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Abstract

We present parallel formulations of the well established extrapolation algorithms
EULSIM and LIMEX and its implementation on a distributed memory archi-
tecture.

The discretization of partial differential equations by the method of lines yields
large banded systems, which can be efficiently solved in parallel only by iter-
ative methods. Polynomial preconditioning with a Neumann series expansion
combined with an overlapping domain decomposition appears as a very efficient,
robust and highly scalable preconditioner for different iterative solvers. A fur-
ther advantage of this preconditioner is that all computation can be restricted to
the overlap region as long as the subdomain problems are solved exactly. With
this approach the iterative algorithms operate on very short vectors, the length
of the vectors depends only on the number of gridpoints in the overlap region
and the number of processors, but not on the size of the linear system. As the
most reliable and fast iterative methods based on this preconditioning scheme
appeared GMRES or FOM and BICGSTAB. To further reduce the number of
iterations in GMRES or FOM we can reuse the Krylov-spaces constructed in
preceeding extrapolation steps.

The implementation of the method within the program LIMEX results in a
highly parallel and scalable program for solving differential algebraic problems
getting an almost linear speedup up to 64 processors even for medium size prob-
lems. Results are presented for a difficult application from chemical engineering
simulating the formation of aerosols in industrial gas exhaust purification.
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1 INTRODUCTION 


1 Introduction

In the last years we have seen an increasing demand for fast and high resolution sim�
ulations in many scienti�c and engineering areas	 The analysis and optimization of
large equipments in industrial chemical engineering as an example depends strongly on
algorithms� which enable accurate solutions rapidly� otherwise the study of parameter
dependencies would be impossible	 Problems possessing multiple time scales provide
the motivation for implicit algorithms and their inherent dynamical behaviour requires
locally adaptive approaches	 Furthermore very often a simulation process needs vary�
ing accuracies of the solutions� which makes iterative methods especially attractive	
Nowadays the whole claim can in most cases only be satis�ed by e�cient parallel
implementations	

Following this trends we study in this paper parallel methods for the solution of sys�
tems of partial di�erential equations� discretized by the method of lines� in the �D case	
Our basis is the well�established family of adaptive extrapolations codes EULSIM
and LIMEX� see Deuflhard ����� Deuflhard and Nowak ���� and Deuflhard,
Lang and Nowak ����� which cover a wide area of applications� e	g	 combustion
problems or catalytic processes	 The common algorithmic principle of these programs
is the linearly�implicit extrapolation method combined with an advanced order and
stepsize control	 Due to their linear structure� these methods do not need the solution
of nonlinear systems and enable at every time step modi�cations in an adaptively
de�ned grid	 Therefore the underlying algorithms already ful�ll the requirements for
implicit discretization and local adaptivity� whereas this for accuracy dependent eval�
uation can only completely sati�ed when using iterative linear solvers	 As we will see�
even the latter point will be accomplished in an e�cient parallel realization	

Guidelines for our parallelization attempts were always the development of scalable
and application independent algorithms� requiring only a minimum of constraints for
a given problem� this is mainly a spatial locality property	 On the other hand all our
methods are targeted to tightly coupled massively parallel systems with distributed
memory and high bandwidth communication� which clearly has determined some of
our algorithmic decisions	 As usual the right choice of a parallel preconditioner and
an iterative solver predominantly decides� whether the battle for low computational
cost and scalable parallelism can be won	

The outline of this paper is as follows	 In §� we brie�y describe the linearly�implicit
extrapolation algorithm	 The general parallelization concepts and some algorithmic
decisions are discussed in §�	 §
 is devoted to the step by step evolution of the optimal
parallel solver and preconditioner combination within the extrapolation codes	 Several
parallel implementation issues are explained in §�	 Numerical results for a complex
real application arising in chemical engineering are summarized in §�	 Finally� we o�er
some general remarks and further expectations on the algorithms in §�	
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2 Linearly-implicit extrapolation algorithms

For completeness� we summarize the derivation and assumptions of the linearly�
implicit extrapolation algorithms	 For a more thorough development� see ���� ���	

We consider a system of ordinary di�erential equations �ODEs�

y′ � f�t, y� , y�t�� � y� , y ∈ IRn ���

or a system of di�erential algebraic equations �DAEs� of the form

B�t, y�y′ � f�t, y� , y�t�� � y� , y ∈ IRn. ���

Herein the matrix B may be singular� but we assume that the system of DAEs is of
index ≤ �	 Our main interest is concentrated on solving systems of ODEs and DAEs
which are the result of a space discretization of a system of partial di�erential equations
by the method of lines	 Nevertheless our parallel methods should be applicable to other
problem classes as well	

The linearly�implicit Euler discretization applied with stepsize h to the equations ����
��� reads

yk�� � yk � �I − hA�−�hf�yk� ���

with A � fy�y� the Jacobian of f � respectively

yk�� � yk � �B�yk�− hA�−�hf�yk� �
�

with A � �f�y�−By′�y� the Jacobian of the residual of ���	

If an asymptotic h�expansion for the approximation error exists� the well known
Richardson extrapolation can be used to construct approximations of higher order	
Such expansions can be proven to exist for the linearly�implicit Euler method in gen�
eral only for systems of ODEs	 For systems of DAEs perturbed expansions still exist�
but the extrapolation algorithm can further sucessfully be applied� even if the maximal
attainable order may be reduced� see Lubich ����	

Let us de�ne a basic stepsize H	 Within the extrapolation method one computes
approximations Tj,� for y�t� � H� using the described discretizations with stepsizes
hj � H/nj , j � �, . . . , jmax	 We have used the harmonic sequence {nj} � {�, �, �, . . .}�
which has been reliable in all cases	 Now the extrapolation table is given by the
recursions

Tj,k � Tj,k−� �
Tj,k−� − Tj−�,k−�
nj/nj−k�� − �

, k � �, . . . , j ���

and de�nes the higher order approximations Tj,k	 As usual the so�called subdiagonal
di�erences εj � ‖Tj,j−Tj,j−�‖ are taken as error estimates using a weighted root mean
square norm	 If the error estimate is less than a prescribed tolerance� Tj,j is accepted
as an approximation for y�t��H� and the integration proceeds with a new estimated
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optimal stepsize�order combination	 An advanced adaptive stepsize and order control
mechanism has been developed by Deuflhard ���� and is used within our algorithms
without any signi�cant changes	

The somewhat simpli�ed algorithmic structure of the linearly�implicit extrapolation
codes for one basic integration step can now be represented as follows	

ODEs �code EULSIM��

Compute Jacobian A � fy�y��

for j � �, . . . , jmax while convergence criterion not satisfied

hj � H/nj

for k � 
, . . . , j − �

yk�� � yk � �I − hjA�−�hjf�yk� ���

Tj,� � yj

if j > � compute Tj,j and check convergence

ynew � Tj,j

DAEs �code LIMEX��

Compute Jacobian A � �f�y��− By′�y
for j � �, . . . , jmax while convergence criterion not satisfied

hj � H/nj

for k � 
, . . . , j − �

yk�� � yk � �B�yk�− hjA�−�hjf�yk� ���

Tj,� � yj

if j > � compute Tj,j and check convergence

ynew � Tj,j

The schematic representations clearly exhibit that the e�ciency of any serial or par�
allel implementation almost solely depends on the performance of two computational
kernels� the evaluation of the Jacobian and the solution of the linear systems	 It
is also obvious that the main distinction between the two algorithms is the change
of the matrix in the linear systems in every step of the innermost loop in the DAE
code	 Because in almost every real problem the matrix B covers only relatively few
non�constant entries� instead of a standard LU factorization an iterative procedure
may be preferable ����	
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De�ne �B � B�y��− B�yk� and the simple matrix splitting

B�yk�− hA � �B�y��− hA� − �B. ���

Using the corresponding relaxation scheme we get the following iterative algorithm	

�� � h�B�y��− hA�−�f�yk� ,

y�k�� � yk ,

i � �, �, . . . � ���

�i � �B�y��− hA�−��B �i−� ,

yi��k�� � yik�� ��i .

It is well known that such a relaxation scheme is equivalent to a �xed�point iteration
on a preconditioned linear system	 Here the preconditioner for the whole internal
step is simply B�y��− hA	 The algorithmic realization in LIMEX adaptively changes
between this iterative method and the direct solution of the linear systems depending
on a rough comparison of the respective amount of work	 In any case at least the LU
factorizations of the matrices B�y��− hjA are needed	

If we solve all linear systems by an iterative method �e	g	 GMRES�� a considerable
simpli�cation is possible	 We can then exchange the relaxation scheme described
above for this iterative solver� which is surely more e�ective� and use again a common
preconditioner� but now instead of B�y��−hA e	g	 an ILU factorization for B�y��−hA
for the whole internal step	 The resulting algorithmic structure looks very similar to
the one of the ODE code	 This technique makes iterative solvers very attractive
even for serial implementations of LIMEX� but the topic is not further discussed in
this paper	 Whether this method is applicable also for parallel realizations� will be
investigated in §
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3 General parallelization concepts

As pointed out in the last section� the e�ciency of any implementation of the extrap�
olation algorithms crucially depends on two computational tasks� the evaluation of
the Jacobian and the solution of the linear systems	 Therefore a parallel extrapolation
code has to distribute this parts as far as possible	

At a �rst sight� a simple and promising method is to compute the approximations
Tj,� on di�erent processors� because there evaluation is completely independent� but
this incorporates some severe drawbacks	 First the number of processors� which could
be e�ciently used� is restricted to the maximal order attainable by the extrapolation
method	 If we assign groups of di�erent sizes of processors to the Tj,�� we have to
construct di�erent domain decompositions	 Furthermore we could not use the orig�
inal order and stepsize control techniques without changes� as in this procedure the
used order jmax of ��� and ��� is determined within the current step	 Moreover all
processor groups need the whole Jacobian	 Nevertheless this parallelization strategy�
sometimes called �parallelization across method� � Burrage ����� is studied by some
authors� especially by Rauber ����� but seems meaningful only for explicit extrapo�
lation methods� where the evaluation of the right�hand side of the ODEs is the main
computational task	

A more general applicable and commonly used strategy is the �parallelization across
the system� or domain decomposition method	 This principle does not involve any
limitation to the number of processors used in a parallel implementation	

The realization of a domain decomposition algorithm refers directly to properties of
the underlying physical problem	 It presupposes that the solution on the entire domain
can be got from solutions on suitably selected subdomains	 Within the context of the
linearly�implicit extrapolation methods this principle requires that the function f�t, y�
in the right�hand side of the ODE ��� or DAE system ��� can be evaluated locally� i	e	
that any value fn only depends on yn and on some y�values in the neighborhood	 An
equivalent to this locality property is that the Jacobian of f is a banded matrix and is
therefore likewise computable in parallel	 The assumption of local computability of f is
naturally ful�lled for problems resulting from a discretization of PDE�s by the method
of lines	 Now assume we could solve e�ciently and in parallel the linear systems which
arise during the extrapolation	 Then it is obvious that the whole extrapolation scheme
can be straightforward parallelized� if every processor manages a �xed segment of the
approximations Tj,k	 Apart from the exchange of boundary values� which is necessary
for the evaluation of f on the processor boundaries� the extrapolation only requires
global reduction routines for the dot products in the computation of the error estimates
εk	

As in many other parallel numerical algorithms the e�ciency of our parallel extra�
polation implementation therefore strongly depends on the performance of the linear
solver	
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3.1 Direct versus iterative solution of the linear systems

At present the serial linearly�implicit extrapolation codes EULSIM and LIMEX use
the LU factorization to solve the linear systems	 Parallel implementations of the
Gaussian algorithm have been studied by many authors� see e	g	 in the textbooks by
Kumar et al. ��
� or Freeman and Phillips ����	 There are highly scalable and
e�cient algorithms for large dense systems� but load balance and and perfomance are
dependent on an appropriate mapping of the columns �or rows� of the matrix among
the processors	 They require a cyclic columnwise or better cyclic block�columnwise
striped partitioning of the matrix� so that each processor is assigned to a number of
contiguous blocks of columns	 Such distributions do not cooperate with any mean�
ingful domain decomposition and need the complete vector y� on each processor for
the computation of the Jacobian	 On a distributed memory machine this may be a
signi�cant drawback	

A second and more important disadvantage of the parallel Gaussian elimination is
the loss of e�ciency for banded systems� due to the imbalance of computation and
communication	 For banded linear systems there are some special direct approaches�
an exhaustive survey and comparison has been made by Arbenz and Gander ���	
Even if these methods use matrix partitionings referring to a domain decomposition�
they show a reasonable behaviour only if the bandwidth of the matrices is very narrow	
Furthermore none of the algorithms is scalable for high processor numbers	 One
of these direct methods will appear as a modi�cation of the iterative algorithm we
investigate and discuss in §
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Figure �� Performance results for a combustion test problem with direct parallel solvers
for banded matrices

We have developed two versions of a parallel LU factorization using assembly coded
Level � resp	 Level � BLAS routines� based on cyclic columnwise and block�cyclic
columnwise striped partitioning of the Jacobian �column storage with row pivoting
scheme�	 In the latter we used a blocksize of �� columns� which is an appropriate
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setting on the Cray T�D	 The communication was done via the Basic Linear Algebra
Communication Subprograms �BLACS� for the Cray MPP system ����	 At the begin�
ning of each integration step� every processor collects the whole vector f and computes
indepedently his own columns of the Jacobian	 After the parallel factorization the ex�
trapolation is performed in parallel on a non�overlapping domain decomposition	 The
implementation of this technique in the program EULSIM exhibits clearly the limita�
tion of the direct solution methods	 Applied to a combustion problem� test problem 

from Peters and Warnatz ����� we get as maximal speedup only a factor of about
�	� with � processors �block�cyclic distribution�� see Figure �	 For higher processor
numbers the computing times even increase	 Nevertheless the parallelized Gaussian
elimination can be a suitable method to solve very large systems of ODEs by the
extrapolation method	 This may be especially true if the Jacobian is not narrow
banded and�or the systems are extremely sti�� which may lead to severe problems
with iterative linear solvers	

As demonstrated the advantages of a parallel direct black�box solver are in most cases
outweighted by its poor performance	 Therefore we do not discuss direct solvers in
more detail� but switch to iterative methods	 The principal bene�ts of an iterative
solution algorithm for the linearly�implicit extrapolation method can be summarized
as follows�

• The partitioning of the Jacobian can refer to any domain decomposition� even
for �D or �D problems	

• The accuracy of the solution of the linear systems can be adopted to the required
accuracy of the solution of the integration	

• If the number of iterations does not �strongly� depend on the number of pro�
cessors� the algorithms became scalable	

• Distributed evaluation and storage of the Jacobian is possible	

Although these properties may be convincing� all bene�ts using iterative methods
strongly depend on an appropriate preconditioner	 This key problem will be discussed
in the next section	
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4 Parallel iterative solvers

The general problem of �nding an appropriate preconditioned iterative solver for a
linear system Ax � b is to look for a matrix P �the preconditioner� with the properties
that P−�A is �good� conditioned and the system

P−�Ax � P−�b ��
�

is much easier to solve than the original system	 Especially for parallel implementa�
tions there are no e�cient black�box preconditioning techniques which can be applied
to general matrices	 Instead one has to construct problem dependent precondition�
ers which exploit special features of the considered problem class	 The e�ciency of
an iterative solver on massively parallel computers depends on two factors	 These
are the matrix by vector multiplications as well as the setup and application of the
preconditioner	

Within the linearly�implicit extrapolation algorithms we get for discretized systems
of PDE�s Jacobians� which have a mainly banded structure� non�zero entries outside
the main diagonal band refer to nonlocal couplings	 Depending on the underlying
discretization the matrices are frequently block tridiagonal or even may cover more
than three diagonal blocks	 Concerning the domain decomposition an e�ective par�
allel computation of the Jacobian a blockwise partitioning of the matrix is necessary�
where each block corresponds to the equations in a subdomain assigned to one pro�
cessor	 This matrix storage scheme enables a very e�cient parallel matrix by vector
multiplication� requiring only preliminary updates of some external boundary values
of the distributed vector x	 These updates can be implemented highly e�ective as
local exchanges between neighbouring processors	

Independent of the selected preconditioner the general problem remains� how accurate
the linear systems should be solved	 If we use approximations instead exact solutions
we get a perturbed extrapolation table� which we will now analyze in some detail for
the ODE case	 We refer to the perturbation concept introduced by Bornemann ���
for linear and the extension by Lang and Walter ���� to nonlinear adaptive FEM
methods	 These authors searched for a relation between the accuracy of elliptic solvers
and those due to the time discretization	 We� however� are looking for a connection
between the accuracy of the time discretization and those of the linear solver� therefore
we use a somewhat di�erent terminology	

As already mentioned we accept Tj,j as approximation for y�t��H� using exact solu�
tions of the linear systems� if ‖Tj,j−�−Tj,j‖ ≤ ε in an appropriate norm	 Equivalently
we require using approximate solutions of the linear systems� that ‖  Tj,j−� − Tj,j‖ ≤ ε�
with  Tj,k as the approximations we obtain instead of Tj,k	 Since Tj,j is not known� the
following estimate is obvious	

‖  Tj,j−� − Tj,j‖ ≤ ‖  Tj,j−� −  Tj,j‖� ‖  Tj,j − Tj,j‖ ����
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Both terms on the right�hand of ���� side now should be less than ε/�	 This equation
is the equivalent of equation ��	��� in ����! the �rst term on the right�hand side
is numerical availabe during the extrapolation� therefore we still need ‖  Tj,j − Tj,j‖	
The terms Tj,k are recursively de�ned by ���	 Here we carry out the corresponding
calculations only for j � �, �� using δjk for the errors made by the computation of  Tj,k

and  yjl� the intermediate solutions	 For j � � we simply obtain

 T�,� � y� � �I −HA�−�Hf�y�� � δ�� � T�,� � δ�� , ����

and for j � �

 y�� � y� � �I − H

�
A�−�

H

�
f�y�� � δ�� � y�� � δ�� , ����

 T�,� �  y�� � �I − H

�
A�−�

H

�
f� y��� � δ�� .

With T�,� � �T�,� − T�,� we can conclude� that

‖  T�,� − T�,�‖ � ‖δ��‖ , ��
�

‖  T�,� − T�,�‖ � ‖�δ�� � �δ�� − δ�� � �I − H

�
A�−�H�f� y���− f�y���‖ .

It seems di�cult to proceed further without using a classical Lipschitz condition for
f � which is not appropriate in the context of stiff ODEs� see e	g	 Deuflhard ��
�	

Therefore we could use the results in ���� where for scalar linear PDEs the following
connection between the required accuracies for Tj,k in the extrapolation tableau and
the space discretization error ε is derived

δjk ≤
αk
j

j
ε , ����

and hope� that even in our case these estimates are satisfactory	 The coe�cients αk
j /j

depend only from the stepsize dividing sequence� their values decrease with increasing
k and j	 Consequently one has to solve the linear systems for higher j more accurately
than for j � �	 For clarity we assume moreover that for a �xed j we solve all linear
systems with a common accuracy� that means δj �� ‖δj�‖, . . . , ‖δjj‖	 As an rough
approximation to the αk

j we can use

δ� ≤ ε

�

, δ� ≤ ε

�


, δj ≤ ε

�



, j � �, . . . . ����

These settings are of cause very pessimistic as could be expected due to the use of
many triangle�inequalities	 Indeed our practical tests have shown� that with

δ� ≤ ε

�

, δj ≤ ε

�


, j � �, . . . ����
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one always obtain solutions satifying the required accuracies and this values are used
for all computations presented in this paper	�

Througout our investigations we used Left preconditioning	 This is a natural choice�
because we are not truly interested in the residuals� but in the errors� which of course
are not available	 Left preconditiong transforms the unpreconditioned residuals rk �
b−Axk of the approximate solutions xk in such a manner� that their norms should be
of same magnitude as the errors ek

P−�rk � P−�b− P−�Ax ����

≈ A−�b− xk � ek

This hope will be ful�lled if the preconditioner is really a �good� approximation for A	
Indeed we are looking for such preconditioners� since within the extrapolation scheme
one has to solve linear systems with several right�hand sides� therefore some expense
for there computation may be worthwhile	

4.1 Block Jacobi and block Neumann preconditioners

The blockwise partition of the Jacobian leads to a quite e�ective Jacobian evaluation
and matrix by vector multiplication	 However� fundamental di�culties arise when
applying standard preconditioners such as ILU or SSOR	 The major bottleneck are
the backsolves involving the triangular LU�factors and� for the ILU algorithm� even
their computation	 Since we use distributed matrices� the main loop in the sequential
algorithm for solving triangular systems would be divided over the processors leading
to very ine�ective methods	

An alternative technique targeted more speci�cally at parallel environments is the
block Jacobi preconditioner� or so�called additive Schwarz procedure	 This simple
approach uses complete or incomplete factorizations on the subdomains assigned to the
processors� which can be computed and applied in parallel	 Even if theoretically these
factorizations do not need to exist if the matrices are not block diagonally dominant�
in practice this never occurs because the subdomain matrices can be interpreted as
the result of a discretization of smaller well�posed physical problems	 Accordingly the
change from A to PJac implies a decoupling of the original problem in these smaller
ones	 Formally the block Jacobi preconditioner is de�ned by PJac � A�⊕A�⊕· · ·⊕Ap�
p is the number of processors� see Figure �	

We have implemented the block Jacobi preconditioner based on complete LU factori�
zations on the subdomains in the LIMEX code	 As iterative solver we choosed GMRES
�

�� which is proven to be one of the most general applicable iterative methods	 Nev�
ertheless� we have made comparisons with other algorithms also� see §
	�	 The initial

�If one, however, uses a classical Lipschitz condition as LH � 1, then one easily derives inequalities
like ‖T̃�,� − T�,�‖ ≤ �� + 5��� ‖T̃�,� − T�,�‖ ≤ �

�
�� + 12�� +

���

�
��� � � � Herewith and again with (16)

the conditions ‖T̃j,j�� − Tj,j��‖ ≤ ��2 are satisfied as well.
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Figure �� Block Jacobi preconditioner PJac of a banded matrix on four processors

guesses were always set to 
� this corresponds to the most obvious initial approxima�
tions yk�� � yk� see the code structure of LIMEX in §�	 As already mentioned� we
should use preconditioners which are good approximations for A	 Accordingly we ex�
pect low iteration numbers and therefore we did not use the restart capabilites of the
GMRES algorithm	 As test problemwe use in this chapter a system of �� PDE�s� which
models the startup phase of an automobile catalytic converter	 A detailed description
of the problem can found in Nowak ��
� and Eigenberger and Nieken ��
�	 This
problem is characterized by strongly varying time�dependent chemical dynamics and
sti�ness	 The speedups are always measured by comparison with the fastest sequential
implementation using direct LU factorization	 Therefore for some parallel variants we
may obtain on one processor speedups less than �	 As usual� the performance results
with the block Jacobi preconditioner are not encouraging� see Figure �	 One obtains
only a speedup of about �	� with �� processors� the number of iterations needed by
the GMRES algorithm increases rapidly with the number of processors	 Moreover�
if one reduces the required accuracy of the preconditioned residuals� the solution ex�
hibits spurious oscillations around the processor boundaries� which indicates that the
coupling across the processor boundaries is not enough considered	

A natural extension of the block Jacobi approach is polynomial preconditioning	
Hereby the preconditioner is constructed as a polynomial over A� usually of low de�
gree� which approximates the inverse of A	 The application of such preconditioners
can be computed as a sequence of matrix by vector multiplications and is therefore
quite e�ective using the good performance of matrix�vector products	 To introduce
polynomial preconditioners we de�ne the matrix splitting

ωA � D− �D − ωA� ����

with the scalar relaxation parameter ω and the diagonal D of A	 Then we get with
N � I − ωD−�A

�ωA�−� �
[
D

(
I − �I − ωD−�A�

)]−�
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Figure �� Performance results for the block Jacobi and Neumann preconditioner

� �I −N�−�D−� ��
�

≈ �I �N �N� � · · ·�Nk�D−�

assuming that the spectral radius ρ�N� satis�es ρ�N� < �	 Truncating this expansion
at k � � leads to

�ωA�−� ≈ ��I − ωD−�A�D−� . ����

This preconditioner is improved by the usual replacement of D by PJac� we just used
as preconditioner itself	 Numerical experiences let to the choice ω � �� therefore we
de�ne the block Neumann preconditioner as

P−�
Neu � ��I − P−�

Jac A�P−�
Jac . ����

This preconditioner was �rst introduced by Dubois et al	 ���� in the solution of
symmetric positive de�nite systems	 Later da Cunha and Hopkins ���� provided
evidence that this method is e�ective for non�symmetric systems as well	 Obviously
the application of PNeu requires one more matrix by vector multiplication and one
additional application of the block Jacobi preconditioner PJac	
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The block Neumann preconditioner can also be de�ned through some other approaches	
First one easily sees that the classical Richardson iteration

xk�� � �I −D−�A�xk �D−�b , ����

assuming x� � 
� produces as iterates xk nothing else than the values of the truncated
Neumann series	 Thus the �block� Jacobi preconditioner is the result of one step� the
�block� Neumann preconditioner the result of two steps of ����	 The application of
these preconditioners within an iterative method can therefore be seen as a nested
iterative scheme� the inner iterations are now one or more steps of the Richardson
algorithm	

Furthermore the approximations x�k of the Neumann series expansion are also ob�
tainable by a Newton algorithm applied to the function f�x� � �/x − a �Pan and
Schreiber �����	 Then one gets for the vector�valued equivalent of f using A� � D−�

as approximations for A−�

Ak�� � ��I − AkA�Ak . ��
�

This equation can be identi�ed as a recursive de�nition for the preconditioners P�k

obtained by the Neumann series expansion� if one sets P−�
�k � Ak	 The di�erent

interpretations suggest a variety of modi�cations of our algorithms we have not yet
fully investigated	

The results of applying the block Neumann preconditioner are not signi�cantly bet�
ter than the results of the block Jacobi method� see Figure �� even if the number of
iterations needed by the GMRES algorithm is now nearly halved compared to the
block Jacobi method	 Much more important is the increased robustness of the so�
lutions� i	e	 we obtain no more arti�cial oscillations near the processor boundaries	
This evidently is a result of the coupling property of the preconditioner through the
application of A within itself	

Truncating the series in ��
� at higher k leads accordingly to higher order Neumann
preconditioners� e	g	 for k � � to

P−�
Neu,� �

[
�I − �P−�

Jac A � �P−�
Jac A��

]
P−�
Jac . ����

The implementation of these higher approximations shows no further improvement	
Even if the number of iterations further decreases� this is paid with an increased
overhead for the application of the preconditioners	 Therefore we did not study higher
order polynomial preconditioners in more detail	
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4.2 Explicit computation of the matrix product P−1
JacA

One common property of the block Jacobi and the block Neumann approach used in an
iterative solver is the repeated application of the operator P−�

Jac A	 Therefore we analyze
the structure of this product in more detail	 Since we use exact LU factorizations on
the subdomains� we can depict the matrix multiplication schematically as follows �we
use the same terminology as in �����
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� Schematic representation of the matrix product P−�
Jac A on 
 processors

In Figure 
 the Ei and Fi are de�ned by

Ei � A−�
i Bi and Fi � A−�

i Ci ! ����

the diagonal elements of P−�
Jac A are equal �	 We assume for clarity that the dimension

n of A is a multiple of the number p of processors and A has m lower and upper
diagonals	 Then each of the matrices Ei and Fi covers m vectors of the length n/p	
In the practical implementation of course one may use the block band structure of A	
This further reduces the numbers of vectors in Ei and Fi	 As an example� if A is block
tridiagonal Ei� Fi consists of �m� ��/� vectors	 The structure of P−�

Jac A resembles to
the Schur complement techniques	 Indeed our algorithm can also be understood as a
generalized Schur complement method combined with block Gaussian elimination but
without labeling the interface nodes last	

The matrices Ei and Fi are computable completely in parallel	 Once computed the
application of the whole operator P−�

Jac A is reduced to some �small� matrix by vector
multiplications� which are also fully parallelizable� provided the local updates of the
right�hand side vector are already done	

Moreover the special structure of P−�
Jac A enables an estimation of the maximal number

of iterations needed by the GMRES algorithm or other Krylov subspace methods	 If
we apply this matrix product to a vector v� then the vector P−�

Jac Av is obviously a
linear combination of v and vectors from Ei and Fi and this is true also if P−�

Jac A is
applied repeatedly	 Therefore the Krylov subspaces

Kk�P
−�
Jac A, v� � span{v, P−�

Jac Av, �P−�
JacA�� v, . . . , �P−�

Jac A�k−� v} ����
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have a maximal dimension of �m�p−����� thus Kn as well	 But since Kn contains the
desired solution� this solution is already in K�m��	 This proves� that we need at most
�m�p−�� GMRES iterations with the block Jacobi or block Neumann preconditioner to
obtain the true solution	 This limit is for block tridiagonal matrices further reducible
to �m����p− ��	 It is important� that these limits do not depend on the size n of the
matrix� only linearly on the bandwidths and the number of processors	 However� these
upper bounds for the number of iterations should not be seen as realistic estimations�
indeed we do not need exact solutions within the extrapolation scheme	

We note� that a similar statement is not possible for Krylov subspace methods associ�
ated with the transposed matrix	 Even if again K�m�� � Kn� we do not know� whether
the solution is in Kn	 Therefore one merely obtains the result� that after �m�p � ��
iterations the Krylov spaces are �exhausted�� perhaps then a restart will be necessary	
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Figure �� Performance results for the block Jacobi and Neumann preconditioner using
explicit computation of P−�

Jac A

The computation of the matrices Ei and Fi can be implemented very e�ciently	 The
�m vectors� respectively m � � vectors for block tridiagonal matrices� together with
the initial residual P−�

Jac Ab are obtainable with a single call of a BLAS � subroutine	
This is clearly illustrated by the performance results� see Figure �	 The number of
iterations is identical to these in Figure � due to the algorithmic equivalence to the
methods of the last section	 We obtain now a speedup factor of 
 with �� processors
with the block Jacobi� and one of about �	
 with �� processors with the block Neumann
method	 For the latter algorithm the whole computing time is reduced about �
" by
the explicit computation of P−�

Jac A	

Even if the gain of performance is remarkable� there are also some drawbacks we should
mention	 First the advantages of the method are lost� if one works with incomplete
factorizations on the subdomains	 This could be necessary� if the subdomains itself
are very large� and exact eliminations are too expensive� e	g	 for higher dimensional
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problems	 Second we can not use the simpli�ed algorithmic scheme explained in
§�� obtained by replacing the �xed�point iteration by an iterative solver� e	g	 GMRES�
since then the product of the preconditioner matrix and A has not the simple algebraic
structure displayed in Figure 
	 Currently these drawbacks are outweigthed by the
high performance of the iterative solvers using the explicit matrix product	

4.3 Overlapping domain decompositions

As already mentioned a reasonable preconditioner should suppress arti�cial e�ects of
the domain decomposition	 A powerful and well�known technique for this is to work
with a slightly overlapping decomposition of the underlying domain� �rst introduced
by Radicati and Robert ����� later investigated e	g	 by Bjørstad and Widlund
��� ��� Cai et al	 ���� and Gropp et al	 ����	 Such methods de�ne some gridpoints
as overlap region or interface and apply the iterative solution algorithms on the subdo�
mains as before� but the overlap region must be treated in a special manner	 Usually
when applying the preconditioner to a distributed vector� the values on the overlap
region are averaged from the values computed by the local solvers	 Other methods
are the exchange of the overlapping data or the de�nition of arti�cial boundary con�
ditions on the interfaces together with augmented matrices� sometimes called Schwarz
enhanced matrices� see de Sturler �
��	 The advantage of averaging is that the
vectors used to iterate are the same on di�erent processors	 Averaging or exchanging
follow every application of the block Jacobi preconditioner� thus

Mav P
−�
Jac A or Mex P

−�
Jac A ����

replace the operator P−�
Jac A in both block preconditioners	 The algorithmic realiza�

tion of these operators needs no additional calls of communication routines� only the
amount of data exchanged between neighbouring processors is increasing and depends
on the size of the interface region	

Applying the approach of the overlapping domain decomposition gives a remarkable
rise of e�ciency especially for the block Jacobi preconditioner� see Figure �	 With a
de�nition of � gridpoints as overlap region the computing times and the mean number
of iterations for GMRES is reduced by approximately �
"	 Even if a further increase
of the overlap region reduces the iterations somewhat more� the increasing overhead
for the solution of the linear systems inhibits a further speedup	 Comparisons we
have made between the averaging and exchanging variants yield better convergence
properties for the averaging method� indeed the di�erences are not very signi�cant	
This is likewise observed by Lo and Saad ����	 The results are less dramatic for the
block Neumann preconditioner� which itself does not ignore the coupling between the
subdomains	 One obtains a reduction for the global computing time of about ��"
and for the iterations of about �
"	

From now on we further do not investigate the block Jacobi preconditioner which can
not compete with the block Neumann approach	
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Figure �� Performance results as a function of the size of the overlap region for the
block Jacobi and Neumann preconditioner with �� processors

4.4 Reduced system technique

In this section we will analyze in more detail the linear systems which are the result of
the explicit formation of P−�

Jac A on p processors	 Let Ei, Fi again be the submatrices
introduced in § 
	�� n the size of the system and for simplicitym the upper and lower
bandwith	 Then we partition the matrices E�, . . . , Ep and F�, . . . , Fp−� into their �rst
m� middle n/p − �m� and last m rows	 Similarly we divide E� into its �rst n/p −m
and last m and Fp−� into its �rst m and last n/p−m rows and let the vectors x and
b equivalently be partitioned	 This is schematically depicted in Figure �	
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Figure �� Partitioning of the linear system P
−�
JacAx = b on 4 processors
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If we now rewrite the equations� we obviously split up the whole linear system as
follows

x�� � E��x�� � b��
F��x�� � x�� � E��x�� � b��
F��x� � x�� � E��x�� � b��

			
Fp−�,�xp−�,� � xp−�,� � Ep−�,�xp� � bp−�,�
Fp�xp−�,� � xp� � bp� .

����

This so�called reduced system is of order �m�p− �� and therefore much smaller than
the original system �assuming that n � p and n � m�	 Considering the vectors x and
b the equations operate only on the processor boundaries and can be solved completely
independent of the remaining equations

x�� � E��x�� � b��
F��x�� � x�� � E��x�� � b��
F��x�� � x�� � E��x�� � b��

			
Fp−�,�xp−�,� � xp−�,� � Ep−�,�xp� � bp−�,�
Fp�xp−�,� � xp� � bp� .

��
�

This system with the unknowns x��, x��, x��, . . . , xp−�,�, xp� can be solved afterwards
using the solutions of the reduced system by some inexpensive matrix by vector mul�
tiplications	

The reduced system itself is a distributed block tridiagonal matrix with blocks of
order �m� the possible combination with an overlapping domain decomposition leads
to slightly greater blocks	 To solve this system we use again iterative methods� but now
all vectors used by these algorithms� e	g	 the distributed Krylov vectors in GMRES�
are very short� their length is only of the order of the reduced system �m�p−�� instead
of n	 This is the main advantage of the method� because the number of �oating point
operations is remarkably reduced	 The convergence properties of an iterative method
applied to the full matrix�product or the reduced system should be very similar	 The
eigenvalues of the reduced system are eigenvalues of P−�

Jac A as well� and this matrix
itself has the single additional eigenvalue � with multiplicity n−�m�p−��	 Considering
the size of the reduced system we see again� that at most �m�p−�� GMRES iterations
are needed to solve the whole linear system	

Since we have now completely developed the methods implemented in our currently
most e�cient parallel LIMEX version� we summarize its algorithmic structure as in
§� for the sequential counterparts	
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Compute the distributed Jacobian A � �f�y��− By′�y in parallel
on an overlapping domain decomposition

for j � �, . . . , jmax while convergence criterion not satisfied

hj � H/nj

Compute in parallel P−�
Jac (Fig. 2) of B�y��− hjA

Compute in parallel the matrices Ei, Fi and the vector P−�
Jachjf�y��

Solve iteratively y� � y� � �B�y��− hjA�−�hjf�y��
using the preconditioner PNeu (22) for the reduced system

Compute the whole solution of the linear system

for k � �, . . . , j − �

Solve iteratively yk�� � yk � �B�yk�− hjA�−�hjf�yk�
using the iterative algorithm (9) and the preconditioner PNeu

for the reduced system

Compute the whole solution of the linear system

Tj,� � yj

if j > � compute Tj,j and check convergence

ynew � Tj,j

There are some techniques related to the reduced system method which we should
brie�y consider	 We believe� that the inherent equivalence between these aproaches
is not commonly recognized	 First the reduced system method is introduced in detail
in ��� to develop parallel direct solution methods for banded systems	 Furthermore
Brakkee et al	 ��� �� investigated in the context of the incompressible �D Navier�
Stokes equation domain decomposition methods and derived a so�called interface�
equation in connection with exact subdomain solutions� which is nearly completely
equivalent to the reduced system	 In a somewhat more general manner� Bramley
and Meñkov ��
� have examined low rank o��diagonal block preconditioners	 They
studied approximations for a sparse matrix which can be written as B � C � UV T �
where U and V matrices composed of only a �few� vectors	 Applying the Shermann�
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Morrison�Woodbury formula ���� one obtains

B−� � C−� − C−�U�I � V TC−�U�−�V TC−� . ����

Now I �V TC−�U has an order equal to the rank of U and V 	 Therefore� if B is easily
factorizable it remains only the treatment of this �small� matrix	 Our approch can
be embedded in their terminology� one actually easily constructs matrices U and V �
each composed of �m�p− �� vectors� with the property P−�

Jac A � I �UV T 	 Then with
C � I indeed I � V TU is exactly the reduced system	
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Figure �� Performance results with the reduced system technique on two gridsizes

Applying the described reduced system technique combined with an overlapping do�
main decomposition we once more obtain a substantial gain of performance� see Figure
�	 Because the iterations now are very cheap� we get the minimal computing time�
if the overlap region consists of a single grid point	 At a �rst sight� the algorithm
exhibits scalability only up to �� processors	 But we have to consider that our test
problem with �
� gridpoints� which leads to linear systems with �
�� unknowns� is
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only of medium size and with �
 processors each processor has to manage only about
�
 gridpoints	 If we simply enhance the grid size by a factor � we obtain a speedup of
�
	� with �
 processors� see Figure �	

The overall scalability of the reduced system technique together with an overlapping
domain decomposition and block Neumann preconditioning will be clearly shown in
§� applying the method to a large di�cult problem from chemical engineering	

The reduced system technique suggests once more an attempt to construct a direct
solver� but now only for this much smaller system	 This construction� which is equiv�
alent to the direct parallel band solver proposed by Dongarra and Sameh �����
consists of the following steps	

Factorization phase�

�	 Parallel computation of P−�
Jac A	

�	 Distribution of all matrices Ei and Fi over all processors	

�	 Direct factorization of the reduced system on all processors by Gaussian elimi�
nation	

Solution phase�

�	 Collection of all boundary regions of the right�hand side vector b on all proces�
sors	

�	 Direct solution of the reduced system on all processors� this gives the solution
x on the boundary regions	

�	 Parallel solution of the remaining unknowns between the processor boundaries	
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Figure �� Direct solution of the reduced system vs	 iterative solution
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Even if this direct solution method cooperates with the domain decomposition� it
is obvious that a large amount of non�local communication will be needed� in the
factorization phase as well as in the solution phase	 This severe drawback is clearly
illustrated by Figure �� where the performance is compared to our iterative solution
method	 Although the amount of data� which has to be distributed over all processors�
is not very large for the medium�sized test problem and despite the high communi�
cation bandwidth of the Cray T�D� the direct method is competitive only up to ��
processors	 For larger problems the di�erences become much more signi�cant	

4.5 Comparison of some iterative algorithms

Until now we have developed our methods using the GMRES algorithm without
restarts	 In this section we will make some comparisons to other iterative solvers	
At �rst we have implemented the full orthogonalization method �FOM� or Arnoldi
algorithm �
��	 This method is likewise GMRES a projection method� but does not
guarantee a monotone decrease of the residual norm	 There are some relations between
both methods� see Cullum and Greenbaum ��
�� accordingly these algorithms
should be� from a practical viewpoint� nearly equivalent	 If one uses a robust and
e�cient implementation� especially a recursive update of the LU factorization of the
arising Hessenberg matrices� this assertion is even in the parallel environment clearly
ful�lled� see Figure �
	 We found no signi�cant di�erences in respect to computing
times or iteration numbers	

An other widely used iterative method is BICGSTAB �
��	 It does not incorporate an
orthogonalization process� but for any new approximate solution one needs two matrix
by vector multiplications and applications of the preconditioner	 Somewhat surprising
this method is likewise just as e�ective as GMRES within our algorithms	 Although
the number of iterations is substantially smaller� by the more expensive iterations a
possible gain of performance is nearly exactly outweighted	

The parallelization of GMRES has been studied by several authors	 Some of them
consider the basic GMRES iteration with the Arnoldi process� e	g	 in �

� 
� ���	 Xu
et al	 �
�� have proposed a variant called α�GMRES� which consists of a multilevel
iterative scheme! the system formed at each step of the outer iteration is then solved by
GMRES	 Hybrid algorithms combining a GMRES basis with a Chebyshev basis have
been investigated by Joubert and Carey ����	 Another method is to de�ne a new
basis� e	g	 a Newton basis� of the Krylov subspaces� for example in ��� ��� 
�� ���	 The
common aim of all approaches is to avoid the large number of vector�vector operations
and global communications present in the Arnoldi orthogonalization process	

Many of the proposed algorithmic variants use groups of vectors to reduce the number
of global reduction routines	 In our case �≤ �
 processors� we compute in average only
�
 Krylov vectors and such approaches would be of very limited value for our parallel
implementation� especially as the these methods decrease the sequential convergence
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Figure �
� Performance results GMRES vs	 FOM and BICGSTAB

speed	 The same argument excludes algorithms with di�erent bases	

As already mentioned� one of the potential bottlenecks in a parallel GMRES imple�
mentation is the orthogonalization process	 In a sequential implementation this is
typically carried out by the so�called modi�ed Gram�Schmidt orthogonalization pro�
cedure	 Its algorithmic kernel is the following loop	

for j � �, . . . , k

h � �vj, vk���

vk�� � vk�� − h vi

which orthogonalizes vk�� against j already orthogonal vectors v�, . . . , vk	 Each inner
product in the loop requires global communication and stands for one synchronization
point	 This gives k synchronization points and therefore the whole loop must be
done in sequence	 A well known remedy is to go back to the classical Gram�Schmidt
procedure� which is sketched next	
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for j � �, . . . , k

hj � �vj, vk���

for j � �, . . . , k

vk�� � vk�� − hj vj

Now the �rst loop can be computed completely in parallel	 After that we can collect
the inner products all at once	 This yields the only synchronization point of the proce�
dure	 Due to its inherent numerical instability the classical Gram�Schmidt procedure
tends to perform poorly for larger Krylov subspace sizes	 Nevertheless we have imple�
mented this method in our parallel GMRES algorithm� the performance results are
shown in Figure ��	 The results clearly indicate� that there is no signi�cant di�erence
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Figure ��� Performance results with GMRES and classical vs	 modi�ed Gram�Schmidt

between both approaches	 The classical algorithm is slightly superior� and we get no
problems with numerical instabilities� indeed the iteration numbers are always the
same	 It is therefore obvious� that we can trust the classical Gram�Schmidt procedure
due to the high quality of our preconditioner which needs only small Krylov subspaces	
But otherwise the disadvantage using the modi�ed Gram�Schmidt can be nearly ne�
glected� due to the very high communication performance of the Cray T�D	 The latter
conclusion would be false� if we would use a loosely coupled cluster of workstations
instead of a tightly coupled massively parallel computer	 As an example� Lo and
Saad ���� reported on such systems di�erences of sometimes more than �
" between
the overall performance of the classical respectively modi�ed procedure	

We summarize that we need no special strategies to adopt the GMRES algorithm
on our parallel environment	 This statement is likewise true for the FOM� and the
BICGSTAB�method	
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4.6 Reusing of Krylov subspaces

Even if we do not need to look for a special parallel adaptation of our iterative solvers
we should consider� that we solve within the extrapolation scheme many linear sys�
tems� some of them with the same matrices� some of them with matrices di�erent
only in the diagonal	 This situation suggests to reuse somehow the work done in the
preceeding steps	

The most obvious way to solve many linear systems with a single coe�cient matrix
and multiple right�hand sides is to use block generalizations of iterative solvers� see
e	g	 in Simoncini and Gallopoulos �
��	 Since in the context of the extrapola�
tion the right�hand sides are not simultaneously available� such methods can not be
used	 The only way to pro�t from preceeding solver calls is therefore to reuse the al�
ready constructed Krylov spaces	 To introduce our approaches we must refer to some
algorithmic details of GMRES	

Assuming Ax � b has to be solved by GMRES with x� � 
� this method constructs
successively the Krylov subspaces Kk � span{b, Ab, . . . , Ak−�b}	 If Vk is a basis of Kk�
then the minimal residual approximation in Kk is given by

xk � Vk

[
�AVk�

TAVk

]−�
�AVk�

T b . ����

De�ning the �k � �� × k Hessenberg matrix #Hk by the relation AVk � Vk��
#Hk one

obtains with β � ‖b‖

xk � Vk

[
#HT
k
#Hk

]−� #HT
k V

T
k�� b ����

� VK

[
#HT
k
#Hk

]−� #HT
k βe� � Vk yk ,

where yk minimizes ‖βe� − #Hky‖ over y ∈ IRk	 This minimizer is computed via
successive QR�decompositions of #Hk using Givens rotations	

Let us now change from the single equation Ax � b to the set of preconditioned linear
equations P−��Bh − hA� � P−�b wich are to solve for di�erent values of h and b� P
is in general dependent from h	 We will develop six methods� which use the already
constructed Krylov subspaces and�or preconditioners in a di�erent manner	 First for
completeness�

�	 Solve every linear system independently with GMRES	

This is of cause exactly our hitherto used approach	 An obvious simpli�cation could
be�

�	 Use one common preconditioner for all linear systems within one basic step	
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The most obvious choice for a h�independent preconditioner is surely P � PH/�	 Then
we need only once the computation of a preconditioner for one whole integration step	
The disadvantage is clearly that one can not use the reduced system technique for
h �� H/�� although we expect slower convergence exactly for this case	

Now we attempt to reuse the Krylov subspaces constructed in preceeding steps� �rst
for one �xed h	 Suppose we have already solved approximately one linear system with
the coe�cient matrix Bh−hA	 The best approximation  x ∈ Vk for the solution of the
same linear system with a new right�hand side b is then evidently given by

 x � Vk

[
#HT
k
#Hk

]−� #HT
k V

T
k��P

−�b , ��
�

but the equation V T
k��P

−�b � ‖P−�b‖e� remains not valid� since the normalized vector
P−�b is not equal to v�	 Therefore we must explicitly evaluate the formula V T

k��P
−�b	

This can be implemented as a completely distributed matrix by vector multiplication�
recognizing that the boundary regions of the Krylov vectors vk are already exchanged
during the GMRES iteration	 After that one uses e�ectively the already computed
QR decomposition of #Hk to obtain  x	 Even if  x is a satisfactory approximate solution�
we have to compute its preconditioned residual to be sure	 If  x can not be accepted�
we use  x as an initial guess for a new GMRES iteration	 The last two steps are yet
the possible drawback of the next two methods we present	

�	 For each h take the in the �rst step computed Krylov subspace to compute
approximate solutions	 If the residuals are not less than the prescribed tolerance�
start new GMRES processes	


	 As in �	� but use the h�independent preconditioner PH/�	

A further advanced approach would be� even for di�erent h� to look for approximate
solutions in one common Krylov subspace	 Assume we could dispose of a Krylov
subspace Kk constructed by help of a stepsize h�	 Then the best approximate solution
 x ∈ Vk for P−��Bh − hA�x � P−�b would be

 x � Vk

[
#HT
k V

T
k��P

−��Bh − hA�Vk

]−� #HT
k V

T
k��P

−�b

� Vk

[
#HT
k V

T
k��P

−� h
h�

�Bh0 − h�A�Vk � #HT
k V

T
k��P

−��Bh − h

h�
B��Vk

]−�
#HT
k V

T
k��P

−�b

� Vk

[
h

h�
#HT
k
#Hk � #HT

k V
T
k��P

−��Bh − h

h�
�Bh0�Vk

]−�
#HT
k V

T
k��P

−�b . ����

A numerical evaluation of the last expression is not practicable� as long as we fur�
thermore do not assume� that the underlying GMRES iteration has resulted in a very
accurate approximate solution	 Then� if Vk�� � {v�, . . . , vk��}� we have vk�� ≈ 
 and
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for the matrix element hk��,k from #Hk consequently hk��,k ≈ 
 and obtain after some
manipulations

 x ≈ Vk

[
h

h�
Hk � V T

k P−��Bh − h

h�
Bh0�Vk

]−�
V T
k P−�b . ����

with Hk the k × k Hessenberg matrix� which results from #Hk by deleting the last
column	 Again the expression V T

k P−�b is computable in parallel� but the evaluation
of V T

k P−��Bh − h
h0
Bh0�Vk needs k� global simultaneous inner products	 The resulting

matrix in ���� is a full k × k system and must be factorized by Gaussian elimination	
As before the last steps are to check the residual and if needed the setup of a new
GMRES iteration	 Apparently these last two methods are algorithmic more expensive�

�	 For an appropriate h� compute the Krylov subspace Vk and the Hessenberg
matrix Hk	 For all other linear systems take these to compute approximate
solutions	 If the residuals are not less than the prescribed tolerance� start new
GMRES processes	

�	 As in �	� but use an h�independent preconditioner	

We choosed h� � H� since the linear systemB�−HA appears as the �rst and produces
in general Krylov subspaces with the largest dimension� i	e	 it needs the most GMRES
iterations	

The implementation of the enumerated approaches yielded in summary no advantage	
All algorithmic variants using one common preconditioner �methods �� 
 and �� can
not compete with our standard version �method ��	 Computing time and the number
of GMRES iterations increased remarkably	 For the methods with an h�dependent
preconditioner the results were not so discouraging� but we got no systematic gain
of performance	 Especially method � behaves very similar to method �� method � is
about �
" slower	 An analysis of the convergence behaviour shows� that almost never
the �rst Krylov subspace contains satisfactory approximations for the following right�
hand sides	 Thus each new b� however� needs again an own GMRES call within the
number of necessary iterations decreases in the mean only about �
��
"	 But due to
the cheap iterations with the reduced system technique there is no overall measurable
speedup	

This situation could be changed for higher dimensional problems� where the direct
subdomain solutions may be too expensive and one has to work with preconditioners
which need Krylov subspace of larger dimensions	 Then the methods developed in this
section should get our renewed interest	 We should note that all results of this section
may be dependent of the properties of a speci�c application� as e	g	 their sti�ness�
which will �nally be illustrated	

The fact� that only rarely a common Krylov subspace containing solutions for di�erent
right�hand sides exists� is indeed related to the sti�ness of the underlying system of
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ODEs	 For simplicity we set B � I and neglect the preconditioner	 Assume that for
an iterative method� for clarity we choose FOM� a common Krylov subspace with the
basis Vk exists� which is produced by all iterative solutions of linear systems arising
in one extrapolation step	 Thus for all corresponding right�hand sides b we have
analogously to ����

�I − hA�−�b � Vk

[
V T
k �I − hA�Vk

]−�
V T
k b . ����

Now de�ne the matrix  A � VkV
T
k AVkV

T
k � which represents A only within the subspace

Vk	 Then one easily sees that

�I − h  A�−� � Vk

[
V T
k �I − hA�Vk

]−�
V T
k � I − VkV

T
k . ����

Considering b ∈ Vk� we can conclude

�I − hA�−�b � �I − h  A�−�b . ����

Thus one could perform the whole extrapolation step using  A instead of A	 With ����
we obtain therefore for the linearly�implicit Euler discretization

yk�� � yk � hf�yk� � Vk

[
V T
k �I − hA�Vk

]−�
V T
k hf�yk� . �

�

This equation can obviously interpreted as an application of the linearly�implicit Euler
only within Vk and the explicit Euler� yk�� � yk � hf�yk�� outside from Vk	 For this
reason a Krylov subspace of low dimension containing the solutions arising during
one integration step would re�ect an only mildly sti� behaviour of the ODE system�
because �most� of the discretization could be done explicitely	
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5 Parallel implementation issues

We implemented our algorithms on a Cray T�D with ��� processors� each with �

MB memory	 The codes are written in a hostless manner	 Each processor is assigned
to one subdomain and the information pertaining the interior of the subdomain is
uniquely owned by that processor and is not availabe to any other processor except
by explicit message passing	 Order and stepsize control are done by all processors
simultaneously� the CPU�time spent on it is negligible� likewise the QR decompositions
within GMRES	

Except our �rst attempts with parallel direct solvers� where we used the BLACS li�
brary ����� all message passing calls are implemented through the shared memory
access communication routines �SHMEM library� from Cray Research Inc	 ���	 We
wrote a small library containing only two types of routines� global reductions needed
in inner products as an example� and local exchange operations between neighbouring
processors	 These local exchanges can be coded synchronous� then they act as syn�
chronization point� or asynchronous� requiring some more bu�ering to be safe	 We
did not found large di�erences in respect to the overall computing times between both
approaches	 Up to �� processors the synchronous exchanges are slightly faster� from
�
 processors the asynchronous ones	 Both variants of the local exchange routines
use only the fastest point to point communication routine shmem put	 Furthermore
we needed� only for the direct parallel solver of the reduced system� a global collector
routine and for the distribution of input data a global broadcasting routine	

Because the codes itself never calls directly any communication function the program
could be very easily switched to any other message passing library� especially MPI�
changing only the routines within our library	

5.1 A heuristic scalability analysis

We conclude this section with an analysis of the scalability of our algorithms� but we
do not count �oating point operations or compute serial or parallel complexities	 This
approach may be only of very limited value for a whole application code� since it does
not refer to the e�ciency of assemby coded linear algebra kernels or to the latencies
and communication performance of a speci�c parallel machine	 Instead of that we
have measured the computing times of the main parts of our program to demonstrate
there di�erent scalability potential� see Figure ��	 �

�In Figure 12, the maxima in the curves for local exchanges and global reductions at 4 resp. 2
processors are explainable with wait times within the communication routines due to load imbalancies
using only a few processors.
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Figure ��� Scalability of the main parts in the parallel LIMEX implementation
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It is obvious� that the application speci�c parts� i	e	 the calls of the right hand side f
within the extrapolation and the evaluation of the Jacobian scales very well� likewise
even the computation of the preconditioner� which can be done almost completely
in parallel	 Clearly an ideal scalability is prevented by the communication calls and
in particular by the iterative solver due to the increasing number of iterations	 The
changing computational weights are ilustrated in Figure �� as relative contributions
of the � main parts of Figure �� to the computing time	 Indeed with �
 processors the
solver calls predominate the whole computing time� whereas the application speci�c
parts become more and more insigni�cant	 This processor number� however� is in no
way a general limit for the scalability of our methods� but only for the medium�sized
test problem we selected	 For much larger examples we can expect scalability even for
higher processor numbers	

We should remark that the parallel e�ciency of our codes strongly depends on the
speed of local exchanges and global reductions� the latter mostly only for one single
inner product� whereas other global communication or transfer between not neigh�
bouring processors almost never occur	 Indeed the former communication types are
used permanently� in the extrapolation scheme as well during the computation of ap�
proximate solutions by an iterative solver	 Therefore the tightly coupled Cray T�D is
an ideal target machine for parallel extrapolation codes	
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6 Results for an aerosol formation problem

In this section we will demonstrate the performance and scalability of our approaches
when applied to a large and numerical di�cult problem from chemical engineering	
The aim of this application project is the development of a general tool to simulate
stationary and instationary processes in chemical equipments including aerosol forma�
tion	 The mathematical models include the description of the formation and growth
of fog droplets by heterogeneous condensation of mixtures� supersaturation in the gas
phase and coagulation processes and has been successfully applied e	g	 to absorption
processes for hydrochloric acid in industrial exhaust puri�cation plants	 We refer to
Schaber and Körber �
�� 
�� for a detailed description	

The model equations for the involved thermodynamical processes and for the aerosol
growth lead to a system of coupled hyperbolic and parabolic PDEs which has to be
solved together with the nonlinear equations of heat and mass transfer as well as
for the volume� mass and energy balances	 The space discretization of the PDEs
results in a set of di�erential and algebraic equations� which can be integrated by the
extrapolation code LIMEX	

The modelling of the distribution of droplet sizes by a discrete set of classes requires
the rebuilding of the whole system of PDEs after every time�step	 Thus the number of
PDEs and gridpoints and therefore the size of the linear systems regularly changes after
each integration step	 This type of problem can be e�ciently solved with one�step
algorithms as the extrapolation method� but not with standard multistep methods
like BDF	 We remark that due to the spatial changing distribution of droplets the
number of ODEs assigned to each gridpoint are in general very di�erent� this can lead
to severe load balancing problems� if the actual grid is not appropriate partitioned	
Furthermore the underlying upwind�discretization results in structural non�symmetric
tetra�diagonal linear systems	

Regardless these di�culties� all algorithmic strategies we developed are applicable
without any principial changes	 Within the program package� which simulates the
gas puri�cation� the LIMEX code is only one of many subroutines� even the most
time consuming one	 We have made no attempts to parallelize the whole package	 In
order to be consistent� we have therefore after each integration step to distribute the
solution vector over all processors	

We present in Figure ��
������ the performance results for three droplet size dis�
tributions� which stand for three di�erent problem sizes	 Hereby the mean gridsize�
averaged over the whole integration is about �

� the size of the linear systems is about
�


 resp	 �


 or �


	 The block sizes �uctuate between �
 and ��� resp	 �
 and ��
or �
 and 
�	 The overlap region in every computation consists of one gridpoint	
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The results clearly show the value of the parallel extrapolation method within appli�
cation speci�c codes for the integration of large systems of DAEs	 We obtain maximal
speedups between �
	� for the smallest problem with �� processors and ��	� for the
largest with �� processors	 Even if the number of processors is still limited by the only
medium�sized grids� the attainable speedup already enables the computation of much
more complex problems	 So e�ective parallel codes as presented in this paper� may be
a powerful tool to allow realistic simulation of aerosol formation and growth in whole
chemical equipments	 Indeed even the aerosol problem we used here acts only as a
small example	
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7 Conclusion

We have investigated stategies to parallelize linearly�implicit extrapolation codes for
the integration of large systems of ODEs and DAEs	 We found that frommany possible
approaches one obtains best performances from a combination of a slightly overlap�
ping domain decomposition together with a polynomial block Neumann preconditioner
and the application of the reduced system technique	 Since within the extrapolation
algorithm one has to solve linear systems with many right�hand sides� we got impor�
tant performance advantages through the somewhat unusual explicit computation of
the matrix�product P−�

JacA	 We have tested di�erent iterative solvers� but they ap�
pear with respect to the overall performance as nearly as equivalent	 Direct parallel
solvers for banded systems can in no means compete with their iterative counterparts	
The approach to reuse Krylov subspaces constructed in preceeding extrapolation steps
appears as not very encouraging� at least for the examples we selected	

Our parallel version of LIMEX exhibits scalability up to �
 processors even for the
medium�sized test problems	 We have also demonstrated that the code is applicable
in a large application package opening new possibilities for the simulation of chemical
equipments	 Thus our approach has resulted in highly scalable parallel programs
for solving large systems of sti� ODEs and DAEs� which occur in many challenging
applications	

The satisfying parallel e�ciency we obtained for the LIMEX code motivate further
research� some topics shoud be mentioned	 At �rst we will investigate an embedding
of our algorithms in the both in time and space adaptive extrapolation code PDEX�M
by Nowak ��
� ���	 Secondly we will examine generalizations of our approaches to
higher dimensional problems	 For this attempt we will most likely to change from
exact subdomain solves to inexact ones	 This implies the disadvantage that we can
not use the reduced system technique and the advantage that we can pro�t from the
simpli�ed iterative algorithmic scheme explained in §�	 Thirdly we have to adapt
the stepsize and order order control mechanism to take the changed computational
weights more into consideration	
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