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An Extended Network Interdiction
Problem for Optimal Toll Control

Ralf Borndörfer, Guillaume Sagnol, Stephan Schwartz

Abstract

We study an extension of the shortest path network interdiction problem
and present a novel real-world application in this area. We consider the
problem of determining optimal locations for toll control stations on the
arcs of a transportation network. We handle the fact that drivers can avoid
control stations on parallel secondary roads. The problem is formulated as a
mixed integer program and solved using Benders decomposition. We present
experimental results for the application of our models to German motorways.

1 Introduction

A distance-based truck toll on German motorways was introduced in 2005 and is enforced
by the German Federal Office for Goods Transport (BAG). Controls are conducted by
a combination of mobile units and automatic toll control gantries scanning the passing
traffic for toll evaders. Within the framework of an ongoing project with the BAG we
already studied the optimization of control tours of toll inspectors using game theoretic
approaches [3, 4]. In this paper we study the optimal location of toll control gantries
from a theoretical point of view. We consider a network optimization problem where
we increase the lengths of a limited number of edges. This increase can be interpreted
as the detour that potential toll evaders are forced to take in order to avoid the control
point (e.g. using a secondary road). The goal is to dissuade as many drivers as possible
from trying to avoid the control gantries, by making the required detours prohibitively
large.

This paper is organized as follows. In Section 2 we introduce a mathematical model
called MAXCOV for the optimal location of control edges. We also present a general-
ization involving detour willingness functions. In particular, the MAXDET problem is
defined by penalizing the detour of each driver linearly, and can be seen as a relaxation of
the original MAXCOV problem. A Mixed Integer Programming (MIP) approach relying
on Benders cuts is presented in Section 3. Finally, we produce numerical results for the
application to German motorways in Section 4. In particular, we show that MAXDET
is much easier to solve than MAXCOV, while it yields results of a comparable quality.
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Related work The present problem is closely related to a class of network interdiction
problems which can be seen as Stackelberg games on networks. In the shortest path
interdiction problem the leader increases the length of certain arcs so as to maximize
the shortest path length for the follower. The problem of finding a set of k arcs whose
removal maximizes the shortest s-t-path length is also referred to as the k most vital
arcs problem (MVAP) [2, 6, 8]. The origins of network interdiction problems lie in
military and security applications such as interdicting supply networks or disrupting
international drug routes, see e.g. [13]. To the best of our knowledge, previous work
on shortest path network interdiction is limited to the single-commodity case, while our
application requires a multi-commodity formulation.

There is also some literature on the length-bounded cut problem, which is essentially
the same problem as MVAP, but was given a different name by some authors because
its relation with length bounded flows was investigated. Several authors contributed to
this topic, which has important applications to robust telecommunication networks, see
e.g. [1, 12].

There is also a vast literature on bilevel network pricing problems, see e.g. [5, 10]. Here,
in contrast to network interdiction problems, the decision variables are continuous, and
consist of toll prices, which can be set arc-wise or path-wise. Network pricing problems
have a non zero-sum nature, because setting too high prices incentizes drivers to take
alternative, toll-free roads, which leads to a loss of revenue. The problem studied in the
present paper is different in that respect; here we solely focus on making all control-free
paths excessively long for potential toll evaders.

2 Problem formulation

We consider a directed graph G = (V,E) with edge lengths `e ≥ 0 ∀e ∈ E. We can
interdict κ edges in G, i.e. increase their length by ce ≥ 0. Note that we can restrict the
set of interdictable edges by setting ce = 0. We have a set of commodities K and each
commodity ki ∈ K is a triple ki = (si, ti, di). The nodes si, ti ∈ V are the source and the
sink, respectively, of commodity ki while di ∈ N is the demand of ki.

Now let Ps,t denote the set of all s-t-paths in G, let `(P ) =
∑

e∈P `e denote the length
of a path P and let `i = minP∈Psi,ti `(P ) denote the length of a shortest si-ti-path.
Moreover, we are given a maximum path length Li > `i for each ki ∈ K that no driver
is willing to exceed. Finally, we define C := {C ⊆ E : |C| = κ}. Our goal is to find a set
C ∈ C that “covers” the most traffic.

Definition 1. Let C ⊆ E. We denote by K(C) ⊆ K the set of C-covered commodities,
where a commodity ki ∈ K is called C-covered if and only if

∀P ∈ Psi,ti : `C(P ) :=
∑
e∈P

`e +
∑

e∈P ∩C
ce ≥ Li.

The interpretation for the location of toll control gantries is as follows. A control
gantry is placed on every interdicted edge but can be avoided by paying an additional
fee ce. This can be interpreted as a detour on a parallel trunk road or as any other
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possibility to avoid certain parts of the controlled network at higher costs. Commodity
ki is covered if and only if a shortest si-ti-path that avoids all controls is too long,
i.e. the drivers of ki have to pass at least one control gantry. The MAXCOV problem
(for maximum cover) can then be stated as follows.

Given (G, (`e), (ce),K, (Li), κ) : max
C∈C

∑
{i : ki∈K(C)}

di.

NP-hardness For the complexity of MAXCOV we reconsider the most vital arc
problem (MVAP). The corresponding decision problem has an additional input L and
asks if there are k arcs whose removal lead to a shortest s-t-path of length at least L.
Bar-Noy, Khuller and Schieber [2] prove that this problem is strongly NP-complete.

Proposition 1. MAXCOV is NP-hard already for |K| = 1.

Proof. With ce = L for all e ∈ E we reduce MVAP to an instance of
MAXCOV with a single commodity.

2.1 A fractional cover

The MAXCOV problem is based on the assumption that all drivers of a commodity
ki have the same detour threshold Li − `i. In reality, however, some drivers might be
ready to take longer detours than others. We hence study a slightly more general model.
For each commodity ki ∈ K we assume that a monotone detour willingness function
ωi : [0,∞) → [0, 1], satisfying ωi(0) = 0 and lim∆→∞ ωi(∆) = 1, gives the fraction
ωi(L− `i) of drivers from commodity ki who have a detour threshold ≤ L− `i. Hence,
the objective of the MAXCOV problem can be generalized to

max
C∈C

|K|∑
i=1

zi(C) where zi(C) := min
P∈Psi,ti

di ωi
(
`C(P )− `i

)
. (1)

Obviously, the detour willingness functions used for MAXCOV are ωcov
i = χ{∆ : ∆≥Li−`i}

where χ denotes the indicator function. We next examine a particular case, which
we refer to as MAXDET (for maximum detour), where the detour willingness func-

tions are of the form ωdet
i (∆) = min

(
1 , ∆

Li−`i

)
. That is, we assume that the num-

ber of covered drivers is proportional to the detour ∆. Note that ωdet
i ≥ ωcov

i but
ωdet
i (∆) = 1 ⇐⇒ ωcov

i (∆) = 1. Thus, the decision versions of MAXCOV and MAXDET
coincide, and MAXDET is NP-hard. To stress the use of a specific detour willingness ω
we also write zωi .

Benders decomposition Similar to [8] we use an approach with Benders decompo-
sition to solve problem (1). We consider P̂i ⊆ Psi,ti and for notational convenience
we define ẑi(C) := minP∈P̂i di ωi

(
`C(P ) − `i

)
. To further simplify notation we set

z(C) :=
∑

i zi(C) and ẑ(C) :=
∑

i ẑi(C).

If we solve the restricted master problem maxC∈C ẑ(C), the solution Ĉ might not be
feasible for (1). Hence, in the subproblem we check for each i whether zi(Ĉ) < ẑi(Ĉ),
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which is essentially a shortest path problem as ωi is monotone. If we have equality in
the subproblem, Ĉ is feasible and hence optimal for (1). In the other case we enlarge
the sets P̂i and iterate.

We conclude that the computational complexity of the problem mainly depends on
the ability to solve the restricted master problem, and therefore on the choice of a detour
willingness function. We will see in the next section that MAXCOV and MAXDET can
be formulated as integer or mixed integer programs, respectively. For piecewise linear
ωi we can derive a MIP formulation similar to MAXDET. Note however that this might
require additional binary variables if the ωi are not concave.

3 IP formulation

Here we present an integer program formulation for MAXCOV. A relaxation of integral-
ity constraints leads to a mixed integer formulation for MAXDET. Both problems are
solved using Benders cuts in order to restrict the number of cover constraints. We start
with the IP for MAXCOV.

max
y,δ

|K|∑
i=1

di δi (2a)

subject to
∑
e∈E

ye ≤ κ (2b)∑
e∈P

(`e + ceye) ≥ li + δi (Li − li) ∀P ∈ Psi,ti , ∀i (2c)

ye ∈ {0, 1} ∀e ∈ E (2d)

δi ∈ {0, 1} ∀i ∈ {1, . . . , |K|} (2e)

Obviously, y indicates the set of control edges, while δi = 1 means that ki is covered.
The objective function (2a) maximizes the amount of covered traffic. Constraint (2b)
guarantees that at most κ control gantries are built, and in (2c) we enforce δi = 0 if ki
is not covered. Note that we use a slightly different characterization than in Definition
1 which is equivalent as we have integrality for δi. These constraints allow us to obtain
a formulation for MAXDET by simply relaxing the integrality constraints (2e).

3.1 Solving MAXCOV and MAXDET

As pointed out at the end of Section 2, we employ Benders decomposition in order to
reduce the number of cover constraints (2c). Clearly, every optimal solution Ĉ of the
restricted master problem (RMP) gives an upper bound ẑ(Ĉ) on the objective value of
(2). Furthermore, the solutions zi(Ĉ) of the subproblem can be used to compute a lower
bound z(Ĉ) for the objective of the master problem.

In order to solve MAXCOV or MAXDET to optimality, we have to iterate until the
two bounds coincide. After each iteration though, we can derive an optimality gap to
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monitor the quality of the current solution with respect to the original problem. We can
easily adapt this gap to allow α-approximate solutions of RMP, i.e. a solution C ′ with

max
C∈C

ẑ(C) ≤ α ẑ(C ′).

This is particularly interesting as the restricted master problem can still be hard to
solve to optimality. The following proposition gives a bound for the objective value of
the original problem.

Proposition 2. Let C ′ be an α-approximate solution of RMP.
Then C ′ is a γ-approximate solution of the original problem with

γ = α
ẑ(C ′)

z(C ′)
.

Proof. We have

max
C∈C

z(C) ≤ max
C∈C

ẑ(C) ≤ α ẑ(C ′) = α
ẑ(C ′)

z(C ′)
z(C ′).

As we compute ẑ(C ′) and zi(C
′) during the iteration, this bound is also easily com-

puted. Furthermore, it is not restricted to MAXCOV and MAXDET but can be applied
to arbitrary detour willingness functions.

We like to point out that there is also an explicit formulation of MAXCOV and
MAXDET similar to [3]. However, this formulation turned out to be very inefficient in
practice.

4 Computational results

We employed the above models to problem instances based on real data from the German
motorway network. Our simplified network consists of 405 nodes, 1084 edges and a total
of over 130,000 commodities. We reduce the problem size by considering only the top
commodities Kξ that represent a given fraction ξ of traffic. When a set C of control edges

is given, we define the cover rate r(ω, ξ) :=

∑
i : ki∈Kξ

zωi (C)∑
i : ki∈Kξ

di
, that represents the proportion

of covered drivers in Kξ for the detour willingness ω.
The tests were made on a PC with 8 processors at 3.2 GHz and 16 GB RAM using

CPLEX 12.6. We set ce = 0.5 `e + 1 and Li = 1.1 `i and we optimized the location of
κ = 302 control stations in order to compare our solution with the actual location of
control gantries. We allowed an optimality gap of 0.5% and a time limit of 10 minutes
per IP/MIP iteration as well as a global time limit of 1 hour. In Table 1 we demonstrate
some results of our computations. Even though the number of commodities increases
from 3226 (ξ = 1/3) to 16711 (ξ = 2/3), the most obvious difference in computation time
is between MAXCOV and MAXDET. For both instances of MAXCOV we observe a
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Table 1: Computational results for exemplary instances of MAXCOV and MAXDET. The second and
third columns indicate the computing time and the number of iterations before the allowed gap
or time limit was reached. The gap in the fourth column corresponds to γ−1 (cf. Prop. 2). The
last four columns show cover rates in percent for the solution C of the considered problems.

CPU (s) it. gap r(ωcov, ξ) r(ωcov, 1) r(ωdet, ξ) r(ωdet, 1)

MAXCOV (ξ = 1/3) 3600 6 8.3% 82.6 77.5 92.6 91.4
MAXCOV (ξ = 2/3) 3600 6 12.4% 79.4 78.0 92.3 91.7
MAXDET (ξ = 1/3) 19 5 0.5% 71.7 68.5 94.4 92.4
MAXDET (ξ = 2/3) 121 5 0.4% 73.0 71.4 93.7 93.0

actual location 4.1 57.3

significant gap between lower and upper bound (cf. Proposition 2) while both compu-
tations were quit after 1 hour. In contrast, the computation times and optimality gaps
are excellent for the instances of MAXDET. These instances could also be solved to op-
timality, while this was not possible for the respective MAXCOV instances even with a
large time limit. We see that MAXDET gives comparable solutions with respect to rcov,
especially in comparison with the actual location of control stations. In Figure 1 the
differences between the solutions of MAXCOV and MAXDET for ξ = 2/3 are illustrated.
Interestingly, 243 of the 302 control edges occur in both solutions (≈ 80%). In Figure 2
we see that we can achieve similar results with less control stations. The computation
times correspond to the results in Table 1 even for κ = 50.
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Figure 1: Differences between solu-
tions of MAXCOV and
MAXDET for ξ = 2/3.

50 100 150 200 250 300

number of control stations (κ)

0.0

0.2

0.4

0.6

0.8

1.0

co
ve

r
ra

te

r(ωdet, 1)

r(ωcov, 1)

Figure 2: Cover rate in relation to κ.
We consider optimal solu-
tions C of MAXDET with
ξ = 0.5.
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5 Conclusions

In this paper we studied the problem of optimizing the locations of automatic toll control
stations in a transportation network. Our solution is a multi-commodity shortest path
network interdiction problem with thresholds for shortest path lengths. We present a
MIP formulation for two variants of this problem and use decomposition methods to
solve it efficiently.

Experimental results for the German motorway network show that the two variants
give results of comparable quality, while MAXDET surpasses MAXCOV in terms of
performance.

Future research should address the uncertainty in demand and detour willingness of
the drivers. The development of robust approaches is an important aspect also for
practical use.
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[10] M. Labbé and A. Violin, Bilevel programming and price setting problems, 4OR 11 (2013), 1–30.

[11] L. Lovász, V. Neumann-Lara and M. Plummer, Mengerian Theorems for Paths of Bounded Length, Period-
ica Mathematica Hungarica 9 (1978), 269–276.

[12] A. Mahjoub and S. McCormick, Max Flow and Min Cut with bounded-length paths: complexity, algorithms,
and approximation, Mathematical programming 124 (2010), 271–284.

[13] F. Pan, W. Charlton and D. Morton, A Stochastic Program for Interdicting Smuggled Nuclear Material, In

“Network Interdiction and Stochastic Integer Programming” (2003), 1–19.

7


