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SCIP-Jack – A solver for STP and variants with

parallelization extensions∗

Gerald Gamrath†· Thorsten Koch · Stephen J. Maher
Daniel Rehfeldt · Yuji Shinano

Abstract

The Steiner tree problem in graphs is a classical problem that commonly arises in practi-
cal applications as one of many variants. While often a strong relationship between different
Steiner tree problem variants can be observed, solution approaches employed so far have
been prevalently problem specific. In contrast, this paper introduces a general purpose
solver that can be used to solve both the classical Steiner tree problem and many of its
variants without modification. This is achieved by transforming various problem variants
into a general form and solving them using a state-of-the-art MIP-framework. The result is
a high-performance solver that can be employed in massively parallel environments and is
capable of solving previously unsolved instances.

1 Introduction

The Steiner tree problem in graphs (STP) is one of the classical NP-hard problems [1]. Given
an undirected connected graph G = (V,E), costs c : E → Q+ and a set T ⊂ V of terminals, the
problem is to find a minimum weight tree S ⊆ G which spans T .

The STP is said to have a variety of practical applications. However, applications that involve
solving the pure STP are rarely encountered in practice. The lack of real-world applications for
the pure STP is highlighted by the fact that from the thousands of instances collected by the
authors in the SteinLib [2] very few have practical origins. However, there exist numerous
applications that include STPs as a subproblem or that are formulated as a particular variant.

The announcement of the 11th DIMACS Challenge initiated our work with an investigation
into the STP solver, Jack-III, described in [3]. The model and code of Jack-III provided
a base for the development of a general STP solver – being able to solve many of the problem
variants. However, Jack-III is a 15 year old code; as such, many modern developments regarding
STP solution methods and MIP solving techniques were not available. Our approach to address
this limitation of Jack-III was to combine the model of [3] with the start-of-the-art MIP-
framework SCIP [4]. Employing SCIP naturally facilitated the incorporation of many algorithm
developments from the past 15 years.

A major contribution of this paper is the development of a general STP solver. This is
in contrast to the many problem specific solvers observed within the literature. Furthermore,
SCIP provides a massively parallel MIP-framework that is employed with this general solver.

∗The work done for this article was supported by the BMBF Research Campus Modal SynLab and by a Google
Faculty Research Award.
†Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany, {gamrath, koch, maher, rehfeldt, shinano}@zib.de
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This combined with algorithmic improvements allows us to solve several previously unsolved
instances. Throughout this paper we show:

• in Section 2, the impact of transitioning from a simple self-made branch-and-cut code to
the use of a full fledged, state-of-the-art MIP-framework,

• in Section 3, how to employ the versatility of MIP models to solve a class of related problem
variants, and

• in Section 4, the potential from using hundreds of CPU cores to solve a single problem.

This demonstrates how worthwhile it can be to revisit topics after some time. Further details
on this can be found in [5, 6].

In general it can be stated that a branch-and-cut based Steiner tree solver has three major
components. First, as with the TSP [7], preprocessing is extremely important. Apart from some
pathological instances specifically constructed to defy presolving techniques, such as the PUC [8]
and I640 [9] test sets, preprocessing is often able to significantly reduce instances. Results
presented in the PhD thesis of Polzin [10] report an average reduction in the number of edges of
78 %, with many instances solved completely by presolving.

Second, heuristics are needed to find good or even optimal solutions. In our experiments, for
92 % of the instances the final solution was found by a heuristic.

Finally, at the core is the branch-and-cut procedure used to compute a lower bound and
prove optimality. The ability to solve 536 out of 626 solved instances without branching shows
the strength of the relaxation of the employed model. A surprising observation is that in many
cases we either solve an instance within very few nodes or not at all, even after processing a
large number of branch-and-bound nodes. This indicates that strengthening the relaxation is
neccessary to solve these instances sucessfully.

2 From simple hand tailored to off-the-shelf state-of-the-
art

The model employed in our new solver SCIP-Jack uses the directed cut formulation described
in [3]. This formulation provides a tight linear programming (LP) relaxation. It is built upon
the directed equivalent of the STP, the Steiner arborescence problem (SAP): Given a directed
graph D = (V,A), a root r ∈ V , costs c : A→ Q+ and a set T ⊂ V of terminals, a directed tree
S ⊆ D is required such that for all t ∈ T , (VS , AS) contains exactly one directed path from r
to t. Each STP can be transformed to an SAP replacing each edge by two anti-parallel arcs of
the same cost and distinguishing an arbirtrary terminal as the root. This results in a one-to-one
correspondence between the respective solution sets, see Appendix A.

Introducing variables ya for a ∈ A with the interpretation ya := 1, if a is in the Steiner
arborecence, and ya := 0 otherwise, we obtain the integer program:
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Formulation 1. Directed Cut Formulation

min~cT y (1)

y(δ+(W )) ≥ 1, for all W ⊂ V, r ∈W, (V \W ) ∩ T 6= ∅ (2)

y(δ−(v))

 =
=
≤

0, if v = r;
1, if v ∈ T \ r;
1, if v ∈ N ;

for all v ∈ V (3)

y(δ−(v)) ≤ y(δ+(v)), for all v ∈ N ; (4)

y(δ−(v)) ≥ ya, for all a ∈ δ+(v), v ∈ N ; (5)

0 ≤ ya ≤ 1, for all a ∈ A; (6)

ya ∈ {0, 1}, for all a ∈ A, (7)

where N = V \ T , δ+(X) := {(u, v) ∈ A|u ∈ X, v ∈ V \X}, δ−(X) := δ+(V \X) for X ⊂ V
i.e., δ+(X) is the set of all arcs going out of and δ−(X) the set of all arcs going into X. Further
details of Formulation 1 are given in [3]. It is shown in [10] that the flow-cuts (3)-(5) are indeed
facets.

Since the model potentially contains an exponential number of constraints a separation ap-
proach is employed. Violated constraints are separated during the execution of the branch-
and-cut algorithm. Jack-III employed this problem formulation along with a model-specific
branch-and-bound search. Strong branching [11] was used with a depth-first search node selec-
tion.

Our implementation of SCIP-Jack is based on the academic MIP solver SCIP. Besides
being one of the fastest non-commercial MIP solvers [12], SCIP is a general branch-and-cut
framework. The plugin-based design of SCIP provides a simple method of extension to handle
a variety of specific problem classes.

In the case of SCIP-Jack, the first plugins implemented were a reader to read problem
instances and problem data to store the graph and build the model within SCIP. Within these
plugins it was possible to re-use the reading methods, data structures, and preprocessing algo-
rithms of Jack-III. However, each of these had to be extended as part of the implementation in
SCIP-Jack. The heart of the new implementation is a constraint handler that checks solutions
for feasibility and separates any violated model constraints. Again, we re-use the separation
methods of the 15-year old code, while SCIP provides a filtering of cuts to improve numerical
stability and dynamic aging of the generated cuts. Additionally, the general-purpose separation
methods that exist within SCIP are used, which include Gomory and mixed-integer rounding
cuts.

Jack-III includes many STP-specific preprocessing techniques, as described in [3]. However,
for SCIP-Jack there have been a number of additions to incorporate some of the developments of
the last 15 years and provide reduction techniques for directed STP variants. The preprocessing
techniques implemented in SCIP-Jack include: the degree test I and II (DT) and nearest vertex
test presented by Beasley [13]; the short link (SL), longest edge (LE) and bound tests (BT)
developed by Polzin [10]; the special distance test (SD) presented by Duin and Volgenant [14];
and the nearest special vertex (NSV) and non-terminals of degree three tests (NTD3) presented
by Duin and Volgenant [15]. In addition, a modified form of the bound test has been implemented
for the hop-constrained directed Steiner tree variant – using the hop constraint as an upper bound
on a graph with unit edge weights – and the nearest vertex for optimal arcs test (NVO) [16] is
employed for the directed variants. The implemented techniques strive to reduce the size of an
original problem instance in terms of both vertices and edges, allowing the retransformation of
each solution to the original problem space and preserving at least one optimal solution.
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The branch-and-bound search is organized by SCIP. The default hybrid branching rule [17]
is used, which combines strong branching and pseudo costs with history information. Node
selection is performed with respect to a best estimate criterion – interleaved with best bound
and depth-first search phases [18].

Three STP-specific primal heuristics have been implemented in SCIP-Jack– the repetitive
shortest path heuristic (RSPH), based on [19] and in a modified form on [10], an improvement
heuristic (VQ) [20] and a novel recombination heuristic (RC). The repetitive shortest path heuris-
tic is both coherent and empirically successful: Starting with a single vertex, in each step the
current subtree is connected to a nearest terminal by a shortest path. This procedure is reiter-
ated until all terminals are spanned. The heuristic has already been implemented in Jack-III,
where it is used not only as an initial heuristic but also, with altered edge weights, during the
branch-and-cut. Specifically, given an LP optimal solution x ∈ QE, the heuristic is called with
the edge weights (1 − xe) · ce for all e ∈ E. Thus, a stimulus for the heuristic to choose edges
contained in the LP solution is provided. Moreover, the heuristic is started from several distinct
vertices, making it empirically much more potent (by default 100 start vertices for the intial
call, 50 after the branch-and-bound root node and 10 otherwise). In regards to the SCIP-Jack
implementation, the heuristic is employed with some alterations that bring empirical advantages.
First, terminals are preferred as starting points. Second, ties are broken pseudo-randomly and
when no new LP-solution is available, except for the initial run, each edge cost is additionally
multiplied by a pseudo-random number between 1.0 and 2.5. Finally, for problems for which
at least five percent of the vertices are terminals (after preprocessing) a variation based on the
concept of Voronoi regions (see [10]) is used. This follows the same scheme but often provids a
significant computational advantage. The heuristic is called before and after the processing of a
(branch-and-bound) node, after each cut loop and after each LP solving during a cut loop.

The improvement heuristic VQ is a combination of the three local search heuristics – vertex
insertion, key-path exchange, and key-vertex elimination – as described in [20]. The greatest
impact is achieved by the latter two. For the implementation in SCIP-Jack some alterations
were required in order to adapt the algorithms, originally designed for undirected problems, to
our model (Formulation 1). The basic idea of vertex insertion (denoted by V) is to connect
further vertices to an existing Steiner tree in such a way that expensive edges can be removed.
Key-vertices with respect to a tree S are either terminals or vertices of degree at least three in S.
Correspondingly, a key-path is a path in S connecting two key-vertices and otherwise containing
only non-key-vertices. In key-path exchange attempts are made to replace existing key-paths
by others that are less costly. Similarly, for key-vertex elimination in each step a non-terminal
key-vertex and all adjoining key-paths (except for the key-vertices at their respective ends) are
extracted and an attempt is made to reconnect the disconnected subtrees at a lower cost. As in
[20], the combination of key-path exchange and key-vertex elimination is denoted by Q. VQ is
called for a newly found solution whenever the latter is among the five best known solutions.

The third heuristic, RC, comprises in essence a recombination of several solutions. In the
following RC is described in the context of an STP but it can be naturally extended to cover the
different STP variants discussed in this paper. Preliminarily, we define the set of solutions to be
considered for recombination by L; in the case of SCIP-Jack L comprises the, at most 50, best
found solutions. The heart of RC is the n-merging (n ≥ 2) operation subsequently defined for a
given solution S: S is merged with pseudo-randomly selected n − 1 solutions out of L \ {S} to
form a new graph GS consisting of all edges and vertices that are part of at least one of the n
solutions. Applying the reduction techniques provided by SCIP-Jack to GS , a reduced graph
G′S is obtained. Then, a solution to G′S is computed in two steps. First, the cost of each edge
is pseudo-randomly reduced for each solution it appears in, as suggested by [21], and RSPH is
employed resulting in a solution S′. Second, retrieving the original arc costs, VQ is used on S′.
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Finally, S′ is retransformed to the original solution space.
The RC heuristic is clustered around the n-merging operation: Given a new solution S, in

one run consecutively three 2-, two 3- and 4-, and one 5-merges are performed. When a solution
S′ is generated during an i-merging with a smaller cost than S, we set S := S′ and attempt to
add S′ to L. Moreover, in this case the i-merging is performed again in a new run that is started
after the conclusion of the current run. The total number of runs is limited to ten. RC is called
whenever r new solutions have been found compared to its last execution. Intially r is set to
4 and modified throughout the solution process, setting r := 0 if a solution has been improved
during the execution of RC and r := r + 1 otherwise.

Along with the three employed heuristics, each newly generated solution S is pruned i.e., it
is substituted by a minimum spanning tree constructed on the vertices of S and nonterminals of
degree one are, repeatedly, removed. Thereby, solutions generated by any of the three heuristics
or from an LP-relaxation can be improved.

The combination of RPSPH, VQ and RC considerably helps generate good primal solutions
quickly and is able to find optimal solutions to most problems. In 97 % of all cases the first
solution was found by the TM heuristic, which is the first executed, or one of its modified forms
developed for the STP variants. For all other feasible instances, SCIP constructed a feasible
trivial solution prior to the first call of the TM heuristic, which was significantly improved by
the execution of this heuristic. The final primal bound was found in 49 % of the instances by
TM, in 23 % by VQ, and in 20 % by RC. It must be noted, however, that especially RC but also
VQ are more effective for harder instances, where the optimal solution is not found quickly; e.g.,
in the hard PUC test set, 11 of the final primal solutions were found by TM, 19 by RC and even
20 by VQ; of the latter, 14 solutions were an improvement of a solution that had previously been
found by RC.

2.1 Computational experiments

Several thousand STP instances of different variants were collected as part of the DIMACS
challenge. Given our aim to develop a general STP solver, computational experiments on ten
variants of the STP will be presented throughout this paper.

All computational experiments described were performed on a cluster of Intel Xeon X5672
CPUs with 3.20 GHz and 48 GB RAM, running Kubuntu 14.04. We used a development version of
SCIP 3.1 with SoPlex [22] version 2.0.1 as underlying LP solver. We limited the preprocessing
time by two hours and allowed another two hours for the subsequent branch-and-cut process. If
an instance is not solved to optimality within the time limit, we report the gap, which is defined

as |pb−db|
max{|pb|,|db|} for final primal and dual bound pb and db, respectively. The average gap is

obtained as an arithmetic mean while averages of the number of nodes or the solving time are
computed by taking the shifted geometric mean [18] with a shift of 1.0.

Prior to discussing the different STP variants solved by SCIP-Jack, we first demonstrate
the solver performance on pure STP instances. Five STP test sets have been used for the com-
putational experiments. Four of them, SP [2], I320, I640 [9], and PUC [8], are computationally
difficult test sets from SteinLib. The I320 and I640 test sets contain randomly generated sparse
graphs selected to defy preprocessing. Similarly, the PUC test set contains artificially designed
combinations of odd wheels and odd circles, that are difficult to solve by linear programming
approaches. Additionally, we employ SCIP-Jack to solve the vienna-i-advanced test set [23],
which contains instances newly submitted to the DIMACS Challenge that have already been
preprocessed with techniques presented in [23].

A summary of the computational performance of SCIP-Jack on pure STP instance is pre-
sented in Table 1. Each line in the table shows aggregated results for one test set, as specified
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Table 1: Computational results for STP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

SP 8 6 4.4 5.7 14.7 0.6
I320 100 82 4.9 12.2 1006.6 0.5
I640 100 65 7.2 25.1 63.0 0.8
PUC 50 7 1139.5 138.2 57.0 4.3
vienna-i-advanced 85 45 1.5 430.3 1.0 0.6

in the first column. The second column, labeled #, lists the number of instances in the test
set, the third column states how many of them were solved to optimality within the time limit.
The average number of branch-and-bound nodes and the average running time in seconds of
these instances are presented in the next two columns, named optimal. The last two columns,
labeled timeout, show the average number of branch-and-bound nodes and the average gap for
the remaining instances, i.e., all instances that hit the time limit. In the next section, similar
tables will be presented for different STP variants. Thereby, the timeout columns are omitted if
all instances have been solved to optimality. Detailed instance-wise computational results of all
experiments can be found in Appendix B.

SCIP-Jack solves five of the eight instances of the SP test set, and about eighty and sixty
percent of the I320 and I640 test set, respectively. On average, for the solved instances only a
couple of nodes and a few seconds are required. However, there are also instances which need
a significant amount of branching – up to 4000 nodes for instances solved within the time limit
and more than 10 000 nodes for some instances that time out. The PUC test set appears much
more difficult for SCIP-Jack. This is unsurprising since more than half of the instances in this
set still remain unsolved. SCIP-Jack only solves eight of 50 instances and none at the root
node. About half of the instances in the vienna test set are solved by SCIP-Jack within the
time limit, most of them at the root node or after a couple of branchings. These results show
the ability and limitations of SCIP-Jack to solve pure STP instances.

3 From single problem to class solver

SCIP-Jack is developed as a general STP solver – being able to solve many problem variants.
An overview of the problem variants solved by SCIP-Jack is given in Table 2. This table
also presents the heuristics and presolving techniques that are applied to each of the problem
variants. Specific transformation approaches have been employed in order to solve each variant

Table 2: Problem variants solved by SCIP-Jack

Variant Abbreviation Preprocessing Heuristics

Steiner Tree Problem in Graphs STP DT, NV, SVQ, LE, BT, SD, NSV,
NTD3

RSPH, VQ, RC

Steiner Arborescence SAP DT, SD RSPH, RC
Rectilinear Steiner Minimum Tree RSMTP None RSPH, VQ, RC
Node-weighted Steiner Tree NWSTP DT, NVO, SD, NTD3 RSPH, RC
Prize-collecting Steiner Tree PCSTP DT, NVO, SD, NTD3 RSPH, VQ, RC
Rooted Prize-collecting Steiner Tree RPCSTP DT, NVO, SD, NTD3 RSPH, VQ, RC
Maximum-weight Connected Subgraph MWCSP DT, NVO, SD, NTD3 RSPH, RC
Degree-constrained Steiner Tree DCSTP None RSPH
Group Steiner Tree GSTP DT, NV, SVQ, LE, BT, SD, NSV,

NTD3
RSPH, VQ, RC

Hop-constrained directed Steiner Tree HCDSTP DT, BT RSPH, RC
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using SCIP-Jack. The details of these transformations will be described in detail. Throughout
this section the weights of an (undirected) edge e and an (directed) arc a are denoted by ce and
ca respectively and the weight of a vertex v by pv.

3.1 The Steiner Arborescence Problem

The Steiner tree solver, SCIP-Jack, transforms each Steiner tree problem to a (bidirected)
Steiner arborescence problem (SAP). As such, the branch-and-cut substruction and the RSPH
and RC heuristics can be used for general SAPs with only minor modifications. However, due to
the missing bidirection with equal cost the VQ heuristic and several presolving techniques cannot
be applied. While presolving techniques have been implemented for directed STP instances, their
implementation is not applicable to all forms of directed variants.

Computational Results Computational experiments have been performed on three test sets
of Steiner arborescense problems. These instances were derived from a genetic application [24].
The results are summarized in Table 3. The test sets contain small SAP instance, with the
largest consisting of 602 nodes, 1716 edges and 86 terminals. Because of their size SCIP-Jack
solves all instance within fractions of a second without requiring any branching.

Table 3: Computational results for SAP instances

test set # solved ∅ nodes ∅ time [s]

gene 6 6 1.0 0.1
geneh 4 4 1.0 0.1
gene2002 9 9 1.0 0.1

3.2 The Rectilinear Steiner Minimum Tree Problem

The rectilinear Steiner minimum tree problem (RSMTP) can be described as follows: given a
number of n ∈ N points in the plane, find a shortest tree consisting only of vertical and horizontal
line segments, containing all n points. The RSMTP is NP-hard, as proved in [25], and has been
the subject of various publications, [26, 27, 28]. In addition to this two-dimensional variant, a
generalization of the problem to the d-dimensional case, with d ≥ 2, will be considered, having
real-world applications in up to eight dimensions, e.g. in cancer research [29].

Hanan [30] reduced the RSMTP to the Hanan-grid obtained by constructing vertical and
horizontal lines through each given point of the RSMTP. It is proved in [30] that there is at least
one solution to an RSMTP that is a subgraph of the grid. Hence, the RSMTP can be reduced to
an STP. Subsequently, this construction and its multi-dimensional generalisation [31] is exploited
in order to adapt the RSMTP to our solver. Given a d-dimensional, d ∈ N \ {1}, RSMTP
represented by a set of n ∈ N points in Qd, the first step involves building a d-dimensional
Hanan-grid. Using the resulting Hanan-grid an STP P = (V,E, T, c) can be constructed.

There are a few necessary remarks regarding the implementation in SCIP-Jack. First, by
default preprocessing is not used for RSMTP problems within our solver. This is spawned by the
problem specific structure, which proved to be distinctively recalcitrant to the reduction tech-
niques employed by SCIP-Jack leading to an exceptionally poor performance of the presolving.
It is explained in [32] that in certain cases problem specific presolving is initially required to
render RSMTP instance amenable to standard STP reductions techniques. At present, such
problem specific reduction techniques are not available in SCIP-Jack. A potential reduction
technique for the RSMTP is the full Steiner trees (FST) generation [33]. Apart from this, a
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transformed RSMTP instance is handled equivalently to a usual STP instance by SCIP-Jack.
Second, we do not expect this simple approach to be competitive with highly specialized solvers,
such as GeoSteiner [26] in the cases d = 2 and d = 3. However, the motivation for our implemen-
tation was to provide solutions to RSMTP instances in dimensions d ≥ 4, since there seem to be
a lack of specialized solvers. Still, it is not practical to apply the grid transformation for large
instances in high dimension, as the number of both vertices and edges increases exponentially
with the number of dimensions.

A variant of the RSMTP is the obstacle-avoiding rectilinear Steiner minimum tree problem
(OARSMTP). These problems require that the minimum-length rectilinear tree does not pass
through the interior of any specified axis-aligned rectangles, denoted as obstacles. SCIP-Jack is
easily extended to solve the OARSMTP with a simple modification to the Hanan grid approach
applied to the RSMTP. This modification involves removing all vertices that are located in
the interior of an obstacle together with their incident edges. Since there was no competition
for this variant in the DIMACS challenge and for the OARSMTP, unlike the RSMTP, optimal
solutions to all instances submitted to the challenge have already been published, we refrain from
conducting any computational experiments, although SCIP-Jack is able to solve them.

Computational Results The experiments on the RSMTP involved solving nine of the test
sets submitted to the DIMACS Challenge. These test sets contain instances ranging from less
than ten to 10000 points and from two to eight dimensions. Specifically, the test sets included the
two-dimensional estein instances with up to 60 nodes, the solids test set with three-dimensional
instances whose terminals are the vertices of the five platonic solids, and the cancer instances
with up to eight dimensions. Computational results are summarized in Table 4 with the detailed
results listed in the appendix.

All of the estein instances that are solved to optimality, except estein20-3, estein20-4, estein20-
7, and estein40-4, require only a single node. While the first three named instances are solved
with 11, 5 and 3 nodes respectively, estein40-4 needs 2667 nodes and an extension of the time
limit so that optimality can be reached after almost 13 hours. As the number of vertices in
the graphs increase, the runtime and the number of unsolved instances increases. For all but
four of the unsolved instances, SCIP-Jack achieves an optimality gap within 1%. SCIP-Jack
manages to solve all of the solids instances to optimality. The only instance that requires a
significant amount of branching, with 14249 nodes, is the largest instance, modelling a dodec-
ahedron. Finally, the cancer instances demonstrates the ability of SCIP-Jack to handle and
solve instances with up to eight dimensions. Since these instances were of particular interest for
us, we used a higher time limit of 36 hours. This enabled us to solve 12 of the 14 instances to
optimality at the root node. To the best of our knowledge we are the first ones to solve those
instances to optimality. Of these instances, two require runtimes larger than two hours – up to
51344 seconds – to achieve optimality. Of particular interest are the cancer4 6D and cancer5 6D
instances which find the optimal solution early in the solution process, after 134 and 5.8 seconds
respectively, but exhibit slow improvement in the dual bound. Most of the run time is spent
solving LPs, specifically 97.93 % and 98.19 % of the total runtime, respectively. The cancer12 8D
instance displays different behaviour, spending 92.49 % of the time in the local heuristic. Finally,
cancer11 8D demonstrates a limitation of the grid approach. This instances is transformed into
a problem containing almost 5 million nodes and 65 million edges, which is prohibitive for em-
ploying SCIP-Jack on a modest machine. As a result, SCIP-Jack quickly runs out of memory
while solving this instance.
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Table 4: Computational results for RSMTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

estein1 46 46 1.0 0.3 – –
estein10 15 15 1.0 0.3 – –
estein20 15 15 1.5 7.3 – –
estein30 15 15 1.0 129.9 – –
estein40 15 15 2.2 1221.5 – –
estein50 15 10 1.0 2766.4 2.4 0.2
estein60 15 1 1.0 6283.3 1.0 0.8
solids 5 5 14.6 7.3 – –
cancer 14 12 1.0 139.1 1.0 29.0

3.3 The Node-Weighted Steiner Tree Problem

The node-weighted Steiner tree problem (NWSTP) is a generalization of the Steiner tree problem
in graphs where the edges and, additionally, the vertices are assigned non-negative weights. The
objective is to interconnect all terminals while minimizing the weight summed over both vertices
and edges spanned by the corresponding tree.

The NWSTP is formally stated by: Given an undirected graph G = (V,E), node costs
p : V → Q≥0, edge costs c : E → Q≥0, and a set T ⊂ V of terminals, the objective is to find a
tree S = (VS , ES) that spans T while minimizing

C(S) :=
∑
e∈ES

ce +
∑
v∈VS

pv.

The NWSTP can be transformed to SAP by substituting each edge by two anti-parallel arcs.
Then, observing that in a tree there cannot be more than one arc going into the same vertex,
the weight of each vertex is added to the weight of each of its ingoing arcs.

Transformation 1 (NWSTP to SAP).
Given an NWSTP P = (V,E, T, c, p) construct an SAP P ′ = (V ′, A′, T ′, c′, r′) as follows:

1. Set V ′ := V , T ′ := T , A′ := {(v, w) ∈ V ′ × V ′ : {v, w} ∈ E}.

2. Define c′ : A′ → Q≥0 by c′a = c{v,w} + pw, for a = (v, w) ∈ A′.

3. Choose a root r′ ∈ T ′ arbitrarily.

Lemma 1 (NWSTP to SAP). Let P = (V,E, T, c, p) be an NWSTP and P ′ = (V ′, A′, T ′, c′) an
SAP obtained by applying Transformation 1 on P . Denote by S and S ′ the set of solutions to P
and P ′ respectively. Then S ′ can be bijectively mapped onto S by applying

VS := {v ∈ V : v ∈ V ′S′} (8)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′} (9)

for S′ = (V ′S′ , A
′
S′) ∈ S ′ and it holds:

c′(A′S′) + pr′ = c(ES) + p(VS). (10)

The resulting problem is an SAP, which can be handled by SCIP-Jack using the configura-
tions described in the Steiner arborescence section.
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Computational Results Two NWSTP instances derived from a computational biology ap-
plication are part of the DIMACS Challenge. The two instances differ drastically in their size:
the first has more than 200,000 nodes—55,000 of them terminals—and almost 2.5 million edges,
while the smaller instance comprises 386 nodes, 1477 edges, and 35 terminals.

The size of the first instance is very prohibitive for SCIP-Jack. The large number of edges
significantly degrades the performance of the preprocessing routines. Additionally, the memory
requirements of this instance quickly exceeds the limits of SCIP-Jack when applying the default
settings on a modest machine. To evaluate the ability of SCIP-Jack to solve this particular
instance, a runtime of 72 hours was used on a machine with 386 GB memory. In order to reduce
the presolving time, only a subset of nodes are examined in the special distance and the nearest
vertex tests. This is done by randomly selecting a starting node and then examining every
hundredth node from that point. After the application of the reduction techniques, the resulting
graph contains 187,933 nodes and 986,703 edges. This equates to a 8.6 % and 60.4 % decrease in
the number of nodes and edges respectively. SCIP-Jack fails to solve this instance to optimality,
but it does achieve a primal bound of 656,970.94 with an optimality gap of 0.0049%. The much
smaller second instance is solved by SCIP-Jack in the root node within 0.1 secounds.

3.4 The Prize-Collecting Steiner Tree Problem

In contrast to the classical Steiner tree problem, the required tree for the prize-collecting Steiner
tree problem (PCSTP) needs only to span a (possibly empty) subset of the terminals. However, a
non-negative penalty is charged for each terminal not contained in the tree. Hence, the objective
is to find a tree of minimum weight, given by both the sum of its edge costs and the penalties
of all terminals not spanned by the tree. For a profound discussion on the PCSTP that details
real-world applications and introduces a sophisticated specialized solver, see [34].

A formal definition of the problem is stated as: Given an undirected graph G = (V,E),
edge-weights c : E → Q≥0, and node-weights p : V → Q≥0, a tree S = (VS , ES) in G is required
such that

P (S) :=
∑
e∈ES

ce +
∑

v∈V \VS

pv (11)

is minimized.
Before discussing the prize-collecting Steiner tree problem, we introduce a variation, the rooted

prize-collecting Steiner tree problem (RPCSTP), which incorporates the additional condition that
one distinguished node, denoted the root, must be part of every feasible solution to the problem.
The RPSCTP can be transformed into an SAP as follows:

Transformation 2 (RPCSTP to SAP).
Given an RPCSTP P = (V,E, p, r) construct an SAP P ′ = (V ′, A′, T ′, c′, r′) as follows:

1. Set V ′ := V , A′ := {(v, w) : {v, w} ∈ E}, r′ := r and c′ : A′ → Q≥0 with c′a = c{v,w} for
a = (v, w) ∈ A′.

2. Denote the set of all v ∈ V with pv > 0 by T = {t1, ..., ts}. For each node ti ∈ T , a new
node t′i and an arc a = (ti, t

′
i) with c′a = 0 is added to V ′ and E′ respectively.

3. Add arcs (r′, t′i) for each i ∈ {1, ..., s}, setting their respective weight to pti .

4. Define the set of terminals T ′ := {t′1, ..., t′s}.

10



r
p=5.1

t1
p=2.4

t2

p=7.2

1.2
2.1

2.5

2.2

1
1 1.3

1.8

1.1

(a) RPCSTP instance

r

t′1

t′2

t1

t2

1.2
2.1

2.5

2.2

1
1 1.3

1.8

1.1

2.4

7.2

0

0

(b) transformed instance

r

t′1

t′2

t1

t2

1.2

2.2

1

1.8

2.4

0

(c) feasible solution

Figure 1: Illustration of a price collecting Steiner tree instance with root r (left), the equivalent
SAP problem obtained by transformation 2 (middle), and a solution to the SAP instance with
value 8.6 (right).

Having performed Transformation 2, for each terminal t′i of the SAP P ′ there are exactly two
incoming arcs (ti, ti

′) and (r′, t′). To allow a bijection between the respective solution sets of
P and P ′ each solution S′ = (V ′S′ , A

′
S′) ∈ P ′ that contains ti should also contain (ti, ti

′), more
succinctly:

∀i ∈ {1, ..., s} : ti ∈ V ′S′ =⇒ (ti, ti
′) ∈ A′S′ (12)

Condition (12) is satisfied by all optimal solutions to P ′ and each feasible solution can be easily
modified to accomplish this, concomitantly improving its solution value.

Lemma 2 (RPCSTP to SAP). Let P ′ = (V ′, A′, T ′, c′) be an SAP obtained from an RPCSTP
P = (V,E, c, p) by applying Transformation 2. Denote by S and S ′ the set of solutions to P and
P ′, satisfying condition (12), respectively. P ′ can be mapped bijectively onto P by

VS := {v ∈ V : v ∈ V ′S′} (13)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′} (14)

for S′ = (V ′S′ , A
′
S′) ∈ S ′. The solution value is preserved.

Figure 1 presents a simple example of the RPCSTP and the transformation process. Note
that for each of the terminals a dummy node is created with a single direction arc of zero cost
added between the two. Also, there is a single direction arc from the root to each of the terminals
with its selection in the tree indicating the loss of the terminal prize.

Transformation 3 can be extended to cover the PCSTP in two steps: First, an artifical root
node r′ is added and the transformation is performed. Second, arcs (r′, ti) with cost zero are
added. They connect the artifical root with all terminals of the original problem and allow to
choose a root for the solution. To this end, only one of these arcs can be part of a feasible
solution, which is enforced by the following constraint:∑

a∈δ+(r′),c′a=0

ya = 1. (15)

Furthermore, to allow a bijection between the original and the transformed problem, for all ti
included in a solution the arc (r′, ti) with the smallest index i is required to be part of the
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solution. This condition can be expressed using the following class of constraints:∑
a∈δ−(tj)

ya + y(r′,ti) ≤ 1 i = 1, ..., s; j = 1, ..., i− 1. (16)

An SAP that requires the conditions (12), (15) and (16) is henceforth referred to as root
constrained Steiner arborescence problem (rcSAP). The constraints (15) and (16) can be incor-
porated into the cut-formulation (Formulation 1) without further alterations and each solution

can be modified in order to meet condition (12). Although additional s(s−1)
2 constraints have

to be introduced to fulfill (16), the solving time is considerably reduced, since concomitantly a
plethora of symmetric solutions is excluded.

Transformation 3 (PCSTP to rcSAP).
Given an PCSTP P = (V,E, c, p) construct an rcSAP P ′ = (V ′, A′, T ′, c′, r′) as follows:

1. Add a vertex v0 to V and set r := v0.

2. Apply Transformation 2 to obtain P ′ = (V ′, A′, T ′, c′, r′).

3. Add arcs a = (r′, ti) with c′a := 0 for each ti ∈ T .

4. Add constraints (15) and (16).

Lemma 3 (PCSTP to rcSAP). Let P = (V,E, c, p) be an PCSTP and P ′ = (V ′, A′, T ′, c′, r′)
the corresponding rcSAP obtained by applying Transformation 3. Denote by S and S ′ the sets of
solutions to P and P ′ respectively. Each solution S′ ∈ S ′ can be bijectively mapped to a solution
S ∈ S defined by:

VS := {v ∈ V : v ∈ V ′S′} (17)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′}. (18)

The solution value is preserved.

Due to its structure of both the transformed PCSTP and transformed RPCSTP only a limited
set of reduction techniques are employed by SCIP-Jack, see table 2. However, all heuristic can
be deployed, albeit with some alterations. For the RSPH in the case of a transformed PCSTP,
i.e. an rcSAP, instead of commencing from different vertices, the starting point is always the
(artficial) root. In each run all arcs between the root and non-terminals (denoted by (r′, t) in
Transformation 3) are temporarily removed, except for one. A tree is then computed on this new
graph, using the same process as the original constructive heuristic. Instead of starting from a
new terminal, the choice of the arc to remain in the graph is varied. By adjusting the shortest
path data of the nodes adjacent to the root, the recomputation of the shortest paths in every
iteration is not necessary. The VQ requires an adaption for both the RPCSTP and the PCSTP:
All terminals are temporarily removed from the (transformed) graph and VQ is executed with
all ti, as defined in Transformation 2, marked as key vertices. Finally, the pruning has to be
slightly adjusted such that (12), and for the PCSTP also (16), is satisfied by each solution.

Computational Results Table 5 shows aggregated results for three of the PCSTP test sets
provided for the DIMACS Challenge. For the JMP test set all instances are solved without
branching in less than one minute. Also all instances of the CRR test set are solved and only one
needs a branch-and-bound search consisting of only 3 nodes. The third test set we consider is
the PUCNU test set derived from the PUC test set. Since SCIP-Jack is already unable to solve
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Table 5: Computational results for PCSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

JMP 34 34 1.0 2.0 – –
CRR 80 80 1.0 7.2 – –
PUCNU 18 7 4.0 25.3 19.6 3.9

many of the orginal instances the same results are observed for the respective PCSTP versions.
Seven of the instances are solved to optimality, with three of those requiring branching. However,
the remaining 11 instances terminate within the time limit with optimality gaps in the range
1.2 % to 13 %.

The average results for the RPCSTP instances are displayed in Table 6. All instances are
solved at the root node in about 18.64 seconds on average. The first half, originating from the
cologne1 test set, needs up to 22 seconds, the harder instances from the cologne2 test set are
solved in 10 up to 341 seconds. In the DIMACS challenge, SCIP-Jack was very competitive
against the other submitted solvers for this variant, achieving the best result in one of the
challenge categories.

Table 6: Computational results for RPCSTP instances

optimal
test set # solved ∅ nodes ∅ time [s]

cologne1 14 14 1.0 5.3
cologne2 15 15 1.0 55.8

3.5 The Maximum-Weight Connected Subgraph Problem

At first glance, the maximum-weight connected subgraph problem (MWCSP) bears little re-
semblance to the Steiner problems introduced so far: Given an undirected graph (V,E) with
(possibly negative) node weights p, the objective is to find a tree that maximizes the sum of its
node weights. However, it is possible to transform this problem into a prize-collecting Steiner
tree problem. One transformation is given in [35]. In this paper, we present an alternative
transformation which leads to a significant reduction in the number of terminals for the resulting
PCSTP.

In the following it is assumed that at least one vertex is assigned a negative and one a positive
cost. Otherwise the problem can be reduced to finding a minimum spanning tree.

Transformation 4 (MWCSP to rcSAP).
Let P = (V,E, p) be an MWCSP, construct an rcSAP P ′′ = (V ′′, A′′, T ′′, c′′, r′′):

1. Set V ′ := V , A′ := {(v, w) : {v, w} ∈ E}.

2. c′ : A′ → Q≥0 such that for a = (v, w) ∈ A′:

c′a =

{
−pw, if pw < 0

0, otherwise

3. p′ : V ′ → Q≥0 such that for v ∈ V ′:

p′(v) =

{
pv, if pv > 0
0, otherwise

13



4. Perform Transformation 3 to (V ′, A′, c′, p′), slightly changed in such a way, that in step
2 instead of constructing a new arc set, A′ is being used. The resulting rcSAP gives us
P ′′ = (V ′′, A′′, T ′′, c′′, r′′).

Lemma 4 (MWCSP to rcSAP). Let P = (V,E, p) be an MWCSP and P ′′ = (V ′′, A′′, T ′′, c′′, r′′)
an rcSAP obtained from P by Transformation 4. Then each solution S′′ to P ′′ can be bijectively
mapped to a solution S to P . The latter is obtained by:

VS := {v ∈ V : v ∈ V ′′S′′} (19)

ES := {{v, w} ∈ E : (v, w) ∈ A′′S′′ or (w, v) ∈ A′′S′′} (20)

Furthermore, for the objective value C(S) of S and the objective value C ′′(S′′) of S′′ the
following equality holds:

C(S) =
∑

v∈V :pv>0

pv − C ′′(S′′). (21)

Since most of the vertex weights are nonpositive for all (real-world) DIMACS instances, Trans-
formation 4 results in problems with significantly less terminals compared to the tranformation
described in [35]. The differences in the number of terminals resulting from the two transforma-
tions are presented in Table 7. The computational settings of SCIP-Jack are identical for those
of the PCSTP, except for the use of VQ, as the latter can not so easily be adapted to handle
anti-parallel arcs of different weight and is therefore disabled.

Computational Results We performed computational experiments on the ACTMOD test
set containing eight instances and the 72 instances of the JMPALMK test set, see Table 8. The
results demonstrate the ability of SCIP-Jack to solve this problem variant – solving all but one
of the ACTMOD instances to optimality at the root node. For the remaining instance SCIP-
Jack is unable to construct an optimal solution at the root node and 3180 branch-and-bound
nodes are processed until it is found; optimality is proven only eight nodes later after 4287.2
seconds. It should be noted that the performance of SCIP-Jack on the ACTMODPC test set,
which contains the same problems, but already transformed to PCSTP by the transformation
described in [35], is significantly worse.

Of the JMPALMK test set, SCIP-Jack solves all but one instance to optimality within the
time limit. Similar to the ACTMOD test set, all instances are solved to optimality at the root
node. To determine whether SCIP-Jack is able to solve the remaining instance, a longer time
limit of 36 hours has been applied. Similar to the large RSMTP instances, a good primal solution
is found by the recombination heuristic after 421 seconds and the remaining time is spent solving
LPs to improve the dual bound.

Table 7: Number of terminals after transforming

instance Transformation 4 transformation from [35]

drosophila001 71 5226
drosophila005 194 5226
drosophila0075 250 5226
HCMV 55 3863
lymphoma 67 2034
metabol expr mice 1 150 3523
metabol expr mice 2 85 3514
metabol expr mice 3 114 2853
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Table 8: Computational results for MWCS instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

ACTMOD 8 8 4.0 87.8 – –
JMPALMK 72 71 1.0 91.2 1.0 0.1

3.6 The Degree-Constrained Steiner Tree Problem

The degree-constrained Steiner tree problem (DCSTP), is an STP with an additional degree
constraint for each node. The objective is to find a minimum solution to the STP such that
the degree of each node in the Steiner tree is not larger than the given limit. The DCSTP is
implemented by just adding the additional degree constraints for each node as linear constraints
to the directed-cut-formulation (Formulation 1). Note that this degree restriction does not
comply with the usual SCIP-Jack presolving routines so that we do not perform presolving
on these instances. We use a variation of the constructive heuristic, altered in such a way that
while choosing a new (shortest) path to be added to the current tree it is checked: First, whether
attaching this path would violate any degree constraints and second, whether after having added
this path at least one additional edge could be added (or all terminals are spanned). If no such
path can be found, a vertex of the tree is pseudo randomly chosen that allows to add at least
one adjacent edge, and such an edge leading to a vertex of high degree and being of small cost
is chosen.

Computational Results Computational experiments are performed on the 20 instances in
the TreeFam test set of the DIMACS Challenge with a time limit of two hours. The results
for the individual instances are presented in Table 9. Besides the size of the problem, we print
dual and primal bound, the gap in percent, the number of cut separation rounds (column C)
and processed branch-and-bound nodes (column N), as well as the solving time in seconds. For
instances solved to optimality, we omit the gap and print the optimal objective value in bold
in the center of the primal and dual bound columns (or infeasible, if infeasibilty was proven).
SCIP-Jack finds the optimal solution to five instances and proves the infeasibilty of another
two. The remaining 13 instances are unable to be solved by SCIP-Jack within the time limit.
Most of the time for these instances is spent in the added STP constraint handlers, 52.55 % on
average. Also, an average of 706.81 branch-and-bound nodes are required for these instance.
This result is attributed to the lack of a more refined constructive heuristic.

Table 9. Detailed computational results for the DCSTP, test set TreeFam.

Instance |V | |A| |T | Dual Primal Gap% C N t [s]

TF101057-t1 52 2652 35 infeasible 0 1 0.0
TF101057-t3 52 2652 35 2756 41 1361 23.5
TF101125-t1 304 92112 155 infeasible 0 1 2.2
TF101125-t3 304 92112 155 53676.2948 55615 3.6 104 1225 >7200.3
TF101202-t1 188 35156 72 79309.1733 80834 1.9 93 4480 >7200.2
TF101202-t3 188 35156 72 77771.3126 78233 0.6 195 2755 >7200.1
TF102003-t1 832 691392 407 190042.514 393395 107.0 40 5 >7201.5
TF102003-t3 832 691392 407 176144.713 189504 7.6 52 5 >7226.3
TF105035-t1 237 55932 104 34525.1898 40597 17.6 68 4261 >7200.2
TF105035-t3 237 55932 104 32436.7151 33018 1.8 103 1389 >7200.9
TF105272-t1 476 226100 223 131135.094 268525 104.8 56 82 >7203.5
TF105272-t3 476 226100 223 122819.718 129316 5.3 93 43 >7200.6

cont. next page
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Instance |V | |A| |T | Dual Primal Gap% C N t [s]

TF105419-t1 55 2970 24 18668 31 23987 331.1
TF105419-t3 55 2970 24 18223 57 41 6.1
TF105897-t1 314 98282 133 105417.543 170309 61.6 59 331 >7202.2
TF105897-t3 314 98282 133 96192.5645 98529 2.4 78 502 >7201.2
TF106403-t1 119 14042 46 54124 89 1071 364.3
TF106403-t3 119 14042 46 53760 158 14 57.3
TF106478-t1 130 16770 54 54970.8772 55274 0.6 62 56359 >7200.1
TF106478-t3 130 16770 54 54750.0926 55007 0.5 89 100830 >7200.0

3.7 The Group Steiner Tree Problem

The group Steiner tree problem (GSTP) is another generalization of the Steiner tree problem,
originating from VLSI design [36], where the concept of terminals as a set of vertices to be
interconnected is extended to a set of vertex groups: Given an undirected graph G = (V,E),
edge costs c : E → Q≥0 and a series of vertex subsets T1, ...Ts ⊂ V , s ∈ N, a minimum cost
tree spanning at least one vertex of each subset is required. By interpreting each terminal t as a
subset {t}, every STP can be considered as an GSTP, the latter likewise being NP-hard. On the
other hand, it is possible to transform each GTSP instance (V,E, T1, .., Ts, c) to an STP using
the following scheme:

Transformation 5 (GSTP to STP).
Given an GSTP P = (V,E, T1, ...Ts, c) construct an STP P ′ = (V ′, E′, T ′, c′) as follows:

1. Set V ′ := V , E′ := E, T ′ = ∅, c′ := c, K :=
∑
e∈E ce + 1.

2. For i = 1, ..., s add a new node t′i to V ′ and T ′ and for all vj ∈ Ti add an edge e = {t′i, vj}
, with c′e := K.

Let (V,E, T1, ...Ts, c) be an GSTP and P ′ = (V ′, A′, T ′, c′) an STP obtained by applying
Transformation 5 on P . A solution S′ to P ′ can then be reduced to a solution S to P by deleting
all vertices and edges of S not in (V,E). The GSTP P can in this way be solved on the STP P ′

as shown in [36] and [37].
This approach has already been deployed by [38] to solve group Steiner tree problems and

demonstrated to be competitive with specialized solvers at the time of publishing. In the case of
SCIP-JACK, to solve an GSTP Transformation 5 is applied and the resulting problem is treated
as a normal STP and is solved without any alteration.

Computational Results Computational results for two test sets of unpublished group Steiner
tree instances derived from a real world wire routing problem are presented in Table 10. SCIP-
Jack solves all but two of the first test set, with runtimes ranging from 3.3 to 563 seconds. Five
of the instances solved to optimality only require a single node, with the remaining instance
solved in 403 nodes. Two instances of this set terminate within the time limit of two hours
with large optimality gaps, gstp34f2 and gstp39f2 with 1.8 % and 9.1 % respectively. The same
performance does not recur on the second test set. Two instances, gstp73f2 and andre76f2, are

Table 10: Computational results for GSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

GSTP1 8 6 3.8 48.2 255.2 5.5
GSTP2 10 2 1.8 6692.3 17.9 3.4
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solved within the time limit, with all others terminating after many branch-and-bound nodes –
17.95 nodes on average.

3.8 The Hop-Constrained Directed Steiner Tree Problem

The hop-constrained directed Steiner tree problem (HCDSTP) searches for an SAP with the
additional constraint that the number of selected arcs must not exceed a predetermined bound,
called hop limit. The cut formulation (Formulation 1) used by SCIP-Jack is simply extended
to cover this variation by adding one extra linear inequality bounding the sum of all binary arc
variables.

Still, the hop limit has significant implications for the preprocessing and heuristics approaches.
Many of the presolving techniques remove or include edges from the graph if a less costly path
can be found, regardless whether this involves taking more edges. Hence, the preprocessing
techniques of this type currently implemented in SCIP-Jack are not able to produce a valid
graph reduction. However, in order to perform some reductions on the HCSTP instances, a
modified bound test, as described in Section 2, is employed.

Similar to the presolving techniques, the heuristics implemented in SCIP-Jack for the other
variants do not take into account the hop limit. As such, any identified solution may not be
feasible. Therefore, a simple variation of the constructive heuristic is used for this STP variant:
Each arc a, having original costs ca, is assigned the new cost c′a := 1 + λ ca

cmax
, with λ ∈ Q+

and cmax := maxa∈A ca. Initially λ is set to 3 but its value is decreased or increased after each
iteration of the constructive heuristic, depending on whether the last computed solution exceeds
or is below the hop limit, respectively. This modification to λ is performed relatively to the
deviation of the number of edges from the hop limit.

Computational Results Three different test sets are used for the computational experiments
consisting of the gr12, gr14 and gr16 instances used in the evaluation of the DIMACS challenge.
The gr12 test set contains 19 instances and SCIP-Jack is able to solve all of them in less than
722 seconds. On average, these instances require 15.29 seconds of runtime and 2.31 nodes. Only
four instances of this test set were not solved at the root node. This performance is not repeated
for the gr14 test set, with only six instances solved to optimality within the time limit. All of
the unsolved instances terminate with large optimality gaps, ranging from 9.6 % to 38 %, after
34.62 nodes on average. Finally, SCIP-Jack is unable to solve any of the instances from the
gr16 test set. All of these instance terminate within the time limit with a optimality gap of at
least 27.4 %. For these larger instances, SCIP-Jack terminates while solving the root LP for all
but one instance. One possible cause of this performance is the inability to apply the common
reduction techniques and heuristics implemented in SCIP-Jack.

Table 11: Computational results for HCDSTP instances

optimal timeout

test set # solved ∅ nodes ∅ time [s] ∅ nodes ∅ gap [%]

gr12 19 19 2.3 15.3 – –
gr14 21 6 9.2 1055.6 57.8 20.5
gr16 20 0 – – 1.1 81.3

17



Table 12: Comparison of SCIP-Jack with SoPlex and CPLEX as LP solver.

SCIP-Jack SCIP-Jack/CPLEX relative change [%]

Instance Type C N t [s] C N t [s] C N t [s]

cc3-4p STP 159 22265 552.5 160 13113 166.9 +0.63 -41.10 -69.79
cc6-2u STP 80 19 12.9 82 27 9.4 +2.50 +42.11 -27.13
i320-044 STP 154 1 5.2 154 1 5.8 – – +11.54
i320-245 STP 112 1217 3827.7 121 621 943.9 +8.04 -48.97 -75.34
i640-124 STP 1008 19 4886.8 854 35 3861.8 -15.28 +84.21 -20.97
i640-232 STP 60 1 20.5 59 1 9.2 -1.67 – -55.12
I030a STP 127 1 2968.2 122 3 1499.2 -3.94 +200.00 -49.49
I065a STP 76 1 44.7 78 1 13.9 +2.63 – -68.90
gene442 SAP 8 1 0.1 9 1 0.1 +12.50 – –
gene575 SAP 22 1 0.2 21 1 0.2 -4.55 – –
estein1-33 RSMTP 49 1 5.0 56 1 2.4 +14.29 – -52.00
estein20-2 RSMTP 63 1 1.9 63 1 1.2 – – -36.84
estein20-3 RSMTP 87 11 25.0 90 5 10.4 +3.45 -54.55 -58.40
estein30-11 RSMTP 103 1 42.8 98 1 10.8 -4.85 – -74.77
estein30-3 RSMTP 269 1 293.9 238 1 61.9 -11.52 – -78.94
estein40-0 RSMTP 148 1 425.3 136 1 87.8 -8.11 – -79.36
estein40-8 RSMTP 269 1 2633.1 274 1 438.0 +1.86 – -83.37
estein50-9 RSMTP 270 1 2949.8 277 1 885.8 +2.59 – -69.97
dodecahedron RSMTP 138 14249 6269.7 122 5849 1002.7 -11.59 -58.95 -84.01
icosahedron RSMTP 42 7 5.2 46 5 1.5 +9.52 -28.57 -71.15
cancer7 6D RSMTP 516 1 2834.5 486 1 449.6 -5.81 – -84.14
cancer9 6D RSMTP 133 1 14.2 148 1 18.2 +11.28 – +28.17
TF105419-t3 DCSTP 57 41 6.1 54 68 4.0 -5.26 +65.85 -34.43
TF106403-t1 DCSTP 89 1071 364.3 73 784 237.4 -17.98 -26.80 -34.83
gstp33f2 GSTP 41 1 4.4 41 1 3.0 – – -31.82
gstp38f2 GSTP 62 403 4064.5 116 7 171.5 +87.10 -98.26 -95.78
K200 PCSTP 17 1 1.4 18 1 1.5 +5.88 – +7.14
K400.10 PCSTP 53 1 14.9 53 1 8.0 – – -46.31
drosophila001 MWCSP 1626 3188 4287.2 494 24 1589.8 -69.62 -99.25 -62.92
lymphoma MWCSP 91 1 9.8 85 1 11.3 -6.59 – +15.31
1000-a-0.6-d-0.5-e-0.25 MWCSP 66 1 2485.6 26 1 418.8 -60.61 – -83.15
500-a-0.62-d-0.5-e-0.25 MWCSP 7 1 7.5 6 1 9.4 -14.29 – +25.33
i104M2 RPCSTP 159 1 2.6 161 1 2.3 +1.26 – -11.54
i203M4 RPCSTP 459 1 341.9 440 1 92.8 -4.14 – -72.86
C20-A PCSTP 14 1 14.8 9 1 12.4 -35.71 – -16.22
D10-B PCSTP 297 1 935.1 264 1 654.3 -11.11 – -30.03
cc3-5nu PCSTP 38 1 1.1 74 1 1.0 +94.74 – -9.09
cc6-3nu PCSTP 264 8 833.9 283 4 424.5 +7.20 -50.00 -49.09
wo10-cr200-se8 HCDSTP 319 101 722.0 430 5 87.3 +34.80 -95.05 -87.91
wo11-cr200-se3 HCDSTP 724 83 2728.5 781 3 625.6 +7.87 -96.39 -77.07
wo12-cr100-se7 HCDSTP 89 1 2.1 86 1 1.4 -3.37 – -33.33
wo12-cr100-se9 HCDSTP 392 1 302.1 421 1 115.4 +7.40 – -61.80

sh. geom mean 107.48 8.09 89.35 104.04 5.13 39.57 -3.21 -36.52 -55.71

3.9 Using CPLEX as underlying LP solver

SCIP-Jack is an extension of SCIP and as such provides the branch-and-cut search, but re-
quires an external LP solver for solving the linear programming relaxations. Until now, we have
used SoPlex for this, which is the default solver employed by SCIP. However, SCIP provides
interfaces to many different LP solvers, among them the commercial ones. In this section we
shortly discuss the impact of exchanging the academic LP solver SoPlex for the commercial
solver CPLEX 12.61.

To this end, we selected two instances from most of the previously discussed test sets, one
where SCIP-Jack had a long running time, but solved it to optimality well before the time limit,
and one which was solved fast, but still needed at least one second (except for the SAP instances,
which were all solved in fractions of a second). By this selection we left space for improvements
as well as deteriorations when running SCIP-Jack with CPLEX as LP solver. A different LP

1http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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solver might lead to different optimal LP solutions being computed, which can change the overall
branch-and-cut process as we can observe in Table 12. There is much variation in the number
of cutting plane separation rounds at the root nodes, but stays almost the same on average.
On the other hand, the number of branch-and-bound nodes is reduced by 36.5 % in the shifted
geometric mean when using CPLEX. And finally, the solving time is smaller with CPLEX for
most of the instances, leading to a reduction of the average solving time by more than 55 %. We
want to note that these results may be biased by selecting the instances based on the results of
only one solver (and in particular by partly choosing exactly the instances SCIP-Jack seems
to have troubles with), but they definitely show a potential to speed up SCIP-Jack by using a
commercial LP solver.

4 From single core to distributed parallel

SCIP has two parallel extensions ParaSCIP [39] and FiberSCIP [40], which are built by
using the Ubiquity Generator Framework (UG) [40]. In order to parallelize a problem-specific
solver, users of SCIP can simply modify their developed plugins by adding a small glue code
and linking to one of the UG libraries. This glue code consists of an additional class with a
function that makes calls to include all SCIP plugins required for the sequential version of the
code. Importantly, no modification to the sequential version of the problem-specific solver is
required.

In this way, users obtain their own problem specific parallel optimization solver, which can
do parallel tree search on a distributed memory computing environment. The main features
of UG are: several ramp-up mechanisms (the ramp-up is the process from the begining of the
computation until all available solvers become busy), a dynamic load balancing mechanism for
parallel tree search and a check-pointing and restarting mechanism. For more details about the
parallelization provided by UG, see [39, 40].

We present computational results for the PUC test set from SteinLib. However, it must be
noted that the parallel version of SCIP-Jack can handle all of the variants presented throughout
this paper. The main purpose of the parallel runs is to provide optimal solutions to as many
instances as possible. As mentioned above, the parallelization of a problem-specific solver only
requires a small glue code. As such, the parallel version of SCIP-Jack is identical to the sequen-
tial version. Using this simple approach, it is possible to employ large supercomputing resources
to apply SCIP-Jack to solve computationally difficult Steiner tree problems. For the compu-
tations, we used clusters and supercomputers as they were available. The largest computation
performed for these experiments involved up to 864 cores, which was only required for eight
instances (bip52p, bip62u, bipa2p, bipa2u, cc11-2p, cc12-2p, cc3-12p, hc9p). How-
ever, all other computations were conducted with 192 or less solvers. In contrast to the previous
experiments, we used CPLEX 12.6 as the underlying LP solver. As a reference to the scalability
of ParaSCIP, the largest computation previously performed was an 80,000 cores run on Titan
at ORNL. We expect SCIP-Jack to also run on such a large scale computing environment,
though at this stage we have only conducted relatively small scale computational experiments.

Table 13 shows the results on the instances of the PUC test set as of 17th April 2015. We
list the number of nodes, edges, and terminals, as well as the best primal bound known at
the beginning of the challenge (August 2014), and the primal solution value obtained by our
experiments with the parallel version of SCIP-Jack, which employs the LP solver of CPLEX
12.6. Prior to the experiments performed using SCIP-Jack, 32 instances of the PUC test
set remained unsolved. Three of these instances have been solved by SCIP-Jack to proven
optimality, which have been underlined and marked with an asterisk in Table 13. For a further
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Table 13: Primal bound improvements on the PUC instances

instance |V | |E| |T | best SCIP-Jack instance |V | |E| |T | best SCIP-Jack

bip42p 1200 3982 200 24657 24657* cc3-5u 125 750 13 36 36*
bip42u 1200 3982 200 236 236* cc5-3p 243 1215 27 7299 7299*
bip52p 2200 7997 200 24535 24526 cc5-3u 243 1215 27 71 71*
bip52u 2200 7997 200 234 234 cc6-2p 64 192 12 3271 3271*
bip62p 1200 10002 200 22870 22843 cc6-2u 64 192 12 32 32*
bip62u 1200 10002 200 220 219 cc6-3p 729 4368 76 20456 20270*
bipa2p 3300 18073 300 35379 35326 cc6-3u 729 4368 76 197 197*
bipa2u 3300 18073 300 341 338 cc7-3p 2187 15308 222 57088 57117
bipe2p 550 5013 50 5616 5616* cc7-3u 2187 15308 222 552 552
bipe2u 550 5013 50 54 54* cc9-2p 512 2304 64 17296 17199
cc10-2p 1024 5120 135 35379 35227 cc9-2u 512 2304 64 167 167*
cc10-2u 1024 5120 135 342 343 hc10p 1024 5120 512 60494 59797
cc11-2p 2048 11263 244 63826 63636 hc10u 1024 5120 512 581 575
cc11-2u 2048 11263 244 614 618 hc11p 2048 11264 1024 119779 119689
cc12-2p 4096 24574 473 121106 122099 hc11u 2048 11264 1024 1154 1151
cc12-2u 4096 24574 473 1179 1184 hc12p 4096 24576 2048 236949 236080
cc3-10p 1000 13500 50 12860 12837 hc12u 4096 24576 2048 2275 2262
cc3-10u 1000 13500 50 125 126 hc6p 64 192 32 4003 4003*
cc3-11p 1331 19965 61 15609 15648 hc6u 64 192 32 39 39*
cc3-11u 1331 19965 61 153 153 hc7p 128 448 64 7905 7905*
cc3-12p 1728 28512 74 18838 18997 hc7u 128 448 64 77 77*
cc3-12u 1728 28512 74 186 187 hc8p 256 1024 128 15322 15322*
cc3-4p 64 288 8 2338 2338* hc8u 256 1024 128 148 148*
cc3-4u 64 288 8 23 23* hc9p 512 2304 256 30258 30242
cc3-5p 125 750 13 3661 3661* hc9u 512 2304 256 292 292

16 instances, SCIP-Jack improved the best known solution. All instances where the best known
primal bound has been improved are marked in bold. Finally, all previously solved instances of
the PUC test set have also been solved by SCIP-Jack to proven optimality, which have been
marked by an asterisk (without underline). This demonstrates an overall strong performance of
the parallel version of SCIP-Jack in solving the computationally difficult set of instances.

5 Conclusions

We have shown that embedding a 15-year old solver for Steiner trees into a state-of-the-art MIP
solving framework can have a significant impact in several dimensions. First, the amount of
problem specific code is notably reduced while at the same time the number of general solution
methods available, e.g., cutting planes, has increased and will be kept up-to-date just by the
continuous improvements in the framework. Furthermore, the opportunity to solve instances in
a massively parallel distributed memory environment has been added at minimal cost.

The use of a general MIP solver allows us to be extremely flexible with the model to be
solved. We were able to support solving ten variants of the Steiner tree problem with nearly the
same code, and the support of further restrictions in the model is straightforward. We attempted
to solve the open instances of the difficult PUC test set using the massively parallel extensions
included with SCIP. As a result, we were able to solve three previously unsolved instances and
improve the best known solution for another 16 instances. Still, there is potential for future
work to improve the performance of the solver. In particular, the inclusion of recently developed
reduction techniques is expected to further reduce the solution runtimes. Also, there are many
reduction techniques and heuristic approaches that can be employed to specific variants. Using
the plugin structure of SCIP we hope to include some of these heuristics and reduction techniques
in the future.

And finally, to the best of our knowledge this is the first time that a powerful exact Steiner
tree solver is available in source code to the scientific community. We hope that this will foster the
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use of Steiner trees in modelling real-world phenomena as has already been the case in genetics.
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A Proofs

This section is concerned with providing proofs to the Lemmata stated in the course of this
paper. First, the transformation used by SCIP-Jack to convert a given STP to an SAP is
specified. This transformation is well-known, see, e.g. [3], but we provide a formal proof since
our subsequent proofs re-use the same arguments. Then, for each transformation introduced
in this paper, a one-to-one correspondence between the solution sets of the original and the
transformed problem is proven as well as the linear relation between the respective solutions
values. This implies that all these problems can be solved on their transformed solution spaces.

Transformation 0 (STP to SAP).
Given an STP P = (V,E, T, c), construct an SAP P ′ = (V ′, A′, T ′, c′, r′) as follows:

1. Set V ′ := V , T ′ := T , A′ := {(v, w) ∈ V ′ × V ′ : {v, w} ∈ E}.

2. Define c′ : A′ → Q≥0 by c′a = c{v,w}, for a = (v, w) ∈ A′.

3. Choose a root r′ ∈ T ′ arbitrarily.
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Lemma 0 (STP to SAP). Let P = (V,E, T, c) be an STP and P ′ = (V ′, A′, T ′, c′) an SAP
obtained by applying Transformation 0 on P . Denote by S and S ′ the sets of solutions to P and
P ′ respectively. Then S ′ can be mapped bijectively onto S by applying

VS := {v ∈ V : v ∈ V ′S′} (22)

ES := {{v, w} ∈ E : (v, w) ∈ A′S′ or (w, v) ∈ A′S′} (23)

for (V ′S′ , A
′
S′) ∈ S ′, at equal costs.

Proof. First, it can be observed that (22) and (23) form indeed a mapping S ′ → S, since each
arc of a solution to P ′ is substituted by its undirected counterpart. To see the one-to-one
correspondence let S = (VS , ES) ∈ S and procede as follows:
Surjective. Initially set V ′S′ := VS and A′S′ := ∅. Traverse (VS , ES), e.g. using breadth-first
search, starting from r′ and add for each w ∈ VS visited from v ∈ VS the arc (v, w) to A′S′ .
S′ := (V ′S′ , A

′
S′) is a solution to P ′ and by applying (22) and (23), S is obtained.

Injective. S′ is the only solution to P ′ that is mapped by (22) and (23) to S: Each S̃′ ∈ S ′,
S̃′ 6= S′ contains at least one arc (v, w) such that (v, w) /∈ A′S′ and (w, v) /∈ A′S′ , since only
substituting arcs in A′S′ by there anti-parallel counterparts would not allow directed paths from
the root to all vertices. Therefore, S̃′ is not mapped onto S.
Finally, since for each {v, w} ∈ ES either (v, w) ∈ A′S′ or (w, v) ∈ A′S′ and vice versa, the costs
of S′ and S are equal.

A.1 Proof of Lemma 1 (NWSTP to SAP)

Proof. Proving that (8) and (9) form a bijection is equivalent to the procedure in the proof of
Lemma 0, since compared to the latter only the weights are altered. To acknowledge (10) one
readily observes that for each node of S′ except for the root there is exactly one incoming arc,
so: ∑

(v,w)∈A′
S′

c′(v,w) =
∑

(v,w)∈A′
S′

(
c{v,w} + pw

)
=

∑
{v,w}∈ES

c{v,w} +
∑
w∈VS

pw − pr′ ,

which implies (10).

A.2 Proof of Lemma 2 (RPCSTP to SAP)

Proof. To acknowledge that (13) and (14) constitute a mapping S ′ → S it can be observed that
first the root node is conserved and second the set of all arcs corresponding to edges in the
original graph (V,E) forms a tree. To prove that a bijection is given, let S = (VS , ES) ∈ S and
T = {t1, ..., ts} as defined in Transformation 2.
Surjective. Initially, set V ′S′ := VS and A′S′ := ∅. Analogously to the proof of Lemma 0, add for
each edge in ES an arc to A′S′ in such a way that finally there is for each v′ ∈ V ′S′ a directed path
from r′ to v′. Thereafter, for each i ∈ {1, ...s} set ai := (ti, t

′
i) if ti ∈ VS , otherwise ai := (r′, t′i)

and add ai to A′S′ . S
′ := (V ′S′ , A

′
S′) is a solution to P ′ and by applying (13) and (14), we obtain

S.
Injective. Define the set of all arcs of P ′ corresponding to the edges of P as A := {(v, w) ∈
A′ : {v, w} ∈ E} and accordingly AS′ := A′S′ ∩ A. Since (12) has been assumed, it holds that:
(ti, t

′
i) ∈ A′S′ ⇔ ti ∈ V ′S and (r′, t′i) ∈ A′S′ ⇔ ti /∈ V ′S . This implies that A′S′ is already determined

by AS′ . Now let S̃′ = (Ṽ ′S , Ã
′
S) ∈ S ′, S̃′ 6= S′. Consequently, there is at least one arc (v, w) ∈ Ã′S
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such that (w, v) /∈ AS′ and (w, v) /∈ AS′ and therefore is S̃′ not mapped to S.
Finally, using the above notation one observes that:∑

a∈A′
S′

c′a =
∑
a∈AS′

c′a +
∑

a∈A′
S′\AS′

c′a =
∑
e∈ES

ce +
∑

v∈V \VS

pv,

so the costs of S′ and S are equal.

A.3 Proof of Lemma 3 (PCSTP to rcSAP)

Proof. Likewise to the proof of Lemma 2 one observes that (17) and (18) constitute a mapping
S ′ → S. Let S = (VS , ES) ∈ S and T = {t1, ..., ts} defined as in Transformation 3.
Surjective. Initially, define V ′S′ := VS , A′S′ := {(r, ti0)}, with i0 := min {i | ti ∈ V ′S′}. Then
extend A′S′ analogously to the proof of Lemma 2. The so constructed S′ := (V ′S′ , A

′
S′) is a

solution to P ′ and applying (17) and (18) S is obtained.
Injective. Parallelly to the proof of Lemma 2 it can be shown that for a solution S̃′ 6= S′ to
P ′ there must be at least one arc (v, w) ∈ AS̃′ such that (v, w) /∈ AS′ and (w, v) /∈ AS′ with A

defined as in the proof of Lemma 2. Therefore it follows that S̃′ is not mapped to S.
The equality of the solution values of S and S′ can be seen likewise.

A.4 Proof of Lemma 4 (MWCS to rcSAP)

Proof. The one-to-one correspondence between the sets of solutions to P and P ′′ can be seen
analogously to the proof of Lemma 3.
To prove (21) let S = (VS , ES) be a solution to P and S′′ = (V ′′S′′ , A

′′
S′′) the corresponding solution

to P ′′, obtained by applying (19) and (20). Further, define A := {(v, w) ∈ A′′ : {v, w} ∈ E}.
First, one observes that for each v ∈ S such that pv ≤ 0 there is exactly one incoming arc
a ∈ AS′′ , so: ∑

v∈VS :pv≤0

pv = −
∑

a∈AS′′

c′′a. (24)

Second: ∑
v∈VS :pv>0

pv =
∑

v∈V :pv>0

pv −
∑

v∈V \VS :pv>0

pv =
∑

v∈V :pv>0

pv −
∑

a∈A′′S′′\AS′′

c′′a. (25)

Finally, adding (24) and (25) the equation:∑
v∈VS

pv =
∑

v∈V :pv>0

pv −
∑

a∈A′′S′′

c′′a (26)

is obtained, which coincides with (21).

B Detailed Computational Results

This section presents detailed instance-wise results of our experiments for all test sets discussed
in Sections 2 and 3. We list the original and the presolved problem size, i.e., number of nodes
|V |, arcs |A|, and terminals |T | as well as the preprocessing time (column t [s] in the Presolved
columns). Moreover, we show the Dual and Primal bound upon termination and the corresponding
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Gap in percent. If an instance was solved to optimality, we print the optimal value centered in
the bound columns, and omit the gap; we print “–” as gap if no primal bound was present at
the time of termination. Additionally, we list the number of cut separation rounds at the root
node (C), the number of branch-and-bound nodes (N), and the total solving time in seconds
(last column). The total solving time includes the preprocessing time. A timeout is marked by
“>” before the termination time. In case of RSMTP for which SCIP-Jack does not perform
preprocessing, we omit the statistics about the presolved model.

Table 14. Detailed computational results for the STP, test set SP.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

antiwheel5 10 30 5 10 30 5 0.0 7 5 1 0.0
design432 8 40 4 8 40 4 0.0 9 8 1 0.0
oddcycle3 6 18 3 6 18 3 0.0 4 3 1 0.0
oddwheel3 7 18 4 7 18 4 0.0 5 5 1 0.0
se03 13 42 4 13 42 4 0.0 12 4 1 0.0
w13c29 783 4524 406 783 4524 406 0.2 507 578 755 92518.8
w23c23 1081 6348 552 1081 6348 552 0.4 689 697 1.2 570 122 >129600.9
w3c571 3997 20556 2284 3997 20556 2284 1.9 2853 2854 0.0 3864 1 >129602.0

Table 15. Detailed computational results for the STP, test set I320.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

i320-001 320 960 8 120 472 8 0.0 2672 54 1 0.1
i320-002 320 960 8 152 614 8 0.0 2847 39 1 0.1
i320-003 320 960 8 166 646 8 0.0 2972 44 1 0.4
i320-004 320 960 8 145 592 8 0.0 2905 45 1 0.2
i320-005 320 960 8 151 612 8 0.0 2991 40 1 0.3
i320-011 320 3690 8 320 3686 8 0.1 2053 127 1 2.5
i320-012 320 3690 8 320 3690 8 0.1 1997 150 1 0.9
i320-013 320 3690 8 320 3690 8 0.1 2072 97 1 1.8
i320-014 320 3690 8 320 3690 8 0.1 2061 93 3 12.0
i320-015 320 3690 8 320 3690 8 0.1 2059 143 1 5.8
i320-021 320 102080 8 320 5006 8 0.2 1553 417 1 17.2
i320-022 320 102080 8 320 5010 8 0.5 1565 337 1 11.9
i320-023 320 102080 8 320 5008 8 0.3 1549 309 1 10.6
i320-024 320 102080 8 320 5008 8 0.5 1553 312 1 10.6
i320-025 320 102080 8 320 5006 8 0.3 1550 461 1 18.3
i320-031 320 1280 8 222 1040 8 0.0 2673 83 1 0.8
i320-032 320 1280 8 245 1118 8 0.0 2770 87 1 1.3
i320-033 320 1280 8 235 1104 8 0.0 2769 49 1 0.2
i320-034 320 1280 8 223 1052 8 0.0 2521 36 1 0.1
i320-035 320 1280 8 154 706 8 0.0 2385 36 1 0.2
i320-041 320 20416 8 320 20388 8 0.9 1707 281 1 9.2
i320-042 320 20416 8 320 19822 8 0.5 1682 135 1 5.7
i320-043 320 20416 8 319 17082 8 0.4 1723 197 1 25.4
i320-044 320 20416 8 320 19252 8 0.7 1681 154 1 5.2
i320-045 320 20416 8 320 20366 8 0.4 1686 89 1 3.9
i320-101 320 960 17 147 592 16 0.0 5548 26 1 0.1
i320-102 320 960 17 153 602 14 0.0 5556 35 1 0.5
i320-103 320 960 17 156 610 17 0.0 6239 25 1 0.1
i320-104 320 960 17 152 604 17 0.0 5703 23 1 0.5
i320-105 320 960 17 158 618 16 0.0 5928 38 1 0.8
i320-111 320 3690 17 320 3690 17 0.1 4273 81 7 35.6
i320-112 320 3690 17 320 3690 17 0.1 4213 85 159 66.7
i320-113 320 3690 17 320 3690 17 0.1 4205 83 53 44.7
i320-114 320 3690 17 320 3690 17 0.1 4104 86 5 28.8
i320-115 320 3690 17 319 3688 17 0.1 4238 77 3 9.3
i320-121 320 102080 17 320 101848 17 4.3 3321 304 1 85.0
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

i320-122 320 102080 17 320 101840 17 4.3 3314 386 1 89.6
i320-123 320 102080 17 320 101842 17 4.1 3332 564 1 119.8
i320-124 320 102080 17 320 101846 17 4.3 3323 380 1 95.5
i320-125 320 102080 17 320 101846 17 4.3 3340 599 1 122.3
i320-131 320 1280 17 250 1132 17 0.0 5255 40 1 1.2
i320-132 320 1280 17 249 1126 15 0.0 5052 61 1 0.6
i320-133 320 1280 17 240 1108 16 0.0 5125 57 1 1.0
i320-134 320 1280 17 241 1120 17 0.0 5272 30 1 0.6
i320-135 320 1280 17 254 1144 17 0.0 5342 73 1 8.7
i320-141 320 20416 17 320 20386 17 0.8 3606 151 491 799.7
i320-142 320 20416 17 320 20400 17 1.2 3567 139 22 151.1
i320-143 320 20416 17 320 20388 17 1.0 3561 156 7 127.8
i320-144 320 20416 17 320 20378 17 0.8 3512 114 1 7.9
i320-145 320 20416 17 320 20384 17 1.0 3601 136 363 440.8
i320-201 320 960 34 150 574 32 0.0 10044 33 1 0.3
i320-202 320 960 34 168 638 31 0.0 11223 31 1 1.8
i320-203 320 960 34 156 608 32 0.0 10148 18 1 0.2
i320-204 320 960 34 161 626 33 0.0 10275 26 1 0.6
i320-205 320 960 34 150 572 30 0.0 10573 21 1 0.2
i320-211 320 3690 34 320 3690 34 0.1 8039 68 204 150.3
i320-212 320 3690 34 320 3690 34 0.1 8044 60 137 114.4
i320-213 320 3690 34 320 3686 34 0.1 7984 69 96 123.5
i320-214 320 3690 34 319 3688 34 0.1 8046 105 1741 1330.7
i320-215 320 3690 34 319 3684 34 0.1 8015 76 3980 1841.8
i320-221 320 102080 34 320 101050 34 4.2 6679 335 29 1327.7
i320-222 320 102080 34 320 101040 34 4.2 6686 474 41 1228.8
i320-223 320 102080 34 320 101034 34 4.1 6695 318 177 3138.7
i320-224 320 102080 34 320 101036 34 4.3 6694 359 71 1546.4
i320-225 320 102080 34 320 101036 34 4.2 6691 341 59 1901.1
i320-231 320 1280 34 243 1116 32 0.1 9862 61 1 3.3
i320-232 320 1280 34 245 1120 34 0.0 9933 65 5 14.0
i320-233 320 1280 34 245 1124 34 0.0 9787 29 1 0.6
i320-234 320 1280 34 242 1110 34 0.0 9517 56 1 1.8
i320-235 320 1280 34 249 1126 34 0.0 9945 36 1 1.5
i320-241 320 20416 34 320 20240 34 1.0 7027 113 461 2261.5
i320-242 320 20416 34 320 20278 34 1.1 7035.51143 7072 0.5 113 1503 >7201.1
i320-243 320 20416 34 320 20268 34 1.2 7015.51741 7044 0.4 109 1804 >7201.2
i320-244 320 20416 34 320 20232 34 1.2 7042.57489 7078 0.5 112 2475 >7201.3
i320-245 320 20416 34 320 20228 34 1.1 7046 112 1217 3827.7
i320-301 320 960 80 155 564 58 0.0 23279 20 1 1.0
i320-302 320 960 80 157 566 54 0.0 23387 21 1 0.8
i320-303 320 960 80 161 592 59 0.0 22693 26 1 1.2
i320-304 320 960 80 141 542 46 0.0 23451 33 1 0.9
i320-305 320 960 80 136 502 56 0.0 22547 23 5 1.1
i320-311 320 3690 80 320 3648 80 0.1 17857.7228 17945 0.5 80 12632 >7200.1
i320-312 320 3690 80 320 3608 80 0.2 18034.4826 18122 0.5 72 12901 >7200.2
i320-313 320 3690 80 320 3600 80 0.2 17925.3527 17991 0.4 63 14346 >7200.2
i320-314 320 3690 80 320 3626 80 0.2 17957.2926 18104 0.8 74 9577 >7200.2
i320-315 320 3690 80 320 3642 80 0.1 17864.986 17987 0.7 67 9809 >7200.1
i320-321 320 102080 80 320 95960 80 3.9 15621.4971 15648 0.2 136 94 >7203.9
i320-322 320 102080 80 320 95962 80 4.0 15604.8195 15646 0.3 146 83 >7205.7
i320-323 320 102080 80 320 95952 80 3.9 15627.1891 15654 0.2 126 82 >7203.9
i320-324 320 102080 80 320 95988 80 4.0 15620.82 15667 0.3 129 116 >7205.6
i320-325 320 102080 80 320 95966 80 4.0 15620.3533 15649 0.2 148 76 >7205.0
i320-331 320 1280 80 251 1092 74 0.1 21517 47 11 27.2
i320-332 320 1280 80 247 1096 74 0.1 21674 27 3 4.2
i320-333 320 1280 80 258 1136 75 0.1 21339 31 5 7.6
i320-334 320 1280 80 255 1130 76 0.1 21415 22 1 1.9
i320-335 320 1280 80 254 1130 76 0.1 21378 47 5 9.6
i320-341 320 20416 80 320 19344 80 0.9 16160.2855 16312 0.9 79 363 >7201.0
i320-342 320 20416 80 320 19358 80 1.0 16158.675 16228 0.4 86 1582 >7201.2
i320-343 320 20416 80 320 19340 80 0.9 16178.5919 16318 0.9 77 761 >7201.1
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

i320-344 320 20416 80 320 19304 80 1.1 16184.2733 16302 0.7 78 716 >7201.2
i320-345 320 20416 80 320 19380 80 1.1 16156.3342 16289 0.8 83 412 >7201.3

Table 16. Detailed computational results for the STP, test set I640.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

i640-001 640 1920 9 314 1262 9 0.1 4033 54 1 0.7
i640-002 640 1920 9 301 1224 9 0.1 3588 45 1 0.4
i640-003 640 1920 9 301 1224 9 0.1 3438 29 1 0.3
i640-004 640 1920 9 302 1234 9 0.1 4000 77 1 0.8
i640-005 640 1920 9 318 1272 9 0.1 4006 61 1 0.6
i640-011 640 8270 9 640 8270 9 0.5 2392 176 1 2.6
i640-012 640 8270 9 640 8270 9 0.2 2465 176 1 7.1
i640-013 640 8270 9 640 8270 9 0.5 2399 186 1 4.2
i640-014 640 8270 9 640 8270 9 0.4 2171 82 1 1.3
i640-015 640 8270 9 640 8270 9 0.4 2347 191 5 13.2
i640-021 640 408960 9 640 11376 9 1.5 1749 910 1 223.1
i640-022 640 408960 9 640 11378 9 1.6 1756 627 1 132.2
i640-023 640 408960 9 640 11374 9 1.8 1754 677 1 19.0
i640-024 640 408960 9 640 11376 9 1.4 1751 652 1 150.4
i640-025 640 408960 9 640 11396 9 1.5 1745 837 1 203.8
i640-031 640 2560 9 483 2234 9 0.1 3278 86 1 1.0
i640-032 640 2560 9 475 2226 9 0.1 3187 91 1 0.5
i640-033 640 2560 9 484 2244 9 0.1 3260 116 1 1.2
i640-034 640 2560 9 478 2226 9 0.1 2953 59 1 0.9
i640-035 640 2560 9 478 2232 9 0.2 3292 108 1 1.4
i640-041 640 81792 9 640 81788 9 4.2 1897 245 1 69.3
i640-042 640 81792 9 640 80556 9 4.0 1934 355 259 575.8
i640-043 640 81792 9 640 81702 9 4.0 1931 370 185 464.2
i640-044 640 81792 9 640 81790 9 4.2 1938 353 259 670.2
i640-045 640 81792 9 640 80520 9 4.1 1866 305 1 62.2
i640-101 640 1920 25 320 1264 25 0.1 8764 50 1 2.2
i640-102 640 1920 25 312 1240 25 0.1 9109 31 1 0.5
i640-103 640 1920 25 305 1232 24 0.1 8819 48 1 0.9
i640-104 640 1920 25 301 1224 23 0.1 9040 42 1 1.1
i640-105 640 1920 25 324 1270 25 0.1 9623 67 5 16.7
i640-111 640 8270 25 640 8270 25 0.5 6167 112 375 375.4
i640-112 640 8270 25 640 8270 25 0.6 6304 100 127 296.5
i640-113 640 8270 25 640 8270 25 0.3 6249 111 879 1221.3
i640-114 640 8270 25 640 8270 25 0.3 6308 99 281 435.4
i640-115 640 8270 25 640 8270 25 0.6 6217 114 1165 1419.1
i640-121 640 408960 25 640 408416 25 32.4 4906 1146 1 1835.4
i640-122 640 408960 25 640 408422 25 33.9 4911 786 45 5810.0
i640-123 640 408960 25 640 408416 25 33.0 4913 897 29 6578.4
i640-124 640 408960 25 640 408416 25 35.0 4906 1008 19 4886.8
i640-125 640 408960 25 640 408422 25 34.0 4907.02083 4920 0.3 827 25 >7234.0
i640-131 640 2560 25 481 2234 25 0.2 8097 57 1 2.6
i640-132 640 2560 25 480 2228 24 0.1 8154 89 1 13.8
i640-133 640 2560 25 482 2236 25 0.1 8021 46 1 1.8
i640-134 640 2560 25 485 2244 25 0.1 7754 62 1 3.0
i640-135 640 2560 25 479 2226 25 0.1 7696 49 1 4.0
i640-141 640 81792 25 640 81714 25 7.1 5148.6372 5199 1.0 217 307 >7207.4
i640-142 640 81792 25 640 81722 25 7.2 5144.5473 5193 0.9 251 281 >7207.2
i640-143 640 81792 25 640 81732 25 7.4 5151.17333 5194 0.8 260 172 >7207.4
i640-144 640 81792 25 640 81716 25 7.3 5155.20996 5205 1.0 236 179 >7207.4
i640-145 640 81792 25 640 81726 25 7.2 5167.51435 5218 1.0 223 298 >7207.2
i640-201 640 1920 50 313 1244 47 0.1 16079 37 1 1.4
i640-202 640 1920 50 320 1252 48 0.1 16324 24 1 1.1
i640-203 640 1920 50 325 1272 47 0.1 16124 36 1 3.3
i640-204 640 1920 50 323 1268 48 0.1 16239 34 1 1.8
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

i640-205 640 1920 50 327 1276 48 0.1 16616 50 1 4.5
i640-211 640 8270 50 640 8270 50 0.6 11837.491 11991 1.3 99 1689 >7200.6
i640-212 640 8270 50 640 8270 50 0.6 11795 91 4729 7188.5
i640-213 640 8270 50 640 8268 50 0.6 11781.2798 11881 0.8 93 4953 >7200.6
i640-214 640 8270 50 640 8270 50 0.6 11777.0935 11898 1.0 88 2162 >7200.6
i640-215 640 8270 50 640 8262 50 0.6 11946.1458 12097 1.3 97 2714 >7200.6
i640-221 640 408960 50 640 406630 50 31.7 9782.83677 9821 0.4 444 5 >7235.2
i640-222 640 408960 50 640 406642 50 32.2 9768.47938 9806 0.4 422 5 >7235.8
i640-223 640 408960 50 640 406630 50 31.7 9777.26927 9811 0.3 445 4 >7236.1
i640-224 640 408960 50 640 406626 50 33.7 9774.44139 9805 0.3 470 6 >7238.9
i640-225 640 408960 50 640 406636 50 31.9 9774.87963 9807 0.3 418 4 >7236.0
i640-231 640 2560 50 492 2260 50 0.2 15014 75 53 81.5
i640-232 640 2560 50 493 2260 49 0.1 14630 60 1 20.5
i640-233 640 2560 50 506 2282 47 0.2 14797 104 5 61.1
i640-234 640 2560 50 486 2232 49 0.1 15203 36 1 3.3
i640-235 640 2560 50 484 2244 50 0.1 14803 103 77 149.3
i640-241 640 81792 50 640 81398 50 7.1 10142.2037 10230 0.9 197 44 >7207.2
i640-242 640 81792 50 640 81410 50 7.2 10111.9081 10195 0.8 172 57 >7207.3
i640-243 640 81792 50 640 81422 50 7.3 10140.5972 10215 0.7 176 45 >7208.1
i640-244 640 81792 50 640 81366 50 7.4 10140.822 10263 1.2 180 34 >7208.1
i640-245 640 81792 50 640 81424 50 7.0 10141.6661 10239 1.0 187 40 >7207.1
i640-301 640 1920 160 335 1234 124 0.1 45005 47 1 4.3
i640-302 640 1920 160 298 1144 110 0.1 45736 33 1 4.5
i640-303 640 1920 160 341 1262 126 0.2 44922 20 1 1.3
i640-304 640 1920 160 329 1216 127 0.2 46233 31 1 3.9
i640-305 640 1920 160 299 1114 116 0.2 45902 26 1 4.2
i640-311 640 8270 160 640 8070 160 0.7 35311.4404 35889 1.6 91 680 >7200.7
i640-312 640 8270 160 639 8064 160 0.7 35316.7338 35903 1.7 80 1522 >7200.7
i640-313 640 8270 160 640 8086 160 0.5 35209.6647 35553 1.0 81 1927 >7200.5
i640-314 640 8270 160 640 8076 160 0.7 35137.1839 35703 1.6 68 1958 >7200.7
i640-315 640 8270 160 640 8062 160 0.7 35309.7281 35720 1.2 100 2276 >7200.8
i640-321 640 408960 160 640 383906 160 29.3 30991.775 31126 0.4 163 2 >7237.2
i640-322 640 408960 160 640 383924 160 29.2 30985.6518 31127 0.5 145 3 >7229.3
i640-323 640 408960 160 640 383896 160 31.2 30998.2544 31130 0.4 152 1 >7234.3
i640-324 640 408960 160 640 383940 160 29.2 30997.4746 31100 0.3 162 2 >7236.6
i640-325 640 408960 160 640 383940 160 30.5 30986.5479 31092 0.3 170 1 >7245.3
i640-331 640 2560 160 489 2208 146 0.3 42796 102 270 173.6
i640-332 640 2560 160 504 2258 152 0.2 42548 85 39 94.5
i640-333 640 2560 160 502 2232 147 0.3 42345 102 285 242.6
i640-334 640 2560 160 511 2276 155 0.3 42768 45 815 563.5
i640-335 640 2560 160 516 2294 153 0.1 43035 78 404 308.0
i640-341 640 81792 160 640 77124 160 6.3 31855.8661 32108 0.8 95 11 >7208.7
i640-342 640 81792 160 640 76946 160 6.4 31807.0506 31994 0.6 125 19 >7206.7
i640-343 640 81792 160 640 77022 160 6.6 31821.1132 32049 0.7 99 14 >7206.6
i640-344 640 81792 160 640 77252 160 6.4 31820.7127 32056 0.7 100 13 >7209.7
i640-345 640 81792 160 640 77144 160 6.6 31806.7002 32048 0.8 103 22 >7209.2

Table 17. Detailed computational results for the STP, test set PUC.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

bip42p 1200 7964 200 990 7236 200 1.1 24463.3338 24703 1.0 52 10122 >7201.2
bip42u 1200 7964 200 990 7544 200 0.6 233.004998 237 1.7 39 8626 >7200.7
bip52p 2200 15994 200 1819 14676 200 2.9 24226.5605 24688 1.9 59 3422 >7203.2
bip52u 2200 15994 200 1819 15226 200 1.8 229.625821 234 1.9 56 1756 >7201.8
bip62p 1200 20004 200 1199 20000 200 1.7 22458.1748 23026 2.5 75 285 >7202.2
bip62u 1200 20004 200 1199 20002 200 1.2 213.774582 221 3.4 99 535 >7201.2
bipa2p 3300 36146 300 3140 35594 300 8.6 34693.3718 35938 3.6 89 32 >7211.6
bipa2u 3300 36146 300 3140 35826 300 4.9 329.455373 343 4.1 135 22 >7205.0
bipe2p 550 10026 50 550 10026 50 0.7 5585.6418 5616 0.5 173 18611 >7200.7
bipe2u 550 10026 50 550 10026 50 0.6 54 24052 83 5584.0
cc10-2p 1024 10240 135 1024 10240 135 0.9 34478.2417 35929 4.2 137 1 >7202.0
cc10-2u 1024 10240 135 1024 10240 135 0.7 334.237404 345 3.2 153 1 >7201.8
cc11-2p 2048 22526 244 2048 22526 244 3.0 62116.7127 64691 4.1 113 1 >7204.0
cc11-2u 2048 22526 244 2048 22526 244 1.9 602.515847 622 3.2 151 1 >7201.9
cc12-2p 4096 49148 473 4096 49148 473 12.0 118443.08 123824 4.5 72 1 >7212.5
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

cc12-2u 4096 49148 473 4096 49148 473 7.0 1148.9518 1215 5.7 82 1 >7207.6
cc3-10p 1000 27000 50 1000 27000 50 1.3 12136.2552 13166 8.5 185 1 >7201.7
cc3-10u 1000 27000 50 1000 27000 50 1.0 117.352873 128 9.1 271 1 >7201.1
cc3-11p 1331 39930 61 1331 39930 61 2.3 14721.0475 16075 9.2 170 1 >7203.1
cc3-11u 1331 39930 61 1331 39930 61 1.7 143.103992 158 10.4 236 1 >7201.8
cc3-12p 1728 57024 74 1728 57024 74 4.1 17752.6768 19406 9.3 135 1 >7204.3
cc3-12u 1728 57024 74 1728 57024 74 3.2 171.666667 188 9.5 176 1 >7203.3
cc3-4p 64 576 8 64 576 8 0.0 2338 159 22265 552.5
cc3-4u 64 576 8 64 576 8 0.0 23 159 935 87.8
cc3-5p 125 1500 13 125 1500 13 0.0 3418.89492 3661 7.1 159 16636 >7200.0
cc3-5u 125 1500 13 125 1500 13 0.0 33.0769691 36 8.8 186 18423 >7200.0
cc5-3p 243 2430 27 243 2430 27 0.1 7153.63969 7308 2.2 178 1770 >7200.1
cc5-3u 243 2430 27 243 2430 27 0.1 69.2272065 71 2.6 252 1155 >7200.1
cc6-2p 64 384 12 64 384 12 0.0 3271 73 593 29.7
cc6-2u 64 384 12 64 384 12 0.0 32 80 19 12.9
cc6-3p 729 8736 76 729 8736 76 0.3 20131.6849 20544 2.0 329 42 >7200.5
cc6-3u 729 8736 76 729 8736 76 0.4 195.562252 201 2.8 391 1 >7200.4
cc7-3p 2187 30616 222 2187 30616 222 3.8 55258.9195 58079 5.1 88 1 >7203.8
cc7-3u 2187 30616 222 2187 30616 222 2.2 535.609797 563 5.1 100 1 >7202.3
cc9-2p 512 4608 64 512 4608 64 0.3 16868.6735 17436 3.4 191 1 >7200.3
cc9-2u 512 4608 64 512 4608 64 0.2 163.53675 172 5.2 189 1 >7203.1
hc10p 1024 10240 512 1024 10240 512 1.1 59220.5539 60999 3.0 58 76 >7201.1
hc10u 1024 10240 512 1024 10240 512 0.6 567.777778 591 4.1 109 4 >7200.6
hc11p 2048 22528 1024 2048 22528 1024 3.2 117382.476 121632 3.6 59 1 >7203.3
hc11u 2048 22528 1024 2048 22528 1024 1.9 1124.4254 1195 6.3 37 1 >7202.1
hc12p 4096 49152 2048 4096 49152 2048 13.8 232375.793 245016 5.4 28 1 >7214.2
hc12u 4096 49152 2048 4096 49152 2048 7.6 2217.66667 2368 6.8 29 1 >7208.4
hc6p 64 384 32 64 384 32 0.0 4003 50 17443 128.7
hc6u 64 384 32 64 384 32 0.0 39 60 6919 65.8
hc7p 128 896 64 128 896 64 0.0 7779.21214 7905 1.6 47 224077 >7200.0
hc7u 128 896 64 128 896 64 0.0 74.1012897 77 3.9 159 100408 >7200.0
hc8p 256 2048 128 256 2048 128 0.1 15155.2576 15322 1.1 62 21684 >7200.1
hc8u 256 2048 128 256 2048 128 0.0 145.173838 148 1.9 87 8447 >7200.0
hc9p 512 4608 256 512 4608 256 0.3 29908.5709 30317 1.4 56 638 >7200.3
hc9u 512 4608 256 512 4608 256 0.2 286.875 292 1.8 191 105 >7200.2

Table 18. Detailed computational results for the STP, test set vienna-i-advanced.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

I001a 14675 44110 941 12786 39572 922 289.0 55014956.6 55295701 0.5 314 1 >7490.5
I002a 23800 71516 1282 21012 64822 1266 951.7 57291696.6 58570109 2.2 79 1 >8155.2
I003a 16270 47838 2336 13705 41494 2301 386.2 96464083.9 96576382 0.1 63 1 >7586.2
I004a 867 2476 263 646 1830 239 0.9 42990860 57 1 6.8
I005a 1677 4860 491 1191 3478 426 2.4 53974585 54 1 17.0
I006a 13339 39064 1842 11592 34920 1820 224.9 136159015 136198404 0.0 121 1 >7425.0
I007a 6873 20598 599 5959 18368 594 65.6 37370196 647 1 2981.7
I008a 6522 19258 708 5546 16920 705 56.3 33153078 118 1 2702.3
I009a 14977 44870 1053 13004 40174 1041 319.7 47997891.7 48395828 0.8 207 1 >7521.3
I010a 13041 39090 782 10702 33344 762 227.8 207874799 207889674 0.0 397 1 >7428.8
I011a 9298 27370 1202 7547 23070 1181 95.2 63848241 114 19 2338.8
I012a 3500 10428 387 2434 7674 371 13.0 20593258 96 1 166.0
I013a 7147 21216 670 5814 17808 653 72.1 37689678 344 1 2314.4
I014a 3577 10622 364 2561 8038 353 13.2 19455897 134 1 51.9
I015a 20573 61082 2119 16756 51760 2100 518.0 145944116 146208119 0.2 84 1 >7718.0
I016a 27214 79648 3434 22687 68534 3378 958.2 164268459 165104658 0.5 50 1 >8158.3
I017a 7571 23142 386 6649 20940 384 67.5 19021186 291 1 792.5
I018a 12258 36028 1549 10237 31070 1540 170.8 67254075.8 67328733 0.1 160 1 >7370.8
I019a 11693 35248 732 9123 29050 727 149.7 49497149.3 49578991 0.2 232 1 >7350.5
I020a 6405 19128 508 4785 15136 498 49.7 24770758 123 1 574.0
I021a 5195 15722 295 3730 12086 289 29.2 17025666 151 1 685.5
I022a 8869 27102 356 7581 23968 354 108.4 24534245.8 24538643 0.0 606 1 >7308.9
I023a 13724 41726 403 12365 38428 393 259.3 17290518.8 17381764 0.5 1084 1 >7459.9
I024a 32357 96500 2511 27449 84872 2482 1413.4 165323708 170528288 3.1 9 1 >8622.7
I025a 10055 29922 833 7729 24248 828 125.7 232789880 232792769 0.0 146 1 >7325.7

cont. next page
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

I026a 18155 53136 2661 14975 45352 2618 403.1 927806877 928050138 0.0 78 1 >7603.2
I027a 40772 121110 3490 33309 103138 3453 2286.4 971230677 976868278 0.6 63 1 >9486.5
I028a 43690 132922 1597 38588 120938 1588 2826.1 379208507 384102366 1.3 9 1 >10034.6
I029a 32979 99254 1946 27367 85586 1928 1564.0 481997040 492250107 2.1 6 1 >8772.6
I030a 12941 38558 1093 9820 30820 1081 214.9 321646787 127 1 2968.2
I031a 21054 62820 1832 16470 51584 1783 560.4 577739460 578293199 0.1 147 1 >7760.4
I032a 21345 62706 2454 17484 53236 2398 534.5 143932244 144196409 0.2 152 1 >7734.8
I033a 8500 25400 548 7093 21958 541 82.1 31604828 169 1 1379.4
I034a 9128 27336 606 6976 22028 592 96.6 28842122 271 1 4600.9
I035a 13129 38840 1428 10746 32960 1415 215.9 102024413 102037997 0.0 150 1 >7417.6
I036a 17036 50964 1258 13669 42908 1237 319.6 103987479 104931471 0.9 71 1 >7521.8
I037a 5886 17738 392 4603 14694 390 34.1 29768713 136 1 967.7
I038a 7733 22956 798 6187 19168 782 63.8 48470499 124 5 2150.2
I039a 3719 11066 306 2973 9244 299 15.9 22582804 133 1 281.9
I040a 18837 56312 1501 15275 47716 1482 501.4 87063311.3 88139862 1.2 48 1 >7704.2
I041a 22466 67736 1014 18106 57260 998 553.9 60474335.1 61290862 1.4 128 1 >7756.1
I042a 23925 71612 1923 19672 61338 1901 729.2 138112322 144851591 4.9 9 1 >7933.9
I043a 4511 13480 335 3582 11228 333 19.9 24407752 141 1 386.3
I044a 31500 93514 2954 25870 79936 2916 1371.8 230608587 232169220 0.7 63 1 >8571.9
I045a 6775 20454 378 5523 17444 376 54.9 23565890 344 1 436.9
I046a 32376 96108 3154 26144 81110 3116 1314.5 232632113 233831973 0.5 86 1 >8514.7
I047a 10622 30880 1791 8965 26812 1763 133.5 121059462 121097024 0.0 128 1 >7333.5
I048a 4920 14712 320 3735 11864 309 25.8 15853402 143 1 361.4
I049a 15045 45426 821 11921 38062 811 230.1 35198857.4 35291465 0.3 211 1 >7431.3
I050a 17787 52352 2232 14815 45062 2206 469.6 176956007 177303855 0.2 79 1 >7669.6
I051a 12130 35784 1337 10082 30812 1319 162.0 86007743.3 86019257 0.0 159 1 >7362.0
I052a 160 474 23 93 282 17 0.0 2091965 20 1 0.1
I053a 693 2046 102 533 1656 99 0.6 7323696 58 1 1.6
I054a 540 1634 25 396 1278 22 0.2 15841596 92 1 1.5
I055a 4701 13958 483 3554 11044 466 24.8 144164924 126 1 238.0
I056a 290 878 34 190 602 32 0.0 14171206 33 1 0.2
I057a 13078 38736 1346 10604 32706 1320 218.8 412746415 197 7 4638.4
I058a 7877 23314 997 6035 18678 968 65.5 305024188 140 1 805.1
I059a 2800 8314 286 1803 5640 272 9.8 107617854 97 1 34.3
I060a 18991 57072 1158 14709 46792 1150 459.5 335323138 337307756 0.6 66 1 >7661.6
I061a 20958 62930 1337 17786 55432 1328 555.4 362553620 363049760 0.1 70 1 >7758.3
I062a 23714 70610 2812 18044 56522 2753 641.6 791642678 792976980 0.2 105 1 >7841.6
I063a 9600 28084 1291 7602 23088 1260 112.8 459801704 165 8 3956.2
I064a 31712 93422 3182 27514 83506 3168 1405.0 185165176 186871758 0.9 44 1 >8605.1
I065a 1185 3512 119 918 2852 116 1.4 32965718 76 1 44.7
I066a 4551 13642 417 3348 10690 410 18.8 174219813 155 1 223.8
I067a 10318 31176 579 8626 27118 565 111.6 175540750 407 1 6761.1
I068a 12191 36046 1302 9481 29272 1275 182.5 420730046 171 7 2240.7
I069a 3508 10312 452 2858 8716 446 11.8 135161583 103 1 519.8
I070a 6739 20128 511 5255 16636 507 44.7 136700139 150 1 2676.3
I071a 12772 37772 1281 10214 31572 1260 170.8 382539099 134 1 1620.1
I072a 11628 34822 851 8819 28104 844 149.3 289019226 173 1 5663.3
I073a 7510 21746 1337 6219 18480 1280 74.7 663004987 114 1 2892.1
I074a 4441 13124 548 3290 10130 528 20.4 165573383 116 1 255.6
I075a 23195 68724 2498 18596 57572 2449 572.3 814660646 815423018 0.1 97 1 >7772.4
I076a 4909 14536 498 3685 11496 488 29.1 166249692 212 1 1268.4
I077a 9153 26726 1490 8048 24012 1474 109.8 472503150 127 3 6931.1
I078a 5864 17324 692 5004 15186 686 40.8 185525490 130 13 1002.1
I079a 7933 23614 497 5954 18768 491 76.1 150497192 150509740 0.0 266 1 >7276.4
I080a 7589 22512 499 5717 17866 494 66.7 164299652 155 1 1653.9
I081a 10747 32058 751 8416 26384 736 126.7 247459910 247530140 0.0 151 1 >7329.3
I082a 5850 17386 435 4290 13508 427 41.2 147407632 165 1 1477.2
I083a 34221 100602 4138 27216 83082 4034 1563.6 1401751030 1405645440 0.3 87 1 >8763.6
I084a 17050 50402 1918 13341 41172 1887 386.5 627079904 627196185 0.0 153 1 >7587.5
I085a 2780 8246 243 2068 6492 237 6.6 80628079 116 1 91.5

Table 19. Detailed computational results for the SAP, test set gene.
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum C N t [s]

gene41x 335 910 43 193 626 43 0.0 126 10 1 0.1
gene42 335 912 43 190 618 43 0.0 126 11 1 0.1
gene61a 395 1024 82 218 668 80 0.0 205 7 1 0.1
gene61b 570 1616 82 365 1204 80 0.0 199 14 1 0.1
gene61c 549 1580 82 369 1220 82 0.0 196 16 1 0.1
gene61f 412 1104 82 240 752 80 0.0 198 9 1 0.1

Table 20. Detailed computational results for the SAP, test set geneh.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum C N t [s]

gene425 425 1108 86 237 730 84 0.0 214 7 1 0.1
gene442 442 1188 86 261 820 84 0.0 207 8 1 0.1
gene575 575 1648 86 381 1260 86 0.0 207 22 1 0.2
gene602 602 1716 86 393 1298 84 0.0 209 15 1 0.1

Table 21. Detailed computational results for the SAP, test set gene2002.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum C N t [s]

microtri1 347 952 47 200 650 47 0.0 128 9 1 0.1
microtri3 400 1112 47 256 824 46 0.0 146 19 1 0.1
microtri5 416 1124 47 246 782 46 0.0 150 16 1 0.1
microtri6 419 1164 47 265 856 46 0.0 146 17 1 0.1
microtri7 437 1172 47 265 826 46 0.0 159 11 1 0.1
microtri8 484 1412 47 324 1092 46 0.0 151 26 1 0.2
microtri9 297 792 47 171 538 46 0.0 131 9 1 0.0
microtri10 319 836 47 175 546 46 0.0 136 9 1 0.1
microtri11 382 1024 47 228 716 47 0.0 152 9 1 0.1

Table 22. Detailed computational results for the RSMTP, test set estein1.

Instance |V | |A| |T | Optimum C N t [s]

estein1-00 15 44 5 1.87 7 1 0.0
estein1-01 12 34 6 1.64 6 1 0.0
estein1-02 28 90 7 2.36 15 1 0.0
estein1-03 64 224 8 2.54 25 1 0.2
estein1-04 12 34 6 2.26 7 1 0.0
estein1-05 24 76 12 2.42 8 1 0.0
estein1-06 30 98 12 2.48 7 1 0.0
estein1-07 24 74 12 2.36 11 1 0.0
estein1-08 15 44 7 1.64 4 1 0.0
estein1-09 36 120 6 1.77 17 1 0.0
estein1-10 30 98 6 1.44 6 1 0.0
estein1-11 27 84 9 1.8 11 1 0.0
estein1-12 42 142 9 1.5 14 1 0.0
estein1-13 36 120 12 2.6 11 1 0.0
estein1-14 100 360 14 1.48 24 1 0.4
estein1-15 9 24 3 1.6 6 1 0.0
estein1-16 48 164 10 2 17 1 0.1
estein1-17 182 674 62 4.04 19 1 0.3
estein1-18 168 620 14 1.88 27 1 0.7
estein1-19 6 14 3 1.12 2 1 0.0
estein1-20 15 44 5 1.92 10 1 0.0
estein1-21 16 48 4 0.63 7 1 0.0
estein1-22 16 48 4 0.65 8 1 0.0
estein1-23 16 48 4 0.3 8 1 0.0
estein1-24 9 24 3 0.23 5 1 0.0
estein1-25 9 24 3 0.15 4 1 0.0
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Instance |V | |A| |T | Optimum C N t [s]

estein1-26 16 48 4 1.33 6 1 0.0
estein1-27 12 34 4 0.24 6 1 0.0
estein1-28 9 24 3 2 4 1 0.0
estein1-29 28 90 12 1.1 10 1 0.0
estein1-30 130 474 14 2.59 26 1 0.8
estein1-31 195 724 19 3.12 40 1 2.3
estein1-32 132 482 18 2.68 31 1 0.6
estein1-33 272 1022 19 2.41 49 1 5.0
estein1-34 240 898 18 1.51 44 1 1.7
estein1-35 6 14 4 0.9 4 1 0.0
estein1-36 49 168 8 0.9 20 1 0.0
estein1-37 100 360 14 1.66 26 1 0.3
estein1-38 100 360 14 1.66 23 1 0.3
estein1-39 64 224 10 1.55 25 1 0.1
estein1-40 144 526 20 2.24 24 1 0.5
estein1-41 81 288 15 1.53 21 1 0.2
estein1-42 195 724 16 2.55 43 1 1.6
estein1-43 196 728 17 2.52 53 1 2.7
estein1-44 270 1014 19 2.2 52 1 2.7
estein1-45 16 48 16 1.5 1 1 0.0

Table 23. Detailed computational results for the RSMTP, test set estein10.

Instance |V | |A| |T | Optimum C N t [s]

estein10-0 100 360 10 2.292075 34 1 0.6
estein10-10 100 360 10 2.223952 33 1 0.5
estein10-11 100 360 10 1.962632 29 1 0.2
estein10-12 100 360 10 1.948392 24 1 0.2
estein10-13 100 360 10 2.185612 27 1 0.4
estein10-14 100 360 10 1.864192 41 1 0.3
estein10-1 100 360 10 1.913409 39 1 0.5
estein10-2 100 360 10 2.600368 32 1 0.3
estein10-3 100 360 10 2.046109 45 1 0.3
estein10-4 100 360 10 1.881893 22 1 0.1
estein10-5 100 360 10 2.654077 44 1 0.4
estein10-6 100 360 10 2.602508 37 1 0.2
estein10-7 100 360 10 2.50562 37 1 0.4
estein10-8 100 360 10 2.206235 48 1 0.3
estein10-9 100 360 10 2.39361 26 1 0.2

Table 24. Detailed computational results for the RSMTP, test set estein20.

Instance |V | |A| |T | Optimum C N t [s]

estein20-0 400 1520 20 3.370387 49 1 3.9
estein20-10 400 1520 20 2.712391 79 1 4.8
estein20-11 400 1520 20 3.04514 75 1 9.6
estein20-12 400 1520 20 3.443865 63 1 2.5
estein20-13 400 1520 20 3.406237 115 1 13.9
estein20-14 400 1520 20 3.230378 100 1 10.2
estein20-1 400 1520 20 3.263948 56 1 3.7
estein20-2 400 1520 20 2.784744 63 1 1.9
estein20-3 400 1520 20 2.762439 87 11 25.0
estein20-4 400 1520 20 3.403317 82 5 16.2
estein20-5 400 1520 20 3.601423 63 1 4.1
estein20-6 400 1520 20 3.493487 102 1 12.2
estein20-7 400 1520 20 3.801638 85 3 12.4
estein20-8 400 1520 20 3.673995 72 1 5.8
estein20-9 400 1520 20 3.402477 80 1 8.7

Table 25. Detailed computational results for the RSMTP, test set estein30.
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Instance |V | |A| |T | Optimum C N t [s]

estein30-0 900 3480 30 4.069296 185 1 119.6
estein30-10 900 3480 30 4.164799 144 1 136.2
estein30-11 900 3480 30 3.841669 103 1 42.8
estein30-12 900 3480 30 3.740663 130 1 66.9
estein30-13 900 3480 30 4.2897 107 1 65.2
estein30-14 900 3480 30 4.303555 173 1 213.0
estein30-1 900 3480 30 4.090005 150 1 105.6
estein30-2 900 3480 30 4.312045 202 1 288.9
estein30-3 900 3480 30 4.215096 269 1 293.9
estein30-4 900 3480 30 4.173974 195 1 161.6
estein30-5 900 3480 30 3.995514 262 1 266.7
estein30-6 900 3480 30 4.376138 131 1 82.2
estein30-7 900 3480 30 4.169121 205 1 248.4
estein30-8 900 3480 30 3.713363 198 1 124.6
estein30-9 900 3480 30 4.268661 109 1 78.2

Table 26. Detailed computational results for the RSMTP, test set estein40.

Instance |V | |A| |T | Optimum C N t [s]

estein40-0 1600 6240 40 4.484154 148 1 425.3
estein40-10 1600 6240 40 4.673421 222 1 1545.8
estein40-11 1600 6240 40 4.384339 184 1 702.9
estein40-12 1600 6240 40 5.188453 222 1 673.9
estein40-13 1600 6240 40 4.916698 163 1 554.9
estein40-14 1600 6240 40 5.082803 222 1 1024.1
estein40-1 1600 6240 40 4.681131 210 1 745.0
estein40-2 1600 6240 40 4.997415 257 1 1480.5
estein40-3 1600 6240 40 4.528989 272 1 970.2
estein40-4 1600 6240 40 5.194038 350 2667 46589.2
estein40-5 1600 6240 40 4.97534 295 1 839.3
estein40-6 1600 6240 40 4.563901 188 1 491.7
estein40-7 1600 6240 40 4.874601 286 1 1500.4
estein40-8 1600 6240 40 5.176179 269 1 2633.1
estein40-9 1600 6240 40 5.713686 215 1 1391.5

Table 27. Detailed computational results for the RSMTP, test set estein50.

Instance |V | |A| |T | Dual Primal Gap% C N t [s]

estein50-0 2500 9800 50 5.494867 222 1 2376.5
estein50-10 2500 9800 50 5.25225975 5.253293 0.0 378 1 >7200.2
estein50-11 2500 9800 50 5.3137051 5.343239 0.6 350 1 >7200.0
estein50-12 2500 9800 50 5.389099 301 1 4462.9
estein50-13 2500 9800 50 5.34799157 5.360222 0.2 409 1 >7200.0
estein50-14 2500 9800 50 5.218085 213 1 1966.4
estein50-1 2500 9800 50 5.548422 344 1 5744.6
estein50-2 2500 9800 50 5.469105 356 1 6852.8
estein50-3 2500 9800 50 5.153576 189 1 1141.0
estein50-4 2500 9800 50 5.518601 238 1 1778.4
estein50-5 2500 9800 50 5.58043 275 1 6292.8
estein50-6 2500 9800 50 4.97961005 4.999921 0.4 330 1 >7202.8
estein50-7 2500 9800 50 5.375465 172 1 848.2
estein50-8 2500 9800 50 5.34430057 5.345677 0.0 348 28 >7200.1
estein50-9 2500 9800 50 5.403795 270 1 2949.8

Table 28. Detailed computational results for the RSMTP, test set estein60.

Instance |V | |A| |T | Dual Primal Gap% C N t [s]

estein60-0 3600 14160 60 5.376143 285 1 6283.3
estein60-10 3600 14160 60 5.60674269 5.631764 0.4 257 1 >7200.1
estein60-11 3600 14160 60 5.91373357 5.99359 1.4 293 1 >7200.5
estein60-12 3600 14160 60 5.95716839 6.141861 3.1 320 1 >7204.6
estein60-13 3600 14160 60 5.59642276 5.603556 0.1 312 1 >7200.3
estein60-14 3600 14160 60 5.66210571 5.662257 0.0 383 1 >7200.1

cont. next page
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Instance |V | |A| |T | Dual Primal Gap% C N t [s]

estein60-1 3600 14160 60 5.51154626 5.548722 0.7 281 1 >7200.1
estein60-2 3600 14160 60 5.65366654 5.656678 0.1 309 1 >7200.2
estein60-3 3600 14160 60 5.44595966 5.561215 2.1 353 1 >7200.0
estein60-4 3600 14160 60 5.45561303 5.470499 0.3 305 1 >7200.0
estein60-5 3600 14160 60 6.03356772 6.042196 0.1 258 1 >7200.0
estein60-6 3600 14160 60 5.83580351 5.897848 1.1 266 1 >7200.5
estein60-7 3600 14160 60 5.80358472 5.816953 0.2 266 1 >7200.3
estein60-8 3600 14160 60 5.54060717 5.594983 1.0 327 1 >7200.0
estein60-9 3600 14160 60 5.76131581 5.762446 0.0 317 1 >7200.3

Table 29. Detailed computational results for the RSMTP, test set solids.

Instance |V | |A| |T | Optimum C N t [s]

cube 8 24 8 7 1 1 0.0
dodecahedron 343 1764 20 7.69398 138 14249 6269.7
icosahedron 125 600 12 20.944264 42 7 5.2
octahedron 27 108 6 6 1 1 0.0
tetrahedron 18 66 4 2.682521 5 1 0.0

Table 30. Detailed computational results for the RSMTP, test set cancer.

Instance |V | |A| |T | Dual Primal Gap% C N t [s]

cancer1 4D 600 3820 20 28 86 1 0.9
cancer2 4D 256 1536 20 21 8 1 0.0
cancer3 6D 20580 197078 110 146 218 1 191.2
cancer4 6D 34560 340416 93 136 1291 1 51344.7
cancer5 6D 8000 74400 48 69 745 1 7309.8
cancer6 6D 5120 46592 50 55 406 1 17.8
cancer7 6D 21000 203300 109 140 516 1 2834.5
cancer8 6D 8640 80064 77 89 226 1 55.2
cancer9 6D 6000 54800 46 59 133 1 14.2
cancer10 6D 10000 94000 82 92 127 1 21.6
cancer11 8D 4762800 64777860 75 – – – 0 1 memout
cancer12 8D 918750 12031250 58 87.5882353 113 29.0 189 1 >136341.2
cancer13 8D 86400 1039680 70 88 618 1 3800.1
cancer14 8D 27648 308736 54 63 131 1 106.0

Table 31. Detailed computational results for the PCSTP, test set JMP.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum C N t [s]

K100.10 115 722 15 112 716 15 0.0 133567 8 1 0.0
K100.1 112 762 12 109 750 12 0.0 124108 10 1 0.0
K100.2 114 756 14 106 724 14 0.0 200262 20 1 0.8
K100.3 111 874 11 102 848 11 0.0 115953 19 1 0.3
K100.4 111 788 11 107 774 11 0.0 87498 10 1 0.1
K100.5 117 812 17 111 796 17 0.0 119078 12 1 0.1
K100.6 112 680 12 108 664 12 0.0 132886 11 1 0.1
K100.7 114 708 14 110 694 14 0.0 172457 14 1 0.4
K100.8 116 776 16 107 744 16 0.0 210869 13 1 0.2
K100.9 112 732 12 105 716 12 0.0 122917 12 1 0.1
K100 115 786 15 103 736 15 0.0 135511 10 1 0.1
K200 234 1580 34 225 1558 34 0.0 329211 17 1 1.4
K400.10 450 3308 50 438 3270 50 0.0 394191 53 1 14.9
K400.1 465 3324 65 459 3290 65 0.0 490771 36 1 10.2
K400.2 462 3420 62 448 3360 62 0.0 477073 35 1 12.9
K400.3 456 3314 56 445 3258 56 0.0 415328 29 1 7.2
K400.4 456 3182 56 448 3148 56 0.0 389451 32 1 6.5
K400.5 477 3368 77 467 3340 77 0.0 519526 38 1 15.4
K400.6 456 3482 56 436 3398 56 0.0 374849 30 1 4.9
K400.7 468 3286 68 456 3248 68 0.0 474466 39 1 13.6
K400.8 461 3392 61 453 3366 61 0.0 418614 33 1 5.5
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum C N t [s]

K400.9 454 3318 54 444 3278 54 0.0 383105 29 1 6.6
K400 463 3402 63 452 3362 63 0.0 350093 32 1 5.1
P100.1 133 760 33 131 654 33 0.0 926238 17 1 0.3
P100.2 127 750 27 121 620 27 0.0 401641 39 1 0.2
P100.3 125 776 25 124 662 25 0.0 659644 12 1 0.1
P100.4 133 760 33 122 654 33 0.0 827419 10 1 0.1
P100 134 832 34 131 686 34 0.0 803300 15 1 0.1
P200 249 1462 49 231 1232 49 0.0 1317874 31 1 1.3
P400.1 521 3144 121 496 2892 121 0.1 2808440 42 1 6.9
P400.2 508 3034 108 482 2766 108 0.1 2518577 32 1 3.1
P400.3 514 3028 114 485 2768 114 0.1 2951725 57 1 7.0
P400.4 495 2852 95 469 2602 95 0.1 2852956 23 1 3.5
P400 495 2964 95 472 2692 95 0.1 2459904 36 1 4.0

Table 32. Detailed computational results for the PCSTP, test set CRR.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum C N t [s]

C01-A 506 1280 6 156 568 6 0.0 18 5 1 0.0
C01-B 506 1280 6 156 568 6 0.0 85 33 1 0.1
C02-A 511 1310 11 144 544 11 0.0 50 6 1 0.0
C02-B 511 1310 11 144 544 11 0.0 141 26 1 0.1
C03-A 584 1748 84 292 1156 84 0.0 414 16 1 1.3
C03-B 584 1748 84 292 1156 84 0.0 737 27 1 1.5
C04-A 626 2000 126 376 1498 126 0.0 618 52 1 4.6
C04-B 626 2000 126 376 1498 126 0.0 1063 18 1 2.6
C05-A 751 2750 251 587 2414 251 0.1 1080 32 1 39.1
C05-B 751 2750 251 587 2414 251 0.1 1528 16 1 13.7
C06-A 506 2030 6 375 1726 6 0.0 18 11 1 0.0
C06-B 506 2030 6 375 1726 6 0.0 55 53 1 0.2
C07-A 511 2060 11 394 1800 11 0.0 50 13 1 0.1
C07-B 511 2060 11 394 1800 11 0.0 102 32 1 0.5
C08-A 584 2498 84 479 2262 84 0.1 361 46 1 3.7
C08-B 584 2498 84 479 2262 84 0.0 500 24 1 2.1
C09-A 626 2750 126 550 2582 126 0.0 533 50 1 9.2
C09-B 626 2750 126 550 2582 126 0.0 694 33 1 5.7
C10-A 751 3500 251 694 3368 251 0.1 859 23 1 27.6
C10-B 751 3500 251 694 3368 251 0.1 1069 114 1 45.5
C11-A 506 5030 6 506 4410 6 0.1 18 13 1 0.1
C11-B 506 5030 6 506 4410 6 0.1 32 132 1 1.0
C12-A 511 5060 11 510 4548 11 0.1 38 21 1 0.4
C12-B 511 5060 11 510 4548 11 0.1 46 87 1 0.8
C13-A 584 5498 84 582 4932 84 0.2 236 54 1 7.0
C13-B 584 5498 84 582 4932 84 0.1 258 32 1 4.4
C14-A 626 5750 126 626 5142 126 0.1 293 22 1 4.4
C14-B 626 5750 126 626 5142 126 0.1 318 15 1 3.6
C15-A 751 6500 251 751 5856 251 0.3 501 17 1 17.9
C15-B 751 6500 251 751 5856 251 0.2 551 10 1 10.7
C16-A 506 25030 6 506 9510 6 0.3 11 49 1 1.2
C16-B 506 25030 6 506 9510 6 0.6 11 49 1 1.2
C17-A 511 25060 11 511 9468 11 0.3 18 90 1 1.2
C17-B 511 25060 11 511 9468 11 0.3 18 90 1 1.4
C18-A 584 25498 84 584 10060 84 0.5 111 34 1 5.7
C18-B 584 25498 84 584 10060 84 0.6 113 38 1 7.1
C19-A 626 25750 126 626 10210 126 0.4 146 15 1 3.9
C19-B 626 25750 126 626 10210 126 0.6 146 30 1 5.9
C20-A 751 26500 251 751 11040 251 0.5 266 14 1 14.8
C20-B 751 26500 251 751 11040 251 0.7 267 9 1 10.0
D01-A 1006 2530 6 280 1050 6 0.0 18 4 1 0.0
D01-B 1006 2530 6 280 1050 6 0.0 106 40 1 0.4
D02-A 1011 2560 11 300 1114 11 0.0 50 4 1 0.1
D02-B 1011 2560 11 300 1114 11 0.0 218 28 1 0.2
D03-A 1168 3502 168 596 2342 168 0.0 807 34 1 6.4
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum C N t [s]

D03-B 1168 3502 168 596 2342 168 0.1 1509 27 1 6.0
D04-A 1251 4000 251 738 2962 251 0.1 1203 79 1 21.1
D04-B 1251 4000 251 738 2962 251 0.1 1881 55 1 25.9
D05-A 1501 5500 501 1181 4856 501 0.2 2157 494 1 746.6
D05-B 1501 5500 501 1181 4856 501 0.2 3135 35 1 176.7
D06-A 1006 4030 6 767 3512 6 0.1 18 9 1 0.1
D06-B 1006 4030 6 767 3512 6 0.1 67 128 1 1.3
D07-A 1011 4060 11 766 3532 11 0.0 50 34 1 0.1
D07-B 1011 4060 11 766 3532 11 0.0 103 47 1 0.7
D08-A 1168 5002 168 977 4586 168 0.1 755 82 1 27.1
D08-B 1168 5002 168 977 4586 168 0.1 1036 30 1 12.2
D09-A 1251 5500 251 1076 5108 251 0.2 1070 79 3 106.9
D09-B 1251 5500 251 1076 5108 251 0.4 1420 38 1 33.2
D10-A 1501 7000 501 1367 6706 501 1.0 1671 265 1 491.0
D10-B 1501 7000 501 1367 6706 501 0.7 2079 297 1 935.1
D11-A 1006 10030 6 999 9394 6 0.2 18 21 1 0.6
D11-B 1006 10030 6 999 9394 6 0.4 29 172 1 2.3
D12-A 1011 10060 11 1011 9416 11 0.5 42 54 1 3.2
D12-B 1011 10060 11 1011 9416 11 0.2 42 57 1 1.9
D13-A 1168 11002 168 1166 10292 168 0.5 445 107 1 69.6
D13-B 1168 11002 168 1166 10292 168 0.4 486 21 1 11.0
D14-A 1251 11500 251 1250 10832 251 0.5 602 83 1 102.7
D14-B 1251 11500 251 1250 10832 251 0.6 665 33 1 34.9
D15-A 1501 13000 501 1500 12294 501 1.1 1042 29 1 185.7
D15-B 1501 13000 501 1500 12294 501 0.9 1108 18 1 163.4
D16-A 1006 50030 6 1006 21224 6 1.7 13 89 1 4.1
D16-B 1006 50030 6 1006 21224 6 1.7 13 79 1 4.8
D17-A 1011 50060 11 1011 21144 11 2.4 23 109 1 7.2
D17-B 1011 50060 11 1011 21144 11 2.3 23 121 1 7.0
D18-A 1168 51002 168 1168 21626 168 1.8 218 31 1 27.0
D18-B 1168 51002 168 1168 21626 168 1.8 223 28 1 24.4
D19-A 1251 51500 251 1251 21986 251 2.2 306 28 1 43.3
D19-B 1251 51500 251 1251 21986 251 2.0 310 36 1 55.1
D20-A 1501 53000 501 1501 23946 501 2.5 536 14 1 133.5
D20-B 1501 53000 501 1501 23946 501 2.4 537 11 1 125.5

Table 33. Detailed computational results for the PCSTP, test set PUCNU.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

bip42nu 1401 9164 201 1191 8744 201 0.2 224.342633 227 1.2 205 1607 >7200.6
bip52nu 2401 17194 201 2020 16426 201 0.4 220.217617 223 1.3 139 617 >7200.5
bip62nu 1401 21204 201 1400 21202 201 0.4 210.260966 215 2.3 200 8 >7200.7
bipa2nu 3601 37946 301 3441 37626 301 1.1 320.365297 329 2.7 168 1 >7201.4
bipe2nu 601 10326 51 601 10326 51 0.1 53 266 9 184.1
cc10-2nu 1160 11050 136 1160 11050 136 0.1 165.575422 168 1.5 212 79 >7200.1
cc11-2nu 2293 23990 245 2293 23990 245 0.5 300.298142 309 2.9 167 1 >7201.3
cc12-2nu 4570 51986 474 4570 51986 474 1.5 557.508916 571 2.4 125 1 >7212.0
cc3-10nu 1051 27300 51 1051 27300 51 0.1 58.4811788 61 4.3 275 519 >7200.2
cc3-11nu 1393 40296 62 1393 40296 62 0.2 75.2496405 85 13.0 429 23 >7200.8
cc3-12nu 1803 57468 75 1803 57468 75 0.4 90.163976 98 8.7 233 1 >7200.8
cc3-4nu 73 624 9 73 624 9 0.0 10 41 1 0.1
cc3-5nu 139 1578 14 139 1578 14 0.0 17 38 1 1.1
cc5-3nu 271 2592 28 271 2592 28 0.0 36 104 1 25.7
cc6-2nu 77 456 13 77 456 13 0.0 15 23 1 0.3
cc6-3nu 806 9192 77 806 9192 77 0.1 95 264 8 833.9
cc7-3nu 2410 31948 223 2410 31948 223 0.6 267.418586 275 2.8 169 1 >7200.8
cc9-2nu 577 4992 65 577 4992 65 0.0 83 276 50 704.9

Table 34. Detailed computational results for the RPCSTP, test set cologne1.
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Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum C N t [s]

i101M1 758 12704 11 664 11568 11 0.4 109271.503 5 1 0.5
i101M2 758 12704 11 664 11568 11 0.4 315925.31 177 1 10.6
i101M3 758 12704 11 664 11568 11 0.4 355625.409 139 1 16.5
i102M1 760 12730 12 667 11606 12 0.4 104065.801 2 1 0.5
i102M2 760 12730 12 667 11606 12 0.4 352538.819 138 1 16.5
i102M3 760 12730 12 667 11606 12 0.4 454365.927 145 1 22.1
i103M1 764 12738 14 672 11618 14 0.4 139749.407 22 1 0.8
i103M2 764 12738 14 672 11618 14 0.4 407834.228 118 1 10.8
i103M3 764 12738 14 672 11618 14 0.4 456125.488 127 1 22.0
i104M2 744 12598 4 650 11474 4 0.3 89920.8353 159 1 2.6
i104M3 744 12598 4 650 11474 4 0.2 97148.789 196 1 3.9
i105M1 744 12604 4 650 11480 4 0.2 26717.2025 3 1 0.3
i105M2 744 12604 4 650 11480 4 0.2 100269.619 178 1 5.7
i105M3 744 12604 4 650 11480 4 0.2 110351.163 209 1 10.1

Table 35. Detailed computational results for the RPCSTP, test set cologne2.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Optimum C N t [s]

i201M2 1812 33522 10 1764 32412 10 1.1 355467.684 422 1 17.8
i201M3 1812 33522 10 1764 32412 10 1.2 628833.614 470 1 150.8
i201M4 1812 33522 10 1764 32412 10 1.2 773398.303 507 1 214.8
i202M2 1814 33520 11 1767 32414 11 1.1 288946.832 311 1 23.9
i202M3 1814 33520 11 1767 32414 11 1.0 419184.159 653 1 101.7
i202M4 1814 33520 11 1767 32414 11 1.0 430034.264 410 1 132.9
i203M2 1824 33584 16 1780 32480 16 1.0 459894.776 371 1 30.3
i203M3 1824 33584 16 1780 32480 16 1.1 643062.02 517 1 323.1
i203M4 1824 33584 16 1780 32480 16 1.4 677733.067 459 1 341.9
i204M2 1805 33454 5 1757 32356 5 1.0 161700.545 217 1 10.4
i204M3 1805 33454 5 1757 32356 5 1.2 245287.203 374 1 28.2
i204M4 1805 33454 5 1757 32356 5 1.2 245287.203 441 1 29.3
i205M2 1823 33640 14 1775 32534 14 1.4 571031.415 231 1 19.7
i205M3 1823 33640 14 1775 32534 14 1.1 672403.143 239 1 30.2
i205M4 1823 33640 14 1775 32534 14 1.0 713973.623 361 1 42.0

Table 36. Detailed computational results for the MWCSP, test set ACTMOD. The number of
terminals was not changed during preprocessing.

Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Optimum C N t [s]

drosophila001 5298 187214 72 3977 183910 5.2 24.3855064 1626 3188 4287.2
drosophila005 5421 187952 195 4135 184720 12.3 178.663952 249 1 1393.9
drosophila0075 5477 188288 251 4207 185092 15.2 260.523557 335 1 1011.0
HCMV 3919 58916 56 2818 55814 1.6 7.55431486 255 1 53.5
lymphoma 2102 15914 68 1321 13960 0.7 70.1663087 91 1 9.8
metabol expr mice 1 3674 9590 151 772 3248 0.3 544.94837 219 1 35.8
metabol expr mice 2 3600 9174 86 653 2736 0.2 241.077524 74 1 3.2
metabol expr mice 3 2968 7354 115 536 2282 0.2 508.260877 69 1 6.0

Table 37. Detailed computational results for the MWCSP, test set JMPALMK. The number of
terminals was not changed during preprocessing.

Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Dual Primal Gap% C N t [s]

1000-a-0.6-d-0.25-e-0.25 1443 12524 443 1438 12512 0.9 931.538552 39 1 172.1
1000-a-0.6-d-0.25-e-0.5 1638 13694 638 1636 13690 1.2 1872.2754 14 1 304.0
1000-a-0.6-d-0.25-e-0.75 1814 14750 814 1813 14748 1.3 2789.57911 0 1 179.9
1000-a-0.6-d-0.5-e-0.25 1621 13592 621 1618 13584 1.1 522.525615 66 1 2485.6
1000-a-0.6-d-0.5-e-0.5 1757 14408 757 1754 14400 1.2 1197.85102 2 1 111.8
1000-a-0.6-d-0.5-e-0.75 1881 15152 881 1878 15144 1.6 1762.70747 2 1 189.9
1000-a-0.6-d-0.75-e-0.25 1815 14756 815 1814 14754 1.6 332.791924 3 1 126.3
1000-a-0.6-d-0.75-e-0.5 1894 15230 894 1894 15230 1.5 754.300601 5 1 178.4
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Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Dual Primal Gap% C N t [s]

1000-a-0.6-d-0.75-e-0.75 1949 15560 949 1949 15560 1.8 998.215414 5 1 271.4
1000-a-1-d-0.25-e-0.25 1443 29210 443 1443 29210 1.2 939.39337 0 1 27.5
1000-a-1-d-0.25-e-0.5 1638 30380 638 1638 30380 1.6 1883.21361 0 1 80.6
1000-a-1-d-0.25-e-0.75 1814 31436 814 1814 31436 2.3 2789.57911 0 1 176.5
1000-a-1-d-0.5-e-0.25 1621 30278 621 1621 30278 1.6 533.4294 0 1 59.1
1000-a-1-d-0.5-e-0.5 1757 31094 757 1757 31094 1.9 1205.42131 0 1 111.2
1000-a-1-d-0.5-e-0.75 1881 31838 881 1881 31838 2.7 1770.27776 0 1 176.6
1000-a-1-d-0.75-e-0.25 1815 31442 815 1815 31442 2.1 336.829944 0 1 118.1
1000-a-1-d-0.75-e-0.5 1894 31916 894 1894 31916 2.6 760.284581 0 1 165.9
1000-a-1-d-0.75-e-0.75 1949 32246 949 1949 32246 2.6 1004.19939 0 1 194.0
1500-a-0.6-d-0.25-e-0.25 2164 19302 664 2159 19290 1.5 1335.37039 1333.47643 0.1 5602 1 >129601.8
1500-a-0.6-d-0.25-e-0.5 2457 21060 957 2456 21058 2.0 2799.67722 103 1 16013.3
1500-a-0.6-d-0.25-e-0.75 2732 22710 1232 2732 22710 2.9 4230.25112 0 1 763.6
1500-a-0.6-d-0.5-e-0.25 2432 20910 932 2430 20904 2.1 847.452011 4 1 212.4
1500-a-0.6-d-0.5-e-0.5 2633 22116 1133 2632 22114 2.6 1858.0926 2 1 442.8
1500-a-0.6-d-0.5-e-0.75 2812 23190 1312 2811 23188 3.1 2697.45876 7 1 1546.6
1500-a-0.6-d-0.75-e-0.25 2739 22752 1239 2738 22750 2.9 502.17599 0 1 538.0
1500-a-0.6-d-0.75-e-0.5 2850 23418 1350 2850 23418 3.2 1089.77117 0 1 639.8
1500-a-0.6-d-0.75-e-0.75 2924 23862 1424 2924 23862 3.5 1423.61063 0 1 845.9
1500-a-1-d-0.25-e-0.25 2164 45032 664 2164 45032 2.6 1377.0144 0 1 88.9
1500-a-1-d-0.25-e-0.5 2457 46790 957 2457 46790 3.6 2820.05174 0 1 321.2
1500-a-1-d-0.25-e-0.75 2732 48440 1232 2732 48440 5.5 4230.25112 0 1 747.8
1500-a-1-d-0.5-e-0.25 2432 46640 932 2432 46640 3.5 860.618961 0 1 213.6
1500-a-1-d-0.5-e-0.5 2633 47846 1133 2633 47846 4.3 1865.66289 0 1 441.2
1500-a-1-d-0.5-e-0.75 2812 48920 1312 2812 48920 5.2 2707.70001 0 1 688.9
1500-a-1-d-0.75-e-0.25 2739 48482 1239 2739 48482 4.9 502.17599 0 1 517.5
1500-a-1-d-0.75-e-0.5 2850 49148 1350 2850 49148 5.4 1089.77117 0 1 615.9
1500-a-1-d-0.75-e-0.75 2924 49592 1424 2924 49592 5.9 1423.61063 0 1 795.9
500-a-0.62-d-0.25-e-0.25 712 6460 212 705 6436 0.2 460.577357 66 1 28.0
500-a-0.62-d-0.25-e-0.5 818 7096 318 813 7080 0.4 992.967111 5 1 11.9
500-a-0.62-d-0.25-e-0.75 910 7648 410 908 7642 0.5 1447.54452 0 1 23.1
500-a-0.62-d-0.5-e-0.25 805 7018 305 803 7010 0.3 280.832378 7 1 7.5
500-a-0.62-d-0.5-e-0.5 878 7456 378 876 7448 0.4 655.623217 7 1 18.2
500-a-0.62-d-0.5-e-0.75 945 7858 445 943 7850 0.6 965.554694 0 1 24.6
500-a-0.62-d-0.75-e-0.25 910 7648 410 908 7642 0.5 171.628785 0 1 15.6
500-a-0.62-d-0.75-e-0.5 945 7858 445 944 7854 0.6 362.188212 0 1 18.8
500-a-0.62-d-0.75-e-0.75 972 8020 472 972 8020 0.6 490.623986 0 1 24.0
500-a-1-d-0.25-e-0.25 712 14304 212 712 14304 0.4 471.393285 0 1 3.5
500-a-1-d-0.25-e-0.5 818 14940 318 818 14940 0.6 995.313181 0 1 10.8
500-a-1-d-0.25-e-0.75 910 15492 410 910 15492 0.7 1447.54452 0 1 22.3
500-a-1-d-0.5-e-0.25 805 14862 305 805 14862 0.6 286.920868 0 1 7.7
500-a-1-d-0.5-e-0.5 878 15300 378 878 15300 0.7 661.711707 0 1 14.0
500-a-1-d-0.5-e-0.75 945 15702 445 945 15702 0.8 965.554694 0 1 23.6
500-a-1-d-0.75-e-0.25 910 15492 410 910 15492 0.7 171.628785 0 1 15.7
500-a-1-d-0.75-e-0.5 945 15702 445 945 15702 0.8 362.188212 0 1 20.8
500-a-1-d-0.75-e-0.75 972 15864 472 972 15864 0.8 490.623986 0 1 22.8
750-a-0.647-d-0.25-e-0.25 1079 10406 329 1075 10394 0.6 702.644057 13 1 23.3
750-a-0.647-d-0.25-e-0.5 1229 11306 479 1227 11302 0.8 1419.77986 7 1 64.9
750-a-0.647-d-0.25-e-0.75 1364 12116 614 1363 12114 0.9 2116.58233 0 1 74.7
750-a-0.647-d-0.5-e-0.25 1206 11168 456 1204 11162 0.7 403.177763 0 1 23.0
750-a-0.647-d-0.5-e-0.5 1315 11822 565 1313 11816 0.9 946.129495 0 1 46.6
750-a-0.647-d-0.5-e-0.75 1412 12404 662 1410 12398 1.2 1382.77203 0 1 82.1
750-a-0.647-d-0.75-e-0.25 1366 12128 616 1365 12126 0.9 266.983922 0 1 55.4
750-a-0.647-d-0.75-e-0.5 1423 12470 673 1423 12470 1.0 580.407832 0 1 65.7
750-a-0.647-d-0.75-e-0.75 1462 12704 712 1462 12704 1.1 764.156726 0 1 85.8
750-a-1-d-0.25-e-0.25 1079 21612 329 1079 21612 0.8 708.143835 0 1 11.3
750-a-1-d-0.25-e-0.5 1229 22512 479 1229 22512 1.0 1426.44904 0 1 34.1
750-a-1-d-0.25-e-0.75 1364 23322 614 1364 23322 1.3 2116.58233 0 1 74.3
750-a-1-d-0.5-e-0.25 1206 22374 456 1206 22374 1.0 403.177763 0 1 23.2
750-a-1-d-0.5-e-0.5 1315 23028 565 1315 23028 1.2 946.129495 0 1 46.6
750-a-1-d-0.5-e-0.75 1412 23610 662 1412 23610 1.4 1382.77203 0 1 70.9
750-a-1-d-0.75-e-0.25 1366 23334 616 1366 23334 1.3 266.983922 0 1 49.4
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Original Presolved
Instance |V | |A| |T | |V | |A| t [s] Dual Primal Gap% C N t [s]

750-a-1-d-0.75-e-0.5 1423 23676 673 1423 23676 1.4 580.407832 0 1 62.7
750-a-1-d-0.75-e-0.75 1462 23910 712 1462 23910 1.6 764.156726 0 1 79.6

Table 38. Detailed computational results for the GSTP, test set GSTP1.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

gstp30f2 474 1828 30 465 1806 30 0.2 569 54 1 5.7
gstp31f2 349 1284 31 345 1274 31 0.1 635 88 1 7.9
gstp33f2 452 1746 33 450 1742 33 0.2 513 41 1 4.4
gstp34f2 1253 5000 34 1249 4990 34 1.0 635.746445 647 1.8 102 94 >7201.1
gstp36f2 442 1672 36 437 1662 36 0.2 610 90 1 11.6
gstp37f2 1054 4216 37 1052 4210 37 0.9 485 180 1 863.9
gstp38f2 618 2504 38 615 2496 38 0.3 656 62 403 4064.5
gstp39f2 707 3310 39 705 3304 39 0.6 412.61754 450 9.1 44 690 >7200.6

Table 39. Detailed computational results for the GSTP, test set GSTP2.

Original Presolved
Instance |V | |A| |T | |V | |A| |T | t [s] Dual Primal Gap% C N t [s]

gstp50f2 1142 4622 50 1140 4618 50 0.8 660.935008 674 2.0 113 119 >7200.8
gstp55f2 1751 6804 55 1749 6800 55 1.4 862.654988 891 3.3 152 11 >7201.4
gstp60f2 838 3528 60 837 3526 60 0.6 1154.87643 1164 0.8 162 791 >7200.7
gstp64f2 1860 7380 64 1855 7366 64 1.7 899.574265 938 4.3 117 13 >7201.7
gstp66f2 2623 10100 66 2619 10092 66 2.7 914.61628 920 0.6 247 1 >7203.2
gstp73f2 1911 7308 73 1899 7276 73 1.8 1207 284 1 6427.8
gstp76f2 1818 6990 76 1812 6972 76 1.7 1026 484 3 6967.6
gstp78f2 2355 9384 78 2348 9364 78 2.4 1057.95665 1100 4.0 113 19 >7202.5
gstp83f2 3177 12530 83 3171 12516 83 4.1 876.302444 908 3.6 199 1 >7204.4
gstp84f2 2358 9134 84 2351 9120 84 2.5 1006.91729 1095 8.7 77 12 >7202.6

Table 40. Detailed computational results for the HCDSTP, test set gr12. All instances have 10
terminals (before and after preprocessing).

Original Presolved
Instance |V | |A| |V | |A| t [s] Optimum C N t [s]

wo10-cr100-se0 809 14396 809 14396 0.0 171486 257 3 173.1
wo10-cr100-se10 809 14428 801 14232 0.1 117081 225 1 8.9
wo10-cr100-se11 809 14386 809 14386 0.0 125785 199 1 26.1
wo10-cr200-se7 809 44696 809 44678 0.1 46306 230 3 89.5
wo10-cr200-se8 809 44654 809 44636 0.1 61177 319 101 722.0
wo10-cr200-se9 809 44670 809 44652 0.1 51737 245 141 454.2
wo11-cr100-se10 809 7432 549 5718 0.3 136516 107 1 3.9
wo11-cr100-se11 809 7430 683 7352 0.0 145251 127 1 4.2
wo11-cr100-se1 809 7444 689 7440 0.0 182082 129 1 4.6
wo11-cr100-se2 809 7394 689 7390 0.0 163872 220 1 2.9
wo11-cr200-se10 809 15262 590 12550 0.4 59523 130 1 5.1
wo11-cr200-se11 809 15260 689 15244 0.0 66786 156 1 12.8
wo11-cr200-se1 809 15274 689 15258 0.0 76353 152 1 9.9
wo11-cr200-se2 809 15224 689 15208 0.0 75434 274 1 11.1
wo12-cr100-se10 809 9360 684 9278 0.0 167223 138 1 6.8
wo12-cr100-se11 809 9852 708 9846 0.0 199679 127 1 11.6
wo12-cr100-se1 809 9446 695 9420 0.0 164198 110 1 3.7
wo12-cr100-se7 809 9702 594 7968 0.3 136232 89 1 2.1
wo12-cr200-se9 809 28346 611 24362 0.6 46408 123 1 7.6

Table 41. Detailed computational results for the HCDSTP, test set gr14. All instances have 10
terminals (before and after preprocessing).
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Original Presolved
Instance |V | |A| |V | |A| t [s] Dual Primal Gap% C N t [s]

wo10-cr100-se0 3209 215940 3209 215922 0.7 147594.343 174545 18.3 637 4 >7200.8
wo10-cr100-se11 3209 215932 3209 215914 0.7 114381.31 125394 9.6 640 12 >7200.9
wo10-cr200-se3 3209 643552 3209 643330 1.7 44787.6614 55497 23.9 960 69 >7201.9
wo10-cr200-se4 3209 643414 3209 643186 1.7 39526.3491 54475 37.8 673 341 >7202.0
wo11-cr100-se6 3209 115502 2773 115494 0.4 199930.546 220015 10.0 516 8 >7200.4
wo11-cr200-se2 3209 232858 2773 232844 0.8 68756.618 76436 11.2 645 20 >7200.8
wo11-cr200-se3 3209 233104 2732 228878 1.8 57930 724 83 2728.5
wo11-cr200-se4 3209 233038 2773 233024 0.8 62838.967 69220 10.2 1028 29 >7200.9
wo12-cr100-se0 3209 153366 1862 100468 10.1 118617 504 3 430.3
wo12-cr100-se5 3209 156578 2643 149328 3.3 131631 533 1 914.1
wo12-cr100-se6 3209 157214 2765 155536 0.5 140490.954 155919 11.0 325 21 >7200.5
wo12-cr100-se7 3209 158984 2394 133792 7.2 122306 386 18 1623.5
wo12-cr100-se8 3209 157912 2662 149786 3.3 116077 446 42 2622.0
wo12-cr100-se9 3209 156658 2161 121488 10.4 100813 392 1 302.1
wo12-cr200-se0 3209 445774 2173 340992 27.2 46329.6121 56249 21.4 932 247 >7227.2
wo12-cr200-se10 3209 446040 2765 445864 1.3 50635.8186 69874 38.0 1216 231 >7201.4
wo12-cr200-se11 3209 457496 2782 457456 1.2 54753.5749 71694 30.9 774 198 >7204.9
wo12-cr200-se4 3209 460250 2764 452090 1.4 59815.3406 79384 32.7 892 146 >7202.5
wo12-cr200-se5 3209 456998 2778 456974 1.3 51059.3851 59212 16.0 901 172 >7201.4
wo12-cr200-se6 3209 460500 2780 459786 1.3 54617.8695 66538 21.8 445 55 >7202.1
wo12-cr200-se7 3209 464090 2516 408220 15.1 54283.1768 62502 15.1 689 110 >7216.0

Table 42. Detailed computational results for the HCDSTP, test set gr16. All instances have 10
terminals (before and after preprocessing).

Original Presolved
Instance |V | |A| |V | |A| t [s] Dual Primal Gap% C N t [s]

wo10-cr100-se0 12509 2843882 11604 2843678 6.8 67934.3155 178781 163.2 1649 1 >7208.4
wo10-cr100-se10 12509 2844058 11319 2772610 129.4 68639.4849 122284 78.2 1603 1 >7331.9
wo10-cr100-se6 12509 2843894 11604 2843690 6.9 69686.5234 199237 185.9 1417 3 >7207.2
wo10-cr200-se0 12509 8741560 11604 8738884 29.7 36160 68834 90.4 311 1 >7231.1
wo10-cr200-se3 12509 8741850 11604 8739162 29.8 32976 59383 80.1 247 1 >7235.9
wo10-cr200-se4 12509 8741234 11604 8738558 29.7 34218.3333 66166 93.4 272 1 >7240.3
wo10-cr200-se5 12509 8740874 11604 8738198 29.7 35158 68277 94.2 240 1 >7244.3
wo10-cr200-se7 12509 8741906 9692 7159770 2939.8 32432.3125 46438 43.2 329 1 >10143.0
wo11-cr100-se0 12509 1634066 10654 1634018 3.9 92733.2864 204001 120.0 1237 1 >7204.4
wo11-cr100-se10 12509 1633968 8811 1319422 383.4 85769.1902 124389 45.0 1120 1 >7583.5
wo11-cr200-se2 12509 3416158 10654 3415928 8.9 45476.5249 76168 67.5 1312 1 >7211.3
wo11-cr200-se3 12509 3416916 10449 3341260 117.3 45394.1664 57820 27.4 1296 1 >7319.8
wo12-cr100-se2 12509 2172502 10486 2145056 5.3 96880.9782 194788 101.1 1509 1 >7207.4
wo12-cr100-se3 12509 2173508 10426 2122636 7.9 90073.8988 151797 68.5 1404 1 >7209.1
wo12-cr200-se2 12509 6560440 10543 6530350 22.8 43813.1724 81064 85.0 439 1 >7230.0
wo12-cr200-se3 12509 6557828 10494 6465210 22.8 40141.5455 62201 55.0 405 1 >7224.9
wo12-cr200-se4 12509 6420904 10422 6281784 19.9 43269.8722 83053 91.9 438 1 >7224.6
wo12-cr200-se7 12509 6766046 9903 6190724 1016.1 41470.7083 64796 56.2 400 1 >8231.3
wo12-cr200-se8 12509 6207724 10434 6178476 111.6 38677.7129 54757 41.6 427 1 >7313.8
wo12-cr200-se9 12509 6571406 9928 6168132 924.0 36254.0664 50364 38.9 462 1 >8124.9
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