
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

RALF BORNDÖRFER MARKUS REUTHER
THOMAS SCHLECHTE CHRISTOF SCHULZ

ELMAR SWARAT STEFFEN WEIDER

Duty Rostering in Public Transport
-

Facing Preferences, Fairness, and
Fatigue

Zuse Institute Berlin (ZIB), Takustr. 7, D-14195 Berlin, Germany {borndoerfer,reuther, schlechte, schulz, swarat, weider}@zib.de

ZIB-Report 15-44 (September 2015)



Herausgegeben vom
Konrad-Zuse-Zentrum für Informationstechnik Berlin
Takustraße 7
D-14195 Berlin-Dahlem

Telefon: 030-84185-0
Telefax: 030-84185-125

e-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782



CASPT 2015

Duty Rostering in Public Transport - Facing Preferences,
Fairness, and Fatigue

Ralf Borndörfer · Markus Reuther ·
Thomas Schlechte · Christof Schulz ·
Elmar Swarat · Steffen Weider

Abstract Duty rostering problems occur in different application contexts and
come in different flavors. They give rise to very large scale integer programs
which typically have lots of solutions and extremely fractional LP relaxations.
In such a situation, heuristics can be a viable algorithmic choice. We propose
an improvement method of the Lin-Kernighan type for the solution of duty
rostering problems. We illustrate its versatility and solution quality on three
different applications in public transit, vehicle routing, and airline rostering
with a focus on the management of preferences, fairness, and fatigue, respec-
tively.

Keywords rostering · integer programming · heuristics · preferences ·
fairness · fatigue

1 Introduction

Duty- or crew rostering is an important step in the planning processes of
the public transit, railway, airline, and health-care industries. It deals with
the concatenation of duties or pairings, corresponding to days of work of one
personnel, to a sequence over a period of several weeks. Such a sequence of
duties and days-off is called a roster ; it can be anonymous or personalized,
cyclic or fully dated, and scheme-based or free. Rosters must satisfy a variety
of rules concerning qualifications, the distribution pattern of duties and days-
off, and limits on quantities such as average and total working times.

This work was funded by the Federal Office for Goods Transport and by LBW GbR.

Ralf Borndörfer · Markus Reuther · Thomas Schlechte · Christof Schulz · Elmar Swarat ·
Steffen Weider
Zuse Institute Berlin, Takustr. 7, D-14195 Berlin
Tel.: +49-30-84185-244
Fax: +49-30-84185-269
E-mail: swarat@zib.de



The objectives in rostering are not only economic quantities such as costs
or the size of the staff. Today, the generation of employee friendly rosters is also
gaining importance as a way to improve the attractiveness of the professions of
bus drivers, locomotive drivers, pilots, cabin crews, etc. This objective is not
easy to measure, but the match with stated preferences and fairness among all
employees are certainly key criteria. Corresponding regulations are often part
of collective agreements between employers and labor unions. User friendly
rosters can also have economic advantages by reducing the number of staff
away sick. Fatigue management, i.e., the generation of rosters that fit with
the biorhythm, also veers toward this direction, as rests on duty can make an
otherwise illegal roster feasible.

The more complex the rules and objectives, the larger the need for ad-
vanced mathematical optimization methods becomes. These must, however,
be versatile to deal with a wide variety of fast changing requirements in dif-
ferent companies and industrial sectors. Many algorithms have been proposed
for this purpose, the two main approaches being set partitioning and covering
based column generation algorithms and all kinds of local search methods. We
refer the reader to the surveys of Kohl and Karisch (2004) and Ernst et al
(2004), see also the 124 pages annotated bibliography of Ernst et al (2004).

We also propose a local search heuristic with various different neighbour-
hoods. One of them is based on a chained edge-exchange-approach as proposed
by Kanellakis and Papadimitriou (1980) for the Asymmetric Traveling Sales-
man Problem (ATSP). In Kanellakis and Papadimitriou (1980) the original
heuristic of Lin and Kernighan (1973) for the symmetric Traveling Salesman
Problem (TSP) is adjusted to the ATSP. Our heuristic is based on interpreting
a cyclic roster as a directed cycle through all duties. In this way, the cyclic ros-
tering problem reduces to an asymmetric traveling salesman problem (ATSP)
with additional constraints, for which good 2- and 3-opt procedures have been
developed. We show how these methods can be improved to a variable depth
search in the style of Lin and Kernighan (LK) for the solution of large scale
rostering problems. We show the versatility of the method by discussing three
applications on handling preferences, fairness, and fatigue in three different
industries. We argue that our method produces high quality solutions for real-
world rostering planning problems.

The paper is structured as follows. In Section 2 we characterize rostering
problems according to their variants and rules. In the following Section 3
basic model formulations of rostering problems are introduced. In Section 4
the adaption of the LK-Heuristic to the rostering problems is discussed in
detail. Three rostering applications are then presented in Section 5 and finally
Section 6 gives computational results showing the applicability of the heuristic.



2 Rostering in Practice

In the following, we want to characterize variants of rostering, and show how
these variants occur in applications stemming from projects at Zuse Institute
Berlin.

2.1 Variants of Rostering

Rostering is the problem of assigning a set of duties to employees obeying
certain rules. A duty is a specified set of tasks, which a single employee can
perform on a single work day.

Variants of rostering can be distinguished by their following properties:

Calendar Days vs. Days of Operation The duties to be rostered are either du-
ties of a certain planning period, e.g., the following month, or duties of
idealized days of operation. Typically, planners group working days with
similiar workload to so called days of operation. In public transport com-
panies the days from Monday till Friday often have the same schedules,
while Saturday, and Sunday may have very different schedules. This re-
sults in duties for a day of operation “Mon-Fri”, and duties for the days
of operation “Sat” and “Sun”. The days of operation form the so called
standard week. These duties are then inserted in a roster. When planning
with days of operations, often also a “standard” roster is planned, which
ignores deviations in the workload stemming from public holidays, road
works or similar events.

Personalized vs. Anonymous Duties can be assigned to specific employees,
considering their preferences for certain types of duties on certain days,
preplanned duties (like training courses), or planned absences. Or duties
can be assigned to rows (or in airline context also called lines) of a roster,
which will be in a subsequent step assigned to specific employees, e.g. by
preferential bidding or by another planning step.

Cyclic vs. Acyclic If rostering is used to plan Days of Operations for anony-
mous employees it is possible to create cyclic rosters. I.e., the rows are
planned such that an employee can subsequently perform the duties of all
the rows without violating rules. Further, the rows form a cycle, that is,
after performing the last row, employees start again with the first row.
The result is a fair roster in which all employees have to conduct the same
duties in the same sequence.

Fixed Off Days Days off can be planned in advance and given as input of the
problem or they may be freely distributed by the optimizer obeying specific
rules.

2.2 Rules

The rostering rules in all these planning variants are very similar. There are
hard rules coming from laws and regulations and soft rules for employee friend-



liness and fairness. The soft rules, e.g., creating as much completely free week-
ends as possible, avoiding isolated duties, or minimizing unfavorable sequences
of duties, can be enforced by penalties.

The most important hard rules are

– a maximal working time per week,
– a minimum break duration between two successive duties,
– and a minimum continuous weekly rest time of 48 hours.

These must not be violated. These hard rules are there for safety and health
reasons.

The airline industry goes even one step further. Today, all planning pro-
cesses in the airline industry are heavily supported by mathematical optimiza-
tion methods, e.g., in the field of pairing optimization Barnhart et al (1996)
and Borndörfer et al (2005). This well established technology allows for inte-
grating new aspects such as fatigue which is based on a complex biorhythms
model to identify sleep periods, instead of the simple rules stipulated by laws.
In particular, an airline crew has to face several changing the clocks during a
roster. The integration of fatigue and alertness in an airline rostering and crew
management context is described in Rangan et al (2013). The authors of Goel
and Vidal (2014) address the fatigue of drivers in road freight transportation.

3 Models

Rostering problems are typically formulated as multi-commodity flow prob-
lems with additional constraints or as their path-decomposition (see Dantzig
and Wolfe (1960)) resulting in set partitioning problems. In the multi-commodi-
ty flow formulation, each duty is interpreted as a node in a graph. A directed
arc in this graph means, that the adjacent duties can be performed subse-
quently by the same driver. Furthermore, we have one commodity per employee
or, in the anonymous case, one per row of the roster. The additional constraints
are typically knapsack constraints to ensure, e.g., maximum working times per
row, or infeasible path constraints, which forbid unwanted combinations of du-
ties in a row. Each feasible row of a roster corresponds to a feasible path in
this graph. The objective of this problem is to find a cost minimal set of paths
which covers each duty exactly once.

The flow formulation is more efficient if we have many feasible paths and
only a few hard rules that can be formulated by a small number of additional
constraints. In the case of many hard rules one should use the set partitioning
formulation, because flow formulations become inefficient in our experience, if
many additional constraints exist. That is the main reason why we use different
models for our rostering applications.



3.1 Flow Model

In the following we shortly present the basic flow model for rostering. Let
D be the set of duties which should be covered by a set of rows M . Our
graph has then one node for every duty plus two additional nodes s and t as
source and sink. We call this set of nodes V . If two duties u and v can be
performed in direct succession in the same row, there is an arc (u, v) in the
graph. Additionally, we have arcs (s, v) for every duty v that can be the first
in a row, and arcs (u, t) for duties u which can be the last ones, respectively.
Let A be the set of all feasible arcs of the underlying scheduling graph. Then
our flow rostering model (FRoster) looks as follows:

min
∑

m∈M

∑

a∈A
camxam (FRoster) (1)

∑

m∈M

∑

a∈δin(v)
xam = 1, ∀v ∈ D, (2)

∑

a∈δin(v)
xam −

∑

a∈δout(v)
xam = 0, ∀m ∈M,∀v ∈ D, (3)

∑

a∈A
barxam ≤ urm, ∀m ∈M,∀r ∈ R, (4)

∑

a∈I
xam ≤ |I| − 1, ∀I ∈ I,∀m ∈M, (5)

xam ∈ {0, 1}, ∀a ∈ A,∀m ∈M. (6)

Variables xam are one if arc a is used in row m or zero otherwise. Coeffi-
cients cam give the cost of using an arc a by row m. Constraints (2) guarantee
that every duty is covered by exactly one roster. Constraints (3) guarantee that
every row is a path in the network. These are equivalent to flow conservation
constraints of a multi-commodity-flow problem. Constraints (4) are resource
constraints. Coefficients bar define a resource consumption of a resource r on
arc a. A resource can be, e.g., paid time, or a number of working days. These
equations constrain the consumption of a resource per row to an upper bound
urm. Finally, constraints (5) forbid infeasible sequences of arcs. The set I is a
set of sets of arcs. Each of these sets of arcs must not be together in a single
row.

3.2 Set-Partitioning Model

The corresponding column oriented set-partitioning model (CRoster) is de-
fined on the same graph G = (V,A). Let P be the set of paths in G that



correspond to valid rows. Then our model (CRoster) is:

min
∑

p∈P
dpyp (CRoster) (7)

∑

p3d
yp = 1, ∀d ∈ D, (8)

∑

p∈P
erpyp ≤ ur, ∀r ∈ R, (9)

yp ∈ {0, 1}, ∀p ∈ P. (10)

The cost coefficients dp give the cost for a row p. Constraints (8) guarantee
that every duty is covered by one row. Constraints (9) ensure, that resource
consumptions of a resource r for the whole roster do not exceed their upper
bound ur. Resource constraints for a single row and infeasible path constraints
are not needed in (CRoster), because the corresponding violating paths are
simply not included in the set of all feasible paths P .

In practical applications we have to extend the basic models to incorpo-
rate their peculiarities. We will discuss these extensions in the corresponding
sections.

4 The DEX approach

Real world instances of rostering problems cannot be solved directly by general-
purpose solvers in acceptable time. Thus, we present a multi-phase-heuristic
for the construction of roster schemes which is suited for all variants presented
in Section 2.1.

Our approach, called DEX (for Dynamic-depth-EXchange heuristic), is a
heuristic which consists of chaining different types of k-opt improvement steps.

At first, we construct a feasible acyclic roster scheme with a greedy-heuristic
(Start). This is done sequentially by solving a constrained shortest path
problem for each row in the planning graph. We remove in each iteration the
duties from the graph which are assigned to the row. Main problem of this
heuristic is that for the last rows are too few duties left to build “good” rows.
Therefore, we improve this solution in the next steps.

In the anonymus case the solution obtained by Start is improved by a
sequence of k-opt steps based on an assignment problem. For the cyclic ros-
tering problem we connect the acyclic schedules to one cyclic roster. For the
acyclic rostering problem we connect the end node of each acyclic schedule
with its start node via an artificial edge. Then the solution is gradually im-
proved by a heuristic derived from a heuristic by Kanellakis and Papadimitriou
(1980) for the Asymmetric-Traveling-Salesman-Problem. This heuristic is an
edge-exchange-approach based on a heuristic by Lin and Kernighan (1973) for
the traveling-salesman-problem. We call it genLK. genLK tries to improve
the start solution by a sequence of three- and four-edge-exchanges. Deteriora-
tions of the solution quality is allowed. The concatenation of the-three-edge



Step 1: 3 Node exchanges

Step 2: Insert/delete nodes

Step 3: 4 Node exchanges

Start

Create a feasible roster Si with the PDG.

Start improvement
Sb = St = Si
vb = obj(Si)

Search exchange in St with obj(St) < vb

Update St
If obj(St) < obj(Sb):
Sb = St

Insert node in St with obj(St) < vb

Delete node from St with obj(St) < vb

Update St,
If obj(St) < obj(Sb):
Sb = St

Search exchange in Sb with cost < obj(Sb)

Update
St = Sb
vb = obj(Sb)

Reset
St = Sb

Reset
St = Sb

End

NO

YES

YES

YES

NO

NO

NO

YES

Fig. 1: LK heuristic for personalized rostering.

exchanges is constructed in such a way that the last added edge is removed
in the next exchange. If we do i three edge exchanges in a row, we have done
a 2 ∗ (i− 1) + 3 edge exchange. With this method we can perform a series of
edge exchanges that results in a k-opt step.

For the personalized case we use a similar approach, but we replace edge-
exchanges by node-exchanges. Figure 1 shows a description of this heuristic. In
order to allow temporary deteriorations of the solution, genLK saves not only
the best incumbent solution Sb with cost vb, but also a temporary solution St.
All exchanges are done on the temporary solution St. Each iteration Ij consist
of three different types of node exchanges. These are three node exchanges,
four node exchanges and node insertion and deletion. We start with iteration
0 (j = 0). The set of nodes is denoted by V . The first step of each iteration
j is to find feasible three node exchanges in St. The upper bound u for the
deterioration is the objective value before iteration j. Let n1, n2, n3 ∈ V be the
three nodes which should be switched with v1, v2, v3 ∈ St, St̂ the temporary
solution after the exchange and obj(St̂) the objective value of St̂. An exchange
is feasible if and only if St̂ satisfies all hard rules, (n1, n2, n3) 6= (v1, v2, v3) and



obj(St̂) < u. If an exchange is feasible St is set to St̂. If also obj(St̂) < obj(Sb),
Sb is set to the new temporary solution St̂. Then we search for a new three
node exchange in St. The first step is terminated if no suitable three node
exchange can be found anymore.

If that is the case St is set to Sb and we start the second step. Let W
be the set of nodes that have been inserted in St in this step and U be the
set of nodes which have been deleted from St in this step. The heuristic tries
iteratively to insert a node n ∈ V in St with n /∈ St and n /∈ U . Let St̂ be the
solution after the insertion. The insertion is done if obj(St̂) < u. Then St is
set to St̂ and n is added to W . Sb is set to St̂ if obj(St̂) < obj(Sb). If no more
insertion is possible we try to delete one node d ∈ St with d /∈W . The deletion
is done if the new objective value is less than u. Then d is added to U and we
start the insertion again. If no deletion can be found step two terminates and
St is set to Sb.

The last step of each iteration is to find a feasible four node exchange, which
improves the objective value of the best solution Sb. If no such exchange exists
the LK heuristic terminates, otherwise an exchange is done and the iteration
j + 1 starts with the first step again.

For the anonymus case we do also a k-opt node-exchange step. Iteratively
all duties that are planned for a specific single day of the planning horizon are
removed from the roster. Then a bipartite network is constructed. One set of
nodes of this network is formed by the removed duties. The other set of nodes
is the set of possible rows. An arc connects a duty with a row, if the duty can
be inserted in this row. The cost of the arc is the cost difference between the
original roster and the roster which is created by inserting the duty in the new
row. We then solve the assignment problem on this graph. This is repeated
until no improvement of the roster occurs.

Finally, also a column generation approach can be used to improve the
solution found by DEX. Here we use the heuristic proposed in Borndörfer et al
(2008) to solve the model (CRoster). However, in most cases the solution of
DEX is already near the optimum, such that the column generation approach
has difficulties to improve it.

5 Applications

In this section we present three real-world rostering applications, their specific
characteristics and how the corresponding optimization problems are modeled.

5.1 Rostering in Toll Enforcement

First, we want to address a rostering problem arising in the Federal Office for
Goods Transport (BAG). One of the tasks of BAG is to enforce the truck toll
on German long-distance roads BAG (2012). In a project with BAG we de-
veloped a method to optimize mobile control tours (shortly called tours), that



are conducted by control groups of one or two inspectors. In addition, feasible
rosters of the inspectors should be generated. This relates to an integrated tour
planning and duty rostering problem; it is called Toll Enforcement Problem
(TEP). In (Borndörfer et al, 2012) a case study is presented that indicates
the impact of the mathematical optimization approach on the enforcement
planning. In Borndörfer et al (2013) we gave an extensive description of the
modeling power of our approach, including an analysis of the bi-criterion char-
acter of the TEP. A main difference to other rostering approaches is that crews
can only conduct controls in the area of their home depots. Hence, tours and
crews must be planned simultaneously to prevent the planning of tours where
no crew is disposable for.

Rostering in the area of enforcement or security inspection planning has
some peculiarities in comparison to our basic models: The duties are not given
in advance, they have to be created by tasks consisting of controlling a certain
section of a highway in a certain time interval. For every section a minimum
control frequency and an indicator of its importance is given. A duty is then
a combination of such tasks, in our case of exactly two of them. TEP consists
of finding duties and rosters simultaneously. Every duty will be performed by
a control group.

Fairness and employee preferences are important criteria for the rostering
of the employees. This includes, that inappropriate sequences of duties should
be avoided. In particular, a change of the duty starting time on two subsequent
days, i.e., a rotation, is not desired. Especially backward rotations, i.e., the duty
on the next day starts earlier, alter the human biorhythm and affect the sleep.
This is similar to the recently studied fatigue criterion in the airline industry,
which will be presented in Section 5.3. Since avoiding certain sequences of
duties represents a soft rule, there are penalties in the objective function on
arcs representing rotations.

An important example for preferences are requests of employees to get a
“Free”, that is a day without a duty, on specific days. Since these requests must
be respected, they are modeled as hard constraints in our model. Fairness,
on the other hand, is considered by distributing unwanted duties, such as
night and weekend duties, rather equally among the inspectors. However, if an
employee prefers to work on weekends or at night, this will be also taken into
account.

5.1.1 Model of TEP

A duty in the TEP is now a tour starting at a certain time in a certain depot.
Every tour ends in the same depot where it started. In our scenarios exactly
two sections are controlled during a tour each for a fixed time interval, in our
case 4 hours. Let J be the set of days in the planning horizon of TEP. Further,
we denote the set of sections by S. Let here D be the set of all control tours,
the control tours are equivalent to the duties of model (FRoster). The control
tours are also the nodes of our planning graph plus again artificial nodes for
source and sink of the network. Let Df ⊂ D be the set of all control tours that



are feasible for control group f ∈ F and Dj the set of control tours at day
j ∈ J . Ds denotes all control tours that contain a section s ∈ S, and Di all
control tours at time interval i ∈ T . A day is partitioned in six time intervals
of 4 hours each. Control groups are sets of one or two employees m ∈M . By κs
the minimum control quota, i.e., the minimum number of controls on section
s during the planning horizon, is denoted and in addition by βds the number
of controls of s during control tour d (could be one or two).

The overall goal is to compute a reward-maximal set of control tours.
Hence, each tour gives a reward depending on the amount of traffic on the
controlled sections and on the time and day of the week when the tour is
scheduled. The profit wd of a tour d is defined as the sum of the rewards of its
controlled sections depending on time and day. We introduce binary variables
zd, d ∈ D, to decide if a control tour d is chosen or not.

We use now our basic model (FRoster) and extend it to incorporate the
control tours as follows:

max
∑

d∈D
wdzd −

∑

m∈M

∑

a∈A
camxam (TEP ) (11)

∑

d∈Df∩Dj

zd ≤ 1, ∀f ∈ F,∀j ∈ J, (12)

∑

d∈Ds∩Dj∩Di

zd ≤ 1, ∀s ∈ S, ∀j ∈ J,∀i ∈ T (13)

∑

d∈Ds

βdszd ≥ κs, ∀s ∈ S, (14)

∑

a∈δin(v)
xam −

∑

a∈δout(v)
xam = 0, ∀m ∈M,∀d ∈ D, (15)

ndzd −
∑

m∈M

∑

a∈δin(d)∈A
xam = 0, ∀d ∈ D, (16)

∑

a∈A
barxam ≤ urm, ∀m ∈M, ∀r ∈ R (17)

∑

a∈I
xam ≤ |I| − 1, ∀I ∈ I,∀m ∈M (18)

xam ∈ {0, 1}, ∀a ∈ A,∀m ∈M, (19)

zd ∈ {0, 1}, ∀d ∈ D. (20)

In the objective function (11) the profit of the selected tours minus the
costs of the sequence arcs are maximized. Contraints (15) and (17) till (19) are
equivalent to model (FRoster). Constraints (16) couples the tour selection
variables zd with the arc variables xam. Here nd gives the number of employees
needed for tour d. Constraints (12) guarantee that every control group per-
forms only one tour per day, constraints (13) guarantee that a section is not
controlled by more than one group at every point in time and constraint (14)



ensure the minimum control frequency. The costs cam represent penalties on
the duty sequence arcs.

We call the subpart of the model, that only involves the tour variables z
Tour Planning Problem (TPP).

5.1.2 Solution method

In contrast to many other rostering problems model (TEP) is directly solvable
by a general-purpose solver such as CPLEX. Since the beginning of 2014, our
algorithm and software based on this model and CPLEX is in production to
plan all toll enforcers of BAG in Germany. In this report we focus on the
results obtained by our approach DEX proposed in Section 4 and compare
them to the results obtained by CPLEX. We will show, that DEX is able to
compute good solutions in a very short time.

The main difference to standard rostering is, that we have to optimize
duties, which are here equivalent to tours, and a roster simultaneously. The
set of possible tours can become very large, so we tried to restrict its size:
We generate tours by solving TPP with relaxing constraints (12) such that
each group can perform three or four tours on a day. We compare that with
explicitly enumerating all tours. Because of the local control restriction for
each employee and the fact that a tour consists of only two sections, it is
possible to generate all tours by a simple enumeration.

After tours are generated, a slightly modified variant of DEX is used to
compute a feasible roster. DEX has to be modified, because not all duties have
to be covered. The number of duties used is a result of the minimum control
constraints (14), the number of control groups available, and the rewards per
duty in the solution.

5.2 Cyclic rostering in public transport

We present here a cyclic rostering problem of a public transport company
denoted by (RPT). It is modeled as a set partitioning problem because of
the multitude of difficult rules on paths. We use the terminology of model
(CRoster). Here one path, called row of the roster, is a feasible duty schedule
for one (anonymous) employee for the planning period. The goal is to find a
cost minimal set of rows which covers all duties exactly once. In the cyclic case
we need also subtour elimination constraints (24), because we want to find a
single cycle for all rows. To ensure that each row in the solution has exactly
one successor and one predecessor, we define binary variables yrs. For two
rows r, s ∈ P variable yrs is one if and only if row s is the successor of r. The
constraints (22) and (23) ensure that there is exactly one predecessor and one
successor for each row r with xr = 1 . Note that for the acyclic case constraints
(22) to (24) can be omitted. The majority of the rostering rules can be checked
within the construction of P . Thus, they are implicitly fulfilled by the model.
We need only explicit constraints for the interval rules (25) that span more



than one row. For this the set of interval rules is denoted by I. For each pair
of interval rule and row we have given a resource consumption bri. So there
are certain sets of rows σi, an upper bound ui and a lower bound li for the
resource consumption for each interval rule i ∈ I. The set Si contains all sets
σi for interval rule i. Constraint (25) ensures that the resource consumption in
σi is between li and ui. Finally, (26) and (27) ensure that x and y are binary.
The value of the objective function is the sum of the costs of the selected rows
and the sum of the costs of the links between the rows. The costs consist of
soft rule violations and fix costs per employee.

min
∑

p∈P
cpxp +

∑

r,s∈P
drsyrs (RPT)

s.t.
∑

p3d
xp = 1 ∀d ∈ D (21)

∑

s∈P
yrs = xr ∀r ∈ P (22)

∑

s∈P
ysr = xr ∀r ∈ P (23)

∑

r/∈S,s∈S
yrs ≥ xp + xq − 1∀p /∈ S, q ∈ S, S ⊂ P (24)

∑

r∈σi

brixr ∈ [li, ui] ∀σi ∈ Si, i ∈ I (25)

xp ∈ {0, 1} ∀p ∈ P (26)

yrs ∈ {0, 1} ∀r, s ∈ P (27)

5.3 Rostering for air traffic considering fatigue

In this section, we will briefly discuss how to integrate fatigue requirements
into model (CRoster) which is solved by a column generation algorithm
DEX.

In classical column generation approaches for crew scheduling, the pric-
ing problem can be interpreted as a resource constrained shortest path prob-
lem w.r.t. the current duals, see Barnhart et al (1996). In general, dynamic
programming algorithms are used as pricers, because such methods are very
fast and able to produce several substantially different columns (with hope-
fully large reduced costs) at once. The flexibility of dynamic programming
and labeling approaches provides the possibility to consider more complicated
non-linear resource rules, see e.g. Smith et al (2012) for the concept of replen-
ishment arcs. Sub-paths are extended by adding new tasks at the end, leading
to new sub-paths with the corresponding updated label states. Either the new
labels are better than the ones stored at the entering node, then the label set
is updated or the search is stopped because of pruning by an already existing



24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24 12 24

0

50

85

100

time

f

lcr

ucr

s

Fig. 2: Sleep process s, circadian rhythm lcr and ucr, and fatigue function f .

dominant label or because of an infeasible label state. (Assume a maximum
is given and the resource consumptions exceed this value after the extension.)
This classical search procedure can also be applied if a more complex calcula-
tion than just adding (or resetting) resources is needed which is obviously the
case for fatigue.

In general a maximum fatigue rule has to be checked; it is denoted by U .
By storing the “fatigue” state at the end of a sub-path, the fatigue calculation
has only to be done for the part of the extension. This is possible because
the fatigue state can be exactly described by a few values (circadian com-
ponent, sleep-related component, and work-related component). Thus, if the
local maximum of this interval does not violate the given U the constructed
sub-path is feasible, otherwise we can stop because of a trivial rule violation.
Figure 2 shows a roster example for nine days of some crew member. Flights
are marked as gray areas and sleeps are marked as green areas. Thus, the first
three days no duties or flights are assigned to the crew member. We denote
the circadian biorhythm by lcr and ucr. The value of the sleep process is plot-
ted as s and the fatigue value as function f . In case that the value of the



sleep process s intersects the function ucr the crew member starts sleeping.
We assume U = 85 which is fulfilled because the maximum of the function f
is achieved on day 6 around 11:20 a.m. with 82.6. The natural behavior of the
fatigue function and the human biorhythm can be observed in Figure 2, that
is:

– during sleep one recovers,
– staying awake makes one tired,
– working makes one tired even faster,
– and one cannot sleep on command.

For more details on the precise fatigue function and their components we re-
fer to Samel et al (1997). The determination of the local fatigue maximum
is rather complicated taking different time-zones into account and definitely
time-consuming due to the non-linearity. However, a significant speed-up can
be achieved by storing result values for always recurring and cumulative calcu-
lations of the components. Note that the objective (b.o. the dual values) of a
sub-path changes in each iteration of the column generation method, but the
fatigue calculation will not differ. A cumulative fatigue function is integrated
within the column generation based solution approach and leads to a reason-
able and acceptable increase of the total computation time. Thus, the crew
scheduling and optimization software NetLine/Crew Optimizer Suite of
Lufthansa Systems GmbH & Co.KG provides the integration of fatigue eval-
uation into the complete process of crew scheduling and optimization.

Imposing fatigue in our heuristic DEX is in principle easy: after each ex-
change the fatigue function has to be computed for the respective rows. The
main problem is to do this computation effectively, because in every run of
DEX millions of potential exchanges are checked. However, we see a huge po-
tential to anticipate redundant checks by using simple approximations, i.e.,
overestimation of the fatigue values.

6 Results

6.1 Cyclic rostering in urban public transport

Our rostering algorithm for public transport companies is integrated in the
commercially available planning suite IVU.plan from the IVU traffic technolo-
gies AG. We have tested our heuristic on real scenarios from a German urban
public transit company. Table 1 shows results of one scenario from a medium
size company. For the computations we used a Dell Precision T1700 work-
station with an 8-core Intel Xeon CPU with 3,40 GHz and Ubuntu 14.04 as
operating system. Target working time for the employees is 39 hours per week.
If they work more than 39 hours, overtime must be paid. For employee satisfac-
tion there are three rules which are especially important. First, the employees
want either to work a whole weekend or not at all at a weekend. Second, the
roster should contain as less short off days as possible. A short off day is an off



Aspect Manual solution Heuristic approach

Employees 39 39
PT/Week (optimal 39:00) [37:56,40:11] [38:45,40:05]
Separated weekend duties 12 9
Free weekends 12 16
Stand-alone duties 0 0
Number of short frees 13 6

Table 1: Medium urban cyclic rostering scenario with 157 duties

day with less off time than a normal one. E.g. a day off is regular if there are
at least 45 hours between adjoining duties, a shortened day off is allowed to
have as less as 36 hours between the shifts. By German law shortened off days
are allowed, but must be compensated within 3 weeks. Third, there should be
no stand-alone duties between two off days.

Table 1 shows that in our solution the working time is closer to 39 hours
than in the manual solution provided by the public transit company. The re-
sults show that one can reach a better employee satisfaction without additional
costs. The number of free weekends in the planning period increases from 12
to 16 and the number of short free days decreases from 13 to 6. Like in the
manual solution there are no stand-alone duties in the optimized plan. The
running time of this scenario was about 45 minutes.

6.2 Acyclic rostering in toll enforcement

For the TEP we have compared the results obtained by DEX with the so-
lutions from the integrated IP model. For the computational comparison, we
consider real-world instances from the test environment as well as from the
production operation at the BAG. First, we give some basic settings of the
computations. All computations were done on a Dell Power Edge M620 work-
station with an 8-core Intel Xeon CPU with 2,70 GHz and Ubuntu 14.04 as
operating system. For the IP Cplex 12.6 by IBM is used as solver with the
default parameter setting and maximal eight threads. The memory limit for
the branch and bound tree was set to 40 GB.

We choose nine scenarios from seven different control areas also called
regions, denoted by r1 until r7. The regions are optimized separately at BAG.
They have a planning horizon of several weeks each. Table 2 gives the key
characteristics of all instances. The first column gives the name of the instance,
the second the control area, and the third the number of inspectors of this
region. Column four shows the number of control sections belonging to each
region. Another important aspect is the number of fixed duties like days-off,
vacations, free requests or other obligatory duties like staff meetings. They
must not be changed. Therefore, fixed duties reduce the problem complexity
by implying to use certain arcs in the underlying planning graph. They are
indicated in the fifth column. The number of different duty types of a scenario



Fixed Duty IP
Instance Region Inspectors Sections Duties Types Rows Columns

I1 r1 21 17 253 6 7738 96526
I2 r1 22 22 272 4 8010 101791
I3 r1 22 22 170 7 13095 392563
I4 r2 23 24 189 8 15417 402285
I5 r3 22 22 8 12 20366 1611980
I6 r4 19 17 177 8 11246 295388
I7 r5 23 19 182 9 15067 501340
I8 r6 24 28 57 8 15246 712228
I9 r7 21 16 0 10 17369 904878

Table 2: Key characteristics of the instances to compare the LK algorithm
with a pure IP approach.

IP DEX
instance obj 5 min obj 12 hours gap(%) obj time(s) gap(%)

I1 359,077.13 359,077.13 0.00 353,181.93 36 1.67
I2 332,283.74 332,556.68 0.00 326,612.72 82 1.82
I3 – 513,998.85 0.00 499,804.91 127 2.84
I4 – 346,788.20 0.88 340,130.17 179 2.85
I5 – 805,294.03 1.08 790,459.06 420 2.98
I6 154,142.04 154,270.86 0.03 151,769.96 151 1.68
I7 – 335,015.01 0.72 331,301.40 162 1.85
I8 – 373,509.57 85.84 671,729.68 415 3.33
I9 – 437,426.84 4.76 441,274.11 474 3.85

Table 3: Results for real-world instances of the TEP with the IP method and
DEX without solving the TPP before.

also influences its complexity. It is shown in column six. An increasing number
of duty types leads to more duties and therefore to a more complex scenario.
In particular, in our application a duty type is defined by the allowed starting
times of the corresponding duties. The last two columns show the number of
constraints and variables in the TEP-IP model.

In our experiments, two different time settings for the IP were applied.
First, we used a time limit of five minutes to compare results, to have a fair
comparison with DEX, which also runs about 5 minutes. In the second ex-
periment, a time limit of 12 hours was set to check if the IP method can
find significantly better or eventually even optimal solutions. As described in
Section 5.1.2 we ran DEX with all possible duties or with an subset of them.

Hence, we performed four runs for each instance, two with the IP method
using different time limits and two with DEX using different duty sets. Then,
we compared the solution quality of the IP method with the ones from DEX in
terms of running time and objective value. Table 3 shows the results of DEX
with all possible duties. Table 4 shows the results of DEX with a subset of
duties generated by TPP. In these tables the first column gives the name of the
instance. Column two shows the IP solution after five minutes of runtime and



IP DEX
instance obj 5 min obj 12 hours gap(%) obj time(s) gap(%)

I1 359,077.13 359,077.13 0.00 352,939.36 30 1.74
I2 332,283.74 332,556.68 0.00 328,985.85 62 1.09
I3 – 513,998.85 0.00 485,343.35 40 5.90
I4 – 346,788.20 0.88 342,407.95 91 2.17
I5 – 805,294.03 1.08 776,836.70 196 4.78
I6 154,142.04 154,270.86 0.03 150,841.02 28 2.30
I7 – 335,015.01 0.72 330,247.18 34 2.17
I8 – 373,509.57 85.84 668,771.62 185 3.79
I9 – 437,426.84 4.76 427,642.76 175 7.16

Table 4: Results for real-world instances of the TEP with the IP method and
DEX with solving the TPP before.

column three the IP solution after 12 hours of runtime. In the fourth column
the optimality gap of the IP solution after 12 hours is displayed. Columns five
to seven show characteristics of the solution of DEX. Column five gives the
objective value, column six the runtime and column seven the optimality gap
of DEX with respect to the best known dual bound from the IP runs.

The instances are very different, especially with regard to fixed duties and
duty types. This is also indicated by the results of the test. Table 3 shows that
the instance I1 can be solved to optimality with the IP method within 5 min-
utes. For two other instances, I2 and I6, feasible solutions can be found within
five minutes that are better than the solutions by the heuristic. Hence, for
these three instances the default IP method clearly outperforms the heuristic.
For all other instances no feasible integer solution is found within five minutes,
while the heuristic always finds a solution no matter if tours are generated by
the TPP or not. Hence, we can state that the heuristic is the first choice for
medium-size and large instances to find feasible solutions in good quality very
fast.

If one compares the results of the 12-hour runs with the heuristic it be-
comes clear that the strength of the IP method lies in finding the overall best
solutions. Four instances can (almost) be solved to optimality. For further
three instances, I4, I5 and I7, there remains only a gap of about 1% or less
between the primal and the dual bound. For the first seven instances, i.e.,
also for the difficult instance I5 with almost no fixed duties and the highest
quantity of duty types, the objective value of the 12-hour-run is better than
the one obtained by the heuristic. In contrast to that, especially in case of the
difficult instance I8 the performance of the IP is very poor. One can summa-
rize that the heuristic is able to produce good solutions for each instance, but
they are never optimal. The IP method could perform poorly with some large
and difficult instances. There the heuristic is even with respect to the solution
quality the first choice.

Comparing the results of Tables 3 and 4 is seems that enumerating the
tours by the heuristic itself leads to better results for most of the instances
but there are two instances where it is different. The approach to compute the



tours with the TPP as a first step represents a more sequential view on the
problem. Hence, integration of rostering and tour generation is an important
characteristic of the TEP.

Acknowledgments

We want to thank our partners from IVU AG and our users from BAG, in par-
ticular Sebastian Adlers-Flügel, Hans-Stefan Madlung, Christian Hoffmann,
Thomas Dankert, Daniel Schneider, Ralf Haas and Uta Sperling.

We want to thank our cooperation partner Lufthansa Systems GmbH &
Co.KG, in particular Andreas Soehlke and Julika Mehrgardt.

References

BAG (2012) Bundesamt für Güterverkehr - Lkw-Maut. available on-
line, URL http://www.bag.bund.de/DE/Navigation/Verkehrsaufgaben/

Lkw-Maut/lkw-maut_node.html

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1996)
Branch-and-Price: Column Generation for Solving Huge Integer Programs.
Operations Research 46:316–329

Borndörfer R, Schelten U, Schlechte T, Weider S (2005) A Column Generation
Approach to Airline Crew Scheduling. In: OR, Springer, pp 343–348

Borndörfer R, Löbel A, Weider S (2008) A Bundle Method for Integrated
Multi-Depot Vehicle and Duty Scheduling in Public Transit. In: Hickman M,
Mirchandani P, Voß S (eds) Computer-aided Systems in Public Transport,
Springer Verlag, Lecture Notes in Economics and Mathematical Systems,
vol 600, pp 3–24, URL http://opus.kobv.de/zib/volltexte/2004/790/,
ZIB Report 04-14

Borndörfer R, Sagnol G, Swarat E (2012) A Case Study on Optimizing Toll En-
forcements on Motorways. In: Ravizza S, Holborn P (eds) 3rd Student Con-
ference on Operational Research, Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany, OpenAccess Series in Informatics (OASIcs),
vol 22, pp 1–10, DOI http://dx.doi.org/10.4230/OASIcs.SCOR.2012.1, URL
http://drops.dagstuhl.de/opus/volltexte/2012/3541

Borndörfer R, Sagnol G, Schlechte T, Swarat E (2013) Optimal Toll Enforce-
ment - an Integration of Vehicle Routing and Duty Rostering. Tech. Rep.
ZIB Report 13-79, Zuse-Institut Berlin, Takustr. 7, 14195 Berlin

Dantzig GB, Wolfe P (1960) Decomposition Principle for Linear Programs.
Operations Research 8:101–111

Ernst A, Jiang H, Krishnamoorthy M, DSier (2004) Staff Scheduling and Ros-
tering: A Review of Applications, Methods and Models. European Jour-
nal of Operational Research 153(1):3 – 27, DOI http://dx.doi.org/10.1016/
S0377-2217(03)00095-X



Goel A, Vidal T (2014) Hours of Service Regulations in Road Freight
Transport: An Optimization-Based International Assessment. Transporta-
tion Science 48(3):391–412, DOI 10.1287/trsc.2013.0477, URL http://dx.

doi.org/10.1287/trsc.2013.0477, http://dx.doi.org/10.1287/trsc.

2013.0477

Kanellakis PC, Papadimitriou CH (1980) Local Search for the Asymmetric
Traveling Salesman Problem. Operations Research 28(5):1086–1099

Kohl N, Karisch S (2004) Airline Crew Rostering: Problem Types, Modeling,
and Optimization. Annals of Operations Research 127(1-4):223–257

Lin S, Kernighan BW (1973) An Effective Heuristic Algorithm for the Trav-
eling Salesman Problem. Operations Research 21(2):498–516

Rangan S, Bowman J, Hauser W, McDonald W, Lewis R, Dongen HV (2013)
Integrated Fatigue Modeling in Crew Rostering and Operations. Canadian
Aeronautics and Space Journal 59:1–6

Samel A, Wegmann H, Vejvoda M, Drescher J, Gundel D, Manzey D, Wenzel
J (1997) Two-Crew Operations: Stress and Fatigue during Long-Haul Night
Flights. Aviat Space Environ Med 68:679–687, URL http://elib.dlr.de/

27561/, lIDO-Berichtsjahr=1997,
Smith OJ, Boland N, Waterer H (2012) Solving Shortest Path Problems with

a Weight Constraint and Replenishment Arcs. Computers and Operations
Research 39(5):964–984, DOI 10.1016/j.cor.2011.07.017, URL http://dx.

doi.org/10.1016/j.cor.2011.07.017


