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Optimal Designs for Steady-state Kalman filters

Guillaume Sagnol, Radoslav Harman

Abstract

We consider a stationary discrete-time linear process that can be ob-
served by a finite number of sensors. The experimental design for the
observations consists of an allocation of available resources to these sen-
sors. We formalize the problem of selecting a design that maximizes the
information matrix of the steady-state of the Kalman filter, with respect
to a standard optimality criterion, such as D— or A—optimality. This
problem generalizes the optimal experimental design problem for a lin-
ear regression model with a finite design space and uncorrelated errors.
Finally, we show that under natural assumptions, a steady-state optimal
design can be computed by semidefinite programming.

1 Introduction

We consider a stationary discrete-time linear process with a state vector
x; € R™:
mt:F$t71+LlIt, (t:1,2,) (1)

where F' is an n X n transition matrix, L is an n X ¢ noise selection

matrix, and v: ~ N(0,I;) is a process noise. In addition, we assume
. . 1

xo ~ N (&0,%0). Uncorrelated observations yi >, . ,y§5> of the process

are available at each time step:
Vi=1,...,s, yi” =H¢:l:t+v§i)

where the_i“1 observation matrix H; is 7; X n and the measurements errors
satisfy vy) ~ N(0,02I,,). We can group the measurements at time ¢,

which gives a multidimensional observation
Yy, = He + v (2)

of size r = >°°_, 7y, with H = [H{,...,HI]", and v ~ N(0, R) where
R is the r x r block diagonal matrix whose i diagonal block is oZ1,.
The random vectors {xo,V1,...,V¢,...,V1,...,0s,...} are assumed to be

mutually independent.

In this article, we are concerned with the case where the variance o?
depends on the quantity w; of resources dedicated to the " observation.
More precisely, we assume that o2 = ﬁ7 where pu; is a nondecreasing,
concave and continuous function mapping R4 onto itself, and such that
1:(0) = 0. The interpretation for w; = 0 is that o7 = +co, meaning that



yii) is unobserved if no resource is allocated to the i*" observation point.
The vector w = [wy,...,ws] € RS will be called a measurement design,
or simply a design for the dynamic process (1)-(2).

The problem studied in this paper is the optimal allocation of resources
to the s observation points, when the resources are limited and the design
w must be selected within a compact set W C R prior to the beginning

of the dynamic process.

The process described by Eq. (1)-(2) contains the natural ingredients
to run a Kalman filter, cf. Eq. (4)-(8), which yields at each time ¢ an
unbiased estimator @: of @; that is linear with respect to the observations
Yy, .-, Yy;, and with Loewner-minimum covariance matrix in the class of
all linear unbiased estimators of x¢; see, e.g., [13, Section 5.2]. Under
standard assumptions (see Section 2), the information matrix M, which
is defined as the inverse of the variance-covariance matrix ¥; of the error
(£: — @+), converges to a constant matrix M. This limit depends only
on the design w (and not on the initial state xo or the measurements
Y1,Ys,--.), and is the unique positive definite solution X of the discrete
algebraic Riccati equation (written here in information form):

X =(FX'FT + LLT) ™ + M(w), (3)

where M(w) := 37, pi(wi)HI H;. To stress this dependency, we de-
note by Mo (w) the unique positive definite solution X of (3). A natural
approach hence consists in choosing w € W so as to maximize an appro-
priate scalarization ®(Meo(w)) of the steady-state information matrix.
The main result of this paper (Theorem 3.5) shows that under natural
conditions on ®(), i() and W, this problem can be solved using semidef-
inite programming (SDP).

The problem of maximizing ® (Mo (w)) over W is in fact a generaliza-
tion of a classical problem which has been extensively studied by statisti-
cians: in the standard optimal experimental design problem, the quality of
a design w is measured by a function of the form w — <I>(M (w)), where
M(w) = 3°°_, w;Hl H;. This corresponds to the expression of Mu(w)
when no information can be gained from the observation of a dynamic
process (so “LLT — 400”), and u;(w;) = w; for all i. The approach pre-
sented in this paper thus extends the standard optimal design theory to
deal with the situation where information can be gained from the knowl-
edge of the system dynamics. We refer the reader to Pukelsheim [10] for a
comprehensive monograph on the theory of optimal experimental designs.

Related Work The results presented in this paper answer a question
raised in [14] by Singhal and Michailidis, who have considered a problem
applicable in telecommunications, where F' = I,, and each H; has a single
nonzero entry per row. The authors propose to use Second-Order Cone
Programming to maximize the smallest element of the diagonal steady-
state information matrix, i.e., they use the criterion of F—optimality. In
contrast, the semidefinite programming approach of the present paper
allows one to handle non-diagonal covariance matrices.

Steady-state sensor optimization problems have also been considered
elsewhere: for example [5] use a gradient descent to minimize a bound of



the steady-state covariance matrix. Another related article is the sensor
scheduling problem studied in [9], where the authors consider a continuous
time model % = Fai+ Lv:. In [9], the design weights w; are interpreted
as probabilities to activate the i*® sensor at time ¢, and are optimized by
semidefinite programming with respect to a specific criterion, which is in
fact weighted A—optimality.

Notation Throughout this article, we denote by S, (S;,S;/) the set of
n x n symmetric (positive semidefinite, positive definite) matrices. The
symbol < denotes the Lowner ordering (A < B <= B — A € S}}), and
A < B means that B— A e S+,

2 The optimal design problem in a filter-
ing context

Assume (temporarily) that w; > 0 for all ¢ € {1,..., s}, so that R < +00
and the Kalman filter equations read (see e.g. [13]):

Tip1)e = Fie, (4)
S = FS FT + LLT, (5)
Kt = 2t+1\tI‘IT(lqiwruthT + R)717 (6)
L1 = By + Ke(ypr — HEpp), (1)
Y1 =Tn — KtH)i:t-»-l\n (8)

where :fct+1|t is the a-priori estimator of ;1 based on the observations
up to the time ¢, ﬁ)tﬂ‘t is the covariance matrix of &, 1};, the matrix K
is the so-called optimal Kalman gain, &:y1 is the a-posteriori estimator
of x14+1 based on the observations up to the time ¢ + 1, and X;11 is the
covariance matrix of &¢41.

Provided that (i) R is positive definite; (i¢) the pair (F,L) is con-
trollable [8, Section C3], i.e. rank[L, FL,...,F" '] = n; and (iii) the
pair (F, H) is detectable [8, Section C4], that is, rank[FT — \I,,, H ] = n
for all A € C such that |[A\| > 1, it is well known that the the sequence
of covariance matrices of the a-priori estimator of the state (it“'l‘i)tel\!
converges to a constant matrix Y, that is the unique positive definite
solution of the discrete algebraic Riccati equation (DARE), see [13, Sec-
tion 7.3]. In this article, we work with information matrices rather than
with covariance matrices, and so we shall consider an alternative Riccati
equation in information form (3), which we call -DARE. To derive it, note
that the correction equation (8) of the Kalman filter is sometimes given
under an alternative form, which can be obtained by using the Woodbury

. -1
matrix identity: X411 = (271 + HTRle) . This gives a simple up-

t+1]t
date formula for the information matriz My := X7 of the filter, which



implies the I-DARE, see Eq. (3):

My =37, +H' R H = (FM{'FT + LLT) 7+ pa(wi) HY H;
i=1
Now, let us remove the assumption that w; > 0 for all ¢ € {1,...,s}:

Recall that w; = 0 means that the sequence (ygi)) is unobserved. Hence
we define the reduced observation matrix H., = [HiTl, e Hg;}T7 where
{i1,...,iq} == {t € {1,...,s} : w; > 0}. Similarly, R, is the block
diagonal matrix whose k** diagonal block is mI riy - The equations
of the Kalman filter are now obtained by substlictutfng H,, for H and R,
for R in Equations (4)—(8). This leaves the I-DARE (3) unchanged, since

H};R;le = Zz w;>0 Ni(wi)HiTHi = Zf:1 Ni(wi)HiTHi = M(w).
Now, for the rest of this article we assume that

A1. The pair (F, L) is controllable.

A2. The subset of detectable designs, W = {w € W : (F,Hy)
is detectable} is nonempty.

A3.The criterion ® : S} +— R4 is isotonic (ie., A » B = ®(A) >
®(B)), continuous, concave, and ®(M) = 0 if and only if M is
singular.

Assumption A3 is satisfied by most common criteria used in optimal
design, such as ®p : M — detM%, Dp i M — Apin(M) or @4 : M —
n/trace M ', see [10]. An isotonic criterion ® is said to be strictly isotonic
if in addition it satisfies A # B, A = B = ®(A) > ®(B). For example,
® g is isotonic but not strictly isotonic.

Assumptions Al and A2 ensure that Equation (3) has a unique positive
definite solution, which we denote by Mc (w), for all w € WT:

Lemma 2.1. Equation (3) has a positive definite solution if and only
if the design w is detectable, i.e. w € WT. Moreover, this solution is
unique.

We omit the proof of this result for the sake of length. . The idea
is to show that there is a one-to-one correspondence between the positive
definite solutions of the standard DARE and its counterpart in informa-
tion form I-DARE; then we can conclude by using known results on the
DARE (see e.g. [13, Theorems 23 and 25]).

So the problem of maximizing <I>(Moo ('w)) over Wt is well defined,
and can be rewritten as follows:

sup P(X) )

weRsS, XeS,
st X=FXTFT 4+ LL") T+ wi(w) HY H;
i=1

X=0 weWw.

Iproof at the discretion of the reviewers in Appendix
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3 Semidefinite Programming formula-
tion

We next give a series of propositions that basically show that the Riccati
equation in (9) may be replaced by a linear matrix inequality (LMI). The
proofs of these results will appear in a full-length version of this paper?.
In fact, Propositions 3.2 and 3.3 are similar to existing results concerning
the inequality version of the standard DARE, see e.g. Appendix E in [8].
However, our LMI representation of the closure of the set {X = 0: X <
(FX'FT+LL") ~!' 4 M(w)}, cf. Proposition 3.1, is completely new. Its
proof is inspired by the LMI representation of the harmonic mean of two
matrices, cf. § 4.1 in [2], and is presented at the end of this Section.
Let us first introduce the sets

X(w)::{XtO: U EeS,: (i): X =U+ Mw) (10)
(i) - X-F"Ur  FTUL
L"UF  I,-L"UL )~
and
X (w):={X >0: f(X,w)>0},
where f(X,w) = (FX 'FT + LLT) ™" + M(w) — X.
The first proposition of this series shows the relation between these
two sets:
Proposition 3.1. For all designs w € W, we have X (w)NS+ = X T (w).

Then, we shall see that X' (w) is bounded, and hence X (w) is bounded
as well:

Proposition 3.2. For all designs w € W, the set X(w) is bounded.
Moreover, there exists a constant oo > 0 such that X € X(w) = || X2 <
a(l+ 3, wi(wi)||H;l|3), where | M||2 denotes the spectral norm of M.

This proposition will be useful to show that X*(w) has a maximal
element:

Proposition 3.3. Assume that X1 (w) is nonempty. Then, there is a
matriz X3, € X1 (w) such that

Xext(w) = X < X5,
Moreover, this mazimal element necessarily satisfies f(X;,,w) = 0, so
that w is detectable and X3 = Moo (w).

In consequence, we can deduce equivalent statements for a design w
to be detectable:

Corollary 3.4. The following statements are equivalent:
(i) The design w is detectable, i.e. w € WT;

(i) The I-DARE equation f(X,w) = 0 has a positive definite solution
X > 0;

(iwi) The LMI f(X,w) = 0 has a positive definite solution X > 0;

2Proofs are presented in Appendix for the sake of the reviewing process
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(iv) The set X+ (w) is nonempty;

(v) There is a pair (X,U) € SET x S, satisfying the conditions (i) and
(i) of the definition (10).

Proof. The equivalence (i) <= (i) follows from Lemma 2.1 and (ii3) <=
(iv) <= (v) is clear from the definitions of Xt (w) and X (w) and Propo-
sition 3.1. The implication (i7) = (¢4¢) is trivial, and by Proposition 3.3
we have (iv) = (7). Hence the corollary is proved. O

The main result of this article follows. It shows that Problem (9) can
be reformulated by using linear matrix inequalities. As a consequence, a
solution w of the steady-state optimal design problem (9) can be com-
puted by semidefinite programming (under natural assumptions on ®, W
and the functions p;, see Remark 3.6):

Theorem 3.5. Consider the following optimization problem:

max P(X) (11a)
weR?®
X, UEeS,,

X - FTUF FTUL
X=U+> pi(w)H] H, (11c)
i=1
X=0 (11d)
weW. (11e)

This problem has a solution, i.e. the problem is bounded and the maximum
is reached for a triple (w*, X*,U™). Moreover, w* is a solution of the
steady-state optimal design problem, max{® (MOo (w)) s weWTY Ifin
addition ® is strictly isotonic, then X™ coincides with the optimal steady-
state information matriz Moo (w™).

Proof. We will prove this theorem in three steps:

1. We observe that the feasibility set of Problem (11) is compact, which
guarantees the existence of an optimal solution (w*, X*,U™) by con-
tinuity of ®. This is a direct consequence of the bound in Propo-
sition 2, together with the compactness of W and the continuity of
the ;.

2. We show that this solution necessarily satisfies X* = 0. Indeed, by
Assumption A2 there exists a detectable design w, so that M (w) >
0 and we know from Assumption A3 that ®(M.(w)) > 0. Hence
the optimal value of Problem (11) must be positive, which implies
that the optimal X* cannot be singular (Assumption A3).

3. To conclude, observe that Problem (11) can be rewritten as

max max P(X),
weW XeX(w)

and by point 2, we can replace X € X(w) by X € Xt (w), see
Proposition 3.1. Moreover by Corollary 3.4 the optimal design w* is



necessarily detectable (otherwise the maximization over X goes over
the empty set and so it takes the value —00). Let X*(w) denote an
optimal variable X of the inner problem, for a fixed w € W*. Since
® preserves the Lowner ordering, the value ®(X™*(w)) is necessarily

equal to <I>(Moo (w)), because Moo (w) is the maximal element of

X1 (w), see Proposition 3.3. If moreover & is strictly isotonic, then
the optimizer must be the maximal element: X*(w) = My (w).
This proves the theorem.

O

Remark 3.6. Assume that W,® and the p; (¢ € {1,...,s}) are
semidefinite-representable: a precise definition can be found in [1], but
basically it means that the constraint w € W can be replaced by an LMI,
as well as constraints of the form ®(M) > t and p;(ws) > u;. (For ex-
ample, it is known that the most common criteria ® 4, Pp, and ¢g are
semidefinite representable [3], as well as all Kiefer’s ®,-criteria for a value
of p € Q [12]; Concerning the scalar functions p;, every concave ratio-
nal function is semidefinite representable [6].) Then, it is straightforward
to reformulate Problem (11) as a semidefinite program (SDP). Note that
interfaces such as CVX [4] or PICOS [11] allows one to easily pass Prob-
lem (11) to modern interior-point solvers, without further reformulations.

Proof of Proposition 3.1 Let X = 0. Let [Vi¥,Vif]T be a base of
Ker([F, L]), i.e., FVi + LVz = 0. The matrix [V", V5']T has full rank by
rank-nullity theorem and controllability of (F, L). So the matrix (Vi' V3 +
VQTVQ) is invertible.

FX-1' —L

The matrix A := < v v

) is invertible. Indeed we can

. . - . F'T Ay
check by direct calculation that its inverse is ITT A, ) where
- —Az

T=FX'F'+LL") ",
A = (V1 ~FTT(FX'Vi + ng))(va1 + VR

Ay = (1/2 —LTT(FX'Vi + LVg))(VlTvl V)L

X — FT(fF FTITL . .
—
So, < L"UF  I,-LTUL ) = 0 if and only if
X 0

A X - FTUF FTUL
0 I,

T
L"UF Ig—LTUL)A tO‘E’A<

) AT = A(F, —L)"U (F, —L)A".

We can simplify the last expression by using the relation F'Vi + LV, = 0.
This yields a block diagonal LMI with following expressions on the two
diagonal blocks:

FXT'FT 4+ LL" = (FXT'F" + LLYU(FX'FT + LL");  (12)
VI X VA4 Vs > 0, (18)



The LMI (13) is always satisfied, and LMI (12) reduces to U =
(FX7'FT 4 LLT)~! (after pre- and post-multiplication by (FX'FT +
LLT)™h.

So, we have shown that (X,U) € S}* x S,, satisfies the condition (i4)
of Definition (10) if and only if U < (FX*FT 4+ LLT)™'. The rest of
the proof is easy. Let (X,U) € S{+ x S, satisfy conditions (i) and (ii)
of the definition of X (w). We have X < (FX'FT 4 LLT)™! + M(w),
that is, f(X,w) = 0, and hence X € X" (w). Conversely, assume that
X =0,f(X,w)=0andset U' := (FX 'FT+LLT)™, U := X — M(w).
We know that (X,U’) satisfies condition (ii) of (10), and since we have
f(X,w) = 0 < U’ = U, the pair (X,U) satisfies both conditions (i)
and (i), that is, X € X(w) NS;T.
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A Appendix: Proofs of intermediate re-
sults of Section 3

A.1 Proof of Lemma 2.1

Proof. We start to show that there is a one-to-one correspondence be-
tween the positive definite solutions of the the discrete algebraic Riccati
Equation

P=FPF" - FPHL(HwPHy + Rw) "HwPF' + LL", (14)
and of its counterpart in information form
M= (FM'F"'+LL")"' + H R, H.. (15)

Let M be a positive definite solution of (15), and set P := FM~'FT +
LLT. Note that this matrix is positive definite, because it can be written

) P=(F L)(Mil L )(F L)”

and our controllability assumption (Al) implies that the matrix [F, L]
has full row rank. ( Indeed, If C = [L, FL, F?L,...,F""'L] has rank n
then CC7 has also rank n, but CCT = [F, L] B, where B is some matrix.
Thus, the n X (n + £)—matrix [F, L] must have full rank n. ) So we can
write M = P~'+ HL R,' H,,. By the Woodbury matrix identity we have
M~ = P - PHE(HwPHL + Ry) 'HywP, and it is now clear that P
solves (14).

Conversely, if P is a positive solution of Eq (14), set
M =P '+ HLR, 'H,, which is also a positive definite matrix. As
above, we can write M~' = P — PHL (HywPHL 4+ Ry) ™' Hy P, and so we
have P = FM~'FT 4+ LLT. Finally, we have M := P! + HLR'Hy =
(FM™'FT + LLT)™' + HL R Hu, ie. M solves (15).

Moreover, the two maps that we have defined above are inverses of each
other, between the set of positive definite solutions of the DARE and of
the I-DARE. Indeed, the map M +— FM 'FT + LLT can be rewritten as
M — (M — HLR,'H,,)~" when M is a solution of the -DARE, which is
clearly the inverse mapping of P — P~' + HL R ' H,,,.

Then, we can apply known results about the former Riccati equa-
tion (14): under our assumption (A1) that (F, L) is controllable, there ex-
ists a positive semidefinite solution to Eq. (14) if only if the pair (F, Hyw)
is detectable, and moreover this solution is unique and positive definite
(see e.g. Theorems 23 and 25 in [13]). So the proof of the lemma is
complete. O

A.2 Proof of Proposition 3.2

Let w € W, X € X(w) and U be a matrix satisfying (i) and (i¢) in
the definition (10) of X(w). Define M(w) = > °_, pi(wi)H H;. In
particular,

U+ M(w)—-FTUF FTUL -,
LTUF I,-L"uL )=



Since (F, L) is controllable, there is a gain matrix N such that F'+ LN has
all his eigenvalues outside the unit disc of C, see [8, Sections C3 and C4],
and hence every eigenvalue of I' = (F 4+ LN)~" lies inside the open unit
disc. Now, we obtain another positive semidefinite matrix by a congruence
operation:

T U+ Mw)-FTUF FTUL I,
_ > 0.
(I” N ) ( L"UF I,—L"UL N )=

This gives:
U+ M(w)+ N"N —(F+LN)"U(F+LN) = 0.
Pre and post-multiplying by I'" (resp. T'), we obtain
U=TUT + Qu,

where Qq := I'" (M (w) + NTN)T = 0. Denote by Uy the unique solution
of the discrete-time Lyapunov equation U = I'TUT 4 Qu, see [8, Section
D1]. We have

U—-Uy=TTWU -U)r=<... 2 (U -U)I* < ...,

and so U < Uy because T'* converges to 0 as kK — oo.

Now, observe that Uy has a closed-form expression that can be ob-
tained by vectorizing the Lyapunov equation: vec(Up) = (I,2 —T'7 ®
I'")~! vec(Quw), where ® denotes the Kronecker product. Using this rela-
tion, we obtain ||Us|lr < ||(Tn2 =TT @ TT) 7|2 +||Qu|| 7, where | M| :=
v/trace(M MT) denotes the Frobenius norm of M and || M]||2 is its spectral
norm. By using the definition of Q.,, we can thus conclude that there ex-
ists a constant o’ > 0 such that |U||r < o/ (143, ps(wi)||H:||7). Finally,
we obtain the bound of the proposition, || X||2 < a(1 + 3=, pi(wi)|| Hil3)
for some a > 0, by using (¢) in Eq. (10) and the fact that the Frobenius
and spectral norms are equivalent.

A.3 Proof of Proposition 3.3

Let w € W.We introduce the function g that maps S} onto S,,, defined
by g(X) = f(X,w) = (FX'FT + LL")™' + M(w) — X. Note that
X € Xt (w) if and only if g(X) = 0.

The directional derivative of g in the direction of A > 0 can be found

by using the formula d‘?izl = —Ail%frl and the chain rule:
. 1
Dg(M)[A] = lim  * (g(M +eA) — g(M)

= (FM'FT +LL"Y '"FM 'AM'F'(FM'FT + LL")' — A.

Let X be a matrix in Xt (w), such that g(X) # 0. We are going to
show that there exists a matrix X’ in the neighborhood of X satisfying
X' = X, X' # X, g(X') = 0. This is equivalent to the following first
order property (see e.g., [7, Section VI.5.1]):

SA>0:A#0, VueKer(9(X)), u” Dg(X)[Alu > 0.
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This condition is satisfied for A := g(X) indeed, because the first term of
Dg(X)[A] is a positive semidefinite matrix, and the term —u” Au van-
ishes for all u € Ker(g(X)). Hence, for all Xo € X" (w) we can define a
sequence of matrices X; € X+('w) satisfying Xo < X3 < ... X,, X ... as
follows: Xp41 = ¥(X,), where

U(X)=X+ (argntafg( {t: g(X +tg(X)) = O}) 9(X).

The sequence (X;) is bounded (by Propositions 3.1 and 3.2) and hence
it converges. (Indeed, if it has two accumulation points X{ and X3, then
for all u € R™ the nondecreasing sequence u? X;u converges to some value,
which must be equal to both u” X7u and u” X5u. Hence, u7 (X; — X3)u
= 0 for all u, which proves Xi = X35.) Denote this limit by X*. The
above discussion shows that g(X™*) = 0, otherwise X* cannot be a fixed
point of ¥. This means that X™ is the unique positive definite solution of
the I-DARE (3). We have thus Xo < X* = M (w), and the proposition
is proved.
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