, w ∈ W+.

1proof at the discretion of the reviewers in Appendix
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3 Semidefinite Programming formula-
tion

We next give a series of propositions that basically show that the Riccati
equation in (9) may be replaced by a linear matrix inequality (LMI). The
proofs of these results will appear in a full-length version of this paper2.
In fact, Propositions 3.2 and 3.3 are similar to existing results concerning
the inequality version of the standard DARE, see e.g. Appendix E in [8].
However, our LMI representation of the closure of the set {X � 0 : X �(
FX−1FT +LLT

)−1
+M(w)}, cf. Proposition 3.1, is completely new. Its

proof is inspired by the LMI representation of the harmonic mean of two
matrices, cf. § 4.1 in [2], and is presented at the end of this Section.

Let us first introduce the sets

X (w) :=
{
X � 0 : ∃U ∈ Sn : (i) : X = U +M(w) (10)

(ii) :

(
X − FTUF FTUL
LTUF I` − LTUL

)
� 0

}
,

and
X+(w) := {X � 0 : f(X,w) � 0},

where f(X,w) :=
(
FX−1FT + LLT

)−1
+M(w)−X.

The first proposition of this series shows the relation between these
two sets:

Proposition 3.1. For all designs w ∈ W, we have X (w)∩S++
n = X+(w).

Then, we shall see that X (w) is bounded, and hence X+(w) is bounded
as well:

Proposition 3.2. For all designs w ∈ W, the set X (w) is bounded.
Moreover, there exists a constant α ≥ 0 such that X ∈ X (w) =⇒ ‖X‖2 ≤
α(1 +

∑
i µi(wi)‖Hi‖

2
2), where ‖M‖2 denotes the spectral norm of M .

This proposition will be useful to show that X+(w) has a maximal
element:

Proposition 3.3. Assume that X+(w) is nonempty. Then, there is a
matrix X∗w ∈ X+(w) such that

X ∈ X+(w) =⇒ X � X∗w.

Moreover, this maximal element necessarily satisfies f(X∗w,w) = 0, so
that w is detectable and X∗w = M∞(w).

In consequence, we can deduce equivalent statements for a design w
to be detectable:

Corollary 3.4. The following statements are equivalent:

(i) The design w is detectable, i.e. w ∈ W+;

(ii) The I-DARE equation f(X,w) = 0 has a positive definite solution
X � 0;

(iii) The LMI f(X,w) � 0 has a positive definite solution X � 0;

2Proofs are presented in Appendix for the sake of the reviewing process
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(iv) The set X+(w) is nonempty;

(v) There is a pair (X,U) ∈ S++
n × Sn satisfying the conditions (i) and

(ii) of the definition (10).

Proof. The equivalence (i)⇐⇒ (ii) follows from Lemma 2.1 and (iii)⇐⇒
(iv)⇐⇒ (v) is clear from the definitions of X+(w) and X (w) and Propo-
sition 3.1. The implication (ii) =⇒ (iii) is trivial, and by Proposition 3.3
we have (iv) =⇒ (i). Hence the corollary is proved.

The main result of this article follows. It shows that Problem (9) can
be reformulated by using linear matrix inequalities. As a consequence, a
solution w of the steady-state optimal design problem (9) can be com-
puted by semidefinite programming (under natural assumptions on Φ,W
and the functions µi, see Remark 3.6):

Theorem 3.5. Consider the following optimization problem:

max
w∈Rs

X,U∈Sn

Φ(X) (11a)

s. t.

(
X − FTUF FTUL
LTUF I` − LTUL

)
� 0 (11b)

X = U +

s∑
i=1

µi(wi)H
T
i Hi (11c)

X � 0 (11d)

w ∈ W. (11e)

This problem has a solution, i.e. the problem is bounded and the maximum
is reached for a triple (w∗, X∗, U∗). Moreover, w∗ is a solution of the

steady-state optimal design problem, max{Φ
(
M∞(w)

)
: w ∈ W+}. If in

addition Φ is strictly isotonic, then X∗ coincides with the optimal steady-
state information matrix M∞(w+).

Proof. We will prove this theorem in three steps:

1. We observe that the feasibility set of Problem (11) is compact, which
guarantees the existence of an optimal solution (w∗, X∗, U∗) by con-
tinuity of Φ. This is a direct consequence of the bound in Propo-
sition 2, together with the compactness of W and the continuity of
the µi.

2. We show that this solution necessarily satisfies X∗ � 0. Indeed, by
Assumption A2 there exists a detectable designw, so that M∞(w) �
0 and we know from Assumption A3 that Φ(M∞(w)) > 0. Hence
the optimal value of Problem (11) must be positive, which implies
that the optimal X∗ cannot be singular (Assumption A3).

3. To conclude, observe that Problem (11) can be rewritten as

max
w∈W

max
X∈X (w)

Φ(X),

and by point 2, we can replace X ∈ X (w) by X ∈ X+(w), see
Proposition 3.1. Moreover by Corollary 3.4 the optimal design w∗ is
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necessarily detectable (otherwise the maximization over X goes over
the empty set and so it takes the value −∞). Let X∗(w) denote an
optimal variable X of the inner problem, for a fixed w ∈ W+. Since
Φ preserves the Löwner ordering, the value Φ(X∗(w)) is necessarily

equal to Φ
(
M∞(w)

)
, because M∞(w) is the maximal element of

X+(w), see Proposition 3.3. If moreover Φ is strictly isotonic, then
the optimizer must be the maximal element: X∗(w) = M∞(w).
This proves the theorem.

Remark 3.6. Assume that W,Φ and the µi (i ∈ {1, . . . , s}) are
semidefinite-representable: a precise definition can be found in [1], but
basically it means that the constraint w ∈ W can be replaced by an LMI,
as well as constraints of the form Φ(M) ≥ t and µi(wi) ≥ ui. (For ex-
ample, it is known that the most common criteria ΦA,ΦD, and ΦE are
semidefinite representable [3], as well as all Kiefer’s Φp-criteria for a value
of p ∈ Q [12]; Concerning the scalar functions µi, every concave ratio-
nal function is semidefinite representable [6].) Then, it is straightforward
to reformulate Problem (11) as a semidefinite program (SDP). Note that
interfaces such as CVX [4] or PICOS [11] allows one to easily pass Prob-
lem (11) to modern interior-point solvers, without further reformulations.

Proof of Proposition 3.1 Let X � 0. Let [V T1 , V
T
2 ]T be a base of

Ker([F,L]), i.e., FV1 + LV2 = 0. The matrix [V T1 , V
T
2 ]T has full rank by

rank-nullity theorem and controllability of (F,L). So the matrix (V T1 V1 +
V T2 V2) is invertible.

The matrix ∆ :=

(
FX−1 −L
V T1 −V T2

)
is invertible. Indeed we can

check by direct calculation that its inverse is

(
FTT A1

−LTT −A2

)
, where

T = (FX−1FT + LLT )−1,

A1 =
(
V1 − FTT (FX−1V1 + LV2)

)
(V T1 V1 + V T2 V2)−1,

A2 =
(
V2 − LTT (FX−1V1 + LV2)

)
(V T1 V1 + V T2 V2)−1.

So,

(
X − FTUF FTUL
LTUF I` − LTUL

)
� 0 if and only if

∆

(
X − FTUF FTUL
LTUF I` − LTUL

)
∆T � 0⇐⇒ ∆

(
X 0
0 I`

)
∆T � ∆

(
F, −L

)T
U
(
F, −L

)
∆T .

We can simplify the last expression by using the relation FV1 +LV2 = 0.
This yields a block diagonal LMI with following expressions on the two
diagonal blocks:

FX−1FT + LLT � (FX−1FT + LLT )U(FX−1FT + LLT ); (12)

V T1 XV1 + V T2 V2 � 0. (13)
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The LMI (13) is always satisfied, and LMI (12) reduces to U �
(FX−1FT + LLT )−1 (after pre- and post-multiplication by (FX−1FT +
LLT )−1).

So, we have shown that (X,U) ∈ S++
n × Sn satisfies the condition (ii)

of Definition (10) if and only if U � (FX−1FT + LLT )−1. The rest of
the proof is easy. Let (X,U) ∈ S++

n × Sn satisfy conditions (i) and (ii)
of the definition of X (w). We have X � (FX−1FT + LLT )−1 + M(w),
that is, f(X,w) � 0, and hence X ∈ X+(w). Conversely, assume that
X � 0, f(X,w) � 0 and set U ′ := (FX−1FT +LLT )−1, U := X−M(w).
We know that (X,U ′) satisfies condition (ii) of (10), and since we have
f(X,w) � 0 ⇐⇒ U ′ � U , the pair (X,U) satisfies both conditions (i)
and (ii), that is, X ∈ X (w) ∩ S++

n .
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A Appendix: Proofs of intermediate re-
sults of Section 3

A.1 Proof of Lemma 2.1

Proof. We start to show that there is a one-to-one correspondence be-
tween the positive definite solutions of the the discrete algebraic Riccati
Equation

P = FPFT − FPHT
w(HwPH

T
w +Rw)−1HwPF

T + LLT , (14)

and of its counterpart in information form

M = (FM−1FT + LLT )−1 +HT
wR
−1
w Hw. (15)

Let M be a positive definite solution of (15), and set P := FM−1FT +
LLT . Note that this matrix is positive definite, because it can be written
as

P =
(
F L

)( M−1

I`

)(
F L

)T
and our controllability assumption (A1) implies that the matrix [F,L]
has full row rank. ( Indeed, If C = [L,FL, F 2L, . . . , Fn−1L] has rank n
then CCT has also rank n, but CCT = [F,L]B, where B is some matrix.
Thus, the n × (n + `)−matrix [F,L] must have full rank n. ) So we can
write M = P−1 +HT

wR
−1
w Hw. By the Woodbury matrix identity we have

M−1 = P − PHT
w(HwPH

T
w + Rw)−1HwP , and it is now clear that P

solves (14).
Conversely, if P is a positive solution of Eq (14), set

M := P−1 +HT
wR
−1
w Hw, which is also a positive definite matrix. As

above, we can write M−1 = P −PHT
w(HwPH

T
w +Rw)−1HwP , and so we

have P = FM−1FT + LLT . Finally, we have M := P−1 +HT
wR
−1
w Hw =

(FM−1FT + LLT )−1 +HT
wR
−1
w Hw, i.e. M solves (15).

Moreover, the two maps that we have defined above are inverses of each
other, between the set of positive definite solutions of the DARE and of
the I-DARE. Indeed, the map M 7→ FM−1FT +LLT can be rewritten as
M 7→ (M −HT

wR
−1
w Hw)−1 when M is a solution of the I-DARE, which is

clearly the inverse mapping of P 7→ P−1 +HT
wR
−1
w Hw.

Then, we can apply known results about the former Riccati equa-
tion (14): under our assumption (A1) that (F,L) is controllable, there ex-
ists a positive semidefinite solution to Eq. (14) if only if the pair (F,Hw)
is detectable, and moreover this solution is unique and positive definite
(see e.g. Theorems 23 and 25 in [13]). So the proof of the lemma is
complete.

A.2 Proof of Proposition 3.2

Let w ∈ W, X ∈ X (w) and U be a matrix satisfying (i) and (ii) in
the definition (10) of X (w). Define M(w) :=

∑s
i=1 µi(wi)H

T
i Hi. In

particular, (
U +M(w)− FTUF FTUL

LTUF I` − LTUL

)
� 0.
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Since (F,L) is controllable, there is a gain matrix N such that F+LN has
all his eigenvalues outside the unit disc of C, see [8, Sections C3 and C4],
and hence every eigenvalue of Γ = (F + LN)−1 lies inside the open unit
disc. Now, we obtain another positive semidefinite matrix by a congruence
operation:(

In −NT
)( U +M(w)− FTUF FTUL

LTUF I` − LTUL

)(
In
−N

)
� 0.

This gives:

U +M(w) +NTN − (F + LN)TU(F + LN) � 0.

Pre and post-multiplying by ΓT (resp. Γ), we obtain

U � ΓTUΓ +Qw,

where Qw := ΓT (M(w) +NTN)Γ � 0. Denote by U0 the unique solution
of the discrete-time Lyapunov equation U = ΓTUΓ +Qw, see [8, Section
D1]. We have

U − U0 � ΓT (U − U0)Γ � . . . � (ΓT )k(U − U0)Γk � . . . ,

and so U � U0 because Γk converges to 0 as k →∞.
Now, observe that U0 has a closed-form expression that can be ob-

tained by vectorizing the Lyapunov equation: vec(U0) = (In2 − ΓT ⊗
ΓT )−1 vec(Qw), where ⊗ denotes the Kronecker product. Using this rela-
tion, we obtain ‖U0‖F ≤ ‖(In2 − ΓT ⊗ ΓT )−1‖2 ·‖Qw‖F , where ‖M‖F :=√

trace(MMT ) denotes the Frobenius norm of M and ‖M‖2 is its spectral
norm. By using the definition of Qw, we can thus conclude that there ex-
ists a constant α′ ≥ 0 such that ‖U‖F ≤ α′(1+

∑
i µi(wi)‖Hi‖

2
F ). Finally,

we obtain the bound of the proposition, ‖X‖2 ≤ α(1 +
∑
i µi(wi)‖Hi‖

2
2)

for some α ≥ 0, by using (i) in Eq. (10) and the fact that the Frobenius
and spectral norms are equivalent.

A.3 Proof of Proposition 3.3

Let w ∈ W.We introduce the function g that maps S++
n onto Sn, defined

by g(X) = f(X,w) = (FX−1FT + LLT )−1 + M(w) − X. Note that
X ∈ X+(w) if and only if g(X) � 0.

The directional derivative of g in the direction of ∆ � 0 can be found

by using the formula dA−1

dt
= −A−1 dA

dt
A−1 and the chain rule:

Dg(M)[∆] := lim
ε→0

1

ε
(g(M + ε∆)− g(M))

= (FM−1FT + LLT )−1FM−1∆M−1FT (FM−1FT + LLT )−1 −∆.

Let X be a matrix in X+(w), such that g(X) 6= 0. We are going to
show that there exists a matrix X ′ in the neighborhood of X satisfying
X ′ � X, X ′ 6= X, g(X ′) � 0. This is equivalent to the following first
order property (see e.g., [7, Section VI.5.1]):

∃∆ � 0 : ∆ 6= 0, ∀u ∈ Ker(g(X)), uTDg(X)[∆]u ≥ 0.
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This condition is satisfied for ∆ := g(X) indeed, because the first term of
Dg(X)[∆] is a positive semidefinite matrix, and the term −uT∆u van-
ishes for all u ∈ Ker(g(X)). Hence, for all X0 ∈ X+(w) we can define a
sequence of matrices Xi ∈ X+(w) satisfying X0 � X1 � . . . Xn � . . . as
follows: Xn+1 = Ψ(Xn), where

Ψ(X) = X +

(
argmax

t>0

{
t : g

(
X + tg(X)

)
� 0
})

g(X).

The sequence (Xi) is bounded (by Propositions 3.1 and 3.2) and hence
it converges. (Indeed, if it has two accumulation points X∗1 and X∗2 , then
for all u ∈ Rn the nondecreasing sequence uTXiu converges to some value,
which must be equal to both uTX∗1u and uTX∗2u. Hence, uT (X∗1 −X∗2 )u
= 0 for all u, which proves X∗1 = X∗2 .) Denote this limit by X∗. The
above discussion shows that g(X∗) = 0, otherwise X∗ cannot be a fixed
point of Ψ. This means that X∗ is the unique positive definite solution of
the I-DARE (3). We have thus X0 � X∗ = M∞(w), and the proposition
is proved.
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