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Abstract

Recently, there have been many successful applications of optimization
algorithms that solve a sequence of quite similar mixed-integer programs
(MIPs) as subproblems. Traditionally, each problem in the sequence is
solved from scratch. In this paper we consider reoptimization techniques
that try to benefit from information obtained by solving previous prob-
lems of the sequence. We focus on the case that subsequent MIPs dif-
fer only in the objective function or that the feasible region is reduced.
We propose extensions of the very complex branch-and-bound algorithms
employed by general MIP solvers based on the idea to “warmstart” us-
ing the final search frontier of the preceding solver run. We extend the
academic MIP solver SCIP by these techniques to obtain a reoptimizing
branch-and-bound solver and report computational results which show
the effectiveness of the approach.

1 Introduction

In the last decades many powerful decomposition- and reformulation-based tech-
niques for solving hard optimization problems were developed, e.g., column gen-
eration and Lagrangian relaxation. These methods decompose a problem into a
master problem and several subproblems which are repeatedly solved to update
the master problem. Frequently, the subproblems solved in successive iterations
differ only in the cost vector, reflecting updated information from the master
problem. It is a natural idea to exploit this property in order to improve the
running time of the overall algorithm for solving the master problem. Meth-
ods to achieve this are known as reoptimization techniques. They have been
investigated in the context of decomposition methods, e.g., in the context of
Lagrangian relaxation [20], column generation [8], and for generic branch-and-
bound [17].

∗This paper is to appear in the Proceedings of the 14th International Symposium on
Experimental Algorithms (SEA 2015) held June 29 – July 1, 2015, in Paris, France. The final
publication is available at http://www.springerlink.com.
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In the literature, reoptimization techniques have been investigated for poly-
nomial solvable problems mainly, e.g., the shortest path problem [21] or the min
cost flow problem [12]. This is partly due to the fact that traditionally, decom-
position methods have been applied such that the resulting subproblems are
(pseudo)polynomially solvable. More recently, Mixed Integer Programs (MIPs)
have been used as subproblems, e.g., for cut generation [11, 10] or in generic
decomposition schemes [22, 14] and corresponding solvers [15, 9]. The result-
ing subproblems are solved by standard MIP solvers, which are very sophisti-
cated branch-and-bound algorithms. Thus there is a need for reoptimization
techniques in MIP solvers to benefit from the knowledge obtained in previous
iterations.

One of the first investigations on reoptimizing MIPs was done by Güzelsoy
and Ralphs [23, 16]. They addressed sequences of MIPs that differ only in the
right-hand side. Their approach is mainly based on duality theory, which they
employed to develop techniques for “warm starting” using dual information
obtained through primal algorithms. Our approach to reoptimizing MIPs is
similar to the One-Tree algorithm [6] for generating multiple solutions of a
single MIP. Similar techniques have also been used in [18] to benefit from a
preliminary restricted branching phase when solving a single MIP instance.

In this paper, we propose a reoptimizing variant of the general LP-based
branch-and-bound algorithm used by modern MIP solvers. It is based on the
idea [17] to “continue” the search at the last known search frontier of the branch-
and-bound tree. As the performance of state-of-the-art MIP solvers is based to
a substantial extend on exploiting dual information, we introduce a mechanism
to deal with this. This mechanism is in particular applied to cope with strong
branching. It is intuitively clear that continuing the solving process is a poor
idea if the objective function has changed a lot or the search frontier is rather
huge. To deal with the first situation, we use a similarity measure for objective
functions to decide whether to reoptimize or to start from scratch. Moreover,
we propose heuristics to start with a reduced search frontier that is still based
on the previous one. Our ideas have been carefully implemented using the MIP
solver SCIP [25, 2]. We test our reoptimization techniques on sequences arising
from the generic column generation solver GCG [15] and on instances of the
k-constrained shortest path problem arising from a ship navigation problem1.
More details and computational results can be found in the master thesis of the
last author[27].

The paper is outlined as follows. Sec. 2 provides a summary of the relevant
ingredients of a state-of-the-art MIP solver (i.e., SCIP) together with an in-
depth motivation to reoptimization for MIPs. Sec. 3 presents our technical
contributions summarized above. Computational results are discussed in Sec. 4.
Finally, Sec. 5 concludes the paper.

1Thanks to Mirai Tanaka from Tokyo Institute of Technology and Kazuhiro Kobayashi
from National Maritime Research Institute Japan for providing the instances.
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2 Mixed Integer Programming and Reoptimiza-
tion

In this paper we consider mixed integer linear programs (MIPs) of the form

zMIP = min{cTx : Ax ≥ b, ` ≤ x ≤ u, xi ∈ Z for all i ∈ I} (1)

with objective function c ∈ Rn, constraint matrix A ∈ Rm×n and constraint
right-hand sides b ∈ Rm, variable lower and upper bounds `, u ∈ R̄n where
R̄ := R ∪ {±∞}, and a subset I ⊆ N = {1, . . . , n} of variables which need to
be integral in every feasible solution. In the remainder of the paper, we focus
on mixed-binary programs, i.e., MIPs with `i = 0, ui = 1 for all i ∈ I.

When omitting the integrality restrictions, we obtain the linear program
(LP)

zLP = min{cTx : Ax ≥ b, ` ≤ x ≤ u}. (2)

It is a relation of the corresponding MIP and provides a lower bound on its
optimum, i.e., zLP ≤ zMIP . This fact plays an important role in the most
widely used method to solve general MIPs, the LP-based branch-and-bound
method [19, 5]. It is a divide-and-conquer method which starts by solving the
LP relaxation of the problem to compute a lower bound and a solution candidate
x?. If x? fulfills the integrality restrictions, the problem is solved to optimality,
if not, it is split into (typically) two disjoint subproblems, thereby removing x?

from both feasible LP regions. Typically, a fractional variable xi, i ∈ I with
x?
i /∈ Z is selected and the restrictions xi ≥ dx?

i e and xi ≤ bx?
i c are added to the

two subproblems, respectively. This step is called branching. While this process
is iterated, we store and update the best solution x̄ found so far whenever one
of the subproblems has an integral LP solution. The key observation is that a
subproblem can be disregarded when its lower bound is not smaller than the
objective value of x̄. This is called bounding. This leads to the following cases
that need to be distinguished when regarding a subproblem:

1. the LP relaxation is infeasible: the subproblem can be disregarded

2. x? is integral: the subproblem is solved to optimality

3. cTx? ≥ cT x̄: the current subproblem can be disregarded due to bounding

4. else: the current subproblem is split (branching).

The branch-and-bound process is typically illustrated as a tree. The root
node represents the original problem and the two subproblems created by the
branching step correspond to two child nodes being created for the current node.

This general scheme is extended by various algorithms to enhance the perfor-
mance (see [1]). We briefly sketch those advanced components that we need to
handle specifically in the context of reoptimization. One of these components
is presolving, which is done before the branch-and-bound process starts and
analyzes the problem, removes redundancies and tightens the formulation. A
reduced form of this, called domain propagation, is also done during the branch-
and-bound phase before the LP relaxation of a node is solved. For more details,
we refer to [24, 1]. Finally, the decision on which variable to branch is of high
importance for a fast convergence. It is typically supported by a technique called
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strong branching [3]. Strong branching precomputes lower bounds for potential
child nodes of a candidate variable by solving auxiliary LPs with the branching
bound change added. Besides providing very accurate lower bound predictions,
it can also deduce bound changes or even infeasibility of the current node, if
one or both of the regarded children for a candidate variable are infeasible or
their lower bound exceeds the upper bound.

All these reductions can be divided into two classes: primal and dual re-
ductions. The former are based only on feasibility arguments and remove only
infeasible parts of the search space. In contrast to that, dual reductions are
based on an optimality argument and may exclude feasible solutions as long as
they retain at least one optimal solution. Therefore, dual reductions are not
necessarily valid anymore if the objective is changed and we need to treat them
with care in the reoptimization context.

2.0.1 Reoptimization for general MIP

In recent years, there is a growing interest in reoptimization techniques for MIP
solvers. One of the major applications is the repeated solution of pricing prob-
lems within generic branch-cut-and-price solvers. Those solvers are based on a
Dantzig-Wolfe decomposition [7] of the given original problem. The resulting
problem is solved by a column generation approach, i.e., the LP relaxation is
solved with just a subset of the variables and improving variables are searched
for by solving the pricing problem, which is a MIP whose objective function
depends on the current LP solution. For more details on generic branch-cut-
and-price, we refer to [22, 14, 13]. Since the pricing problem is solved repeatedly
with updated objective function, this would greatly benefit from an effective re-
optimization technique and is thus our main application in the following.

Another application of reoptimization is the computation of the k best so-
lutions of binary programs. This can be accomplished by iteratively solving
the problem to optimality and excluding each optimal solution x̄ for the next
iteration by a logic-or constraint.

Definition 1 (logic-or constraint). Let B ⊆ I be a set of binary variables and
C−, C+ ⊆ B disjoint subsets. A logic-or constraint has the form∑

i∈C−
xi +

∑
j∈C+

(1− xj) ≥ 1. (3)

As a shortcut, we use the notation x(C−, C+) :=
∑

i∈C− xi+
∑

j∈C+(1−xj).

As can easily be seen, the logic-or constraint with C− = {i ∈ I | x̄i = 0} and
C+ = {i ∈ I | x̄i = 1} forbids the optimal solution x̄ and no other solution.
Logic-or constraints play an important role in the remainder of this paper. Note
that the sets C− and C+ do not need to be a partition of the variable set, but
can also cover only a part of the variables in order to exclude all solutions with
these variables set to the given values.

While there are more efficient ways to compute the k best solutions for a
fixed k, the iterated approach proves useful if the limit k is decided during the
optimization process. An example for this case is a mixed-integer nonlinear ship
navigation problem investigated by Mirai Tanaka and Kazuhiro Kobayashi [26].
They repeatedly solve a MIP relaxation of the problem to compute a lower
bound and a solution candidate. For this candidate, exact costs are computed
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and it is excluded from the MIP relaxation. The procedure continues until
the MIP lower bound exceeds the cost of the best solution found. Therefore,
the number k of best solutions needed cannot be determined a priori and an
iterated approach is preferred. In contrast to the reoptimization for branch-cut-
and-price, the difference between two iterations is not in the objective function,
but the additional constraint excluding the previously computed optimum.

In the following section, we will discuss how these two applications of reop-
timization cases can be handled within a state-of-the-art MIP solver.

3 Extending SCIP to a Reoptimizing Branch-and-
Bound Solver

For our approach we follow the ideas of [17]. Consider the sequence of MIPs

(Pi) min
{
cTi x | Ax ≥ b, ` ≤ x ≤ u, xi ∈ Z

}
for all i ∈ I (4)

for a given sequence of objective vectors (ci)i∈I , for some index set I = {1, . . . ,m}.
Moreover, let S be the function mapping an optimization problem P ⊆ Pi to its
set of feasible solutions X. Solving one problem of this sequence with a stan-
dard LP-based branch-and-bound algorithm up to a given stopping criterion,
e.g., optimality, provides search space dividing subsets:

• a set of subproblems with an infeasible LP relaxation,

• a set Pobj of subproblems that have been either pruned due to bounding
or are solved to optimality,

• a set Σ of all feasible solutions found so far, and

• the set Po of as-yet unprocessed subproblems,

such that X = S(Po)∪S(Pobj)∪Σ holds, where S(Po) and S(Pobj) denote the
set of solutions of Po and Pobj , respectively. Usually, the set Po is empty at
the end of the computation and there are open nodes only if the solving process
terminates due to a stopping criterion different to optimality, e.g., time limit.

We call the solving process of (Pi) an iteration. To summarize the basic
idea consider two iterations i, i + 1. The authors of [17] proposed that solving
Pi+1 can be started at the last search frontier of iteration i. The set of leaf
nodes generated in iteration i can be divided into the sets of unprocessed nodes
(Po) and nodes pruned because their dual bound exceeds the best known pri-
mal bound (Pobj). Additionally, all feasible solutions found during the solving
process of Pi are collected in Σ. Obviously, by changing the objective function
ci to ci+1 from iteration i to i+ 1, subproblems that are discarded since the LP
relaxation is infeasible cannot become feasible. Thus, an optimal solution of Pi

has to be in S(Po), S(Pobj) or Σ. Therefore, in the next iteration, we restore all
subproblems in Po∩Pobj as children of the root node. Additionally, all solutions
from Σ are added to the solution pool. Note that in case additional constraints
were added, we can apply this method as well but need to check these solutions
for feasibility.

Additionally, we define a set Pf ⊆ Pobj which contains all subproblems
with an integral LP solution. We use this set in Sec. 3.2 where we present two
heuristics which operate on the set of feasible nodes Pf only.

5



3.1 Handling Dual Information

Most state-of-the-art MIP solvers use, in addition to branch-and-bound, vari-
ous preprocessing and domain propagation techniques. In connection with re-
optimization, we have to be very careful when using these techniques. Dual
methods provide bound changes based on the current objective function. Thus,
the pruned part, i.e., the subproblem discarded by fixing variables, could con-
tain feasible solutions which might be of interest after changing the objective
function. Hence, it is necessary to disable all dual methods or treat them with
special care. In the following we focus on binary and mixed binary programs of
the form (1), where {li, ui} = {0, 1} for all i ∈ I. Let us denote the set of binary
variables by B. Moreover, consider a subproblem P of P and a method D based
on dual information. Calling D for P fixes variables C = C−∪C+ ⊆ B to 0 and
1, respectively, where C− = {i ∈ C | xi = 0} and C+ = {i ∈ C | xi = 1}. There
are two ways to deal with these fixings. On the one hand, we can remember the
subproblem P as before calling D and forget all decisions in the subtree induced
by P. The disadvantage of this approach is that some methods using dual in-
formation, e.g., strong branching, provide the most advantage at the root node.
Thus, revoking these decisions will lead to the original problem P. Hence, we
do not benefit from reoptimizing. On the other hand, we can ensure that the
pruned part may be reconstructed in the next iteration. In this paper we will
follow the latter approach. The idea is to split problem P ⊆ P into two nodes
at the beginning of the next iteration. The first node corresponds to P with all
fixings C− ∪C+; the second node corresponds to P with an additional logic-or
constraint C depending on C− and C+. This logic-or constraint ensures that at
least one variable get value different from the fixings C− ∪ C+.

Theorem 2. Let P be a binary or mixed binary problem, P ⊆ P a subproblem,
and C−, C+ ⊆ B disjoint sets of binary variables. A complete and disjoint
representation of the solution space S(P) of P is given by S(PF)∪S(PC), where

S(PF) = S(P) ∩ {x ∈ Rn | xi = 0 ∀i ∈ C− and xj = 1 ∀j ∈ C+} (5)

S(PC) = S(P) ∩ {x ∈ Rn | x(C−, C+) ≥ 1}, (6)

i.e., S(PC) contains all solutions with at least one variable xi = 1 or xj = 0 for
i ∈ C− and j ∈ C+.

Proof. We only have to focus on variables xi with i ∈ C+ ∪C−. Assume S(PF)
and S(PC) are not disjoint. Let x ∈ S(PF) ∩ S(PC). By definition of S(PF)
the solution x has to fulfill xi = 0 and xj = 1, for all i ∈ C− and j ∈ C+.
Thus, the constraint x(C−, C+) ≥ 1 is violated by x. Hence, x /∈ S(PC) and
S(PF) ∩ S(PC) = ∅. Finally, consider x ∈ P and assume x /∈ S(PF) ∪ S(PC).
Since x /∈ S(PF) at least one variable i ∈ C− and j ∈ C+ needs to be different
from xi = 0 and xj = 1, respectively. Hence, by the definition of S(PC) it
follows x ∈ S(PC), which is a contradiction.

3.2 Heuristics

In the following we present a primal heuristic which is fitted to column gener-
ation and two heuristics for reducing the size of the search frontier that needs
to be reoptimized. The latter heuristics – so-called compression heuristics –
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are needed because we have to solve the whole stored search frontier to prove
optimality. Hence, a small search frontier of “good quality” would be desirable.

3.2.1 A Primal Heuristic: Trivialnegation

Consider a binary or mixed binary optimization problem P with n variables and
two objective vectors c, c̃ ∈ Rn. Furthermore, let x? ∈ P be an optimal solution
with cTx? = minx∈P cTx. The impact of variable i ∈ B w.r.t. c and c̃ is defined
by

Ψi =

{
1 if sgn(ci) · sgn(c̃i) ≤ 0 and ci 6= 0 ∨ c̃i 6= 0

0 otherwise.

Based on the impact Ψi of a variable i ∈ B we construct a (not necessarily
feasible) solution candidate x̃B for each subset B ⊆ B by setting x̃B

i = 1− x?
i if

Ψi = 1 and x̃B
i = x?

i otherwise.

3.2.2 Compressing the Search Tree

Consider a search tree with nodes V and the set of leaf nodes Vleaf ⊆ V resulting
from solving a (mixed) binary optimization problem consisting of n variables
with a branch-and-bound algorithm. Each node v ∈ V corresponds to a sub-
problem

(Pv) min{cTx : Avx ≥ bv, `v ≤ x ≤ uv, xi ∈ Z for all i ∈ I}, (7)

where the constraint set Avx ≥ bv contains all constraints Ax ≥ b plus other
constraints added during the branch-and-bound procedure, e.g., logic-or con-
straints. For each subproblem the set of binary variables can be partitioned
into a set of unfixed variables, i.e., `vi < uv

i , and the sets

X0
v = {i ∈ B | uv

i = 0} and X1
v = {i ∈ B | `vi = 1}.

The key idea of our compression heuristics is to find a set of subproblems Pr, r ∈
R of the form (7), such that each leaf v ∈ Vleaf is represented by a unique r
(for short: r � v), i.e., S(Pv) ⊆ S(Pr). Moreover, we classify the quality of a
representative by the loss of information w.r.t. the represented leaves

loss(Vleaf , r) =
∑

v∈Vleaf : r�v
|
(
X0

v ∪X1
v

)
\
(
X0

r ∪X1
r

)
| (8)

and the quality of a set R by the sum of losses of information for its represen-
tatives r ∈ R.

To keep the search frontier small we use two heuristics. The first heuristic
is called largest representative and reduces the search frontier to two nodes. In
this paper we describe the basic idea only and refer to [27] for more details.
Consider a subset of leaf nodes W ⊆ Vleaf . Based on an arbitrary node v ∈ W
we construct a representative r iteratively. First, we set X0

r = X0
v and X1

r = X1
v .

Afterwards, we add each node w ∈ W greedily to the set of represented nodes
as long as r and w have at least one common fixed variable and we update

X0
r ← X0

r ∩X0
w and X1

r ← X1
r ∩X1

w.
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The compressed search frontier is then given by Pr
F and Pr

C, where

S(Pr
F) = S(P) ∩ {x ∈ Rn | xi = 0∀i ∈ X0

r and xi = 1∀i ∈ X1
r }

S(Pr
C) = S(P) ∩ {x ∈ Rn | x(X0

r , X
1
r ) ≥ 1}.

Since we are interested in finding good solutions fast, we run the heuristic on the
set of feasible nodes Pf only. Moreover, to ensure that the compressed search
frontier is as good as possible we run the procedure for each node v ∈ Pf and
choose the representation with minimal loss of information.

The second heuristic is called weak compression and we have to distinguish
between trees where the only difference between nodes are the sets of fixed
variables (Av = A) and trees with additionally added constraints, e.g., logic-
or constraints. Due to page limitation we give the basic ideas only and refer
to [27] for a complete description. Consider a tree without added constraints, its
search frontier Vleaf and a subset of leaf nodes W ⊆ Vleaf . For each node v ∈W
let v be a representative for itself. This leads to |W | disjoint representatives.
To ensure that the representation is complete, i.e., no feasible solution gets
lost, we need to construct a subproblem covering S(P) \

⋃
v∈W S(Pv). Such a

representative can be constructed as before using Theorem 2, i.e., by including a
logic-or constraint for each v ∈W . Therefore, a complete representation of the
search frontier is given by R = {Pv1 , . . . ,Pvk ,PCW }, where W = {v1, . . . , vk}
and

S(PCW ) = S(P) ∩
⋂

v∈W
{x ∈ Rn | x(X0

v , X
1
v ) ≥ 1}.

If the search tree consists of nodes containing additional constraints, this con-
struction cannot be adapted while guaranteeing completeness and disjointness.
Thus, we restrict ourselves to the case |W | = 1. Assume W = {v} ⊆ Vleaf

with at least one fixed variable and potentially added logic-or constraints to
handle dual reductions in previous iterations (see Sec. 3.1). Each of these
constraints corresponds to disjoint variable sets Cl = C−l ∪ C+

l ⊂ B. For
guaranteeing a complete and disjoint representation we have to reconstruct
subproblems which were cut off by the added constraints, for an illustration
see Figure 1. Therefore, a complete and disjoint representation is given by
R = {Pv

C,P
v,1
F ,Pv,2

F , . . . ,Pv,k
F ,Pv,k

C } (drawn solid in Figure 1), where

S(Pv
F ) = S(P) ∩ {x ∈ Rn | xi = 0∀i ∈ X0

v and xj = 1∀j ∈ X1
v},

S(Pv
C) = S(P) ∩ {x ∈ Rn | x(X0

v , X
1
v ) ≥ 1},

S(Pv,1
F ) = S(Pv

F ) ∩ {x ∈ Rn | xi = 0∀i ∈ C−1 and xj = 1∀j ∈ C+
1 },

S(Pv,1
C ) = S(Pv

F ) ∩ {x ∈ Rn | x(C−1 , C+
1 ) ≥ 1},

and for all l = 2, . . . , k

S(Pv,l
F ) = S(Pv,l−1

C ) ∩ {x ∈ Rn | xi = 0∀i ∈ C−l and xj = 1∀j ∈ C+
l },

S(Pv,l
C ) = S(Pv,l−1

C ) ∩ {x ∈ Rn | x(C−l , C+
l ) ≥ 1}.
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Pv
F

Pv,1
F Pv,1

C

Pv,2
F Pv,2

C

Pv,3
F

Pv,k
C

Pv,k
F Pv,k

C

Pv
C

Figure 1: Construction of the weak compression heuristic.

3.3 Similarity of Objective Functions

If two objective functions are quite similar – whatever similar means at this point
– we expect the resulting search trees to be similar as well. On the other hand,
if two objective functions are quite different the resulting search trees might be
very different, too. An immediate consequence is that continuing the solving
process at the last search frontier might need much more effort than solving
the problem from scratch. The following criterion can be used to estimate the
similarity of the resulting search trees a priori.

Definition 3 (Similarity of Objective Functions). Let c, c̃ ∈ Rn be two objective
functions. Then the similarity of c and c̃ is given by

Λ(c, c̃) =
〈c, c̃〉
‖c‖2‖c̃‖2

.

This corresponds to the cosine between the two objective vectors. We apply
reoptimization only if the similarity measure is above a certain threshold (per
default 0.8), since reoptimizing the search frontier in spite of very different
objective functions seems to be not promising.

4 Computational Results

For evaluating our reoptimization approach we performed computational experi-
ments on vertex coloring instances and on instances of the k-constrained shortest
path problem. For the latter problem the sequence consists of k identical ob-
jective functions and the consecutive subproblems differ in exactly one logic-or
constraint, cf. Sec. 2.0.1 and [26]. For generating sequences of objective func-
tions for the vertex coloring problem we use a subset of the COLOR02/03/04 [4]
test set and the generic branch-cut-and-price solver GCG [15] which was intro-
duced in [13]. The pricing subproblems that GCG needs to solve during the
column generation process (see Sec. 2.0.1) only differ in the objective function.
In order to test SCIP and ReoptSCIP on these problems, we write out the se-
quence of pricing problems of a GCG run, which avoids side-effects that a different
optimal solution computed by any of the two solvers might have.

We performed all tests on an Intel Xeon CPU E3-1290 V2 @ 3.70GHz with
16GB RAM. Our implementation is based on SCIP 3.1.0.1 using CPLEX 12.6
as LP solver. We limited the solving time of each sequence by 3600 seconds
and used the technique described in Sec. 3.1 in order to handle dual reductions
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variant vertex coloring k-constrained shortest path

algorithm TN LR WC solved faster slower nodes time solved faster slower nodes time

SCIP
47/47 0 37 3,896 47 66/66 0 60 1,143 55

47/47 28 6 3,775 43 – – – – –

ReoptSCIP

47/47 33 4 6,590 38 66/66 48 11 1,310 38

47/47 32 5 6,602 38 – – – – –

47/47 36 1 4,909 33 66/66 57 1 1,112 35

47/47 36 1 4,825 32 66/66 56 0 1,149 30

– – – – – 66/66 57 3 1,125 36

47/47 37 0 4,493 28 – – – – –

Table 1: Computational results on the vertex coloring (left) and k-constrained
shortest path (right) test sets.

obtained by strong branching. The benefits obtained by dual presolving and
propagation are less substantial and are outweighted by the enlargement of the
search frontier they cause when applying the technique from Sec. 3.1. Therefore,
we disabled all dual presolving and propagation techniques. We compute aver-
ages of solved nodes and solving time by using the shifted geometric mean [1,
Appendix A] with shift s = 10 for running times and s = 100 for nodes.

In our computational experiments, we skip reoptimizing the search frontier
if two consecutive objective functions are not similar enough, i.e., if the simi-
larity is less than 0.8 (see Sec. 3.3). Furthermore, we solve the problem from
scratch if the search frontier consists of more than 2000 nodes, because proving
optimality needs more effort for a larger search frontier and thus the chance in-
creases that solving from scratch succeeds faster. In order to shrink the search
frontier, we run the largest representative (LR) heuristic exclusively on the set
of feasible nodes Pf and we compress the search tree only if the determined
representation is better than the last compression of a previous round, i.e., if
the loss of information decreases or the number of fixings of the representative
increases. We run the weak compression (WC) heuristic for one node only, since
in almost every iteration the search tree includes nodes with added constraints.
We choose the node with the largest dual bound in the previous iteration and
demand that the number of fixed variables is at least one and not less than the
number of fixed variables in the last weak compression. Additionally, we do not
want to use the same node for weak compression twice in a row.

In Table 1 we compare the results of our reoptimization approach with plain
SCIP on both test sets. To this end, we compare different variants, e.g., SCIP
in combination with the trivialnegation (TN) heuristic or ReoptSCIP in com-
bination with a single one or all three presented heuristics, as indicated in
column “variant”. Note that the trivialnegation heuristic is not applied to
the k-constrained shortest path instances, since the objective function does not
change. We compare the number of instances that are solved within the time
limit and those solved significantly (at least 5%) faster or slower than plain
SCIP. In a slight abuse of notation, we count an instance to be solved faster by
plain SCIP if no other variant solved it at least 5% faster. Finally, we list the
average number of branch-and-bound nodes needed to solve a sequence and the
average solving time in seconds.

Our computational experiments show that SCIP does not solve any instance

10



faster than our new reoptimizing version ReoptSCIP. The best results on the
vertex coloring instances can be achieved by using all three heuristics together.
As opposed to that, the best results on the k-constrained shortest path instances
can be achieved by using the weak compression heuristic only. Using the trivial-
negation heuristic in combination with plain SCIP provides much more benefit
than in combination with ReoptSCIP. This is caused by the number of nodes
that need to be reoptimized to prove the optimality. Thus, the benefit obtained
from constructing an optimal solution is consumed by proving its optimality,
i.e., reoptimizing the search frontier. The compression heuristics can speed up
the solving process of the vertex coloring instances by a factor of approximately
1.4. Thus, the constructed representatives are of good quality, i.e., they provide
good dual and primal bounds. A pleasant observation is that the number of
branch-and-bound nodes ReoptSCIP needs to solve the test sets is not much
more than that of SCIP, which we did not expect. Summing up, we can state
that using reoptimization improves the performance of SCIP significantly on our
test sets.

5 Conclusions

We presented a reoptimization approach for MIP solvers which is based on
a reconstruction of the branch-and-bound tree. We are able to handle dual
reductions and introduced heuristics for compressing the tree. Applied carefully
within SCIP, this method is able to reduce the solving time for two applications
significantly. Therefore, it will be part of the next SCIP release.
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Appendix

Algorithm 1 illustrates the reoptimizing LP-based branch-and-bound solver in-
troduced in Sec. 3. In Table 2 and 3 we present detailed computational results
of the tested instances. Both tables contain the number of generated nodes and
needed solving time for plain SCIP as well as the different variants. The solving
times of instances that are solved at least 5% faster by one of our variants than
by plain SCIP are colored blue. On the other hand, the solving time SCIP needs
for an instance is colored blue if no reoptimizing version solves the instances
at least 5% faster. The last two lines of each table show the shifted geometric
means of solved nodes, solving times, and the number of instances which are
solved faster or slower compared to plain SCIP.

Algorithm 1: A reoptimizing LP-based branch-and-bound solver which
is able to handle decisions based on dual information.

Input : Objective function c : S → R; upper bound U ; sets P′obj , P
′
o, Σ′, C−

′
, and C+′ .

Output: Sets Pobj , Po, C−, and C+; set of solutions Σ.

1 Pobj ← ∅, Pf ← ∅, Po ← ∅, Σ← Σ′

// Initialization

2 Po ← P′o
3 for Pv ∈ P′obj do

4 if C−
′
(v) ∪ C+′ (v) 6= ∅ then

5 Generate subproblems PvC, PvF. // split node

6 Po ← Po ∪ {PvC,PvF}
7 else
8 Po ← Po ∪ {Pv}

9 for x ∈ Σ do
10 U ← c(x) if c(x) < U .

// Standard branch-and-bound
11 while Po 6= ∅ do
12 Choose Pv ∈ Po, Po ← Po \ {Pv}
13 Solve the LP relaxation of subproblem Pv .
14 if the LP relaxation is feasible then
15 Let x?LP be the optimal solution of the LP relaxation.
16 if c(x?LP ) < U then
17 if x?LP is integral then
18 Σ← Σ ∪ {x?LP }, U ← c(x?LP ), Pobj ← Pobj ∪ {v}
19 else
20 Split Pv into subproblems Pv1 , . . . ,Pvl
21 Po ← Po ∪ {Pv1 , . . . ,Pvl}

22 else
23 Pobj ← Pobj ∪ {Pv}

24 else if dual reductions performed at v then
25 Pobj ← Pobj ∪ {Pv}
26 Save variable sets C−(v) and C+(v). // store dual bound tightenings

27 else
28 Discard Pv . // LP relaxation infeasible

14
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SCIP ReoptSCIP

default LR WC LR+WC

instance k nodes time [s] nodes time [s] nodes time [s] nodes time [s] nodes time [s]

005 010 015

10 46 ≤ 1 49 ≤ 1 49 ≤ 1 58 ≤ 1 58 ≤ 1
20 246 ≤ 1 210 ≤ 1 210 ≤ 1 235 ≤ 1 235 ≤ 1
30 582 ≤ 1 489 ≤ 1 489 ≤ 1 554 ≤ 1 536 ≤ 1
40 1,138 3 863 ≤ 1 863 ≤ 1 1,025 2 981 2
50 2,082 4 1,292 2 1,292 2 1,647 2 1,483 2

100 10,240 12 5,822 8 6,297 7 9,417 10 8,621 8

005 020 030

10 65 ≤ 1 57 ≤ 1 57 ≤ 1 63 ≤ 1 63 ≤ 1
20 309 2 266 ≤ 1 266 ≤ 1 273 2 250 ≤ 1
30 697 4 648 2 648 2 594 2 599 2
40 1,383 6 1,116 4 1,116 4 1,148 4 1,170 4
50 2,293 9 1,660 5 1,660 5 1,694 6 1,869 6

100 10,347 29 6,365 17 6,418 18 7,481 20 8,092 21

005 030 040

10 46 ≤ 1 45 ≤ 1 45 ≤ 1 51 ≤ 1 51 ≤ 1
20 292 3 256 2 256 2 273 3 273 3
30 802 6 660 5 660 5 654 4 654 5
40 1,490 9 1,273 7 1,273 7 1,446 7 1,501 7
50 2,504 13 2,033 10 2,033 10 2,548 10 2,654 10

100 12,010 40 7,829 32 9,558 31 11,732 31 12,749 35

005 040 050

10 32 ≤ 1 28 ≤ 1 28 ≤ 1 30 ≤ 1 30 ≤ 1
20 264 4 180 3 180 3 251 4 251 3
30 746 7 454 6 454 5 556 6 581 6
40 1,584 12 900 8 900 8 1,113 9 1,397 9
50 2,574 16 1,486 11 1,739 12 2,162 13 2,399 14

100 12,048 51 7,076 35 7,548 39 11,028 41 10,773 39

005 050 060

10 62 9 60 6 60 6 67 6 67 7
20 311 20 274 9 274 9 345 11 345 10
30 990 37 647 14 647 15 878 21 878 21
40 1,869 57 1,171 21 1,171 22 1,668 31 1,668 29
50 3,087 75 1,848 28 1,848 30 2,705 41 2,705 41

100 13,803 223 7,464 92 8,687 100 12,200 134 12,148 139

005 150 200

10 82 21 97 20 97 21 102 21 102 22
20 356 47 684 42 684 45 371 40 371 40
30 822 78 1,956 74 1,956 78 824 64 854 67
40 1,534 115 3,928 114 3,347 113 1,466 93 1,666 100
50 2,497 151 6,503 157 4,152 143 2,348 131 2,631 129

100 10,629 407 28,795 470 12,526 353 9,500 349 9,569 335

005 200 250

10 82 39 74 15 74 16 94 18 94 21
20 364 82 321 21 321 23 387 27 387 28
30 846 132 720 29 720 34 862 38 866 46
40 1,558 189 1,387 41 1,387 48 1,601 54 1,605 63
50 2,666 253 2,329 58 2,329 66 2,731 51 2,669 91

100 11,589 666 9,654 191 9,611 233 12,295 273 11,657 309

010 050 070

10 31 6 49 5 49 5 61 5 61 7
20 235 15 318 13 318 13 315 12 315 14
30 690 27 1,135 25 1,135 26 779 22 779 24
40 1,707 42 3,153 45 2,026 40 1,597 33 1,625 37
50 3,381 59 6,824 73 3,315 56 2,638 47 2,908 53

100 16,825 174 174,543 813 16,304 187 18,403 156 14,652 522

010 100 140

10 80 25 118 25 118 23 86 22 86 24
20 348 56 1,221 63 781 54 388 34 388 54
30 938 96 3,218 114 1,519 92 1,127 73 1,095 85
40 1,814 160 5,928 176 2,716 139 2,068 117 1,991 127
50 2,950 224 9,430 246 4,387 189 3,292 90 3,078 176

100 14,640 701 69,998 1030 16,333 525 15,137 273 13,143 144

010 150 200

10 59 51 31 13 35 14 34 7 34 16
20 333 139 179 40 201 44 221 21 221 42
30 821 254 827 95 524 90 735 46 794 96
40 1,482 377 2,171 184 1,601 158 1,897 71 1,927 150
50 3,452 535 4,035 302 3,409 247 4,197 111 4,204 247

100 20,733 1496 17,054 1129 23,263 740 19,913 340 20,756 699

010 200 250

10 78 112 75 34 75 37 84 19 84 40
20 347 267 298 67 298 71 397 37 397 73
30 810 445 868 118 878 123 946 62 946 130
40 1,632 658 2,254 206 2,277 204 1,781 96 1,934 195
50 3,110 898 5,834 359 5,613 332 3,081 134 3,916 276

100 21,336 2512 107,068 3314 33,553 1278 157,714 1999 23,828 1060

γs 1,143.63 55 1,310.82 38 1,112.85 35 1,149.16 30 1,125.2 36

faster/slower (of 66) 0/59 48/11 57/1 56/0 57/3

Table 3: Detailed computational results on the k-Constrained Shortest Path
test set.
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