
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

GERALD GAMRATH, ANNA MELCHIORI, TIMO BERTHOLD,
AMBROS M. GLEIXNER, DOMENICO SALVAGNIN

Branching on multi-aggregated variables

This paper is to appear in the Proceedings of the 12th International Conference on Integration of Artificial Intelligence and Operations Research Techniques in
Constraint Programming (CPAIOR 2015) held May 18-22, 2015, in Barcelona, Spain. The final publication is available at http://www.springerlink.com/.

ZIB Report 15-10 (February 2015)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de


Branching on multi-aggregated variables ∗

Gerald Gamrath†, Anna Melchiori‡, Timo Berthold§,
Ambros M. Gleixner¶, Domenico Salvagnin‖

Abstract

In mixed-integer programming, the branching rule is a key component to a fast con-
vergence of the branch-and-bound algorithm. The most common strategy is to branch on
simple disjunctions that split the domain of a single integer variable into two disjoint in-
tervals. Multi-aggregation is a presolving step that replaces variables by an affine linear
sum of other variables, thereby reducing the problem size. While this simplification typ-
ically improves the performance of MIP solvers, it also restricts the degree of freedom in
variable-based branching rules.

We present a novel branching scheme that tries to overcome the above drawback by con-
sidering general disjunctions defined by multi-aggregated variables in addition to the stan-
dard disjunctions based on single variables. This natural idea results in a hybrid between
variable- and constraint-based branching rules. Our implementation within the constraint
integer programming framework SCIP incorporates this into a full strong branching rule
and reduces the number of branch-and-bound nodes on a general test set of publicly avail-
able benchmark instances. For a specific class of problems, we show that the solving time
decreases significantly.

Keywords: mixed-integer programming, branch-and-bound, branching rule, strong branch-
ing

Mathematics Subject Classification: 90C10, 90C11, 90C57

1 Introduction

Since the invention of the branch-and-bound method for solving mixed-integer linear program-
ming in the 1960s [1, 2], branching rules have been an important field of research, being one of
its core components. For surveys, see [3, 4, 5]. In this paper we address branching strategies for
mixed-integer linear programs (MIPs) of the form

min{cTx : Ax ≤ b, ` ≤ x ≤ u, xi ∈ Z for all i ∈ I} (1)

with c ∈ Rn, A ∈ Rm×n, b ∈ Rm, `, u ∈ R̄n where R̄ := R ∪ {±∞}, and I ⊆ N = {1, . . . , n}
being the index set of integer variables. When removing the integrality restrictions, we obtain
the linear programming (LP) relaxation of the problem.

∗This article is to appear in the Proceedings of the 12th International Conference on Integration of Artificial
Intelligence and Operations Research Techniques in Constraint Programming (CPAIOR 2015) held May 18-22,
2015, in Barcelona, Spain.
†Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, gamrath@zib.de
‡University of Padua, Via Trieste 63, 35121 Padua, Italy, melch.anna@gmail.com
§Fair Isaac Europe Ltd, c/o ZIB, Takustr. 7, 14195 Berlin, Germany, timoberthold@fico.com
¶Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, gleixner@zib.de
‖DEI, University of Padua, Via Gradenigo 6/b, 35121 Padua, Italy, salvagni@dei.unipd.it

1

gamrath@zib.de
melch.anna@gmail.com
timoberthold@fico.com
gleixner@zib.de
salvagni@dei.unipd.it


If the solution x̃ to the LP relaxation of (1) is fractional, i.e., if the index set Ĩ := {i ∈
I : x̃i /∈ Z} of fractional variables is not empty, the task of a branching rule is to split the
problem into two or more subproblems. The strategy is typically to exclude the LP solution
from all subproblems while keeping the feasible integer solutions, each being present in exactly
one subproblem.

The choice of which subproblems to create is crucial for the performance of the algorithm.
The approach most widely used by MIP solvers is to branch on simple disjunctions

xk ≤ bx̃kc
∨

xk ≥ dx̃ke. (2)

each side being enforced in one subproblem. As this procedure splits the domain of a single
variable at a time, it is also called branching on variables. Alternatively, branching can be
performed on a general disjunction

πTx ≤ π0

∨
πTx ≥ π0 + 1. (3)

where (π, π0) ∈ Zn × Z, and πi = 0 for all i /∈ I.
Branching on variables can be seen as the special case in which all considered disjunctions

are of the form (π, π0) = (ej , bx̃jc), ej being the j-th unit vector. Note that for branching on
variables the set of branching candidates among which a branching rule chooses is usually the
list of fractional variables Ĩ. For branching on general disjunctions, the branching candidates
consist of a potentially much larger list of disjunctions of form (3). Research on general branching
disjunctions has largely been dedicated to determine a short list of promising candidates, see our
literature overview in Sec. 2.

Another key component of state-of-the-art MIP solvers is presolving. It is applied before the
branch-and-bound process and transforms a given MIP instance into a typically smaller instance
with a tighter relaxation, which is hopefully easier to solve. These reductions can be based on
pure feasibility arguments (keeping the set of feasible solutions unchanged) as well as optimality
arguments (excluding also feasible solutions as long as one optimal solution remains).

Important presolving operations are fixings, aggregations, and multi-aggregations of variables.
Here, fixing means that a variable gets permanently assigned to a constant value, aggregation
means that a variable is replaced by (a constant value plus a scalar multiple of) another variable,
and multi-aggregation means that a variable gets replaced by an affine linear combination of
several variables. Hence, a multi-aggregated variable is a variable that is present in the original
formulation, but is represented by an affine linear sum of variables in the presolved problem.

Contribution. The intuitive appeal of branching on general disjunctions is the increased de-
gree of freedom that promises the creation of more balanced subproblems with tighter relaxations.
This obvious advantage comes with the main challenge of determining promising candidate dis-
junctions. We address this difficulty by considering specifically the subset of disjunctions that
are defined by the affine combinations stemming from multi-aggregations performed during the
presolving stage. These disjunctions are naturally available in state-of-the-art MIP solvers at
no cost and branching on them mimics branching on decision variables in the original model
formulation.

Note that while the set of all general disjunctions of form (3) is exponentially large even
when restricting π to {−1, 0, 1}n, the set of multi-aggregated variables provides a list of po-
tential candidates that is linear w.r.t. the size of the original model. Our experiments show
that—in combination with standard single-variable disjunctions—this restriction yields not only
a managable, but also computationally promising set of candidate disjunctions.

2



The remainder of the article is organized as follows. In Sec. 2, we give an overview of the
literature on branching in MIP, with a particular focus on branching on general disjunctions.
Sec. 3 introduces in more detail the concept of multi-aggregation, and Sec. 4 describes the idea
of our new branching strategy and details about the implementation in the constraint integer
programming framework SCIP [6, 7]. In Sec. 5 we presents our computational study and Sec. 6
contains our conclusions and gives an outlook on potential extensions of branching on multi-
aggregated variables.

2 Related work

Various criteria for selecting fractional variables for branching on simple disjunctions have been
presented in the literature. Most selection rules focus on the improvement in the dual bound that
the branching restrictions produce in the created child nodes since this helps to tighten the global
dual bound and prune nodes early. A fundamental strategy of this type is strong branching [8],
which tentatively restricts the bound of a candidate variable and explicitly computes the resulting
dual bound of the potential child node by solving the LP relaxation.

The full strong branching rule applies this at every node for each fractional variable. This
typically leads to very small branch-and-bound trees, but on the other hand invests consider-
able effort in analyzing candidates. On average, this usually results in an overall performance
deterioration w.r.t. computing time [5]. Nevertheless, the default branching rules in most state-
of-the-art MIP solvers use some restricted form of strong branching and combine it with history
information to reduce the computational effort for branching in later solving stages. Further
strategies based on the same criteria can be found in [9, 4, 7, 10, 11, 12]. Recent research efforts
on different criteria for variable-based branching rules include, e.g., [13, 14, 15, 16, 17, 18].

Branching on general disjunctions dates back to the 1980s [19], and has been addressed by
various researchers in the last 15 years, see, e.g., [20, 21, 22, 23, 24]. The main challenge is to
find a good class of general disjunctions that can lead to a better and more accurate tightening
process of the feasible region, and consequently to a faster convergence of the dual bound to the
optimal solution value, ideally without requiring a high computational effort for its generation
and evaluation.

Owen and Mehrotra [20] present an algorithm that determines the branching disjunction via a
neighborhood search heuristic. They prove that their algorithm is finite, if all variables have finite
bounds and the size of the coefficients in the used disjunctions is bounded. As a consequence,
they restrict their search to coefficients πi ∈ {−1, 0, 1}. Combining this idea with [13], Mahmoud
and Chinneck [24] choose a constraint that is active for the current LP optimum and construct
a general disjunction with coefficients in {−1, 0, 1} that is as perpendicular or as parallel as
possible to the chosen active constraint.

Karamanov and Cornuéjols [22] consider disjunctions which correspond to Gomory mixed
integer cuts (GMICs) [25]. They filter the GMICs to only keep the ten deepest cuts, and apply
a strong-branching-like procedure on the corresponding candidate disjunctions. An extension
of [22] is proposed by Cornuéjols et al. [23] who not only consider GMICs on tableau rows, but
also on linear combinations of the tableau rows.

On the theoretical side, Mahajan and Ralphs proved that the problem of finding a general
disjunction with maximal objective gain is NP-hard [26]. Finally, Local Branching by Fischetti
and Lodi [27] is a strategy to interleave variable-based branching with branching on general
{−1, 0, 1}-disjunctions. These disjunctions measure the distance to the incumbent solution.

A typical result when branching on general disjunctions in MIP is that the generated branch-
ing trees are smaller on average, but the performance deteriorates w.r.t. running time. One major

3



reason for this computational overhead is that the set of candidate disjunction for branching is
much larger, so that a lot of time is spent determining the best one to choose at each node.
However, this could in principle be overcome if we had more efficient (implicit) algorithms for
evaluating the set of candidates, and it is of course not an issue when such set is still relatively
small.

Another, more structural reason is that branching on variables changes a variable bound,
which often fixes the variable to the other bound (in particular when branching on binary vari-
ables). This decreases the size of the LP relaxation for the subproblems by (at least) one column,
whereas branching on general disjunctions potentially increases the LP’s size by one row. This
affects the simplex algorithm, which in most cases is the method of choice for solving the LP relax-
ations during LP-based branch-and-bound. Because the dimension of the basis matrix increases
when adding a new row, most simplex implementations will have to recompute its factorization,
causing computational overhead. In addition, many performance-relevant components of state-
of-the-art MIP solvers such as domain propagation and conflict analysis are currently designed
to benefit from branching on variables and become less effective when branching is performed on
general disjunctions.

3 Multi-aggregations of variables

Before the branch-and-bound process is started, state-of-the-art MIP solvers perform a presolving
phase during which they analyze the problem and remove redundancies, tighten the formulation,
and collect information about the problem structure, see [28, 29, 30, 7, 31] for examples. This
procedure is exact in the sense that each optimum of the simplified problem can be mapped to
an optimal solution of the original problem.

The presolving technique which forms the basis of our newly developed branching rule is the
multi-aggregation of variables. It reduces the number of variables by

1. detecting that—in at least one optimal solution—variable xk equals an affine linear com-
bination of other variables, i.e.,

xk =
∑
j∈Sk

αkjxj + βk, (4)

with Sk ⊆ N , k 6∈ Sk,

2. replacing every occurrence of xk in constraints and objective function by the right-hand
side in (4), and

3. enforcing the bounds on xk—if finite—by adding the new constraint

`k ≤
∑
j∈Sk

αkjxj + βk ≤ uk. (5)

Equation (4) may either be explicitly present as one of the problem constraints1 or implied by a
combination of constraints and optimality conditions. An example for the latter is the case when
xk appears in exactly one constraint and its objective function coefficient ensures that this con-
straint will be fulfilled with equality in an optimal solution. The constraint integer programming

1Although in (1) we have formulated MIPs in terms of inequalities, this also includes equality constraints
formulated via two inequalities.

4



framework SCIP, which we use for our computational experiments, has five different presolving
operations in which multi-aggregation is performed.

After this step, one of the constraints implying (4) usually becomes void or is modified to
enforce (5). If xk is an integer variable, multi-aggregations are only performed if the integrality
is enforced by the multi-aggregation. This holds, e.g., if (4) is an integer combination of integer
variables, i.e., Sk ⊆ I, αkj ∈ Z for all j ∈ Sk, and βk ∈ Z.

In order to avoid a deterioration of performance and potential numerical problems during LP
solving, it is crucial to safe-guard against fill-in in the constraint matrix. This can be done a
priori by comparing the number of non-zeros that would be removed to the number of non-zeros
that would get introduced in the constraint matrix, the latter of which can be bounded from
above by the cardinality of S times the number of occurences of xk.

To the best of our knowledge, all state-of-the-art MIP solvers use some form of multi-
aggregation. For a test set of general MIP instances consisting of the last three MIPLIB [32, 33,
34] benchmark sets, the performance of SCIP is deteriorated by 3 % on average when disabling
multi-aggregation. Taking into account that multi-aggregations are performed for no more than
15 % of the instances in this test set, this shows that multi-aggregations significantly improve
the performance of MIP solvers when applicable.

In the following, we call a variable inactive, if presolving removed it from the problem.
This includes variables which are already fixed to some value as well as aggregated and multi-
aggregated variables. All other variables are called active. During the subsequent solving process,
inactive variables are disregarded since their solution value is uniquely defined by the value of
the active variables. In the remainder of this article, a MIP of form (1) always refers to the
presolved problem containing only active variables. When referencing the original problem, we
are using the following notation: the index sets of original and corresponding integer variables
are denoted by N ′ and I ′, respectively. Original variables are written as x′i and the variable on
the left-hand side of a multi-aggregation (4) is an original variable x′k, while all variables on the
right-hand side are active variables xj .

2

4 Branching on multi-aggregated variables

Simple aggregations of form x′k = αkjxj + βk performed during presolving do not restrict the
choices of variable-based branching rules since branching on the subsequently inactive variable x′k
remains implicitly possible by branching on xj . In contrast, branching on multi-aggregated
variables cannot be realized via branching on active variables. We are not aware of any study
that has investigated the effect of multi-aggregation on the performance of branching rules and
note that this restriction may indeed have negative performance impact—especially since this
effect is currently not considered during presolving.

Our new branching strategy considers the general disjunctions defined by all multi-aggregations (4)
for which k ∈ I ′ but

∑
j∈Sk α

k
jxj + βk evaluates to a fractional value in the current LP solution.

In a strong branching fashion, we tentatively test which improvement in the local dual bounds
we would obtain by adding one part of the corresponding general disjunction. We compare this
to the improvements obtained by simple disjunctions on fractional active variables and choose
the best among all branching disjunctions.

The motivation is twofold: first, to compensate for the above drawback, and second, to obtain
a set of candidates for general branching disjunctions that is available at no cost in state-of-the-

2Note that nested multi-aggregations can be transferred into this form by (recursively) replacing inactive vari-
ables in the right-hand side of a multi-aggregation (4) by the corresponding constant or affine linear combination
of variables.

5



art MIP solvers and computationally managable. As mentioned earlier, the set of all general
disjunctions of form (3) is exponentially large even when restricting π to {−1, 0, 1}n, in contrast
to that, the number of multi-aggregations is linear w.r.t. the size of the original model.

In an LP-based branch-and-bound algorithm, the multi-aggregated branching rule is called
whenever the optimal solution x̃ to the linear relaxation of the current node is fractional. Its
procedure is outlined in Algorithm 1.

First, strong branching is performed on all elements in the set of fractional variables Ĩ. For
each candidate variable xi, two auxiliary LPs are solved to compute dual bounds z̃− and z̃+ for
the potential child nodes. If both are larger than or equal the given upper bound (usually the
objective function value of the incumbent solution), we can stop since no better solution can be
found in the current subproblem and the node can be cut off. If only one of the two dual bounds
is smaller than the upper bound, the corresponding bound change can directly be applied at the
current problem, since the other child node does not contain an improving solution. If both dual
bounds are smaller than the upper bound, the score for the candidate variable is computed and
the simple disjunction (ei, bx̃ic) corresponding to branching on this variable is stored as new best
candidate if its score exceeds the best one found so far. The branching score used in SCIP is
the product of the objective gains of the two child nodes, more specifically,

score(z̃−, z̃+) = max{∆−j , ε} ·max{∆+
j , ε} (6)

with ε = 10−6 and ∆−j = z̃− − cT x̃ and ∆+
j = z̃+ − cT x̃ being the objective gains in the child

nodes when branching on xj .
In the second step of the algorithm, full strong branching is performed on the general dis-

junctions defined by the multi-aggregated variables of the original problem. To this end, all
integer multi-aggregated variables x′k are taken into account for which the LP solution translates
into a fractional solution x̃′k. Analogously to the first step, two auxiliary LPs are solved with
the potential branching disjunction added and the computed dual bounds are compared to the
upper bound in order to prune the node or identify valid constraints. The score of the candidate
disjunction is evaluated and compared to the best score found so far. If it is higher, the candidate
disjunction is updated. Note that possible ties are broken in favor of candidate variables, since
those are evaluated first and we are looking for strict improvements.

In the case that a valid bound change or inequality was found, we stop the branching rule,
tighten the formulation, and return to the MIP solving process, which will continue by applying
domain propagation, reoptimizing the LP, and calling the branching rule again if needed. After
the evaluation of all candidate variables and disjunctions, and if no such valid bound or inequality
was found, the best disjunction is returned and branching is performed on it.

5 Computational results

In the following, we present our experiments with branching on multi-aggregated variables. We
used the academic constraint integer programming framework SCIP 3.1.0 [6, 7] with SoPlex 1.7.0.4 [35]
as underlying LP solver and implemented Algorithm 1 as a branching rule plug-in. Our new
method builds on the full strong branching scheme and extends it by choosing as the set of
candidates to evaluate via strong branching not only candidate variables, but also candidate
disjunctions given by multi-aggregations. Therefore, it is consequential to compare our strategy
with the basic full strong branching rule of SCIP.

All results were obtained on a cluster of 3.2 GHz Intel Xeon X5672 CPUs with 48 GB main
memory, running each job exclusively on one node. To keep the computation time under control,
a time limit of 7200 seconds for each instance was imposed.

6



Algorithm 1: Multi-aggregated branching rule

input : • a MIP of form (1),

• an optimal solution x̃ of the LP relaxation,

• an upper bound z∗ on the objective value of solutions, and

• the index set A′ ⊆ N ′ of multi-aggregations of form (4),
x′k =

∑
j∈Sk αkjxj + βk, k ∈ A′, Sk ⊆ N

output: • a branching disjunction of form (3) given as (π̃, π̃0) ∈ Zn × Z, or

• a valid inequality, or

• the conclusion that the current node can be pruned

begin1

// 0. initialization

for k ∈ A′ ∩ I ′ do // compute LP values of multi-aggregated vars2

x̃′k :=
∑
j∈Sk αkjxj + βk3

Ĩ := {i ∈ I : x̃i /∈ Z} // single-variable candidates4

Ã := {k ∈ A′ ∩ I ′ : x̃′k /∈ Z} // multi-aggregated candidates5

(π̃, π̃0) := (0, 0) // incumbent disjunction6

s(π̃,π̃0) := −∞ // incumbent score7

// 1. full strong branching on simple disjunctions

for i ∈ Ĩ do8

z̃− ← min{cTx : Ax ≤ b, ` ≤ x ≤ u, xi ≤ bx̃ic}9

z̃+ ← min{cTx : Ax ≤ b, ` ≤ x ≤ u, xi ≥ bx̃ic+ 1}10

if min{z̃−, z̃+} ≥ z∗ then return current node can be pruned11

else if z̃− ≥ z∗ then return valid inequality xi ≥ bx̃ic+ 112

else if z̃+ ≥ z∗ then return valid inequality xi ≤ bx̃ic13

else if score(z̃−, z̃+) > s(π̃,π̃0) then14

(π̃, π̃0) := (ei, bx̃ic)15

s(π̃,π̃0) := score(z̃−, z̃+)16

// 2. full strong branching on multi-aggregated disjunctions

for k ∈ Ã do17

z̃− ← min{cTx : Ax ≤ b, ` ≤ x ≤ u,
∑
j∈Sk αkjxj ≤ bx̃′kc − βk}18

z̃+ ← min{cTx : Ax ≤ b, ` ≤ x ≤ u,
∑
j∈Sk αkjxj ≥ bx̃′kc − βk + 1}19

if min{z̃−, z̃+} ≥ z∗ then return current node can be pruned20

else if z̃− ≥ z∗ then return
∑
j∈Sk αkjxj ≥ bx̃′kc − βk + 1 valid21

else if z̃+ ≥ z∗ then return
∑
j∈Sk αkjxj ≤ bx̃′kc − βk valid22

else if score(z̃−, z̃+) > s(π̃,π̃0) then23

(π̃, π̃0) := (
∑
j∈Sk αkj ej , bx̃′kc − βk)24

s(π̃,π̃0) := score(z̃−, z̃+)25

return branching disjunction (π̃, π̃0)26

end27

7



Settings. We compare the methods for two different settings. The first one, called pure,
focuses on the main goal of a branching rule, namely proving the optimality of a solution. To
this end, it disables cutting plane separation, primal heuristics, domain propagation, restarts, and
conflict analysis. Additionally, we provide the optimal objective value as a cutoff bound at the
beginning of the solving process. This is done in order to measure only the impact of branching
without side-effects to and from other solver components. In particular, this reduces performance
variability, cf. [34]. The second setting is called default and runs full strong branching (SB) and
multi-aggregated branching (MA) in the SCIP default environment.

Instances. Our first experiments were performed on a test set of scheduling [36, 37] instances.
More specifically, we were investigating resource allocation and scheduling problems, where jobs
are assigned to machines, thereby minimizing the processing costs which depend on the machine
on which a job is performed. Given sets J of jobs and M of machines, the capacity C ∈ N of
the machines, and assignment cost cj,m, resource allocation and scheduling can be expressed via
the following MIP model [38]:

min
∑
m∈M

∑
j∈J

cj,mxj,m

s.t.
∑
m∈M

xj,m = 1 for all j ∈ J ,∑
t∈Tj,m

xtj,m = xj,m for all m ∈M, j ∈ J ,

∑
j∈J

∑
t̄∈T t

j,m

cjx
t̄
j,m ≤ C for all m ∈M, t ∈ T ,

xtj,m ∈ {0, 1} for all m ∈M, j ∈ J , t ∈ Tj,m,
xj,m ∈ {0, 1} for all m ∈M, j ∈ J .

The formulation uses binary variables xj,m and xtj,m, which represent the decision whether
job j ∈ J is processed on machine m ∈M, and whether the processing of job j ∈ J on machine
m ∈ M is started at time t ∈ T , respectively. We use two subsets of the time periods: Tj,m
which contains all time steps in which job j can start on machine m, and T tj,m which further
restricts Tj,m to those starting times causing j to be (still) running in period t. When solving
these instances, the xj,m variables are frequently multi-aggregated, which makes this problem an
interesting test case for our first experiments.

We used a collection of 335 scheduling instances modeled this way in [38]. We excluded all
instances that were solved either during presolving or at the root node. This left a total of 263
problem instances with the default setting and 276 instances with the pure setting.

In our second experiment, we used a test set of general MIP instances from different sources,
including MIPLIB [32, 33, 34] and the Cor@l test set [39]. We removed some instances which to
the best of our knowledge have never been solved so far and two numerically unstable instances
giving slightly different results with both branching rules. Additionally, we restricted the test
set to instances in which presolving performed multi-aggregations and removed instances which
were solved during presolving or at the root node without branching. This gave us two test sets
for the pure and default settings of 76 and 107 instances, respectively.

In the following, we present aggregated results over these test sets. Detailed computational
results for each instance can be found in the appendix.

8



5.1 Results for scheduling instances

Table 1 compares the multi-aggregated branching strategy (MA) against the basic version of full
strong branching (SB) available in SCIP with both pure and default settings, as indicated in the
first column.

The remainder of the table is split into two parts: The four columns below the “scheduling test
set” label display numbers about the performance on the complete scheduling test set. Column
“size” shows the number of instances in the test set, “solved” gives the number of instances
solved to proven optimality within the time limit of two hours. Column “faster” (“slower”) show
the number of instances that the MA strategy solved at least 10 % faster (slower) than standard
full strong branching.

The right side of the table, labeled “all optimal”, shows results for the subset of instances that
both variants in the respective setting solved to optimality. Column “size” shows the number of
instances in this subset, “nodes” the shifted geometric mean of the B&B nodes and “time (s)”
the shifted geometric mean of the running time in seconds. We use shifts of 100 and 10 for the
number of nodes and the solving time, respectively. For a discussion of the shifted geometric
mean, we refer to [41, Appendix A3].

Let us first look at the results with the pure settings, which focus on the plain branch-
and-bound performance. They are promising: 25 more instances (142 vs. 117) can be solved
by branching on multi-aggregated variables compared to standard strong branching; this corre-
sponds to an increase of more than 20 %. Furthermore, 100 instances are solved at least 10 %
faster with the new method, compared to 13 which slow down by 10 % or more. This corresponds
to 70 % of the instances being solved faster with branching on multi-aggregated variables. Look-
ing at the instances that were solved to optimality by both variants, both the number of nodes
and the requested time are reduced by a factor of two on average: 58 % less nodes are needed
and 49 % less time.

When looking at the results with default settings, the effect is smaller, but still significant:
the multi-aggregated branching strategy is able to solve 9 more instances to optimality, with 56
instances being solved faster and 31 slower. On instances that both variants solve to optimality,
it needs 37 % less nodes and reduces the solving time by 17 %.

One might argue that the multi-aggregation of variables itself could have a negative impact
on the performance for the scheduling instances as it restricts standard branching rules from
branching on the xj,m variables which can be seen as first-level decisions. However, this is only
partly true: When disabling multi-aggregations, the shifted geometric mean of the number of
branch-and-bound nodes is indeed decreased by 14 % for the instances solved to optimality both
with and without multi-aggregations. On the other hand, the average solving time is increased
slightly by 2 %. This shows that the gains obtained by having more branching opportunities
with multi-aggregation disabled are compensated by not being able to reduce the problem size
so much and having more effort, e.g., in LP solving. Our proposed branching scheme takes the
best of both variants, allowing the problem size reductions while still providing the potentially
more powerful branching possibilities given by the multi-aggregated variables. This helps to
improve both the number of nodes as well as the solving time significantly over the individual
best of the two other variants.

Let us note that the positive effect of branching on multi-aggregated variables grows stronger
the harder an instance is. This seems reasonable since the additional overhead might not pay off
if a standard strong branching is able to solve an instance within a few nodes. When taking into
account only instances which needed more than 100 seconds to solve by at least one setting, the
reduction in the number of nodes and the solving time goes up to 42 % and 25 %, respectively.

This first computational experiment shows that branching on multi-aggregated variables can

9



Table 1: Results for scheduling instances with default and pure settings

scheduling test set all optimal
setting size solved faster slower size nodes time (s)

SB-pure 276 117 115 472 51.8
MA-pure 276 142 100 13 115 196 26.4

SB-default 263 126 122 349 84.6
MA-default 263 135 56 31 122 221 70.3

significantly improve the performance of SCIP compared to a pure variable-based branching
rule: more instances are solved, with less enumeration, in shorter time. Note that in all cases
the relative reduction in running time was smaller than the relative reduction in the number of
branch-and-bound nodes, which is a typical result for branching strategies that involve general
disjunctions (see Sec. 2).

In order to analyze the impact of the new branching rule in more detail, we collected some
statistics during the execution of SCIP. On average over the test set, the number of integer
multi-aggregations is only 5.7 % of the number of integer variables. Thus, the list of branching
candidates is only slightly extended in most cases, which overcomes a typical issue for branching
on general disjunctions. Interestingly, despite this relatively small number of multi-aggregations,
39 % of the branching decisions select a multi-aggregated disjunction for branching. Even more,
in 85 % of the cases, the first branching on a multi-aggregated disjunction was performed at the
root node.

Finally, each time we perform a multi-aggregated branching, we store the ratio of the gain
that we would have obtained when branching on the best fractional variable compared to the
gain obtained by branching on the current multi-aggregated variable. The gain is computed as
the square root of the SCIP branching score value and thus measures the improvement in the
score SCIP tries to maximize. On average over all calls where we branched on a multi-aggregated
disjunction, the gain would have been reduced to 22 % by branching on the best variable instead.

5.2 Results for general MIP instances

The results for our collection of general MIP instances are presented in Table 2. The columns
and rows show the same statistics as described in Sec. 5.1. We can see that on these instances,
multi-aggregated branching is significantly slower and solved one less instance in both settings,
compared to standard strong branching. With pure settings, the solving time increases by 25 %
while the number of branch-and-bound nodes is decreased by 13 %. Compared to the scheduling
instances, multi-aggregated variables are much less effective for branching. That the increased
effort in strong branching outweighs the observed node reduction seems plausible. These results
confirm our observation from the scheduling instances in the sense that the impact on the number
of branch-an-bound nodes was better than the impact on the overall running time. For the
scheduling instances, the additional candidates were structurally different and allowed different,
higher-level decisions which had an enormous effect on the tree size that even allowed for a
running time reduction. For standard MIPs, however, such a large effect is apparently obtained
rarely, thus, the performance deteriorates on average. The picture looks even worse for the
default settings. Here, the solving time increases by 26 % and the number of nodes now increases
by 6 % as well.

10



Table 2: Results for general MIP instances with default and pure settings

MIP test set all optimal
setting size solved faster slower size nodes time (s)

SB-pure 76 33 32 983 150.9
MA-pure 76 32 0 26 32 852 188.9

SB-default 107 55 49 253 100.4
MA-default 107 57 1 33 49 269 126.3

Again, we collected statistics to analyze the impact of the multi-aggregated branching scheme.
On average over the test set, the amount of integer multi-aggregations is almost twice as high
as for the scheduling set, namely 14.4 % of the number of integer variables. However, multi-
aggregated variables are selected less often (only for 1.84 % of the branchings) and consequently,
also the first branching on a multi-aggregated disjunction was less often performed at the root
node (only for 7.4 % of the instances for which multi-aggregated branching was performed). If
a multi-aggregated disjunction was selected, selecting the best fractional variable instead would
have decreased the gain by 31 % on average, compared to 78 % for the scheduling instances. This
shows that multi-aggregated disjunctions play a smaller role for branching on this test set, but
can still be used to improve the quality of branching disjunctions.

Even more surprising is the increase in the number of nodes, which can be explained, however,
by the tailoring of many MIP solving algorithms towards variable-based branching. Domain
propagation (or node preprocessing, see, e.g., [28] for MIP), for example, tries to tighten the local
domains of variables by inspecting the constraints and current domains of other variables at the
local subproblem. Tightening or fixing variables by branching is naturally beneficial for domain
propagation, the impact of adding general disjunctions is rather opaque. Furthermore, techniques
like primal heuristics, cutting plane separation, or conflict analysis profit from tightened variable
bounds rather than from added general disjunctions. Since all these techniques help to reduce
the size of the branch-and-bound tree, branching on general disjunctions with a high branching
score can even increase the number of nodes, since as a side effect it makes the named procedure
less effective.

We see our results for general MIPs as an important negative result that confirms previous
observations by other authors that it is hard to find a branching rule on general disjunctions which
is competitive on standard MIP benchmarks. Our results indicate that this holds even when
restricting the selection to relatively few additional candidates that are naturally obtained from
the problem structure. Finally, adapting procedures like primal heuristics or conflict analysis in
such a way that they benefit from added constraints as much as from tightened or fixed variables
might be a prerequisite to excel with constraint-based branching schemes in state-of-the-art MIP
solvers.

6 Conclusions and outlook

In this paper, we presented a new branching rule which takes into account a specific type of
general disjunctions. These general disjunctions, so-called multi-aggregations, are the affine linear
sums of active variables in the presolved problem, which correspond to a decision variable in the
original problem. We extended the full strong branching rule of SCIP by taking additionally into

11



account all general disjunctions induced by multi-aggregations. On a set of scheduling instances,
this significantly improved the performance of SCIP w.r.t. the tree size as well as the solving
time and the number of solved instances.

We tested the same branching rule on standard MIP benchmark sets. The results were
much less convincing, but a certain potential for branching on multi-aggregated variables was
indicated by the observation that in a “pure” setting, it led to a reduction in the number of
branch-and-bound nodes for general MIPs. However, before this potential can be harnessed,
we conclude that many advanced solution techniques applied in state-of-the-art MIP solvers—
domain propagation, conflict analysis, etc.—must be extended towards a more efficient handling
of general disjunctions. An additional performance bias is the slow-down in current simplex
implementations when adding and removing constraints. This bottleneck may be alleviated by
the recent developments of [42, 43], which improve the underlying linear algebra routines such
that the factorization of the basis matrix is preserved when adding new rows. We identify these
points as important directions for future research.

Another field for future research would be to find criterions to assess the structure of multi-
aggreagations and predict the power of the new scheme for the current instance in order to
decide on whether to use it or not. A first basic variant of this would be to heuristically detect
scheduling substructures and turn on the branching scheme for the involved multi-aggregations.
Many improvements for MIP solving in recent years are based on specific structures, cf. [44, 45].
If this structure is detected, they lead to a significant improvement—as is the case for our scheme
for scheduling problems—while the detection is typically fast enough that the performance on
other problems is not deteriorated. Therefore, we are convinced that the new strategy can also
improve the performance of MIP solvers for general MIP test sets.

The proposed strategy has been studied and implemented for the first time in the con-
straint integer programming framework SCIP. Since it proved its effectiveness for certain prob-
lem classes, it will be available in the next release of SCIP.

7 Acknowledgements

The work for this article has been conducted within the Research Campus Modal funded by the
German Federal Ministry of Education and Research (fund number 05M14ZAM). The authors
would like to thank the three anonymous reviewers for helpful comments on the conference
proceedings version of the paper.

References

[1] Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems.
Econometrica 28(3) (1960) 497–520

[2] Dakin, R.J.: A tree-search algorithm for mixed integer programming problems. The Com-
puter Journal 8(3) (1965) 250–255

[3] Mitra, G.: Investigation of some branch and bound strategies for the solution of mixed
integer linear programs. Mathematical Programming 4 (1973) 155–170

[4] Linderoth, J.T., Savelsbergh, M.W.P.: A computational study of search strategies in mixed-
integer programming. INFORMS Journal on Computing 11(2) (1999) 173–187

[5] Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Operations Research
Letters 33 (2005) 42–54

12



[6] Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: A
new approach to integrate CP and MIP. In Perron, L., Trick, M.A., eds.: Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
5th International Conference, CPAIOR 2008. Volume 5015 of Lecture Notes in Computer
Science., Springer Berlin Heidelberg (May 2008) 6–20

[7] Achterberg, T.: SCIP: Solving constraint integer programs. Mathematical Programming
Computation 1(1) (2009) 1–41

[8] Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: On the solution of traveling sales-
man problems. Documenta Mathematica Journal der Deutschen Mathematiker-Vereinigung
Extra Volume ICM III (1998) 645–656

[9] Gauthier, J.M., Ribière, G.: Experiments in mixed-integer linear programming using
pseudo-costs. Mathematical Programming 12(1) (1977) 26–47

[10] Fischetti, M., Monaci, M.: Branching on nonchimerical fractionalities. OR Letters 40(3)
(2012) 159–164

[11] Berthold, T., Salvagnin, D.: Cloud branching. In Gomes, C., Sellmann, M., eds.: Integra-
tion of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems. Volume 7874 of Lecture Notes in Computer Science., Springer Berlin Heidelberg
(2013) 28–43

[12] Gamrath, G.: Improving strong branching by domain propagation. EURO Journal on
Computational Optimization 2(3) (2014) 99 – 122

[13] Patel, J., Chinneck, J.: Active-constraint variable ordering for faster feasibility of mixed
integer linear programs. Mathematical Programming 110 (2007) 445–474

[14] Kılınç Karzan, F., Nemhauser, G.L., Savelsbergh, M.W.: Information-based branching
schemes for binary linear mixed integer problems. Mathematical Programming Computation
1 (2009) 249–293

[15] Achterberg, T., Berthold, T.: Hybrid branching. In van Hoeve, W.J., Hooker, J.N., eds.:
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems, 6th International Conference, CPAIOR 2009. Volume 5547 of Lecture
Notes in Computer Science., Springer (May 2009) 309–311

[16] Fischetti, M., Monaci, M.: Backdoor Branching. In Günlück, O., Woeginger, G.J., eds.:
Integer Programming and Combinatorial Optimization. Volume 6655 of Lecture Notes in
Computer Science., Springer Berlin / Heidelberg (2011) 183–191

[17] Gilpin, A., Sandholm, T.: Information-theoretic approaches to branching in search. Discrete
Optimization 8(2) (2011) 147–159

[18] Pryor, J., Chinneck, J.W.: Faster integer-feasibility in mixed-integer linear programs by
branching to force change. Computers & OR 38(8) (2011) 1143–1152

[19] Ryan, D.M., Foster, B.A.: An integer programming approach to scheduling. In Wren, A.,
ed.: Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Schedul-
ing. North Holland, Amsterdam (1981) 269–280

13



[20] Owen, J.H., Mehrotra, S.: Experimental results on using general disjunctions in branch-and-
bound for general-integer linear programs. Computational Optimization and Applications
20 (2001) 159–170

[21] Mahajan, A., Ralphs, T.K.: Experiments with branching using general disjunctions. In
Chinneck, J.W., Kristjansson, B., Saltzman, M.J., eds.: Operations Research and Cyber-
Infrastructure. Volume 47 of Operations Research/Computer Science Interfaces Series.
Springer US (2009) 101–118

[22] Karamanov, M., Cornuéjols, G.: Branching on general disjunctions. Mathematical Pro-
gramming 128 (2011) 403–436

[23] Cornuéjols, G., Liberti, L., Nannicini, G.: Improved strategies for branching on general
disjunctions. Mathematical Programming 130 (2011) 225–247

[24] Mahmoud, H., Chinneck, J.W.: Achieving milp feasibility quickly using general disjunctions.
Computers & OR 40(8) (2013) 2094–2102

[25] Gomory, R.E.: An algorithm for the mixed integer problem. Technical report, RAND
Corporation (1960)

[26] Mahajan, A., Ralphs, T.K.: On the complexity of selecting disjunctions in integer program-
ming. SIAM Journal on Optimization 20(5) (2010) 2181–2198

[27] Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98(1-3) (2003) 23–47

[28] Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing 6 (1994) 445–454

[29] Brearley, A.L., Mitra, G., Williams, H.P.: Analysis of mathematical programming problems
prior to applying the simplex algorithm. Mathematical Programming 8(1) (1975) 54–83

[30] Bixby, R.E., Wagner, D.K.: A note on detecting simple redundancies in linear systems.
Operation Research Letters 6(1) (1987) 15–17

[31] Gamrath, G., Koch, T., Martin, A., Miltenberger, M., Weninger, D.: Progress in presolving
for mixed integer programming. Technical Report 13-48, ZIB, Takustr.7, 14195 Berlin (2013)

[32] Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer
programming library: MIPLIB 3.0. Optima (58) (June 1998) 12–15

[33] Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Operations Research Letters 34(4)
(2006) 1–12

[34] Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., Danna, E.,
Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin,
D., Steffy, D.E., Wolter, K.: MIPLIB 2010. Mathematical Programming Computation 3(2)
(2011) 103–163

[35] Wunderling, R.: Paralleler und objektorientierter Simplex-Algorithmus. PhD thesis, Tech-
nische Universität Berlin (1996)

[36] Baker, K.: Introduction to sequencing and scheduling. Wiley (1974)

[37] Baker, K.R., Trietsch, D.: Principles of Sequencing and Scheduling. Wiley (2009)

14



[38] Heinz, S., Ku, W.Y., Beck, J.C.: Recent improvements using constraint integer program-
ming for resource allocation and scheduling. In Gomes, C., Sellmann, M., eds.: Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Prob-
lems. Volume 7874 of LNCS. Springer (2013) 12–27

[39] COR@L: MIP Instances (2014) http://coral.ie.lehigh.edu/data-sets/

mixed-integer-instances/.

[40] Gamrath, G., Melchiori, A., Berthold, T., Gleixner, A.M., Salvagnin, D.: Branching on
multi-aggregated variables. Technical Report 15-10, ZIB, Takustr. 7, 14195 Berlin (2015)

[41] Achterberg, T.: Constraint Integer Programming. PhD thesis, Technische Universität Berlin
(2007)

[42] Gleixner, A.M.: Factorization and update of a reduced basis matrix for the revised simplex
method. ZIB-Report 12-36, Zuse Institute Berlin (October 2012)

[43] Wunderling, R.: The kernel simplex method. Talk at the 21st International Symposium on
Mathematical Programming, Berlin, Germany (August 2012)

[44] Achterberg, T., Raack, C.: The MCF-separator: detecting and exploiting multi-commodity
flow structures in MIPs. Mathematical Programming Computation 2(2) (2010) 125–165

[45] Salvagnin, D.: Detecting and exploiting permutation structures in MIPs. In Simonis, H.,
ed.: Integration of AI and OR Techniques in Constraint Programming. Volume 8451 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2014) 29–44

15

http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/
http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances/


A Detailed Computational Results

In this section, instance-wise results of the computational experiments described in Sec. 5 are
presented. The following four tables list the results for the set of scheduling instances with default
(Table 3) and pure settings (Table 4), as well as for the MIP instances with default (Table 5)
and pure settings (Table 6).

Each table shows the number of branch-and-bound nodes and the total solution time for both
standard strong branching (column “SB”) and multi-aggregated branching (“MA”). If the time
limit was reached for an instance, the number of nodes up to this point is listed and both nodes
and time are preceded by a “>”-sign. Reductions in the node number or solving time of MA
branching by a factor of at least two compared to SB are marked green, increases by a factor of
at least two are marked red. At the end of each table, we list geometric, shifted geometric, and
arithmetic means over the complete test set as well as the subset of instances solved to optimality
by both variants.

Table 3: Detailed computational results on scheduling instances comparing full strong branching
(SB) and branching on multi-aggregated variables (MA) with SCIP’s default settings

SB MA

Nodes Time Nodes Time

c10j2m1 2 2.4 2 2.3

c10j2m3 12 1.4 15 1.7

c10j2m4 23 0.6 25 0.6

c10j2m5 2 2.9 2 2.9

c12j2m2 19 8.0 19 7.4

c12j2m3 70 3.0 32 2.6

c12j2m4 47 2.8 47 2.9

c12j2m5 1 336 44.3 272 8.7

c12j3m2 44 2.1 15 2.0

c12j3m3 52 4.2 59 4.7

c12j3m4 2 1.2 2 1.2

c12j3m5 18 2.4 28 3.0

c12j4m1 49 0.9 44 1.0

c12j4m2 27 2.2 9 1.9

c14j2m1 143 14.0 113 10.4

c14j2m2 8 278 124.3 8 276 70.7

c14j2m4 186 5.6 113 5.6

c14j3m1 849 44.1 332 053 3256.3

c14j3m2 3 2.5 3 2.5

c14j3m4 4 2.8 4 2.7

c14j3m5 550 29.9 181 16.7

c14j4m1 69 14.0 43 12.0

c14j4m2 4 3.7 4 3.8

c14j4m3 400 26.9 148 16.3

c14j4m4 4 4.2 4 4.1

c14j4m5 54 4.4 30 4.1

c16j2m1 87 13.3 149 40.0

c16j2m2 362 22.0 294 29.3

c16j2m3 1 315 270.5 12 653 1191.3

c16j2m4 756 123.0 186 69.2

c16j2m5 2 723 207.5 6 405 642.0

16



SB MA

Nodes Time Nodes Time

c16j3m1 4 168 636.8 4 674 826.0

c16j3m2 1 478 341.5 669 210.1

c16j3m3 1 567 136.9 1 676 110.5

c16j3m4 170 24.7 291 35.8

c16j3m5 278 39.6 46 9.5

c16j4m1 2 7.5 2 7.4

c16j4m2 904 55.7 282 28.7

c16j4m4 124 18.6 94 17.5

c16j4m5 191 31.1 66 18.2

c18j2m1 1 724 595.9 >42 133 >7200.0

c18j2m2 776 294.8 719 412.2

c18j2m3 842 153.5 >43 311 >7200.0

c18j2m4 3 229 442.3 657 206.1

c18j2m5 1 111 256.6 417 452.6

c18j3m1 2 841 1851.2 325 205.7

c18j3m2 1 141 290.7 218 260.3

c18j3m3 4 139 2182.3 31 58.2

c18j3m4 >2 550 >7200.0 >4 094 >7200.0

c18j3m5 1 276 559.9 856 598.3

c18j4m1 460 44.5 46 27.8

c18j4m2 859 368.2 505 389.6

c18j4m3 76 20.3 36 19.1

c18j4m4 920 267.0 496 146.8

c18j4m5 729 189.4 919 234.6

c20j2m1 >22 223 >7200.0 >15 939 >7200.0

c20j2m2 2 391 1296.4 153 135.1

c20j2m3 >18 414 >7200.0 >16 818 >7200.0

c20j2m4 >19 744 >7200.0 744 699.2

c20j2m5 14 533 2176.0 1 279 299.4

c20j3m1 10 577 3128.5 701 1234.5

c20j3m2 5 375 3359.7 >453 479 >7200.0

c20j3m3 2 545 1429.4 284 625.5

c20j3m4 >9 300 >7200.0 >19 578 >7200.0

c20j3m5 851 917.1 360 511.4

c20j4m1 1 647 479.6 205 132.9

c20j4m2 9 100 2191.2 1 118 509.7

c20j4m3 >4 928 >7200.0 1 324 2702.9

c20j4m4 11 231 736.7 137 82.6

c20j4m5 2 038 565.4 436 301.4

c22j2m1 >8 402 >7200.0 >8 511 >7200.0

c22j2m2 >8 048 >7200.0 >21 287 >7200.0

c22j2m3 >7 728 >7200.0 >7 045 >7200.0

c22j2m4 >7 767 >7200.0 >11 445 >7200.0

c22j2m5 >18 858 >7200.0 >19 014 >7200.0

c22j3m1 >3 161 >7200.0 1 517 5172.3

c22j3m2 >5 213 >7200.0 915 2425.7

c22j3m3 >6 892 >7200.0 >5 015 >7200.0

c22j3m4 2 401 3807.5 358 829.0

c22j3m5 >11 350 >7200.0 >21 621 >7200.0

c22j4m1 >18 818 >7200.0 >18 183 >7200.0

c22j4m2 >2 947 >7200.0 >6 622 >7200.0

c22j4m3 >22 315 >7200.0 18 800 5501.4

c22j4m4 2 239 575.5 746 392.0

c22j4m5 564 228.7 351 397.7

c24j2m1 >7 123 >7200.0 >7 012 >7200.0

c24j2m2 >6 148 >7200.0 >14 904 >7200.0

c24j2m3 >3 509 >7200.0 >6 818 >7200.0

c24j2m4 >741 >7200.0 207 2476.8

c24j2m5 >5 424 >7200.0 >3 475 >7200.0

c24j3m1 >3 159 >7200.0 >1 374 >7200.0

17



SB MA

Nodes Time Nodes Time

c24j3m2 >2 678 >7200.0 >1 274 >7200.0

c24j3m3 >4 634 >7200.0 >16 898 >7200.0

c24j3m4 2 126 2913.4 1 587 3516.0

c24j3m5 >942 >7200.0 >292 >7200.0

c24j4m1 >2 128 >7200.0 >831 >7200.0

c24j4m2 >3 824 >7200.0 256 1068.3

c24j4m3 >9 086 >7200.0 >4 468 >7200.0

c24j4m4 >1 477 >7200.0 >884 >7200.0

c24j4m5 >12 410 >7200.0 >9 140 >7200.0

c26j2m1 >7 861 >7200.0 >2 415 >7200.0

c26j2m2 >4 045 >7200.0 >3 025 >7200.0

c26j2m3 >5 792 >7200.0 >2 263 >7200.0

c26j2m4 >4 816 >7200.0 >13 202 >7200.0

c26j2m5 >4 370 >7200.0 1 902 4991.4

c26j3m1 >3 749 >7200.0 >6 695 >7200.0

c26j3m2 >2 145 >7200.0 >4 316 >7200.0

c26j3m3 >1 327 >7200.0 >312 >7200.0

c26j3m4 >910 >7200.0 >1 039 >7200.0

c26j3m5 >2 237 >7200.0 >339 >7200.0

c26j4m1 >6 737 >7200.0 >1 574 >7200.0

c26j4m2 >1 213 >7200.0 >534 >7200.0

c26j4m3 >4 614 >7200.0 >2 096 >7200.0

c26j4m4 >1 472 >7200.0 >1 033 >7200.0

c26j4m5 >2 340 >7200.0 >680 >7200.0

c28j2m1 >4 284 >7200.0 >3 383 >7200.0

c28j2m2 >4 520 >7200.0 >10 543 >7200.0

c28j2m3 >8 027 >7200.0 >3 431 >7200.0

c28j2m4 >6 849 >7200.0 >1 877 >7200.0

c28j2m5 >4 145 >7200.0 >745 >7200.0

c28j3m1 >2 606 >7200.0 1 322 6764.1

c28j3m2 >4 129 >7200.0 9 623 5805.1

c28j3m3 >1 156 >7200.0 >283 >7200.0

c28j3m4 >546 >7200.0 >571 >7200.0

c28j3m5 >3 795 >7200.0 >3 190 >7200.0

c28j4m1 >3 664 >7200.0 >1 383 >7200.0

c28j4m2 >4 160 >7200.0 >1 127 >7200.0

c28j4m3 >1 562 >7200.0 >297 >7200.0

c28j4m4 >3 098 >7200.0 >2 203 >7200.0

c28j4m5 >5 623 >7200.0 >512 >7200.0

c30j2m1 >3 477 >7200.0 >812 >7200.0

c30j2m2 >3 783 >7200.0 1 898 6424.0

c30j2m3 >5 227 >7200.0 >1 687 >7200.0

c30j2m4 >2 931 >7200.0 >547 >7200.0

c30j2m5 >6 242 >7200.0 >637 >7200.0

c30j3m1 >675 >7200.0 >155 >7200.0

c30j3m2 >1 121 >7200.0 >665 >7200.0

c30j3m3 >2 309 >7200.0 >1 314 >7200.0

c30j3m4 >780 >7200.0 >145 >7200.0

c30j3m5 >768 >7200.0 >142 >7200.0

c30j4m1 >1 145 >7200.0 >134 >7200.0

c30j4m2 >920 >7200.0 >250 >7200.0

c30j4m3 >4 085 >7200.0 >1 264 >7200.0

c30j4m4 >2 479 >7200.0 >480 >7200.0

c30j4m5 >884 >7200.0 >464 >7200.0

c32j2m1 >2 626 >7200.0 >697 >7200.0

c32j2m2 >3 301 >7200.0 >1 190 >7200.0

c32j2m3 >1 954 >7200.0 >480 >7200.0

c32j2m4 >3 375 >7200.0 >968 >7200.0

c32j2m5 >1 779 >7200.0 >1 985 >7200.0

c32j3m1 >1 675 >7200.0 >651 >7200.0

18



SB MA

Nodes Time Nodes Time

c32j3m2 >1 700 >7200.0 >845 >7200.0

c32j3m3 >290 >7200.0 >70 >7200.0

c32j3m4 >263 >7200.0 >89 >7200.0

c32j3m5 >899 >7200.0 >131 >7200.0

c32j4m1 >1 517 >7200.0 >171 >7200.0

c32j4m2 >376 >7200.0 >150 >7200.0

c32j4m3 >2 009 >7200.0 >1 289 >7200.0

c32j4m4 >1 699 >7200.0 >442 >7200.0

c32j4m5 >659 >7200.0 >150 >7200.0

c34j2m1 >2 737 >7200.0 >557 >7200.0

c34j2m2 >3 748 >7200.0 >1 178 >7200.0

c34j2m3 >1 017 >7200.0 >872 >7200.0

c34j2m4 >1 786 >7200.0 >461 >7200.0

c34j2m5 >2 641 >7200.0 >910 >7200.0

c36j2m1 >880 >7200.0 >161 >7200.0

c36j2m2 >2 801 >7200.0 >698 >7200.0

c36j2m3 >1 812 >7200.0 >336 >7200.0

c36j2m4 >589 >7200.0 >202 >7200.0

c36j2m5 >838 >7200.0 >189 >7200.0

c38j2m1 >619 >7200.0 >191 >7200.0

c38j2m2 >848 >7200.0 >161 >7200.0

c38j2m3 >1 311 >7200.0 >287 >7200.0

c38j2m4 >404 >7200.0 >83 >7200.0

c38j2m5 >414 >7200.0 >79 >7200.0

de14j3m3 15 6.7 25 7.3

de14j3m5 4 3.4 4 3.3

de16j3m2 4 5.0 4 5.1

de16j3m3 2 3.9 2 3.8

de18j3m3 2 13.1 2 13.2

de18j3m4 9 11.5 12 11.4

de18j3m5 279 74.9 208 77.5

de20j3m1 3 11.6 3 11.4

de20j3m2 4 6.5 4 6.6

de20j3m3 59 33.1 4 30.1

de20j3m4 304 213.9 464 355.4

de20j3m5 431 85.9 426 84.7

de22j3m1 562 343.8 407 721.0

de22j3m2 2 11.3 2 11.3

de22j3m3 1 178 1636.6 889 963.5

de22j3m4 448 127.2 5 13.1

de24j3m1 725 862.1 2 620 3673.6

de24j3m2 422 479.3 475 695.4

de24j3m3 >11 104 >7200.0 >11 778 >7200.0

de24j3m4 538 1242.3 706 1242.9

de24j3m5 3 15.9 3 16.1

de26j3m1 1 797 3747.1 >1 067 >7200.0

de26j3m2 >4 754 >7200.0 >1 571 >7200.0

de26j3m3 3 915 726.5 1 877 1344.7

de26j3m4 2 421 6535.2 1 487 4657.1

de26j3m5 45 111.5 53 119.1

de28j3m1 >2 949 >7200.0 >1 372 >7200.0

de28j3m2 121 296.1 99 290.8

de28j3m3 2 876 5334.6 2 287 6578.1

de28j3m4 >1 431 >7200.0 >185 >7200.0

de28j3m5 >3 364 >7200.0 >3 769 >7200.0

df16j3m1 57 2.8 57 2.5

df22j3m2 3 19.8 3 19.7

df22j3m3 15 18.5 10 17.9

df24j3m1 4 13.2 4 13.5

df24j3m2 3 13.7 4 13.7

19



SB MA

Nodes Time Nodes Time

df24j3m5 4 36.0 4 36.5

df26j3m2 6 45.5 6 45.9

df28j3m2 2 22.3 2 21.2

df28j3m3 610 1014.0 633 1068.5

df28j3m4 3 24.9 3 25.7

df28j3m5 5 17.4 5 16.7

e10j2m1 139 5.8 241 6.6

e10j2m2 51 11.0 18 9.6

e10j2m3 3 2.6 3 2.4

e12j2m1 196 22.2 211 22.6

e12j2m2 2 2.9 2 2.9

e12j2m3 18 1.7 18 1.6

e12j2m4 136 37.8 190 62.8

e12j2m5 3 7.0 3 7.2

e15j3m1 5 7.1 6 7.5

e15j3m3 143 57.3 173 58.8

e15j3m4 188 21.7 153 16.2

e15j3m5 54 4.4 78 11.2

e20j4m1 3 889 505.9 1 223 115.7

e20j4m2 >6 403 >7200.0 2 738 5437.1

e20j4m3 28 18.6 6 15.7

e20j4m4 4 053 1348.4 311 151.3

e20j4m5 2 076 693.2 454 214.7

e25j5m1 >40 736 >7200.0 >28 460 >7200.0

e25j5m3 >9 568 >7200.0 7 970 3298.2

e25j5m4 20 133 1536.5 7 271 747.2

e25j5m5 381 832.9 1 099 1334.1

e30j6m1 2 048 3433.6 2 329 3069.1

e30j6m2 2 038 2356.0 930 2026.3

e30j6m3 1 703 813.2 1 479 908.0

e30j6m4 >3 100 >7200.0 >1 840 >7200.0

e30j6m5 >10 452 >7200.0 >8 108 >7200.0

e35j7m1 >2 418 >7200.0 >3 510 >7200.0

e35j7m2 >5 670 >7200.0 >2 926 >7200.0

e35j7m3 >3 128 >7200.0 >1 798 >7200.0

e35j7m4 >2 923 >7200.0 >1 741 >7200.0

e35j7m5 >1 462 >7200.0 >883 >7200.0

e40j8m1 >2 137 >7200.0 >472 >7200.0

e40j8m2 >632 >7200.0 >488 >7200.0

e40j8m3 >658 >7200.0 >340 >7200.0

e40j8m4 >1 545 >7200.0 >1 026 >7200.0

e40j8m5 >949 >7200.0 >465 >7200.0

e45j9m1 >1 299 >7200.0 >408 >7200.0

e45j9m2 >819 >7200.0 >297 >7200.0

e45j9m3 >1 729 >7200.0 >720 >7200.0

e45j9m4 >845 >7200.0 >334 >7200.0

e45j9m5 >770 >7200.0 >170 >7200.0

e50j10m1 >964 >7200.0 >273 >7200.0

e50j10m2 >667 >7200.0 >343 >7200.0

e50j10m3 >3 280 >7200.0 >531 >7200.0

e50j10m4 >2 028 >7200.0 >678 >7200.0

e50j10m5 >820 >7200.0 >343 >7200.0

geom. mean 663 736.9 363 672.1

sh. geom. mean 1 080 928.1 630 852.3

arithm. mean 2 866 4011.0 5 364 3893.7

all optimal

geom. mean 138 56.4 85 47.0

sh. geom. mean 349 84.6 221 70.3

arithm. mean 1 299 497.0 3 368 407.1

20



Table 4: Detailed computational results on scheduling instances comparing full strong branching
(SB-pure) and branching on multi-aggregated variables (MA-pure) with pure SCIP settings

SB-pure MA-pure

Nodes Time Nodes Time

c10j2m1 49 2.1 3 1.0

c10j2m3 221 3.1 25 1.0

c10j2m4 19 0.5 15 0.5

c10j2m5 217 7.0 7 2.2

c10j3m1 1 965 3.4 149 1.1

c10j3m2 17 0.5 9 0.5

c10j3m3 63 1.0 63 1.0

c10j4m2 3 0.5 3 0.5

c10j4m3 5 0.5 3 0.5

c12j2m1 21 2.3 3 1.1

c12j2m2 31 407 367.6 25 043 292.5

c12j2m3 743 3.7 21 1.4

c12j2m4 49 1.5 3 0.5

c12j2m5 115 2.7 5 0.8

c12j3m1 3 1.5 3 1.5

c12j3m2 633 5.8 47 1.8

c12j3m3 101 3.1 5 1.3

c12j3m4 8 995 37.6 31 1.1

c12j3m5 2 023 9.1 199 2.6

c12j4m1 33 0.5 39 0.5

c12j4m2 77 1.4 21 1.2

c12j4m3 25 0.5 5 0.5

c12j4m4 3 0.7 5 0.8

c12j4m5 49 1.9 5 1.8

c14j2m1 59 4.6 3 1.6

c14j2m2 8 257 120.5 1 579 34.0

c14j2m3 27 3.4 3 1.4

c14j3m1 747 215 4278.8 >687 239 >7200.0

c14j3m2 155 2.9 45 1.7

c14j3m3 83 5.0 353 8.7

c14j3m4 3 071 54.8 625 14.7

c14j3m5 839 32.3 2 357 22.2

c14j4m1 4 489 74.6 677 19.8

c14j4m2 59 2.1 23 1.9

c14j4m3 1 609 32.4 983 20.5

c14j4m4 323 933 3720.7 35 473 461.2

c14j4m5 23 1.6 213 5.8

c16j2m2 45 181 3039.5 39 179 4962.0

c16j2m3 >88 241 >7200.0 >96 923 >7200.0

c16j2m5 359 745 6731.8 >194 747 >7200.0

c16j3m1 >136 196 >7200.0 >262 540 >7200.0

c16j3m2 >180 160 >7200.0 >160 720 >7200.0

c16j3m3 3 267 212.7 1 021 78.5

c16j3m4 47 529 832.2 19 781 312.5

c16j3m5 11 1.0 3 1.1

c16j4m1 15 7.6 13 7.1

c16j4m2 9 067 132.8 1 561 27.4

c16j4m3 53 2.6 43 2.3

c16j4m4 127 6.0 21 4.8

c16j4m5 >453 201 >7200.0 125 369 2285.4

c18j2m1 113 42.4 5 6.4

c18j2m2 >34 343 >7200.0 3 479 773.6

c18j2m3 3 327 149.5 32 171 3610.8

c18j2m4 14 661 1932.6 28 781 4170.4

c18j2m5 169 21.6 7 9.4

21



SB-pure MA-pure

Nodes Time Nodes Time

c18j3m1 >21 044 >7200.0 5 475 633.0

c18j3m2 >91 581 >7200.0 >56 864 >7200.0

c18j3m3 >31 348 >7200.0 >67 788 >7200.0

c18j3m4 >39 936 >7200.0 >70 184 >7200.0

c18j3m5 >120 800 >7200.0 >132 452 >7200.0

c18j4m1 12 003 278.6 201 583 2112.7

c18j4m2 >87 114 >7200.0 >147 087 >7200.0

c18j4m3 13 699 478.9 211 34.4

c18j4m4 1 451 107.9 2 409 70.1

c18j4m5 >186 435 >7200.0 54 089 2461.0

c20j2m1 >25 471 >7200.0 >29 028 >7200.0

c20j2m2 75 47.6 3 7.2

c20j2m3 >23 541 >7200.0 >16 730 >7200.0

c20j2m4 >14 355 >7200.0 19 36.4

c20j2m5 >27 333 >7200.0 695 131.1

c20j3m1 >79 222 >7200.0 >172 405 >7200.0

c20j3m2 >21 298 >7200.0 153 015 3338.9

c20j3m3 >11 757 >7200.0 >77 074 >7200.0

c20j3m4 >24 433 >7200.0 >8 486 >7200.0

c20j3m5 >78 909 >7200.0 >56 921 >7200.0

c20j4m1 >50 021 >7200.0 >82 151 >7200.0

c20j4m2 >106 193 >7200.0 >289 541 >7200.0

c20j4m3 >17 774 >7200.0 >20 886 >7200.0

c20j4m4 4 147 438.1 281 62.8

c20j4m5 >320 482 >7200.0 >256 111 >7200.0

c22j2m1 >7 131 >7200.0 >8 990 >7200.0

c22j2m2 655 346.1 5 14.0

c22j2m3 >11 865 >7200.0 >15 339 >7200.0

c22j2m4 >4 134 >7200.0 >10 231 >7200.0

c22j2m5 >24 475 >7200.0 >16 757 >7200.0

c22j3m1 >10 405 >7200.0 >6 737 >7200.0

c22j3m2 >14 831 >7200.0 >10 536 >7200.0

c22j3m3 >16 106 >7200.0 >8 157 >7200.0

c22j3m4 >9 399 >7200.0 >9 079 >7200.0

c22j3m5 >23 371 >7200.0 >10 625 >7200.0

c22j4m1 >28 142 >7200.0 >19 973 >7200.0

c22j4m2 >10 135 >7200.0 >79 549 >7200.0

c22j4m3 >27 578 >7200.0 >34 021 >7200.0

c22j4m4 105 32.9 7 17.0

c22j4m5 7 049 1509.7 55 80.3

c24j2m1 >1 564 >7200.0 >3 752 >7200.0

c24j2m2 >6 016 >7200.0 >4 865 >7200.0

c24j2m3 109 467.5 3 39.1

c24j2m4 >5 973 >7200.0 >9 990 >7200.0

c24j2m5 >3 430 >7200.0 205 950.7

c24j3m1 >6 925 >7200.0 >3 480 >7200.0

c24j3m2 >9 850 >7200.0 >24 348 >7200.0

c24j3m3 >8 767 >7200.0 >5 818 >7200.0

c24j3m4 >7 122 >7200.0 >10 951 >7200.0

c24j3m5 >4 626 >7200.0 >4 262 >7200.0

c24j4m1 >6 976 >7200.0 >10 005 >7200.0

c24j4m2 >13 842 >7200.0 >10 898 >7200.0

c24j4m3 >7 688 >7200.0 >4 193 >7200.0

c24j4m4 >7 289 >7200.0 >3 802 >7200.0

c24j4m5 >11 632 >7200.0 >11 571 >7200.0

c26j2m1 >2 038 >7200.0 >5 318 >7200.0

c26j2m2 >4 846 >7200.0 >3 787 >7200.0

c26j2m3 >2 650 >7200.0 >4 884 >7200.0

c26j2m5 1 309 3204.2 7 53.3

c26j3m1 >2 097 >7200.0 >1 476 >7200.0

22



SB-pure MA-pure

Nodes Time Nodes Time

c26j3m2 >2 807 >7200.0 >2 844 >7200.0

c26j3m3 >1 009 >7200.0 >2 335 >7200.0

c26j3m4 >4 899 >7200.0 >2 286 >7200.0

c26j3m5 >1 763 >7200.0 >730 >7200.0

c26j4m1 >3 432 >7200.0 >4 278 >7200.0

c26j4m2 >3 019 >7200.0 >2 044 >7200.0

c26j4m3 >20 552 >7200.0 >3 075 >7200.0

c26j4m4 >6 668 >7200.0 >5 077 >7200.0

c26j4m5 >3 959 >7200.0 >4 184 >7200.0

c28j2m1 1 025 2107.0 5 35.3

c28j2m2 333 1199.0 7 37.9

c28j2m4 >661 >7200.0 >2 603 >7200.0

c28j2m5 >1 632 >7200.0 >4 127 >7200.0

c28j3m1 >3 791 >7200.0 >961 >7200.0

c28j3m2 283 4014.0 7 110.2

c28j3m3 >3 355 >7200.0 >2 253 >7200.0

c28j3m4 >2 523 >7200.0 >1 019 >7200.0

c28j3m5 >2 006 >7200.0 >1 978 >7200.0

c28j4m1 >3 906 >7200.0 >1 041 >7200.0

c28j4m2 >3 290 >7200.0 55 503.2

c28j4m3 >1 625 >7200.0 >835 >7200.0

c28j4m4 >3 552 >7200.0 >3 234 >7200.0

c28j4m5 >4 178 >7200.0 >2 890 >7200.0

c30j2m1 >1 165 >7200.0 13 261.7

c30j2m2 >683 >7200.0 11 158.1

c30j2m3 >1 228 >7200.0 >710 >7200.0

c30j2m4 >1 541 >7200.0 >372 >7200.0

c30j2m5 >1 608 >7200.0 13 328.5

c30j3m1 >1 151 >7200.0 >415 >7200.0

c30j3m2 >1 660 >7200.0 >548 >7200.0

c30j3m3 >540 >7200.0 15 587.9

c30j3m4 >1 175 >7200.0 >280 >7200.0

c30j3m5 >304 >7200.0 >346 >7200.0

c30j4m1 >2 009 >7200.0 >1 134 >7200.0

c30j4m2 >2 483 >7200.0 >726 >7200.0

c30j4m3 >1 971 >7200.0 >922 >7200.0

c30j4m4 >1 263 >7200.0 >1 023 >7200.0

c30j4m5 >3 365 >7200.0 >1 758 >7200.0

c32j2m1 >522 >7200.0 51 919.5

c32j2m2 >518 >7200.0 >329 >7200.0

c32j2m3 >186 >7200.0 5 196.7

c32j2m4 >874 >7200.0 >995 >7200.0

c32j3m1 >1 206 >7200.0 283 5718.5

c32j3m2 >848 >7200.0 >487 >7200.0

c32j3m3 >1 309 >7200.0 >288 >7200.0

c32j3m4 >745 >7200.0 >393 >7200.0

c32j3m5 >2 255 >7200.0 >325 >7200.0

c32j4m1 >1 238 >7200.0 >809 >7200.0

c32j4m2 >1 133 >7200.0 >322 >7200.0

c32j4m3 >1 354 >7200.0 >308 >7200.0

c32j4m4 >1 331 >7200.0 >894 >7200.0

c32j4m5 >1 622 >7200.0 >308 >7200.0

c34j2m2 >143 >7200.0 >166 >7200.0

c34j2m3 >197 >7200.0 5 220.0

c34j2m4 >113 >7200.0 7 373.2

c34j2m5 >808 >7200.0 >403 >7200.0

c36j2m1 >358 >7200.0 5 428.9

c36j2m2 >70 >7200.0 >147 >7200.0

c36j2m3 >74 >7200.0 3 402.6

c36j2m5 >30 >7200.0 3 656.2

23



SB-pure MA-pure

Nodes Time Nodes Time

c38j2m1 >292 >7200.0 >195 >7200.0

c38j2m3 >581 >7200.0 45 1946.5

c38j2m5 183 3238.2 3 160.4

de12j3m5 11 2.4 3 2.2

de14j3m3 11 4.1 9 4.0

de14j3m4 3 2.5 3 2.4

de14j3m5 6 053 87.5 925 20.8

de16j3m2 287 8.9 147 7.2

de16j3m3 283 16.5 65 6.5

de16j3m5 71 3.5 71 3.3

de18j3m2 3 7.5 3 8.4

de18j3m3 277 22.8 23 14.6

de18j3m4 131 20.5 45 14.2

de18j3m5 5 5.3 5 5.0

de20j3m1 3 431 1047.1 19 39.3

de20j3m2 69 32.0 13 12.4

de20j3m3 105 19.4 25 16.5

de20j3m4 345 119.2 311 118.8

de22j3m1 21 295 4328.4 1 069 393.6

de22j3m2 12 707 6118.5 975 574.1

de22j3m3 181 140.1 181 141.3

de22j3m4 105 42.5 273 111.7

de22j3m5 3 4.3 3 4.2

de24j3m1 >17 580 >7200.0 17 871 3860.2

de24j3m2 >35 958 >7200.0 >30 527 >7200.0

de24j3m5 >23 010 >7200.0 >20 387 >7200.0

de26j3m1 >2 432 >7200.0 >3 440 >7200.0

de26j3m2 >3 383 >7200.0 >3 227 >7200.0

de26j3m3 >8 309 >7200.0 >80 935 >7200.0

de26j3m4 >8 940 >7200.0 >11 715 >7200.0

de26j3m5 >8 597 >7200.0 2 009 5441.8

de28j3m1 >3 138 >7200.0 >1 711 >7200.0

de28j3m2 >2 379 >7200.0 >2 813 >7200.0

de28j3m4 >788 >7200.0 >597 >7200.0

de28j3m5 >2 158 >7200.0 >7 978 >7200.0

df14j3m5 21 0.5 7 0.6

df16j3m5 3 1.1 3 1.1

df18j3m2 37 13.9 13 12.4

df18j3m3 5 6.2 5 6.4

df18j3m4 25 3.2 3 2.5

df18j3m5 5 5.4 5 5.4

df20j3m4 399 19.7 5 3.0

df20j3m5 23 10.0 23 10.2

df22j3m1 3 17.1 3 17.3

df22j3m2 29 20.8 13 19.9

df22j3m3 317 49.1 107 32.4

df22j3m5 433 81.4 39 9.1

df24j3m1 141 58.5 169 97.0

df24j3m2 1 059 258.4 171 94.3

df24j3m3 3 7.4 3 7.5

df24j3m5 21 27.4 9 26.6

df26j3m1 9 11.6 9 11.5

df26j3m2 3 097 2377.0 359 592.1

df26j3m3 163 41.7 13 12.0

df28j3m1 21 27.3 3 12.7

df28j3m2 539 1097.3 3 91.9

df28j3m3 2 175 1460.3 741 1867.0

df28j3m5 >3 846 >7200.0 >1 593 >7200.0

e10j2m2 305 10.3 55 8.9

e10j2m3 145 2.1 7 1.4

24



SB-pure MA-pure

Nodes Time Nodes Time

e10j2m5 101 2.1 25 2.1

e12j2m1 15 329 453.6 5 781 127.9

e12j2m4 311 26.0 75 12.1

e12j2m5 167 9.9 19 6.2

e15j3m1 179 591 3125.2 29 345 175.0

e15j3m3 >248 801 >7200.0 341 075 3219.7

e15j3m5 5 057 126.9 2 455 63.3

e20j4m1 40 549 3837.0 16 241 1447.6

e20j4m2 >28 054 >7200.0 >17 905 >7200.0

e20j4m3 >113 688 >7200.0 3 293 311.8

e20j4m4 2 925 280.1 343 100.6

e20j4m5 >92 555 >7200.0 18 853 982.3

e25j5m1 >25 764 >7200.0 >42 414 >7200.0

e25j5m3 >27 015 >7200.0 >47 234 >7200.0

e25j5m4 >150 463 >7200.0 >146 369 >7200.0

e25j5m5 >27 133 >7200.0 >95 311 >7200.0

e30j6m1 >4 854 >7200.0 >13 887 >7200.0

e30j6m2 >46 756 >7200.0 >199 679 >7200.0

e30j6m3 181 52.1 99 795 6381.3

e30j6m4 >8 288 >7200.0 >9 959 >7200.0

e30j6m5 >11 604 >7200.0 >26 337 >7200.0

e35j7m1 >10 736 >7200.0 >6 618 >7200.0

e35j7m2 >8 566 >7200.0 >6 067 >7200.0

e35j7m3 >6 386 >7200.0 >4 220 >7200.0

e35j7m4 >5 896 >7200.0 >3 385 >7200.0

e35j7m5 >8 469 >7200.0 >3 899 >7200.0

e40j8m1 >6 330 >7200.0 >3 180 >7200.0

e40j8m2 >3 620 >7200.0 >3 028 >7200.0

e40j8m3 >2 408 >7200.0 >2 957 >7200.0

e40j8m4 >8 758 >7200.0 >5 774 >7200.0

e40j8m5 >4 323 >7200.0 >3 041 >7200.0

e45j9m1 >2 966 >7200.0 >1 679 >7200.0

e45j9m2 >1 990 >7200.0 >1 679 >7200.0

e45j9m3 >1 354 >7200.0 >1 091 >7200.0

e45j9m4 >3 103 >7200.0 >1 927 >7200.0

e45j9m5 >2 352 >7200.0 >2 627 >7200.0

e50j10m1 >1 479 >7200.0 >1 099 >7200.0

e50j10m2 >1 896 >7200.0 >1 513 >7200.0

e50j10m3 >1 900 >7200.0 >850 >7200.0

e50j10m4 >3 342 >7200.0 >1 815 >7200.0

e50j10m5 >1 057 >7200.0 >1 364 >7200.0

geom. mean 1 442 704.8 565 415.0

sh. geom. mean 2 106 980.3 1 256 625.7

arithm. mean 20 449 4383.1 19 582 3737.8

all optimal

geom. mean 227 27.4 52 13.2

sh. geom. mean 472 51.8 196 26.4

arithm. mean 7 425 468.8 4 828 258.2

25



Table 5: Detailed computational results on general MIP instances comparing full strong branch-
ing (SB) and branching on multi-aggregated variables (MA) with SCIP’s default settings

SB MA

Nodes Time Nodes Time

neos-1061020 >22 >7200.0 >22 >7200.0

neos-1215259 840 4763.3 >809 >7200.0

neos-1223462 >1 >7200.0 >1 >7200.0

neos-1224597 80 2170.6 76 3152.2

neos-1281048 345 234.6 322 270.4

neos-1445755 6 61.8 6 61.8

neos-1445765 5 133.0 5 134.4

neos-530627 3 0.5 3 0.5

neos-555298 >1 293 >7200.0 582 2797.3

neos-555343 >75 >7200.0 >75 >7200.0

neos-555424 >353 >7200.0 >338 >7200.0

neos-555694 86 76.1 86 101.2

neos-555884 >1 128 >7200.0 >504 >7200.0

neos-555927 >5 790 >7200.0 >4 814 >7200.0

neos-780889 >10 >7200.0 >9 >7200.0

neos-785899 200 115.5 249 210.2

neos-785912 >3 314 >7200.0 >594 >7200.0

neos-785914 15 443.2 19 513.3

neos-799838 46 4393.7 50 6098.0

neos-848845 >67 >7200.0 >55 >7200.0

neos-849702 >118 >7200.0 >115 >7200.0

neos-850681 >2 150 >7200.0 >1 257 >7200.0

neos-881765 18 8.1 18 10.1

neos-905856 >2 823 >7200.0 >1 398 >7200.0

neos-912015 281 431.7 187 440.5

neos-912023 19 26.6 28 48.7

neos-916173 723 233.0 1 470 267.5

neos-941313 >2 >7200.0 >2 >7200.0

neos-953928 >28 >7200.0 >29 >7200.0

neos-954925 >4 >7200.0 >4 >7200.0

neos-957143 >26 >7200.0 >26 >7200.0

Test3 4 7.5 4 8.0

air04 76 2870.5 78 4133.2

air05 151 1406.9 157 1771.2

dsbmip 21 2.1 19 2.3

fiber 35 2.0 17 1.9

gesa3 o 10 2.4 8 2.3

harp2 223 578 1193.3 405 262 2814.2

lseu 110 0.5 119 0.7

nw04 5 38.0 5 42.3

p0033 2 0.5 2 0.5

qnet1 o 18 9.7 18 11.9

atlanta-ip >15 >7200.0 >2 >7200.0

momentum2 >97 >7200.0 >47 >7200.0

msc98-ip >19 >7200.0 >8 >7200.0

26



SB MA

Nodes Time Nodes Time

mzzv11 >241 >7200.0 >151 >7200.0

mzzv42z >83 >7200.0 >59 >7200.0

roll3000 >9 834 >7200.0 >4 713 >7200.0

30 70 45 095 100 >3 >7200.0 >3 >7200.0

bab5 >232 >7200.0 >135 >7200.0

bnatt350 >547 >7200.0 >434 >7200.0

bnatt400 >393 >7200.0 >198 >7200.0

co-100 >29 >7200.0 >6 >7200.0

eil33-2 465 497.1 489 857.5

eilA101-2 >8 >7200.0 >4 >7200.0

eilB101 13 6714.9 >1 >7200.0

gmu-35-40 >1 372 877 >7200.0 >1 110 750 >7200.0

gmu-35-50 >955 757 >7200.0 >867 157 >7200.0

lrsa120 >15 176 >7200.0 >10 363 >7200.0

neos16 >40 083 >7200.0 >23 125 >7200.0

ns894244 >1 >7200.0 >1 >7200.0

ns894788 >123 >7200.0 >100 >7200.0

pigeon-10 >2 738 385 >7200.0 >2 517 457 >7200.0

pigeon-11 >2 141 627 >7200.0 >1 804 096 >7200.0

pigeon-12 >1 736 097 >7200.0 >1 550 643 >7200.0

pigeon-13 >1 704 951 >7200.0 >1 482 784 >7200.0

pw-myciel4 >2 454 >7200.0 >856 >7200.0

rocII-4-11 >2 139 >7200.0 >1 362 >7200.0

rococoB10-011000 >321 >7200.0 >9 >7200.0

rococoC10-001000 >8 903 >7200.0 >381 >7200.0

rococoC11-011100 >3 >7200.0 >1 >7200.0

satellites1-25 >1 >7200.0 >1 >7200.0

triptim1 >1 >7200.0 >1 >7200.0

p1 cpa ilpi mip.3 953 13.4 969 19.1

p18 cpa ilpi mip.6 10 3.8 8 3.8

p9 cpa ilpi mip.22 218 50.5 160 55.4

dfn6 cost 10 13.4 8 13.2

gwin10 f l 73 18.2 88 23.2

gwin10 f l nonp 250 109.1 376 154.6

gwin8 f l nonp 21 4.6 30 7.7

gwin8 nos l nonp 1 256 32.9 2 227 42.2

aa06 2 17.9 2 18.1

neos20 293 92.6 404 166.6

air02 4 2.1 4 2.0

air06 2 2.8 2 3.2

30:30:4.5:0.95:98 >15 >7200.0 >15 >7200.0

p16 cpa ilpi mip.29 35 814 4306.2 27 426 6631.5

p4 cpa ilpi mip.37 30 600 6514.4 >18 732 >7200.0

p6 cpa ilpi mip.72 >25 818 >7200.0 >13 941 >7200.0

p8 cpa ilpi mip.30 >42 855 >7200.0 >26 669 >7200.0

gwin7 f cost >1 >7200.0 >1 >7200.0

gwin7 nos load 8 520 524.5 18 507 1819.8

pubtrans2 2 715.7 2 715.4

aa01 76 2855.2 78 4148.2

bs-2006-03-24-17-15-01 >2 >7200.0 >2 >7200.0

t0415pre >14 >7200.0 >8 >7200.0

v1619 5 136.0 4 141.3

v1620 3 65.4 3 66.2

v1620pre 26 165.1 23 172.5

27



SB MA

Nodes Time Nodes Time

county04-normal-bicrit >29 636 >7200.0 >33 619 >7200.0

net-5-3-7 47 598 3969.5 44 700 5970.1

net-5-3-7b 88 538 2846.7 84 184 3791.9

neos10 4 9.7 4 9.9

neos7 122 399 832.8 75 500 1140.8

30:30:4.5:0.95:100 >11 >7200.0 >11 >7200.0

30:70:4.5:0.95:98 >2 >7200.0 >2 >7200.0

bmc-ibm-5 5 14.1 14 38.1

geom. mean 163 815.6 126 911.1

sh. geom. mean 586 1048.0 499 1151.2

arithm. mean 106 633 4160.3 94 784 4292.6

all optimal

geom. mean 72 62.7 76 80.4

sh. geom. mean 253 100.4 269 126.3

arithm. mean 10 864 635.9 13 539 941.0

28



Table 6: Detailed computational results on general MIP instances comparing full strong branch-
ing (SB-pure) and branching on multi-aggregated variables (MA-pure) with pure SCIP settings

SB-pure MA-pure

Nodes Time Nodes Time

neos-1061020 15 2355.6 15 2938.1

neos-1215259 121 795.5 127 1229.8

neos-1281048 155 106.7 137 121.3

neos-530627 3 289 186 212.6 852 689 231.4

neos-555884 >457 >7200.0 >315 >7200.0

neos-555927 >5 985 >7200.0 >5 455 >7200.0

neos-785899 3 0.6 1 0.7

neos-785912 >1 081 >7200.0 >2 326 >7200.0

neos-799838 >16 >7200.0 >13 >7200.0

neos-850681 >2 158 >7200.0 >1 567 >7200.0

neos-905856 1 561 5086.6 999 5425.7

neos-912023 >3 797 >7200.0 >2 419 >7200.0

neos-916173 633 293.1 1 399 356.3

neos-953928 >10 >7200.0 >10 >7200.0

neos-954925 >54 >7200.0 >55 >7200.0

Test3 167 12.9 139 17.0

air05 7 116.0 7 198.3

fiber 1 909 36.4 1 761 57.4

gesa3 o 237 6.1 225 7.8

harp2 >624 682 >7200.0 >327 587 >7200.0

lseu 1 125 0.7 1 017 1.0

nw04 19 40.3 15 46.5

p0033 105 0.5 51 0.5

qnet1 o 29 1.1 19 1.0

atlanta-ip >3 >7200.0 >2 >7200.0

momentum2 >131 >7200.0 >69 >7200.0

msc98-ip >25 >7200.0 >13 >7200.0

mzzv11 31 6279.9 >15 >7200.0

mzzv42z 3 3180.4 3 4401.9

roll3000 >9 582 >7200.0 >5 733 >7200.0

30n20b8 >35 >7200.0 >25 >7200.0

bab5 >256 >7200.0 >189 >7200.0

bnatt400 >448 >7200.0 >271 >7200.0

co-100 >35 >7200.0 >22 >7200.0

eil33-2 333 218.4 325 301.2

eilA101-2 >1 >7200.0 >1 >7200.0

eilB101 165 941.7 143 1436.8

gmu-35-40 >782 899 >7200.0 >544 528 >7200.0

gmu-35-50 >413 065 >7200.0 >283 401 >7200.0

lrsa120 >8 517 >7200.0 >5 747 >7200.0

neos16 >51 047 >7200.0 >34 746 >7200.0

ns1745726 7 25.3 7 27.3

pigeon-10 >1 540 274 >7200.0 >1 200 339 >7200.0

pigeon-11 >1 621 469 >7200.0 >1 398 439 >7200.0

pigeon-12 >1 279 702 >7200.0 >906 861 >7200.0

pigeon-13 >1 247 952 >7200.0 >981 960 >7200.0

pw-myciel4 >1 450 >7200.0 >833 >7200.0

rocII-4-11 >2 649 >7200.0 >1 576 >7200.0

rococoB10-011000 >676 >7200.0 >198 >7200.0

rococoC10-001000 >1 244 >7200.0 >274 >7200.0

rococoC11-011100 >432 >7200.0 >191 >7200.0

satellites1-25 >1 >7200.0 >1 >7200.0

p1 cpa ilpi mip.3 5 769 30.6 4 767 39.0

p18 cpa ilpi mip.6 >138 913 >7200.0 >101 450 >7200.0

p9 cpa ilpi mip.22 887 247.0 765 319.4

29



SB-pure MA-pure

Nodes Time Nodes Time

dfn6 cost 3 5.8 3 12.8

gwin10 f l 31 10.0 27 17.4

gwin10 f l nonp 59 36.3 9 54.7

gwin8 nos l nonp >1 126 823 >7200.0 >1 073 159 >7200.0

neos20 95 151 3198.7 73 015 3786.4

p16 cpa ilpi mip.29 202 995 4105.4 140 791 6868.5

p4 cpa ilpi mip.37 >49 188 >7200.0 >25 953 >7200.0

p6 cpa ilpi mip.72 >28 084 >7200.0 >14 193 >7200.0

p8 cpa ilpi mip.30 >37 229 >7200.0 >21 411 >7200.0

gwin7 f cost >2 396 >7200.0 >11 >7200.0

gwin7 nos load 21 555 3430.3 20 497 4517.2

t0415pre >14 >7200.0 >8 >7200.0

v1619 >1 961 >7200.0 >1 477 >7200.0

v1620 >1 415 >7200.0 >886 >7200.0

v1620pre >1 289 >7200.0 >677 >7200.0

county04-normal-bicrit >15 706 >7200.0 >5 746 >7200.0

net-5-3-7 41 067 5489.6 39 415 7021.8

net-5-3-7b 89 331 1863.4 85 585 2260.7

neos10 3 5.7 1 6.0

neos7 185 461 602.1 95 015 771.4

bmc-ibm-5 43 12.3 41 16.2

geom. mean 1 057 1151.8 688 1291.7

sh. geom. mean 2 251 1441.7 1 682 1579.8

arithm. mean 170 280 4583.5 108 804 4727.5

all optimal

geom. mean 393 93.1 296 121.7

sh. geom. mean 983 150.9 852 188.9

arithm. mean 123 066 1014.6 41 219 1327.9

30


	Introduction
	Related work
	Multi-aggregations of variables
	Branching on multi-aggregated variables
	Computational results
	Results for scheduling instances
	Results for general MIP instances

	Conclusions and outlook
	Acknowledgements
	Detailed Computational Results

