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Reactive flows and unproductive cycles for random

walks on complex networks

Ralf Banisch, Nataša Djurdjevac Conrad and Christof Schütte
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and

Zuse Institute Berlin, Germany

Abstract

We present a comprehensive theory for analysis and understanding of tran-
sition events between an initial set A and a target set B for general ergodic
finite-state space Markov chains or jump processes, including random walks on
networks as they occur, e.g., in Markov State Modelling in molecular dynamics.
The theory allows us to decompose the probability flow generated by transition
events between the sets A and B into the productive part that directly flows
from A to B through reaction pathways and the unproductive part that runs in
loops and is supported on cycles of the underlying network. It applies to random
walks on directed networks and nonreversible Markov processes and can be seen
as an extension of Transition Path Theory. Information on reaction pathways
and unproductive cycles results from the stochastic cycle decomposition of the
underlying network which also allows to compute their corresponding weight,
thus characterizing completely which structure is used how often in transition
events. The new theory is illustrated by an application to a Markov State Model
resulting from weakly damped Langevin dynamics where the unproductive cy-
cles are associated with periodic orbits of the underlying Hamiltonian dynamics.

Keywords: Complex networks, molecular transition networks, transition path the-
ory, cycle decomposition, reactive trajectories, Markov State Models

AMS classification: 05C81, 90B15

1 Introduction

Rare but important transition events between long lived states are a key feature of
many systems arising in physics, chemistry, biology, etc. Molecular dynamics (MD)
simulations allow for analysis and understanding of the dynamical behaviour of molec-
ular systems. However, realistic simulations for large molecular systems in solution
on timescales beyond milliseconds are still infeasible even on the most powerful gen-
eral purpose computers. Rare events require prohibitively long simulations because

1



the average waiting time between the events is orders of magnitude longer than the
timescale of the transition characterising the event itself. Therefore, the straight-
forward approach via direct numerical simulation of the system until a reasonable
number of events has been observed is infeasible for most interesting systems.

We consider rare events in which molecular system under consideration has the
ability to go from a initial state given by a set A in its state space (e.g. an initial
conformation) to a target state described by another set B (e.g. the target conforma-
tion). A is a metastable set and thus transitions from A to B are rare. We want to
characterize the transitions leading from A into B, that is, we are interested in the
statistical properties of the ensemble of reactive trajectories that go directly from A
to B (i.e. start in A without returning to A before going to B). We would like to
know where in state space the probability flow generated by reactive trajectories is
largest, i.e., which transition channels in state space reactive trajectories prefer and
how a typical transition event happens.

In this article, we will discuss the estimation of rare event statistics via discretiza-
tion of the state space of the system under consideration. That is, instead of dealing
with the computation of rare events for the original, continuous process using MD
trajectory simulation like, e.g., in Transition Path Sampling, we will utilize so-called
Markov State Model (MSM) with finite, discrete state space. The reason is that for
such a discrete model one can numerically compute the probability flow generated by
reactive trajectories and the associated transition channels completely without simu-
lation. Instead, discrete Transition Path Theory (TPT) [16] shows that based on an
MSM one just has to solve finitely many linear equations in order to get the reactive
probability flow everywhere in state space.

In the standard setting a Markov State Model (MSM) is a Markov chain whose
transition matrix is given by the transition probabilities of the original MD process
between some subsets of the molecular state space (i.e., molecular conformations)
that form the (macro-)states of the MSM. It has been demonstrated that, in many
cases of practical relevance ranging from peptide conformation dynamics via protein
folding and function to membrane fission, or RNA kinetics, MSM building allows the
study of dynamic behavior on long timescales and the analysis and understanding of
rare transition events using TPT, see [4, 19, 26, 21, 20, 11] for just some links to the
relevant literature.

An MSM can be interpreted as a transition network of the molecular system
[18, 17] by taking the MSM (macro-)states, i.e., conformation sets of the underlying
molecular system, as the nodes of the network, putting edges where these nodes are
connected by positive transition probabilities and consider the random walk on the
thus constructed network that is induced by jumping from node to node according to
the respective transition probabilities, compare Fig. 1.

In recent years, such network descriptions and the associated random walks have
attracted a lot of attention as rather general tools to model, represent, and interpret
complex processes arising in many fields of science, ranging from transition networks
in molecular research and reaction networks in cellular biology, via logistics, computer
and supply networks to phenomena like social networks. The framework of Transition
Path Theory (TPT) has been introduced to analyze the statistical properties of the
reactive trajectories by which transitions occur between two specific sets of nodes of
the network that represent our initial state A and target state B. TPT allows for
extraction of the essential features of the dynamics on the network and relates them
to the global structure of the network [12, 23].

TPT has been developed in [6, 7, 15, 8] in the context of diffusions, and has
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been generalized to Markov processes with discrete state space and random walks on
networks in [16, 14]. In principle, TPT allows for the analysis of all features of interest
regarding the set of all reactive trajectories and its statistical properties: transition
rate, probability flow induced by reactive trajectories, reactive flow carried by specific
transition pathways, etc. It also permits to compute the list of all important reactive
pathways including their weight relative to the overall transition rate, see [16, 14, 25].
However, this approach is limited to direct pathways from A to B that do not include
loops. This means, TPT does not allow for understanding of the reactive probability
flow that is carried by loops in the network. Understanding this ”unproductive” flow
is important for network design questions (robustness) or for Markov processes out of
equilibrium such that an extension of TPT addressing this problem is desirable. For
undirected networks (and the associated reversible Markov processes) this extension
has been discussed in [3] where it has been demonstrated how to effectively ignore the
flow carried in loops. The present work can be viewed as a more general extension that
presents a complete theory for solving the problem of characterizing the unproductive
flow for undirected and directed networks and associated Markov processes.

In a nutshell, the basic idea is to utilize the stochastic cycle decomposition [9, 5]
of the probability flow generated by the random walker, and associate it with TPT
aiming at a decomposition of the productive/reactive and unproductive flow between
two sets of nodes of the network.

The remainder of this paper is organized as follows. In Section 2 we discuss the
relation between Markov processes and networks, and outline the stochastic cycle
decomposition. Next, in Section 3 we summarize the main aspects of TPT. Section
4 then shows how to utilize the stochastic cycle decomposition for decomposing the
flow into a productive and unproductive part by using the toolset provided by TPT.
In Section 5 we apply the tools introduced earlier to analyze random walks in two
simple mazes and Langevin dynamics. Finally, some concluding remarks are given in
Section 6.

2 Cycle Decomposition of Markov Chains

In all of the following we consider an irreducible aperiodic homogeneous Markov
chain (Xt)t∈N on state space X = {1, . . . , n} with transition matrix P and transition
probability pij for i, j ∈ X. We assume that µ denotes the invariant measure of the
chain so that µT = µTP . The chain is ergodic, i.e., infinitely long trajectories will
visit an arbitrary state i with probability µi.

P can be the transition matrix of a Markov State Model with n (macro-)states. P
can as well be associated with random walks on social networks or the Internet [12],
or a reaction network in systems biology, cf. [16].

2.1 Markov chains and random walks on networks

We assume that the chain in general is irreversible, i.e. the detailed balance condition
µipij = µjpji is not assumed to be satisfied. Simple examples for such a chain are
given by random walks on directed networks: Obviously every chain generates a
directed network with node set X and edge set E = {(i, j) : pij > 0} and edge weights
pij . In turn, a strongly connected graph/network G = (X, E), where X is the set
of n nodes and E the set of edges of the graph, allows to define an ergodic chain.
We denote the adjacency matrix of the network by (aij)i,j∈X and the out-degree of
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a node i by di =
∑
j∈X aij . If the network has weighted edges then aij denotes

the weight of the edge (i, j) ∈ E and aij = 0 if (i, j) 6∈ E. Whenever the network
is undirected the adjacency matrix is symmetric, and the associated random walk
satisfies detailed balance (i.e., it is reversible). Usually, in network clustering one
considers the standard random walk defined on the network, i.e., the Markov chain
with one-step transition matrix directly given by the adjacency structure / weights,

pij =
aij
di
. (1)

The associated Markov chain is irreducible and aperiodic, and if the network is undi-
rected and the random walk reversible, it has invariant measure µi = di/

∑
i∈X di, i.e.,

nodes with high degree are visited often. Random walks where pij is defined in terms
of aij in a different way [23] have also been considered and connect directed networks
to irreversible random walks as well. The following table summarises commonly used
network terminology.

Term Definition

Adjacency matrix (aij)i,j∈X

indicates which nodes are adjacent to which
other nodes

aij =

{
wi,j (i, j) ∈ E
0 (i, j) 6∈ E

where wi,j is the weight of the edge (i, j) for
weighted graphs or wi,j = 1 for unweighted
graphs.

Out-degree of a node di
is the number of outgoing edges from a node
i di =

∑
j∈X aij .

In-degree of a node d−i
is the number of incoming edges to a node i
d−i =

∑
j∈X aji.

A source node is a node with no incoming edges, i.e. d−i = 0.

A sink node is a node with no outgoing edges, i.e. di = 0.

A strongly connected graph
is a graph for which there is a directed path
from every node to every other node in the
graph.

Molecular transition networks. Fig. 1 shows the transition network that results
from MSM building based on MD simulations of 12-alanine, see [18] for details. This
network is undirected because the MSM for 12-alanine comes out to be reversible.
Obviously, there are several reaction pathways along which the transition process
starting in the β-sheet conformation A and ending in the α-helical conformation B
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will happen. Based on the MSM for 12-alanine, TPT allows to rank them according
to their contribution to the overall transtion rate.

However, in general MSM building has to deal with non-reversible MSMs, even
if this often is ignored. For example, if the underlying MD simulations are based on
Langevin dynamics the MSM will be non-reversible, see [25] for the theoretical back-
ground and [20] for the typical handling of it. Furthermore, whenever MD simulations
out of equilibrium are concerned the resulting MSM is non-reversible in general even
if the underlying MD process may be reversible [28]. In these cases the resulting
transiition network is directed.

Figure 1: Transition network of 12-alanine as of [18]. The circles indicate the nodes
of the network; the associated conformations are shown close to each node. The node
marked A is associated with a β-sheet like conformation while B marks an α-helical
conformation. If an edge exists then the MSM transition matrix for 12-alanine has a
positive transition probability between the respective conformations. The transition
probability themselves are omitted.

2.2 Flow decomposition

We give a short account to flow decompositions in terms of cycles. A cycle in the
directed graph G = (X, E) is a closed path γ = (i1, i2, . . . , is) visiting the nodes
i1, . . . , is in that order, where all edges (ik, ik+1) and (is, i1) have to be in E. Cycles
are called simple if they are non-intersecting, i.e. all ik are pairwise different. We
denote the set of all simple cycles in G by Γ. We write (i, j) ⊂ γ if the edge (i, j) is
an edge of γ and their orientations agree. To each cycle γ ∈ Γ, one can associate a
matrix Cγ that encodes which edges are part of γ by

Cγ,ij =

{
1, (i, j) ⊂ γ
0, otherwise.
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The chain (Xt)t∈N induces a flow Fij on the network,

Fij = µipij = P[Xt+1 = j|Xt = i],

which simply is the ergodic probability flow through edge (i, j). Because µ is invariant,
F is conserved at every node:

∑

i

Fij −
∑

i

Fji = 0 ∀j ∈ X. (2)

Equation (2) is typically called Kirchhoff’s loop law and allows for a decomposition
of F into elementary currents along cycles. Different approaches for doing this have
been proposed in the literature [24, 29, 1], in general decompositions of this kind
depend on a choice of basis or spanning tree of G and are therefore not unique. We
focus on the unique stochastic cycle decomposition [10, 9, 5] which is of the form

F =
∑

γ∈Γ

w(γ)Cγ , (3)

where the flow weight w(γ) has a stochastic interpretation in terms of the number of
times a realization of (Xt)t actually uses γ; we explain this below. If γ = (i1, . . . , is),
then w(γ) is given by the explicit formula [9]

w(γ) = pi1i2 . . . pis−1ispisi1
D ({i1, . . . , is})∑

i∈XD ({i}) (4)

where D ({i1, . . . , is}) is the determinant of the matrix I −P with rows and columns
indexed by {i1, . . . , is} deleted. For large state spaces, equation (4) is numerically
inappropriate to compute w(γ). Another characterization of the cycle weights uses
realizations of the underlying Markov chain instead. To this end, consider a realiza-
tion (Xt)t=1,...,T which defines a path in G with a finite number of self-intersections.
Each self-intersection corresponds to a cycle γ ∈ Γ that has been passed through by
(Xt)t=1,...,T . For every γ ∈ Γ we define Nγ

T as the number of times (Xt)t=1,...,T passes
through γ. Then

w(γ) = lim
T→∞

Nγ
T

T
. (5)

Equation 5 will be used later to compute w(γ) in numerical examples.

3 Transition Path Theory Revisited

Let A and B be two non-empty, disjoint subsets of the state space X such that
(A∪B)c is non-empty. By ergodicity, (Xt) visits bothA andB infinitely often and thus
oscillates infinitely many times between A and B. We are interested in understanding
how these A→ B transitions happen (pathways, rate, etc). In Transition Path Theory
(TPT) one views A as a reactant state and B as a product state, such that each A→ B
transition is a reaction event, and one asks about the mechanism, rate, etc. of these
reaction events. TPT proceeds by pruning out of a long ergodic trajectory of (Xt)
the pieces during which it makes a direct transition from A to B (start in A and go
to B without detours back to A). These pieces are called the reactive trajectories and
TPT allows to characterize various statistical properties of these pieces, especially
the reactive probability flow FAB they generate on state space. FAB is the part of F
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which is made up by the reactive trajectories, such that FABij is the probability that
a reactive trajectory makes a transition from state i to state j. The TPT framework
has been developed in [6, 7, 15, 8, 27] in the context of diffusions, and has been
generalized to discrete state spaces in [16, 14]. According to [16, 14] the reactive flow
between A and B is given by

FABij =

{
µi q
−
i Lij q

+
j , if i 6= j

0, otherwise
(6)

where Lij denotes the entries of the rate matrix or generator defined by L = P − Id,
and q+ and q− are the so-called committor functions that are defined as follows: The
forward committor q+

i at state i is defined as the probability that the process starting
in i ∈ X will reach first B rather than A. Analogously, the backward committor
q−i is defined as the probability that the process arriving in state i came last from A
rather than B. The forward and backward committor both satisfy a discrete Dirichlet
problem [16, 14]:





∑
j∈X Lijq

+
j = 0, ∀i ∈ (A ∪B)c

q+
i = 0, ∀i ∈ A
q+
i = 1, ∀i ∈ B

(7)

and




∑
j∈X L̃ijq

−
j = 0, ∀i ∈ (A ∪B)c

q−i = 1, ∀i ∈ A
q−i = 0, ∀i ∈ B

(8)

Here L̃ = (L̃ij) denotes the generator backward in time given by L̃ij =
µj

µi
Lji.

Based on the flow one can easily compute the total transition rate of reactive
trajectories from A to B by summing FABij up either over all edges (ij) that leave A
or all edges that go into B, that is

kAB =
∑

i∈A, j∈X
FABij =

∑

i∈X, j∈B
FABij .

As shown in [16], the transition rate is identical to the expected number of reactive
trajectories (i.e. reactive pieces of a long ergodic trajectory) per unit of time. It
turns out that kAB can also be expressed by the effective reactive flow F+ which is
obtained by removing the reactive trajectories that go from j to i from the ones that
go from i to j for every edge (ij), i.e.

F+
ij = max(0, FABij − FABji ) (9)

such that kAB =
∑
i∈A, j∈X F

+
ij . Once can also compute the probability µRi to find a

reactive trajectory at state i, given by

µRi =

{
q−i µiq

+
i , i ∈ (A ∪B)c,

0 otherwise
. (10)
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4 Reactive and Unproductive Flow

The aim of this section is to develop a decomposition of the probability flow F into
the reactive part from a reactant state (subset A of nodes in the network) to a product
state (subset B) and the non-reactive or unproductive part. The guiding idea is the
concept of Hodge-Helmholtz decompositions of vector fields: Let F be a vector field
on some bounded domain D ⊂ R3. Then F can always be decomposed into a gradient
and a rotation:

F = ∇Φ +∇×R. (11)

The gradient part ∇Φ is rotation-free while the rotational part ∇×R is divergence-
free. Φ and R can be computed by taking the divergence of (11), which yields ∇·F =
∆Φ, and the rotation of (11), which yields ∇ × F = ∇ × (∇ × R). The discrete
analogue of vector fields are flows it the network G, which is why we are now looking
for a decomposition of the type (11) for flows. We have no differential operators at
our disposal, but the rotational part ∇×R corresponds to the cyclic flows discussed
in section 2.2.

4.1 Simple sink and source

We start with the following toy system to make things conceptually clear: Consider
a network with a single point source A ∈ X, a single point sink B ∈ X and a set of
strongly connected transient states T . That is X = T ∪ {A} ∪ {B}, and

pia = pbi = 0 ∀i ∈ T, ∀a ∈ A, ∀b ∈ B. (12)

Our aim is to characterize the reactive flow which can be reframed as a character-
ization of information transport from A to B: Start a random walker at A; it will
wander around in T for a while and at some point reach B, which we count as one
bit of information delivered. We then start the next random walker in A, and so on.
This can be modelled by adding a single directed edge eBA = (B,A), see Fig. 2 below.
This addition makes the process ergodic and the flow F (eBA) will count the number
of transitions from A to B, hence the number of bits delivered. Because of assumption
(12), a trajectory started in any point i ∈ T must reach B next (and not A) with
probability 1, and it must have come from A (and not B) with probability 1. In other
words, q+

i = q−i = 1 for all x ∈ T . As a consequence, Fij = fABij for (i, j) 6= eBA
and F (eBA) = kAB : For this system, the pruning performed by TPT only removes
transitions along the edge eBA, all other parts of a generic trajectory are considered
reactive. Nevertheless, on its way from A to B, some parts of the trajectory of (Xt)t
will be productive, meaning that they help advancing towards B, while others will be
non-productive. Identifying the productive parts of a trajectory is the key definition
we have to make. We will do this pathwise:

Consider a single piece of reactive trajectory p = (A, i1, . . . , is, B) with i1, . . . , is ∈
T representing one transition from A to B. After B, the next state has to be A since
eBA is the only edge leaving B, so p closes to a cycle c = (A, i1, . . . , is, B,A). Because
the transition from A to B may not be direct, c may have self-intersections and can
therefore be decomposed into several simple cycles, exactly one of which contains the
edge eBA. We will denote this cycle γP . γP represents the productive part of c,
namely a direct transition from A to B with no detours. All the other simple cycles
in the decomposition of c represent the unproductive detours on the way from A to
B. This leads to a splitting Γ = ΓP ∪ ΓU where ΓP = {γ ∈ Γ : eBA is an edge of γ}
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is the set of productive cycles which represent transitions from A to B, and ΓU =
{γ ∈ Γ : eBA is not an edge of γ} is the set of unproductive cycles which represent
detours. Observe that cycles in ΓU must lie completely in the transition region T . In
terms of this splitting, (3) becomes

F =
∑

γ∈ΓP

w(γ)Cγ +
∑

γ∈ΓU

w(γ)Cγ = FP + FU . (13)

The reactive flow or information flow FP is the flow generated by the productive
parts of the trajectories, and the unproductive flow FU is the flow generated by the
unproductive part. The decomposition F = FP + FU is unique and based on the
definition of productive and unproductive parts given. Moreover, note that

kAB = F (eBA) = FP (eBA) =
∑

γ∈ΓP

w(γ).

This is evident, we just need to evaluate (13) on the edge eBA. By the construction
above, every reactive trajectory is in one-to-one correspondence to one productive
cycle γ ∈ ΓP , and the weight w(γ) = limT→∞ 1

TNT (γ) of this cycle according to (5)
indicates how many trajectories per unit time used it as a reaction pathway. Thus,
FP encodes the transport mechanism from A to B.

Example. Consider the network given in Fig. 2, where all edges have weight
pij = 1 except the edge from node 3 to node 4 which has weight p34 = δ ∈ (0, 1) and
the edge from 3 to 5 with weight p35 = 1− δ. The edge eBA = (5, 1) between A = 1
(former source) and B = 5 (former sink) has already been added.

Figure 2: Directed network with A = 1, B = 5 and edge eBA = (5, 1) already added.

As stated above, we have q+ = (0, 1, 1, 1, 1)T and q− = (1, 1, 1, 1, 0)T . For the
transition from A to B and δ = 0.25 we find the following current of reactive trajec-
tories according to (6):

FAB = F+ =




0 0.2000 0 0 0
0 0 0.2667 0 0
0 0 0 0.0667 0.2000
0 0.0667 0 0 0
0 0 0 0 0



,

and the transition rate kAB = 0.2. There are two simple cycles, γ1 = (2, 3, 4) and
γ2 = (1, 2, 3, 5). We find ΓP = {γ2} and ΓU = {γ1} and compute from (4):

w(γ1) = 2/30 = 0.6667, w(γ2) = 0.2,

which agrees with (13) since F = FAB everywhere except F (5, 1) = 0.2 = kAB .
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Based on this we can also compute w(γ2) = kAB , and w(γ1) as functions of δ, as
shown in Fig. 3. The result coincides with simple intuition: The larger δ becomes,
the smaller the transition rate kAB gets while simultaneously unproductive flow along
cycle γ1 increases. For δ → 0 we find kAB = 0.25 (because then every transition needs
four steps), and w(γ1) = 0.

δ

kAB

w(γ1)

Figure 3: kAB (solid red), w(γ1) (dashed green) as functions of δ.

4.2 The general case

Now we turn to the general case. So let the vertex set X be decomposed into A, B and
T (mutually disjoint), but A and B do not have to be topological sinks/sources any
longer and contain more then one vertex. We want to model information transport
from A to B again, so A will be the information source in the sense that every time
(Xt) visits A, it picks up one bit of information if it does not already have one,
and every time it visits B it delivers the bit it carries, if any. This is the typical
TPT context, and the number of bits transferred per unit time is again kAB . Now
there are two ways in which a trajectory can be unproductive: It can self-intersect
in T as before, and it can make many unproductive returns to A before making
a transition to B. TPT takes care of the latter: We have a flow decomposition
F = FAA + FAB + FBA + FBB where

FAAij = q−i µiLij(1− q+
j ),

FABij = q−i µiLijq
+
j ,

FBAij = (1− q−i )µiLij(1− q+
j ),

FBBij = (1− q−i )µiLijq
+
j .

The reactive trajectories from A to B have FAB as their flow. E. Vanden-Eijnden
and M. Cameron have shown in [3] that one can write down a generator LR which
generates the reactive trajectories directly and has FAB as its probability flow, mean-
ing FABij = µRi L

R
ij where µR given by (10) is the invariant distribution of LR. This is
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done by mapping A to a single state a, B to a single state b and then setting

LRij = Lij
q+
j

q+
i

, i, j ∈ T

LRib =
∑

j∈B
Lij/q

+
i , i ∈ T (14)

LRaj =
∑

i∈A
µiLijq

+
j /(1− ρR), j ∈ T

(15)

where ρR =
∑
i q
−
i µiq

+
i . We also add a single edge eba = (b, a) that reroutes the

trajectory to a once it reaches b, and thus set LRba = 1. That trajectories generated
by LR indeed have FABij as their flow can be seen in the following way: By using (10),
we get for i, j ∈ T :

µRi L
R
ij = q−i µiq

+
i Lij

q+
j

q+
i

= q−i µiLijq
+
j = FABij .

The other cases are checked equivalently. By using LR instead of L, we have reduced
the general situation to the simpler one discussed before. The transition matrix
corresponding to LR is PR = LR + I.

Now the reactive trajectories themselves still have productive and unproductive
parts since, as mentioned before, they can still self-intersect in T . In [3] the committor
is used to distinguish between productive and unproductive parts. That only works
for the reversible case1. Instead, we will do the very same construction as before:
Any reactive trajectory c = (a, i1, . . . , im, a, b) can be decomposed into simple loops,
exactly one of which contains the edge eba, and this one we call the productive part.
With the splitting of Γ into productive cycles ΓP = {γ ∈ Γ : eBA is an edge of γ}
and unproductive cycles ΓU = {γ ∈ Γ : eBA is not an edge of γ}, we can write the
decomposition (3) for the flow FAB of reactive trajectories as

FAB =
∑

γ∈ΓP

wR(γ)Cγ +
∑

γ∈ΓU

wR(γ)Cγ = FP + FU (16)

where the weights wR are given in terms of the matrix elements of PR by

wR(γ) = pRi1i2 . . . p
R
is−1isp

R
isi1

DR ({i1, . . . , is})∑
i∈XD

R ({i}) (17)

for a cycle γ = (i1, . . . , is). In practical situations, we will use LR (or PR) to generate
reactive trajectories and sample the weights wR(γ) according to (5). We again have

kAB =
∑

γ∈ΓP

wR(γ).

1The reason is that in the reversible case, the effective current (9) can be written as F+
ij =

µiLij(q+j − q+i ), so that F+
ij only flows from lower to higher committor values, and the productive

pieces of reactive trajectories can be identified as pieces along which the committor increases. In the
non-reversible case, this is no longer true: The committor q+ may stay constant or even decrease
along the flow F+. In the simple case discussed in section 4.1, q+ = 1 along all reactive trajectories,
so q+ has no information about productive and unproductive parts.
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Reversibility and unproductive cycles. If the underlying Markov chain is re-
versible, then we have wR(γ) = wR(γ−) for any γ ∈ ΓU , where γ− is γ with reversed
orientation2. This can be seen in the following way: Let γ = (i1, . . . , is) ∈ ΓU .
Then i1, . . . , is ∈ T , and we have pi1i2 . . . pis−1ispisi1 = pisis−1 . . . pi2i1pi1is from the
Kolmogorov criterion for reversibility. From this, we get

pRi1i2 . . . p
R
is−1isp

R
isi1 = pi1i2

q+
i2

q+
i1

. . . pis−1is

q+
is

q+
is−1

pisi1
q+
i1

q+
is

= pi1i2 . . . pis−1ispisi1
= pisis−1

. . . pi2i1pi1is

= pRisis−1
. . . pRi2i1p

R
i1is

and finally wR(γ) = wR(γ−) since the additional factor in (17) does not depend on the
ordering of i1, . . . , is. Note that this only holds for unproductive cycles: For γ ∈ ΓP ,
we have wR(γ−) = 0 because γ necessarily contains the edge (ba), and transitions
along the reversed edge (ab) are forbidden.

As a consequence, we can see that FU = FTU if the chain is reversible: Since we
can organise the cycles in ΓU into pairs {γ, γ−} and Cγ− = CTγ , we have

FU =
∑

γ∈ΓU

w(γ)Cγ =
1

2

∑

γ∈ΓU

wR(γ)
(
Cγ + Cγ−

)
=

1

2

∑

γ∈ΓU

wR(γ)
(
Cγ + CTγ

)
.

Since FP and FAB only differ by FU and FU is symmetric, the effective current
associated to FAB by (9) equals the effective current associated to FP . Thus in the
reversible case our splitting into FP and FU does not change the effective current
F+. This is reasonable since in the reversible case, the effective current is already
cycle-free and therefore has no unproductive parts.

Example, continued. Let us return to our illustrative example, see Fig. 4.

Figure 4: Directed network with additional flow back to A = 1.

For the transition from A = {1} to B = {5} and δ = 0.25, ε = 0.1 we find the
following reactive flow:

FAB = F+ =




0 0.1888 0 0 0
0 0 0.2436 0 0
0 0 0 0.0548 0.1888
0 0.0548 0 0 0
0 0 0 0 0



,

2I.e. if γ = (i1, . . . , is), then γ− = (is, . . . , i1).
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and the transition rate kAB = 0.1888. There are three simple cycles γ1 = (2, 3, 4),
γ2 = (1, 2, 3, 5), and γ3 = (1, 2); their weight can be computed from (4):

w(γ1) = 0.0629, w(γ2) = 0.1888 = kAB , w(γ3) = 0.0280.

The complete probability flow comes out to be

F =




0 0.2186 0 0 0
0.0280 0 0.2517 0 0

0 0 0 0.0629 0.1888
0 0.0629 0 0 0

0.1888 0 0 0 0



,

with decomposition F = FAA + FAB + FBA + FBB with FBB = 0, and

FAA =




0 0.0280 0 0 0
0.0280 0 0.0081 0 0

0 0 0 0.0081 0
0 0.0081 0 0 0
0 0 0 0 0



,

FBA =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0.1888 0 0 0 0



.

On the other hand, the weights wR generated from LR in (14) come out to be
wR(γ1) = 0.0548 < w(γ1), wR(γ2) = w(γ2) = kAB and wR(γ3) = 0. In light
of the decomposition (16) we have ΓP = {γ2} and ΓU = {γ1, γ3}. The relation
wR(γ1) < w(γ1) appears since γ1 also contributes to FAA due to excursions of the
form (1, 2, 3, 4, 2, 1). γ3 only contributes to FAA, hence wR(γ3) = 0.

Fig. 5 displays the dependence of the reactive, productive flow kAB and of the
total unproductive flows w(γ1) and w(γ3) on δ for fixed ε = 0.1. The results are as
expected: the flow along γ3 is constant wrt changes in δ, while kAB decreases and
w(γ1) increases with increasing δ.

5 Numerical Examples

5.1 Random walker in a maze

For further illustration we will consider the random walk in the two mazes, a simple
one shown in the left panel of Fig. 6 and a slightly more complicated one shown in
Fig. 8. In both cases the random walker starts in A = 1 and tries to find the exit in
B = 16. It cannot pass through the walls (thick black lines) and can pass through
one-way doors (gray lines) solely in the direction indicated by the blue arrow. If the
walker is in a cell it uses every possible exit from the cell with equal probability.

The panel on the right hand side of Fig. 6 shows the probability flow induced
by the random walker on the simple maze. By the above construction the flow is
decomposed into the reactive flow along two reactive pathways (left hand side panel
of Fig. 7) that both have weight 0.02. Consequently the transition rate is kAB = 0.04.
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kAB

w(γ1)
w(γ3)

δ
Figure 5: kAB (solid red), w(γ1) (dashed green), and w(γ3) (dashed-dotted blue) as
functions of δ for ε = 0.1

Figure 6: Left: Simple maze with 16 cells and possible moves of the random walker
indicated by arrows (cell numbers in black, walls in black, one-way doors in gray). The
additional red arrow from B to A indicates the edges eBA along which the random
walker is inserted into the maze again after having found the exit. Right: Probability
flow induced by the random walker with arrow thickness relative to the flow between
cells (thin arrow=0.02, medium=0.04, thick=0.06).

The right hand side panel of Fig. 7 shows the four simple cycles of the decomposition.
The cycles (2, 3), (8, 12) and (3, 7, 8, 4) all have weight 0.06, while (6, 10) has weight
0.04.

With this further insight into flow decomposition we can turn to the more com-
plicated maze shown in Fig. 8. This random walk induces the invariant measure µ
shown in Fig. 9 together with the forward committor for the transition A→ B.

When computing its transition rate by means of TPT we find kAB = 0.0369, i.e.,
the typical transition time is about 27 walker steps. This already shows that the
walker runs in cycles somewhat before being able to find the exit. Fig. 10 shows the
three reactive pathways with highest weights (together with the edge eBA = (B,A)
these form the most important cycles in ΓP ). Together these three contribute more
than 50% of the overall transition rate. We observe that the pathways seem to go
from lower forward committor to higher forward committor.

When we turn to the unproductive cycles, we observe that the ones carrying the
most flow are the ”trivial” cycles (1, 2), (2, 3), and (1, 5) with weights w1 = 0.049,
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Figure 7: Left: Reactive pathways of random walker in the simple maze; both path-
ways (blue,green) carry the same weight (0.02). Right: Simple cycles of the simple
maze; arrow thickness relative to weight of the respective cycle (thin arrow=0.04
(cycle (10, 6)), thick=0.06).

Figure 8: The maze with 16 cells (cell numbers in black, walls in black, one-way doors
in gray). Blue arrows indicate the possible directions of exit from a cell. The entrance
to the maze is A = 1, its exit B = 16. The additional red arrow from B to A indicates
the edges eBA along which the random walker is inserted back into the maze again
after having found the exit.
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Figure 9: Invariant measure µ (left) and forward committor q+ of the random walk
in the maze.

w2 = 0.039 and w3 = 0.033, respectively. Observe that (w1 + w2 + w3)/kAB ≈ 3.3,
i.e. the three most important unproductive cycles carry about three times more prob-
ability flow than all reactive pathways together. The dominant feature of the maze
is being trapped in unproductive cycles for long times before successfully finding the
exit. The most important nontrivial unproductive cycles and the associated weights
are shown in Fig. 11. We observe that they can be combined with the reactive path-
ways into path-loop structures, i.e., typical reactive trajectories will have parts that
progress along a reactive path and other parts that can be seen as loop excursions
from the reactive path along unproductive cycles.
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Figure 10: First three most important reactive pathways that carry about 22%, 16%
and 15% (from left to right) of the overall transition rate. Cell coloring: forward
committor.
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Figure 11: First three most important, nontrivial unproductive cycles, γ1, γ2, γ3 with
weights w(γ1) = 0.017, w(γ2) = 0.012, and w(γ3) = 0.008. Cell coloring: forward
committor.

5.2 Langevin dynamics

Recent years have seen a continuous increase in research on so-called Markov State
Models (MSM) for molecular dynamics (MD). MSMs are based on a discretization of
the transfer operator associated with MD and aim at the reproduction of the longest
timescales in MD, see [25, 2]. However, most of the approaches to MSM building
assume that the underlying dynamics is reversible [2], and MSM building for non-
reversible MD is still in its infancies.

The most popular model for non-reversible MD is the so-called Langevin System
[22]:

ṙ = p, ṗ = −∇r V (r) − γ p + σ Ẇt, (18)

where r is the vector of the Euclidean coordinates of all atoms in the molecular sys-
tem, p the vector of associated momenta, V (r) the interaction energy, and −∇rV (r)
the vector of all inter-atom interaction forces. γ > 0 denotes some friction constant
and Fext = σẆt the external forcing given by a 3N -dimensional Brownian motion
Wt. The external stochastic force is assumed to model the influence of the heat bath
surrounding the molecular system. The total internal energy given by the Hamilto-
nian H(r, p) = p2/2 + V (r) is not preserved, but the interplay between stochastic
excitation and damping balances the internal energy. As a consequence, the canoni-
cal probability density function µ(r, p) ∝ exp(−βH(r, p)) with r = (r, p) is invariant
w.r.t. the Markov process corresponding to the Langevin system under weak growth
conditions on the potential energy function [13], if the noise and damping constants
satisfy [22]:

β =
2γ

σ2
. (19)
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The Langevin process (Yt) is not reversible but satisfies the so-called extended detailed
balance condition

P
(
Yt+T = (r′, p′) | Yt = (r, p)

)
µ(r, p)

= P
(
Yt+T = (r,−p) | Yt = (r′,−p′)

)
µ(r′,−p′), (20)

for arbitrary t and T > 0.
We consider Langevin dynamics with one-dimensional r and p and double well

potential V (r) = (r2 − 1)2. Figure 12 shows the phase space of this system together
with some periodic orbits of the associated Hamiltonian system. In this case the
process has two metastable sets around the minima x± = ±1 of the potential V and
p = 0. We set β = 5 and γ = 0.2, so that the Langevin dynamics is still ”close” to
the associated Hamiltonian system

ṙ = p, ṗ = −∇r V (r), (21)

i.e., if we start the Langevin process in (r0, p0) with energy E0 = H(r0, p0) < 0.9 then
the dynamics will approximately follow the periodic orbit H(r, p) = E0 (with r < 0
if r0 < 0 and r > 0 if r0 > 0) of the associated Hamiltonian system for some time
interval of order 1. Therefore the typical transition from the vicinity of one of the
wells across the energy barrier at r = 0 towards the other well will look as follows:
First the trajectory will orbit the initial well for some period of time before it crosses
the barrier and starts to orbit the target well until it finally hits the close vicinity
around the respective energy minimum.
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Figure 12: Some periodic orbits of the system with Hamiltonian H = 1
2p

2 + V (r).
The coloring is according to the energy E0 = H(r0, p0).

For this Langevin process MSM building is done as follows [2], [25]: We constructed
a uniform box covering of the essential state space [−1.8, 1.8]× [−1.8, 1.8] where the
invariant pdf is larger than the square root of the machine precision. We took square
boxes Bi, i = 1, . . . , n of size ∆r = 0.2 and ∆p = 0.2. Next, M = 100 trajectories of
length τ = 0.25 were started in every box with µ-distributed initial points, and the
transition matrix

Pij =
mij

M
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was constructed, where mij is the number of trajectories starting in Bi and ending up
in Bj . The length τ = 0.25 of the trajectories is very small compared to the expected
transition time (which is larger than 100 here) and still shorter than the period of
the periodic orbits of the associated Hamiltonian system. MSM [25] theory tells us
that the leading eigenvalues of the transition matrix P are very close approximations
of the leading eigenvalues of the Langevin transfer operator and thus allow for an
approximation of the transition statistics between the metastable wells.

We define the two core sets A = {0.9 ≤ r ≤ 1.1, −0.3 ≤ p ≤ 0.3} and B =
{−1.1 ≤ r ≤ −0.9, −0.3 ≤ p ≤ 0.3} and consider the current FAB , see (6), of reactive
trajectories from A to B (here L = P − I). The decomposition (16) should result in
many unproductive cycles that approximately correspond to orbits of the Hamiltonian
system around y± = (r±, 0). To demonstrate this, we sampled from the ensemble of
reactive trajectories. We have kAB = 0.0014, hence we are able to observe ≈ 1.400
transitions with a realization of length T = 106. The cycle decomposition (16) is then
computed numerically.
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Figure 13: Left: Empirical distribution d(n) of the lenghts of cycles in ΓU . Right:
The core sets A and B (light yellow) and γ1, γ4, γ13 and γ15.

To obtain a first insight into the structure of ΓU , we compute the empirical dis-
tribution of cycle lengths d(n) =

∑
γ∈ΓU

w(γ)δ(|γ| = n). The number T · d(n) is the
number of times an unproductive cycle of length n was passed through by the real-
ization. The result is shown in Figure 13. We observe that ΓU is strongly dominated
by cycles of length 4 and 5. Next we sort cycles in ΓU according to w(γ), let γi ∈ ΓU
be the cycle with ith largest weight. In Figure 13 on the right, we show γ1, γ4, γ13

and γ15 together with A and B to illustrate that these cycles track orbits that wind
once around A and B. All other cycles γi with 1 ≤ i ≤ 20 look similar, but overlap
partially with the ones shown. These results are to be expected: The Langevin system
is close to the Hamiltonian system which completes orbits with winding number one
in time t = 1, since the MSM time step is τ = 0.25 this should correspond to cycles
of length 4 or 5.

Next we consider the probability current of reactive trajectories FAB and its
decomposition FAB = FP + FU . In Figure 14, the effective current F+, see (9), and
the productive current FP are shown. We observe that F+ is strongly dominated by
rotations around A and B. The productive current FP has less pronounced rotational
parts and shows the emergence of a transition channel in the p < 0 half plane.
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Figure 14: Effective current F+ (red) and productive current FP (blue) of the
Langevin system.

6 Conclusion

We have presented a comprehensive theory for solving the problem of characterizing
the reactive/productive and the unproductive flow in transitions between an initial
and a target set for undirected and directed networks and associated Markov pro-
cesses. The theory can be seen as an extension of transition path theory (TPT) that
uses the stochastic cycle decomposition of a network for distinguishing between reac-
tive pathways (productive flow) and additional cycles that carry part of the reactive
flow but contribute to the transition in an unproductive way only.

Our approach allows to uncover the structure of a reactive event in more detail
than TPT. The additional information about cycles in which parts of the reactive
flow runs in loops is essential, e.g., when one is interested in influencing the reactive
event in a certain way (improving transition rates or avoiding metastable traps). The
last example, in which we use the new approach for analyzing Langevin dynamics,
demonstrates this aspect in a nutshell: the information on the cycles allows to un-
derstand exactly to which extent the periodic orbits of the underlying Hamiltonian
system still contribute to the transition process (for small enough friction and noise).

Finally, we mention some open problems:

• If the system considered has a large number of states, then there will be very
many different pathways from A to B that each contribute very little to the
overall reaction. In such a situation, information about individual pathways is
of little use unless we have a way of identifying groups of pathways which are
similar.

• While our theory gives a rather complete picture of the underlying structure
of transitions between initial and target sets in networks and Markov chains,
the efficiency of the algorithms presented here does not allow an application
to really large networks: The determination of the cycle weights requires sam-
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pling of transition events which is inefficient for strongly metastable processes.
Thus, improving the efficiency of the algorithms presented here needs further
investigation.
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