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Abstract

Markov State Modelling as a concept for a coarse grained description of the
essential kinetics of a molecular system in equilibrium has gained a lot of atten-
tion recently. The last 10 years have seen an ever increasing publication activity
on how to construct Markov State Models (MSMs) for very different molecular
systems ranging from peptides to proteins, from RNA to DNA, and via molecu-
lar sensors to molecular aggregation. Simultaneously the accompanying theory
behind MSM building and approximation quality has been developed well be-
yond the concepts and ideas used in practical applications. This article reviews
the main theoretical results, provides links to crucial new developments, outlines
the full power of MSM building today, and discusses the essential limitations
still to overcome.

Keywords: Markov State Models, transfer operator, molecular dynamics, approx-
imation quality, sparse tensor approximation
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1 Introduction

Applications in modern biotechnology and molecular medicine require simulation of
biomolecular systems in atomic representation with immense length and timescales
that are far beyond the capacity of computer power currently available. The processes
that constitute molecular function are rare event processes appearing on timescales
that are many orders of magnitude, say 10-15 orders of magnitude, longer than the
typical time steps of the numerical simulation. As a consequence, there is an increasing
need for reduced models that reproduce the correct rare event statistics.

In most molecular systems the biologically interesting and computationally prob-
lematic rare events belong to so-called conformation changes. Conformations are
metastable sets of the dynamical behavior of the molecule, that is, regions of the
molecule’s state space that are attractive for the dynamics in the sense that typical
trajectories remain within such regions for long periods of time before exiting towards
other metastable sets.

Markov State Modelling is about how to exploit the existence of metastable sets
for constructing a reduced molecular dynamics model with good approximation prop-
erties on the long timescales. In the standard setting a Markov State Model (MSM)



is a Markov chain whose transition matrix is given by the transition probabilities
P, (X; € Ax|Xo € Aj) of the original molecular dynamics process (X¢) between some
subsets Aq,..., Ay, of the molecular state space that form the (macro-)states of the
MSM. The timescale 7 for which the transition probabilities are computed is called
the lagtime and typically is much shorter than the timescales of transitions between
the metastable sets of the process. Mathematically, the process of reducing the origi-
nal molecular dynamics process to the MSM process is a discretization of the so-called
transfer operator of the molecular dynamics process [1].

The main advantage of MSMs is that we know how to coarse grain them opti-
mally. Based on the dominant eigenvectors of a fine-scale MSM one can find aggre-
gated (macro-)states that correspond to the dominant metastable sets of the original
molecular dynamics [2, 3]. It has been shown that for molecular systems exhibiting
such metastable sets, the Markovian dynamics given by an MSM allows very close
approximation of the longest relaxation processes of the underlying molecular system,
at least under equilibrium conditions [4, 5, 6]. In fact, whenever we assume sufficient
sampling, the error E between dynamic long-term behavior of the original MD process
and the MSM process on timescales t > 7 is bounded by

B(t) < C@+n)? expl—1) (L1)

where § can be made small by choosing the discretization fine enough, 7 is decreasing
exponentially with growing lagtime 7, ¢5 is the slowest timescale of the original MD
process, and C' is a constant that depends mildly on the timescale and the number
of states of the MSM. We observe that, in principle, for long enough lagtime and
appropriate discretization, the error on long timescales can be made arbitrarily small.
For details of how to compute C, §, and n given the discretization and the lagtime
please see Sec. 4.2. It has been demonstrated that, in many cases of practical rele-
vance, MSM building requires short lagtime, i.e., short MD trajectories only, much
shorter than the timescales of interest, compare [7, 8, 9, 10, 11], for example. Thus,
MSM building often allows the study of dynamic behavior on long timescales without
requiring MD trajectories of comparable length. However, the problem of how to
optimally choose the appropriate lagtime and discretization in general has not been
solved in general, in particular for very high dimensional systems, and is still a topic
of ongoing research [12].

MSM building in molecular dynamics started with a series of papers more than
15 years ago [13, 14, 1, 2]. Recent years have seen an ever increasing publication
activity on how to construct MSMs for very different molecular systems ranging from
peptides to proteins, from RNA to DNA, and via molecular sensors to molecular
aggregation. Moreover, MSMs have been used to construct kinetic fingerprints from
MD simulations which facilitates understanding of essential dynamics and comparison
with experimental data [15]. Several recent books review these practical approaches
in a lot of algorithmic detail, see [16, 12] for an overview. Also, several MSM software
environments are available [17, 18, 19].

By far most of the literature on pratical applications uses standard MSM con-
structions where the MSM consists of transition probabilities between sets in state
space as outlined above. With standard MSMs, despite the theoretical knowledge
contained in the error estimate (1.1), a reliable practical estimation of the deviation
between the original MD and the MSM process on long timescales is only possible
for molecular systems of moderate size [12]. However, more general MSM schemes
have been developed that exhibit improved approximation quality especially in high



dimensions [20, 21, 22, 23, 24, 6]. That is, the full power of the idea behind MSMs has
not been utilized yet. Therefore, the present article concentrates on demonstrating
the full breadth of possibilities of MSM building and the resulting opportunities and
limitations. We will not go into details of how to realize MSMs for specific molecular
systems but will instead review how the idea of standard MSMs has been generalized
in recent years, why this leads to improved approximation quality and how the error
of MSMs in comparison to the original MD process can be controlled including the
error resulting from incomplete sampling.

2 The Transfer Operator

In order to allow for the discussion of MSM building beyond standard MSMs we have
to introduce the transfer operator of the original MD process. To this end we assume
that the MD process is a Markov process (X;):er in state space X, discrete in time
(T = N; as resulting from MD simulations) or time-continuous (I' = R), with non-
negative transition kernel p(t, z,y) with fX p(t,x,y)dy = 1 for all x € S. The kernel
p(t, x,y) tells us the probability of the MD process to go from x to y in time ¢, or, more
precisely, the density associated with it. We assume that the process has a positive
invariant (or stationary) density p(x), typically of the form p(x) o exp(—BH (x)) for
some energy function H, such that

wy) Z/Xp(t,x,y)u(x)dx.

This setting is rather general and includes most (stochastic as well as thermostatted)
cases of MD; an extension also covers pure micro-canonical MD, see [6] for details.
We introduce the Hilbert space L2 = {u: X = R; [ u(x)*u(x)dr < oo} with scalar
product

(o) = [ wlo)o(e)ula)ds.

The transfer operator is defined as [6]

Tulits) = | .o y)ule)p(o)de

It transports function in state space according to the underlying dynamics and rel-
ative to the invariant measure, and transports probability densities into probability
densities. T; plays the role of the propagator in quantum mechanics (QM). However,
opposed to QM propagators, it is a bounded operator on the Hilbert space Li; its
eigenvalues all are smaller or equal to 1 in modulus. A = 1 always is an eigenvalue
with eigenvector 1 (the function being constant 1 on all of X). Under additional
assumptions on the ergodicity of the Markov process (geometric ergodicity), A = 1 is
the largest eigenvalue and the rest of the spectrum o(T;) satisfies A € o(T;) = |[A| < 1.
The adjoint operator of T; wrt the scalar product (-, -), is given by [6]

Tru(z) = E, (u(xt)).
If the Markov process is reversible the detailed balance condition

w(@)p(t,z,y) = u(y)pt,y, )



is satisfied and the transfer operator is self-adjoint in Li [6] such that
T, =1;.

This is the situation we will consider in the following: reversible dynamics and self-
adjoint transfer operator. However, it should be emphasized that the assumption of
reversibility is made for the sake of simplicity of explanations and is not required
for doing Markov State Modelling. Generalization of the results presented here to
non-reversible Markov processes can be found in [6, 25] (theory) and [26] (practical
construction).

Transition probabilities. Let us denote with P, the probability measure given by
the stationary density p, i.e., P, (Xo € A) = u(A) = [, p(z)dz. Then all transition
probabilities of the MD process (X;) started from the equilibrium distribution can be
computed by means of the transfer operator according to

PuXieBIXoed) = | [ stauta)ody
1

- 5 / Pt 2,9) 14 (2)1 5 (y)a() da dy

<Tt]lA7 ]lB>/,1,

Mo 1), (2.1)

where 14 denotes the indicator function of the set A, ie., 1a(x) =1if 2 € A and
1 4(x) = 0 otherwise. This formula shows that any information on the long-term of
Tyu for u =14 (or more general functions u) will allow us to understand the long-term
transition behavior of the underlying MD process.

Analogies: QM and Rouse model. In Quantum Mechanics (QM) the propa-
gator P; describes the evolution of wavefunctions. It is given by P, = exp(—itH/h)
where H denotes the Hamiltonian of the quantum system. Spectral decomposition
into the eigenenergies (eigenfunctions of H) allow to describe the dynamics in terms
of eigenenergies and associated eigenphases. Often only the lowest eigenenergies are
populated and the dynamics is essentially given by the lowest eigenvalues and eigen-
vectors of H or P;, respectively. In close analogy this is what we are going to do with
the transfer operator T;: we will describe the long-term dynamics by the dominant
eigenvalues and eigenvectors of T;. However, the QM propagator is different from the
transfer operator since its eigenvalues all have modulus 1 (that is, there is no dissi-
pation). In contrast the transfer operator in MD just has one eigenvalue of modulus
1; all other have modulus strictly smaller than one (thus, there is dissipation). In
this respect the Rouse model of polymer physics can be regarded as a closer analogy
to MD transfer operators. For the Rouse model the largest eigenvalues dominate the
long-term dynamics [27] in the same way as we will see in the following for the MD
transfer operator.

Long-term dynamics and dominant timescales ¢;. Let us now consider the
transfer operator T, associated with a certain lagtime 7. Since T’ is assumed to be
self-adjoint it has only real-valued eigenvalues and -vectors. We assume that it only
has isolated, positive eigenvalues, ordered according to 1 = A1 > Ay > ... > \,;, > ...



(infinitely many ones with possible repetitions due to multiplicity). We associate a
timescales with each eigenvalue by setting

T

= — 2.2
Tog ] 22)

such that we get a monotonically decreasing sequence of characteristic timescales
ti1=00>1>13>....
Let wg,u1,... be the corresponding normalized eigenvectors. Since T is self-
adjoint, the eigenvectors are orthogonal and
(oo} (oo} T
T,u = Z)‘j<“jv“>u“j = Z<“j’u>uuj exp ( — t—)

j=1 j=1 J

The long-time transport properties of the Markov process, we call it “kinetics” in the
following, are given by
kad kT
Tirw = (Ty)*u = Z(uj,wuuj exp ( — t—), (2.3)

j=1 J
which can also be written as
kT

r ) + RFu,

Thru = (T‘r)ku = Z<uj7u>ltuj eXp ( -
J

Jj=1

with || R¥||% < exp(—k7/tm) < 1 for large k. Thus, the dominant eigenvalues/timescales
govern the kinetics induced by the Markov process. For the more general case that
a part of the spectrum of T may be continuous (the ”unbounded” states in QM) or
some eigenvalues may be negative, visit [6].

Because of this insight, we are interested in the dominant eigenvalues and eigen-
vectors of T3, and thus in the eigenvalue problem Tiu = Au in Li, or, respectively, in
the variational formulation of the eigenvalue problem

uELz, AeR: (Tru,v), = Mu, v),, VUELi. (2.4)

In general, Markov State Models are appropriate discretizations of the
eigenvalue problem that allow to approximate the dominant eigenvalues
and eigenvectors of T; well, and thus encode the kinetics of the underlying
Markov process.

3 Galerkin Discretization of Transfer Operators

In order to computationally treat the eigenvalue problem, we have to define a finite di-
mensional ansatz space spanned by IV linearly independent basis functions ¢1, ..., ¢N

N
stpan{¢>1,...,¢N}={u€Li| uzZaj(bj, a; € R}.
j=1

We will discuss two approaches that share two essential characteristics. First, they
make use of the ansatz space S to derive a finite linear equation that approximates



the original eigenvalue problem. Second, the entries of the matrices representing the
linear equation can be estimated from observations of the underlying Markov process.

The Galerkin approach is based on the restriction of the variational eigenvalue
problem to the subspace S:

us €85, As e R:  (Trus,v), = As(ug,v),, YveS (3.1)

3.1 Standard MSMs

The standard form of MSMs, as utilized by most articles on the topic [12, 16, 28],
is derived from the Galerkin ansatz as follows [13]: Let {A;};=1,..~ be a complete
partition of the state space X into non-overlapping sets, i.e.,

UM A5 =X, w(A;NA) =0, j#k,
and choose the ansatz functions as the indicator functions of the sets A;,
o5 =1a,.

When inserting this into (3.1) with ug = Zjvzl cjl 4, and varying v over the basis
1a,,k=1,...,kof S we get a system of N equations

N
S UTla, da)uc; =As(Mag, L),  k=1,...,N

j=1

for the coefficients ¢ of the eigenvector ug. By using the form of the transition
probabilities (2.1) we immediately see that these equations are equivalent to the finite-
dimensional eigenvalue problem

Te = \sc (3.2)

with the coefficient vector ¢ = (¢x)g=1,... v and the transition matrix

Tjk = Plt (Xt € Ak|X0 € AJ> (33)

Thus, discretization of the transfer operator eigenproblem using a complete partition
of state space results in a eigenproblem of the transition matrix of the MD process.
This is the standard setting used in by far most publications regarding pratical use
of MSMs, see [12]. However, the general Galerkin discretization approach (3.1) is far
more general and allows MSM building schemes with much improved approximation
properties.

Perfect approximation of long-term dynamics. In theory we can now ask what
happens if we use an arbitrarily fine discretization. The answer is given in [13], Cor.
5.4: If the sets Ay are made arbitrarily fine, i.e., if maxy u(Ax) — 0 and N — oo, and
all dominant eigenvalues are isolated, then the dominant eigenvalues and eigenvectors
of the discretized problem (3.2) converge to the ones of the full transfer operator 7.
This means that the long-term dynamics of the MD process is approximated perfectly,
at least regarding the propagation of functions (2.3), if the MSM is made finer and
finer.

On the first glance this theoretical result seems counter-intuitive: In general, i.e.,
without assuming that the lagtime 7 is very long, the MD process (X;) will not be



Markovian if restricted to some arbitrarily fine discretization sets Aj. Despite this, the
Markov model 7 allows for perfect approximation of the long-term dynamics. The
resolution of the apparent contradiction lies in the observation that the dynamical
behavior as of (2.3) does not concern single MD trajectories but the resulting kinetics
in an ergodic sense and that the mathematical convergence result just states that on
this particular level the memory of the MD process regarding the discretization sets
is without importance.

The curse of dimension. It is quite obvious that if we consider systems with
growing dimension d, the size N of typical full partitions will explode with d. There
are essentially two scenarios in which this fundamental problem can be circumvented,
(1) if there is a subspace X, of reduced dimension r < d spanned by r reaction
coordinates of the system to which the box discretization can be restricted (i.e., the
sets A; have the form of cylinders that are based on a full partition of X,.), or (2) if a
geometry-based clustering of sampling data allows to identify reliable partition sets,
cf. [12]. Both cases do not offer general solutions to the problem but depend on the
system at hand and expert intervention. Because of this limitation of standard MSM
building other ansatz spaces have been considered. We will discuss two alternatives
to standard MSMs (core-set and meshless MSMs). To this end we first have to discuss
the general form of discretization matrices resulting from the Galerkin ansatz.

3.2 Galerkin discretization: The general case.

In general, the finite-dimensional variational problem (3.1) is equivalent to the finite-
dimensional generalized eigenvalue problem [6]

Pc=MXsMc (3.4)

with us = ZN

j=1¢j¢; and

Pji = (Tr 05, dr) s M = (95, ) -

By defining ¢ = Mc, we can rewrite (3.4) in form of the equivalent finite eigenvalue
problem . .
Té = Agé, T=PM (3.5)
The matrix T is a matrix representation of the so called projected transfer operator
[6]
QT,Q:S5S— S,

where @ : Li — S is the orthogonal projection onto S with respect to (-, -), that can
be expressed as

N
Q) (@) =D ¢i(x)M; (b5, P
i,j=1

where M~ is the inverse of the matrix M defined above and the inverse exists since
the ¢; are linearly independent. That is, solving the restricted eigenvalue problem is
equivalent to computing the eigenvalues of the projected operator QT'Q.

The entries of the matrix P can always be rewritten in the following form:

P = (65T 0u)y = [ Ea(65@on(X0))uta)do = B, (9(Xo)u (X1)),  (3:0)



where E, denotes expectation with respect to the paths of (X;)¢c[0, when starting in
Xy = z. This shows that the entries of P are correlation functions of the underlying
dynamics. Recently, an approach to Markov State Modelling using the Rayleigh
Ritz variational formula for eigenvalues of self-adjoint transfer operators has been
proposed [29, 30]. The resulting linear variation method again results in the restricted
eigenvalue problem (3.4) with P and M in the above correlation matrix form.

Core set MSMs. The first alternative to standard (full-partition) MSM building
schemes are so-called core set MSMs [6, 22, 21, 31, 26]: The ansatz space S results
from the following set-based construction: We start with disjoint sets, the so-called
core sets C; for j = 1,..., N that do not partition the whole state space X but only
form the core basins of the metastable sets. The ansatz space then is constructed by
choosing the so called committor functions {g;}, j = 1,..., N, as ansatz functions [22].
The committor g;(x) is defined as the probability that starting in state z € X the next
core set that the Markov process will visit is C;. The committors {¢;}, j=1,..., N
form a set of linearly independent, non-negative functions that constitute a partition
of unity (3, ¢i(z) = 1 for all x € X). Setting ¢; = ¢; we end up with discretization
matrices
Pir = (Tq5, ) My = (a5, q)u

Unfortunately, efficient explicit computation of the committor functions is not feasible
in high dimensions. However, in core-set MSM buidling these ansatz functions are
never computed explicitly. Instead one defines the so-called milestoning processes
(X;) and (X;") based on the core sets C;, by setting X;” = k if the original process
at time ¢ came last from Cy, and X;" = k if the original process at time ¢ went next
to Cf. Utilizing this, the two matrices P and M can be written in the form [6, 22]

Pr=Bu (X7 =k X5 =j).  Mp=P. (X =kX;=j). 37

and thus can be computed by means of trajectories of the MD process without need
to compute the committor functions explicitly.

In comparison to standard full partition MSMs, core-set MSMs show significantly
enhanced approximation quality (see next section) and in principle can also be con-
structed for high dimension systems as long as the system exhibits only a limited
number of strongly metastable sets.

Meshless MSMs. In [24, 32, 33] a meshless discretization of the transfer operator
has been presented. It uses the ansatz functions

1
¢i(z) = — exp(—allz —zil2), Zi= > " exp(—allz — z;]l2),

1
J

where || - ||2 denotes the Euclidean norm, and the set of points z; are free and adap-
tively chosen during the process of exploring state space by the dynamics. The ¢;
form a non-negative partition of unity like the committor functions. But instead of
being chosen in a problem-adapted way according to some pre-defined core sets like
the committor functions, the meshless ansatz functions can be adapted to the explo-
ration of state space by the dynamics by means of moving/choosing the points x;
appropriately.



3.3 Computing the discretized transfer operator

As we have seen, the Galerkin approach for discretizing the transfer operator lead to
linear systems, where the entries of the matrices are given in terms of probabilities or
expectation values. So computing approximate solutions of the restricted eigenvalue
problem (3.1) is based on sampling these stochastic quantities. Constructing a full-
partition MSM aims at estimating the matrix 7" from (3.3) given by

Ty, =P, (XT € Al Xo € Aj).

Having sampled a long trajectory (z;)i=o,... x of the original process with stepsize At,
a maximum likelihood estimator is given by [6]

TE) _ #(xigni € Aglz; € Aj)
gk #((El S A]) ’

where Ai = 7/At. The above formula can be easily adapted to the case where a
collection of short trajectories is available instead of one long trajectory (cf. [9]).
Obviously, for core-set MSM building the construction can be done in close analogy.
Alternative approaches utilize the fact that the process has to pass the surface be-
tween discretization boxes for efficient computation of the transition matrix T without
requiring long trajectories [34].

4 How accurate can MSMs be?

The computation of the discretization by the described methods is based on an appro-
priate construction of the ansatz space S on the one hand, and an accurate sampling
of the probabilistic entries of the matrices on the other hand. The overall error can
be decomposed into these two parts,

17, — TOO| < 1T, — QT.Q| + |1QT-Q — 5] (4.1)

Here, the first part describes the discretization error that is related to the approxima-
tion of the restricted eigenvalue problem, and the second part measures the sampling
error relative to a pre-defined discretization.

4.1 Discretization error: Eigenvalues

The Galerkin ansatz allows for a quite general estimation of the discretization error:
Assume that the ansatz functions ¢; that span the finite-dimensional ansatz space
S are non-negative and form a partition of unity (which is the case for indicator
functions, committor functions as well as meshless ansatz functions). Then S C L?(u)
is a subspace with

1es. (4.2)

Furthermore, for an m < dim(S) =: n, let 1 = Ay > Ao > ... > A, be the m
dominant eigenvalues of a self-adjoint operator T}, i.e. for every other eigenvalue A it
holds A < A,,. Let uq,us,...,um be the corresponding normalized eigenvectors, and
let @ denote the orthogonal projection onto S with respect to (-,-),. Moreover, let
1 =X > X > ... > Ay be the dominating eigenvalues of the projected operator



QTQ, that is, solutions of the corresponding restricted eigenvalue problem. Then
[4, 6]

max |A; — il < Ai(m —1)62, (4.3)
where
0= | max [(Id — Q)us]| (4.4)

is the maximal projection error of the leading m eigenvectors to the space S. That is,
the better my ansatz space allows to approximate the leading eigenvectors the smaller
the discretization error will be. The generality of this result guarantees that it holds
for standard full MSMs as well as core set or meshless MSMs. Surprisingly a similar
result can be proved for any non-dominant eigenvalue of the transfer operator [35, 6],
that is, the above statement is not limited to the cluster of the m largest eigenvalues.
In [35] it is also discussed how to estimate the projection error § just from trajectories,
i.e., without using information on the eigenvectors.

The estimate (4.4) of the discretization error does neither require any assumptions
on a spectral gap nor on the Markovianity of the MD process. The reasons for this are
as discussed above: the eigenvalues characterize the dynamics in an ergodic (average)
sense and not in any sense related to single trajectories.

4.2 Discretization error: Long-term transport

One can not only bound the discretization error regarding the eigenvalues, but also
compare the full long-term transport of the MD process with the discretized process.
The associated transport error in the Li-space is

E(k) = |QTFQ — (QT, Q)|

where long-term transport belongs to large k. In [5] it has been shown that -under the
same assumptions as above- this error depends on the lag time 7 and the projection
error 0 (4.4) for the dominant m eigenvectors:

k
E(k) < (mé +n) [m"/2(k = 1) 0 + ——(1 - )] exp (- ?T> (4.5)
-n 2
with the spectral gap quantity
to —t
N=Ams1/A2 ZeXP<— wT)-
t2tm+1

In particular, whenever § decreases faster as m3/? for increasing m, and in addition
we are interested in timescales associated with large enough k, the error can be made
arbitrarily small by

e increasing the number m, so that ¢ is small enough (choose discretization ap-
propriately), and

e choosing the lagtime 7 large enough so that 7 is small enough (select appropriate
timescale).

In comparison to the result (4.3) on the eigenvalue error, the latter estimate bounds
the full long-term transport error. The fact that one needs an additional spectral
gap condition (make 7 small by selecting appropriate 7) shows that spatial relaxation
requires some memory loss of the MD process that only comes with long enough
timescales.

10



Remark. The estimate (4.5) reduces the much cruder one (1.1) by setting t = k7,
and C' = max(tm3/2, (1 —n*=1)/(1 —n)).

A critical commentary. Careful analysis of the above error uncovers another dis-
advantage of standard full partition MSMs: For a given standard MSM, reduction of
the transport error below a certain threshold is only possible by further refining the
partition in the transition region between the metastable sets where sampling is rare
and its improvement computationally expensive, see [5] (theory) and in particular
the extensive discussion of the practical consequences in [28]. This problem cannot
be circumvented for standard MSMs but only by core set MSMs where the com-
mittors automatically incorporate the optimal discretization of the transition region.
This explains their superior approximation quality of core-set MSMs in comparison
to standard MSMs.

In many articles on practical applications of MSM building the discretization error
is completely ignored: While the dependence of the overall error on the lagtime 7 is
checked carefully in many publications on MSM building, starting with [7, 8, 36], the
discretization error often is not considered at all. Instead tests for Markovianity or
simular consistancy checks are utilized in order to justify the validity of the resulting
MSM; however, these tests can show positive results even if the underlying discretiza-
tion error still is totally off [6, 28]. Thus an explicit warning seems appropriate:
Checking for Markovianity and sufficiently long lagtime does not guarantee that the
resulting MSM is accurately reproducing the longest timescales of the underlying MD
process.

4.3 Sampling Error

Like the discretization error, also the sampling error can be estimated, at least for
standard full partition and core set MSMs: Given available trajectory data (z;)i=o,....x
one considers its discretized version D = (y;)i=0,... x with y; = j if ; € A;. Then
the probability P(D|T(%)) that this data has been produced by the transition matrix
T&E) of a Markov chain is given by

K-—1
P(D|TH)) = H Téfgm.
1=0

Given a prior distribution p on transition matrix space, Bayes formula allows us to
write down the posterior probability distribution of transition matrices [37]

P(T)|D) = B(D|TUO)p(TH),

from which the sampling error can be computed. Several algorithms for sampling
P(T)|D) have been designed [37, 38, 39] so that a posteriori estimation of the
sampling error is possible, e.g., by using the standard deviation of P(T(¥)|D) as an
estimator for ||QT,5Q—T(K )||, or by computing the posterior distribution of the leading
eigenvalues and eigenvectors from P(7)|D).

Remark. Although the total error decomposes as in (4.1), it is important to note
that the two error contributions are not independent, in general. Clearly, a very fine
full-partition of state space will guarantee a small projection error, but increases the
sampling effort dramatically because of the increasing number of transition probabil-
ities that need to be estimated [31].

11



5 Pros and Cons

Let us now take a step back from all the details and review the advantages and
disadvantages of MSM building based on Galerkin discretizations. The main pros
and cons seem to be the following:

+ MSM building allows for error-controlled approximation of the longest timescales
of the underlying MD process; reliable schemes for error estimation are available.

+ This approximation can be very precise if the discretization is chosen appropri-
ately and the underlying exploration of state space based on short MD trajectory
is sufficient.

+ The construction of MSMSs is a not too sophisticated procedure, requires short
MD trajectories only, can be easily parallelized, and is applicable to most molec-
ular systems with dominant metastable sets.

— The process of finding appropriate discretizations (full box partition or good
core sets) is still not automated but essentially case- and expert-dependent.

— In order to get acceptably small error for high dimensional systems additional
information about the system at hand is needed: For choosing not-too-large full
partitions in high dimensions, information on the reaction coordinates of the
system is required; this can be avoided in core-set MSM but then the choice
of good core sets requires knowledge on the main metastable regions in state
space.

— Guaranteeing sufficient sampling still is the main bottleneck for large molecu-
lar systems. Integration of enhanced sampling methods into MSM building is
possible but cannot fully cure the problem. As a result, for most really large
molecular systems, reliable estimation of the MSM approximation error is in-
feasible since one cannot guarantee that all important parts of the state space
have been explored.

The combination of the obstacles of choosing good discretizations and getting suffi-
cient sampling in high dimensions motivates an alternative approach to MSM building
that will be discussed in the next section.

6 The Future: Collocation Discretization of Trans-
fer Operators

The discretization by collocation is a partial remedy for the two main problems of
the Galerkin approach to MSM building. It is based on the idea of satisfying the
eigenvalue problem of T just on some preselected collocation points: Again assume
that we can represent the eigenvalue u by ansatz functions {¢;}, so

N
u(w) =Y a;é;(). (6.1)
j=1

Applying the transfer operator 7, = T)* gives

Tru(x) = i a;Ey (¢j (Xt)) '
j=1
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Now we only require that the eigenvalue problem for T is satisfied at N collocation
points z1,...,xN
Tiu(xk) = Mu(zg), k=1,...,N.

This again yields a finite eigenvalue problem
FEa = A\Ba

with
Ey; =E,, ((bj(Xt)), By = (k). (6.2)

This way, the computation of the matrix entries (6.2) for the collocation method
makes only use of probability measures of the form P, , where the process is always
initially started at a collocation point. That is, no probabilities of the form P, have
to be computed and no explicit information on u is needed.

Is this still an MISM? Collocation discretization will in general not lead to stochas-
tic discretization matrices in stark contrast to the cases discussed in most articles on
practical MSM building. It thus may seem contra-intuitive if we still use the name
”Markov State Model” for the resulting finite dimensional problem. However, the ma-
trices resulting from collocation discretization allow for an aggregation into a Markov
model in a post-processing step. We will discuss this issue further in our numerical
example in Sec. 6.2.

Computation from trajectories. Accurate sampling of the matrix E from (6.2)
can be achieved by starting K independent trajectories of length 7 from each colloca-
tion point «;. If y;(x;) denotes the end point of the ith trajectory of length 7 starting
in x;, then

_ 1 K
iy = 2 Y ului(y))
i=1

is a maximum likelihood estimator for the matrix E. Note that for this sampling
no ergodicity of the trajectory has to be assumed since knowledge of the invariant
density is not needed.

6.1 Ansatz Functions

We cannot go into details on the choice of ansatz functions and collocation points for
collocation discretization of transfer operators. We just want to add some comments
on the fundamental opportunities that result from the fact that we have complete
freedom in choosing the ansatz functions.

Trigonometric collocation. Whenever we look at torsion or peptide angles in
molecular dynamics, we face periodic potentials. Hence, periodic ansatz functions
like the basis of the discrete Fourier transform would be an appropriate choice for
approximation. That is, we could choose N = 2n + 1 and

1 =1/2, o = cos(kx), o1 =sin(kx), k=1,...,n

together with uniform collocation points z = (k — 1)27/n, k = 1,...,n, such that

S={f: fl@)= %al + Z (agk cos(kx) + asgy1 sin(k:x)).
k=1
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Additionally, the unitarity of the discrete Fourier transform guarantees that for any
function in Li our approximation will converge if we let N tend to infinity.

Polynomial collocation. If one considers bonding potentials for non-angular co-
ordinates, one might want to choose polynomial ansatz functions. This becomes
obvious if one considers the prototypical example of a harmonic potential, where the
eigenfunctions of the transfer operator in one dimension are given by the Hermite

polynomials H,, n =1,2.... We thus propose the use of the ansatz space
n
S={f: f(x)=) a;H;()},
j=1

with Hermite polynomial centered to the equilibrium position of the bonding potential
and with collocation points resulting from the zeros of H,,.

6.2 Numerical example

Since collocation discretization will in general not lead to stochastic discretization
matrices, we will now demonstrate how the MSMs resulting from collocation will look
like. As an example we choose a diffusion process in a periodic two-well potential.
The process (X;) is a solution of the following stochastic differential equation

dXt = —VV(Xt)dt + O'dBt7

where B; denotes standard Brownian motion, and the noise intensity ¢ is associated
with an inverse temperature 3 = 2/02. The potential V is illustrated in Fig. 1 and
we use [ = 3.

3 1
25 08
2 1
206
b=
15 £
1 g 04
o
05 0.2
0
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Figure 1: Left: Periodic two-well potential energy function V. Right: Committors
for the vicinities of the two minima of the potential energy as core sets Cy, and Cs.

First, we choose N = 7 and apply the trigonometric collocation method with
equidistant collocation points (z; = 2jm/n for j = 0,...,n — 1 as usual in FFT).
We find the following estimates of the leading three eigenvalues resulting from the
generalized eigenvalue problem Eu = ABu as in (6.2)

A3, Ao, A1 = 0.1003,0.9724, 1.0000
while the exact eigenvalues of the transfer operator are given by

A3, A2, A1 = 0.1138,0.9682, 1.0000.
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The matrix 7' = B~'FE can also be computed:

1.0000 —-0.5216 —1.2763 0.7867  0.0211 0.0079  —0.0294

0 0.1311  —-0.1215 -0.0842 —0.0040 0.0025  0.0048

0 0.0233  0.0456 —0.0690 0.0167 —0.0096 —0.0087

0 0.0467  —0.0050 —0.0493 0.0009  0.0013 —0.0036 |,
0 0.0080 —0.0102 -0.0078 1.0690 —0.4921 —0.5049
0
0

~
Il

—0.0036  0.0065  0.0079 —0.0100 0.0633 —0.0607
0.0071  —0.0153 0.0129  0.2030 —0.1035 —0.0752

Note that in contrast to the transition matrix in classical Markov State Modelling
this matrix is not a stochastic matrix. At first glance, this might seem to be a disad-
vantage because a transition matrix directly relates to a Markov chain which can be
interpreted as a dynamical approximation of the original process. On the other hand,
the limitation to ansatz functions that lead to stochastic matrix approximations is
not necessary if we are interested in approximating the variational eigenvalue prob-
lem. In particular, information about the eigenvectors and eigenvalues is valuable for
constructing a discretization that an accurate Markov State Model can be built on.

0.15
0.03 01
%0.05
= 0.02 g
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0.01 2005
8
201
(2]
0,
5 10 15 20 0 1 2 3 4 5 6

Figure 2: Results for trigonometric collocation method. Left: Error in second eigen-
value for different numbers of collocation points. The error remaining for n > 15 is
not related to discretization but results from the finite sampling. Right: Comparison
of second eigenvector for N = 7 with exact second eigenvector.

In Fig. 2 one can see that the approximation of the second eigenvalue by the
periodic ansatz functions of the discrete Fourier transform converges quickly, but also
gives a good result with only few collocation points used. The second eigenvector
tells us how to coarse grain the collocation MSM further: It exhibits a sign change
at ©o = m so that we can coarse grain using two macrostates, A = [0, z], and
B = [z, 27]. By using these sets and the available trajectory information (which has
been collected while computing the collocation discretization for N = 7), we get an
estimate for the respective 2 x 2 MSM transition matrix

7 (09876 0.0124
~\ 00124 09876 )°

with eigenvalues 0.9752 and 1. In order to get the same accuracy by using a standard
full partition MSM with uniform boxes, we need N = 19 boxes.

In comparison, the core set approach with 2 sets (ball of radius 0.3 around the two
minima of the potential, see right hand panel in Fig. 1) gives the estimate Ao = 0.9685
for the second eigenvalue which is three digits accurate. In comparison, the standard
full partition MSM approach only achieves this accuracy if more than n = 30 boxes
are used. This demonstrates that the core set approach —provided good choices for
the core sets are available— has superior approximation properties.
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6.3 Sparse Tensor Approximation in High Dimensions

Assume now that we are dealing with two dimensions, an angular one, 7, and a
bond-length like dimension, zs. Then, we consider approximations in which we first
expand f(-,x2) for fixed xo in terms of trigonometric ansatz functions, and then the
xo-dimension in Hermite polynomial

ni

> (@)t (21)

i1=1

f(z1,22)

ni n2

Z Z iy io Vi, (x1)H;, (x2).

i1=1142=1

In d dimensions this kind of tensor approximation leads to the ansatz space

N1,...,Nd
S’ﬂlwu;nd = {f($17""xd> = Z a’i17~~;id¢i1(x1) ""'¢id(xd)}
i1yeeig=1

where ¢; is either trigonometric or polynomial depending on the dimension x;. The
dimension of this ansatz space is ny X ... x ng and thus exponential in d. In order to
avoid the curse of dimensions, sparse tensor approrimation considers ansatz spaces
like

Su o= {flen,za) = D anbn(@)- . dig(wa)}

i1,y 0d €1,

d
I, = {(ir,...,ia) : J] max(1,ix) < n}
k=1

The literature on sparse tensor approximation shows that 5, still has sufficient ap-
proximation properties [40] and that the dimension of S,, just grows like n(logn)?~*.

It has been shown in [23] that the dominant eigenvectors of the transfer operator
are almost constant in the direction of fast degrees of freedom. Therefore, any tensor
ansatz can be limited to n; = 1 if x; is one of the fast dimensions. Numerical schemes
for identifying such dimensions in the framework of sparse tensor approximation are
available (so-called adaptive dimension schemes [41]). In this way, collocation MSMs
based on S, in combination with adaptive dimension schemes open the opportunity
for the construction of MSM building schemes that can be applied in an automatic
way even in very high dimensions.

6.4 Pros and Cons of Collocation

Let us very shortly discuss the advantages and disadvantages of MSM building based
on collocation:

+ Collocation schemes allow for sparse tensor approximations that avoid the curse
of dimensions and thus in principle would allow for automated MSM building
in very high dimensions.

+ Collocation schemes do not require that the invariant measure has to be sam-
pled. The collocation points result from the form of ansatz functions used.
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— Presently no validation (apart mathematical approximation theory and demon-
strations for test system) of collocation-based MSM building for realistic molec-
ular systems has been given.

— Presently no theory for estimating the approximation error of collocation-based
MSMs has been developed.

7 Concluding Remarks

Based on the pros and cons already discussed above we will restrict our concluding
remarks to the following three:

1. Almost all practical applications of MSM building use standard full partition
MSMs, cf. [16, 10]. In view of the rich variety of alternative MSM constructions
and their respective advantages, this is rather surprising. The explanation may
be that standard full partition MSMs provide trivial interpretation in form
of a Markov process that jumps between the discretization sets with just the
right probability which gives a direct kinetic meaning to it. However, all the
alternative MSMs allow for the same construction if wanted but deliver superior
approximation properties.

2. Galerkin-based MSMs do not seem to be the optimal solution for construc-
tion of accurate approximations and reliable sampling in very high dimensions,
in particular if one cannot identify appropriate reaction coordinates to which
discretization can be limited. Instead sparse tensor approximation of transfer
operators need to be developed further. Collocation discretization of transfer
operators seems to allow for this development because it opens the door for
using dimension-adaptive tensor approximations, cf. [41].

3. Most of the theory of MSM building is based on the assumption that the molec-
ular dynamics process considered is in equilibrium and has a unique invariant
measure. It covers scenarios in which the relaxation of a molecular system back
to equilibrium is described but it does not fully apply to nonequilibrium molec-
ular dynamics. There are some first approaches, like [26], that start to develop
the fundamentals of MSM building for nonequilibrium MD but the field is still
rather unexplored.

Despite the concept of MSM building in molecular dynamics is more than 15 years
old already and has developed into a toolkit that is successfully and widely utilized in
molecular research, its potential has not been fully explored and it seems that many
interesting developments can well be expected.
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