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A Hall Condition for Normal Hypergraphs

Isabel Beckenbach∗ † Ralf Borndörfer∗

September 24, 2015

Conforti, Cornuéjols, Kapoor, and Vus̆ković gave a Hall-type condition for
the non-existence of a perfect matching in a balanced hypergraph. We gen-
eralize this result to the class of normal hypergraphs.

1 Introduction

Hall’s theorem gives a necessary and sufficient condition for the existence of
a system of distinct representatives of a family of finite sets. It is equivalent
to the following result on matchings in bipartite graphs.

Theorem 1.1. [Hal35] A bipartite graph has a perfect matching if and only
if for all stable sets S the set N(S) of its neighbors is as least as big as S.

This result has been generalized to balanced hypergraphs by Conforti, Cor-
nuéjols, Kapoor, and Vus̆ković [CCKV96] using a linear programming argu-
ment. Later, Huck and Triesch [HT02] gave the first combinatorial proof,
Schrijver provided the probably shortest proof (Corollary 83.1d in [Sch03]),
and recently Scheidweiler [Sch11] gave an alternative one based on an elegant
Gallai-Edmonds decomposition.

Theorem 1.2. [CCKV96] A balanced hypergraph has no perfect matching if
and only if there exists a pair (R,B) of disjoint node sets such that |e∩R| ≥
|e ∩B| for all hyperedges e but |R| < |B|.

The optimization version of Hall’s theorem is Kőnig’s theorem which holds
for bipartite graphs, balanced hypergraphs, and for the larger class of nor-
mal hypergraphs. This brings up the question whether Theorem 1.2 can be
generalized to normal hypergraphs. However, the theorem’s condition is only
necessary but not sufficient, as the following example shows.

∗Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany;
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(a) A normal hypergraph without
perfect matching which has no
pair (R,B) violating Hall’s con-
dition.
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(b) The hypergraph depicted in (a)
after duplicating vertex 4 has a
pair (R,B) violating Hall’s con-
dition.

Figure 1: Does Hall’s condition hold for normal hypergraphs?

Example 1.1. Take H = (V,E) with V = {1, 2, 3, 4} and E = {{1, 2, 4},
{2, 3, 4}, {1, 3, 4}}, see Figure 1a. This is the smallest normal hypergraph
that is not balanced. H has no perfect matching and |R| ≥ |B| for every pair
of disjoint node sets R,B with |e ∩R| ≥ |e ∩B| for all e ∈ E.
We can fix Hall’s condition in Example 1.1 by considering the hypergraph
H ′ = (V ′, E′) obtained from H by multiplying vertex 4 by 2, that is, by
setting V ′ = {1, 2, 3, 4, 4′} and E′ = {{1, 2, 4, 4′}, {2, 3, 4, 4′}, {1, 3, 4, 4′}}.
Now, B := {1, 2, 3} and R := {4, 4′} is a pair violating Hall’s condition, see
Figure 1b.

In Section 2 we show how this idea can be generalized in order to derive a
Hall condition for normal hypergraphs, including an analysis of bounds for
the multiplicity of a node. We also investigate a deficiency version. Section
3 discusses relations and differences between Kőnig’s and Hall’s theorem in
the graph and hypergraph case.

2 A Hall Condition for Normal Hypergraphs

We say that a hypergraph satisfies Hall’s condition if |R| ≥ |B| for all disjoint
node sets R,B with |e ∩ R| ≥ |e ∩ B| for all hyperedges e. Otherwise, H
violates Hall’s condition for hypergraphs.
Analogous to graphs [LP86], we define the deficiency of a hypergraph

def(H) := min{|V | − |V (M)| : M is a matching of H}
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Figure 2: A balanced hypergraph with def(H) = 3 > 1 = d(H)

to be the minimum number of vertices that cannot be covered by a matching.
In the same vein, we call the maximum violation of Hall’s condition in a
hypergraph its critical difference

d(H) := max{|B|−|R| : R,B ⊆ V (H), R∩B = ∅, |e∩R| ≥ |e∩B|∀e ∈ E(H)},

and a pair R,B of nodes attaining the maximum at the right hand side of
this definition a critical pair ; this generalizes the definition of the critical
difference in graphs [LM12].
A hypergraph has a perfect matching if and only if its deficiency is zero, and
it satisfies Hall’s condition if and only if its critical difference is zero. Thus,
the result of Conforti, Cornuéjols, Kapoor, and Vus̆ković [CCKV96] can be
restated as def(H) = 0⇔ d(H) = 0 for all balanced hypergraphs H.
For bipartite graphs, and more generally Kőnig-Egerváry graphs (for a char-
acterization of Kőnig-Egerváry graphs see [Ste79], [Dem79], or [KNP06]), it
is known that the deficiency is equal to the critical difference, see for example
[LM12].
In hypergraphs, the critical difference gives a lower bound on the deficiency.
Indeed, if M is a matching covering as many vertices as possible in a hyper-
graph H, and R,B is a critical pair of H, then

d(H) = |B| − |R| = (
∑
e∈M
|e ∩B|+ |B \ V (M)|)− (

∑
e∈M
|e ∩R|+ |R \ V (M)|)

≤ |B \ V (M)| − |R \ V (M)| ≤ |B \ V (M)| ≤ |V \ V (M)| = def(H).

Huck and Triesch [HT02] observed that the gap between the critical difference
and the deficiency can be arbitrarily large even for very simple balanced
hypergraphs.

Example 2.1. [HT02] Let H by the hypergraph with vertices 1, 2, . . . , 2n+1
and hyperedges e1 = {1, . . . , n+ 1}, e2 = {n+ 1, . . . , 2n+ 1}, see Figure 2 for
an example with n = 3.
As H has only two hyperedges it is obviously balanced. Furthermore, every
non-empty matching misses n vertices, so def(H) = n. However, d(H) = 1 as
there is no pair R,B ⊆ V with |ei∩B| ≤ |ei∩R| for i = 1, 2 and |B|−|R| > 1,
and thus R = {n+ 1}, B = {n, n+ 2} is a critical pair.
If we could take n copies of the vertex n + 1 into the set R, and all other
vertices into B, then we would get a pair R,B with |ei ∩ R| = n = |ei ∩ B|
(i = 1, 2) and |B| − |R| = 2n − n = n. This means that the deficiency of
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H equals the critical difference of the hypergraph in which node n + 1 is
“multiplied” n times.

The multiplication trick of Example 2.1 can be formalized and generalized
to derive a Hall condition for normal hypergraphs. To this purpose, we use
the vertex multiplication definition according to Berge.

Definition 2.1. [Ber89] Let H = (V,E) be a hypergraph, v ∈ V a fixed
vertex, and λ ∈ N. The hypergraph obtained by multiplying v by λ is the
hypergraph that arises from H by replacing the vertex v by λ new vertices
(v, 1), . . . , (v, λ) and every hyperedge e containing v by the new hyperedge
e \ {v} ∪ {(v, 1), . . . , (v, λ)}.
For c ∈ NV , H(c) is the hypergraph obtained from H by multiplying each
vertex v by cv. We denote by V (c) the set of vertices of H(c), by E(c) the set of
hyperedges of H(c), and for every e ∈ E we denote by e(c) the corresponding
hyperedge in E(c). If all entries of c are equal to some constant k ∈ N, we
also write H(k), V (k), E(k), and e(k).

Berge observed that H(c) is balanced if H is balanced. Similarly, if H is
normal, then H(c) is also normal. So multiplying the vertices of a hypergraph
does not destroy normality.
One problem arises when looking at the critical difference of the multiplied
hypergraph H(k). Namely, if R,B ⊆ V (k) is a critical pair of H(k) with
d(H(k)) = |B| − |R| > 0, then we can define a pair of disjoint vertex sets
R′, B′ ⊆ V (lk) by taking l times the number of copies of v ∈ V that R or B
contains. It holds that |e∩R′| = l ·|e∩R| ≥ l ·|e∩B| = |e∩B′| for all e ∈ E(lk)

and |B′| − |R′| = l · (|B| − |R|), and thus d(H(lk)) ≥ l · d(H(k)). This means,
that d(H(k)) is unbounded for k → ∞. Which is a problem as we do not
know a priori how often we have to multiply the vertices. We can overcome
this problem by considering a restricted multiplied critical difference defined
as

d∗(H(k)) := max{|B| − |R| : R,B ⊆ V (k), R ∩B = ∅,
|e ∩R| ≥ |e ∩B| ∀e ∈ E(k),

|B ∩ {(v, 1), (v, 2), . . . , (v, k)}| ≤ 1 ∀v ∈ V },

where the set R is arbitrary but B is only allowed to contain at most one
copy of each multiplied node.
In particular, we have that d∗(Hk) is bounded for k → ∞. This, together
width d∗(Hk) ≥ d∗(Hk′) for k ≥ k′, implies that d∗(H(k)) becomes constant,
i.e., there exists an N ∈ N with d∗(H(k)) = d∗(H(N)) for all k ≥ N . Our
main theorem shows that N ≤ r − 1 and the limit d∗(H(N)) is equal to
the deficiency for a normal hypergraph H. In short, we obtain a deficiency
version of Hall’s condition for normal hypergraphs.
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Theorem 2.1. def(H) = d∗(H(r−1)) holds for every normal hypergraph H
of rank r.

Proof. First, we show that def(H) ≥ d∗(H(k)) for all k ∈ N, in particular
this implies def(H) ≥ d∗(H(r−1)). Let M be a matching covering as many
vertices as possible, and R,B ⊆ V (k) a critical pair in which B contains at
most one copy of every multiplied node. We set M (k) := {e(k)|e ∈M} ⊆ E(k)

and C := V (M (k)) ⊆ V (k). Then M (k) is a matching in H(k) corresponding
to M , and C is the set of vertices covered by M (k). It follows that

d∗(H(k)) = |B| − |R|

=
∑

e∈M(k)

|e ∩B|+ |B \ C| −
∑

e∈M(k)

|e ∩R| − |R \ C|

≤ |B \ C| − |R \ C| ≤ |B \ C|
≤ |V \ V (M)| = def(H).

The first equality holds by the choice of the pair (R,B), the second equality
follows from counting B and R hyperedge wise, the first inequality holds
because of |e ∩ R| ≥ |e ∩ B| for all e ∈ E(k), the second inequality is trivial,
and the last inequality holds because B contains at most one copy of every
multiplied node.
Now, we prove def(H) ≤ d∗(H(r−1)). The linear program

max
∑
e∈E
|e|xe (1)

s.t.
∑
e∈δ(v)

xe ≤ 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

and its dual

min
∑
v∈V

yv (2)

s.t.
∑
v∈e

yv ≥ |e| ∀e ∈ E

yv ≥ 0 ∀v ∈ V

have integral optimal solutions, see [Lov72].
Let x∗ ∈ ZE be an optimal solution to (1) and y∗ ∈ ZV be an optimal
solution to (2). x∗ corresponds to a matching M covering as many vertices as
possible and y∗ corresponds to a multiset S of vertices such that |S ∩ e| ≥ |e|
for all hyperedges e (counted with multiplicity). Using duality, we have
|S| = |V (M)|.
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It is clear that y∗v ≤ maxe∈E |e| = r for all v ∈ V , so we can use y∗ to define
a pair (R,B) of disjoint vertex sets in V (r−1) as follows:

B := {(v, 1)|y∗v = 0}, (3)

R := {(v, i)|y∗v ≥ 2, 1 ≤ i ≤ y∗v − 1}. (4)

Note that B contains at most one copy of each multiplied node, but R can
contain several copies. Furthermore,

|e ∩R| − |e ∩B| =
∑
v∈e

(y∗v − 1) = |S ∩ e| − |e| ≥ 0,

and

|B| − |R| =
∑
v∈V

(1− y∗v) = |V | − |S| = |V | − |V (M)| = def(H).

It follows that def(H) = |B| − |R| ≤ d∗(H(r−1)). �

Theorem 2.1 gives the following combinatorial characterization for the non-
existence of a perfect matching in a normal hypergraph.

Corollary 2.2 (A Hall Condition for Normal Hypergraphs). A normal hy-
pergraph H of rank r has no perfect matching if and only if H(r−1) violates
Hall’s condition, i.e., def(H) > 0 if and only if d(H(r−1)) > 0.

Proof. We have already seen that d(H(r−1)) > 0 implies def(H(r−1)) > 0 and
this shows that def(H) > 0. On the other hand, if H has no perfect matching,
then Theorem 2.1 implies 0 < def(H) = d∗(H(r−1)) ≤ d(H(r−1)). �

The rank bound in Theorem 2.1 and Corollary 2.2 on the node multiplication
factor is best possible as the following example shows.

Example 2.2. For every natural number n ≥ 3, let Hn = (Vn, En) be the
hypergraph with vertex set {1, . . . , n, n+ 1} and hyperedges S ∪ {n+ 1} for
every subset S of {1, . . . , n} of size n− 1, see Figure 1a for an illustration of
H3. Every two hyperedges of Hn intersect in the (n+ 1)-th vertex, so Hn is
a normal hypergraph without a perfect matching.

We claim that N = n − 1 is the smallest natural number such that H
(N)
n

violates Hall’s condition. Indeed, let N ∈ N such that H
(N)
n violates Hall’s

condition. So there exists a pair R,B ⊆ V
(N)
n with |e ∩ R| ≥ |e ∩ B| for all

e ∈ E(N)
n but |R| < |B|.

For every i ∈ Vn = {1, . . . , n+ 1} we define

yi := |{copies of i in R}| − |{copies of i in B}|.
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Every hyperedge of Hn is of the form e = {1, . . . , n + 1} \ {i} for some
i ∈ {1, . . . , n}. As |e(N) ∩R| ≥ |e(N) ∩B|, we get

y1 + y2 + . . .+ yn+1 − yi ≥ 0 (5)

for all i = 1, . . . , n. On the other hand
∑n+1

i=1 yi = |R| − |B| < 0, thus

yi ≤
n+1∑
i=1

yi < 0

holds for all i = 1, . . . , n. The integrality of yi implies yi ≤ −1 for i = 1, . . . , n.
This together with inequality (5) for i = n gives

yn+1 ≥ −y1 − y2 − . . .− yn−1 ≥ n− 1.

It follows that N ≥ n− 1.

3 Relations to other Hypergraph and Graph Properties

In this section we look at the relationship between Kőnig’s Theorem, Hall’s
Theorem, and the deficiency version of Hall’s Theorem in several graph and
hypergraph classes, including bipartite and Kőnig-Egerváry graphs, as well
as balanced and normal hypergraphs. In particular, we show that the hyper-
graphs that satisfy the multiplied Hall condition and those for which Kőnig’s
Theorem hold do not coincide.
We denote by ν(H) the maximum size of a matching in a hypergraph H, by
ν∗(H) the maximum size of a fractional matching, by τ(H) the minimum
size of a vertex cover, and by τ∗(H) the minimum size of a fractional vertex
cover. Clearly, ν(H) ≤ ν∗(H) = τ∗(H) ≤ τ(H) holds for all hypergraphs H,
see for example Chapter 3 in Berge’s book [Ber89].
A graph G is said to be stable iff ν(G) = ν∗(G). Stable graphs are exactly
those graphs for which the set of vertices that are not covered by some
maximum matching form a stable set. In particular, we can test whether a
graph is stable in time O(|V (G)|3) using the Gallai-Edmonds-Decomposition
of G. Furthermore, a graph G is semi-bipartite if every two node disjoint
odd cycles are connected by an edge.
We say that a hypergraph H of rank r has the Kőnig property, the Hall
property, the multiplied Hall property, or the strong multiplied Hall property
if ν(H) = τ(H) (Kőnig’s Theorem), def(H) 6= 0 ⇔ d(H) 6= 0 (Theorem
1.2), def(H) 6= 0 ⇔ d(H(r−1)) 6= 0 (Corollary 2.2), or def(H) = d∗(H(r−1))
(Theorem 2.1), respectively. In the graph case the multiplication factor is
one, so the Hall and the multiplied Hall property are the same, and we call
the strong multiplied Hall property just the strong Hall property.
First, we analyze the relations between the classes of graphs defined by the
properties above, and later between the respective classes of hypergraphs.
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3.1 Relations between Graph Properties

A summary of our results on graphs is given in Figure 3 where the rectan-
gles indicate graph properties and an arrow from one rectangle to another
indicates an implication.

Strong Hall Property

Stable

Bipartite

Kőnig Property

Hall Property

Semi-Bipartite + even

Figure 3: Summary of relations between graph properties

In the following, we argue that all solid arrows correspond to valid implica-
tions, and every valid implication is contained in the transitive closure of the
diagram illustrated in Figure 3.

Bipartite → Kőnig Property

This is the result of Kőnig’s Matching Theorem, see for example Theorem
16.2 in [Sch03].

Kőnig Property 9 Bipartite

[Ste79], [Dem79], and [KNP06] characterized graphs with the Kőnig property.
From their results it follows that there are non-bipartite graphs with the
Kőnig property.

Kőnig Property → Stable

If G has the Kőnig property, then G is stable because ν(G) ≤ ν∗(G) ≤
τ(G) = ν(G) implies ν(G) = ν∗(G).

Stable 9 Bipartite, Kőnig Property

K4 is stable but it is not bipartite and ν(K4) = 2 < 3 = τ(K4).

Stable ↔ Strong Hall Property

By introducing variables y, z ∈ {0, 1}V we can calculate the critical difference
d(G) of G via the following integer program:

max
∑

v∈V (yv − zv) (6)

s.t.
∑

v∈e(zv − yv) ≥ 0 ∀e ∈ E (7)

yv, zv ∈ {0, 1} ∀v ∈ V (8)
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Figure 4: A semi-bipartite graph which is not stable.

Setting wv := zv−yv+1
2 transforms (6-8) into the half-integer program

max
(
|V | − 2 ·

∑
v∈V wv

)
(9)

s.t.
∑

v∈ewv ≥ 1 ∀e ∈ E (10)

wv ∈ {0, 12 , 1} ∀v ∈ V. (11)

(9-11) has the same optimal value as the linear program

|V |− 2 ·min
∑

v∈V wv (12)

s.t.
∑

v∈ewv ≥ 1 ∀e ∈ E (13)

0 ≤ wv ≤ 1 ∀v ∈ V (14)

because (12-14) has always an optimal solution with entries in {0, 12 , 1}.
On the other hand, the deficiency of G is equal to the optimal value of the
following integer program:

|V |− 2 ·max
∑

e∈E xe (15)∑
e∈δ(v) xe ≤ 1 ∀v ∈ V (16)

xe ∈ {0, 1} ∀e ∈ E. (17)

As the LP-relaxation of (15-17) is the dual of (12-14), d(G) = def(G) holds
if and only if ν(G) = ν∗(G). In other words, G has the strong Hall property
if and only if G is stable.

Strong Hall Property → Hall Property

Follows directly from the definition of the strong Hall property and the Hall
property.

Semi-Bipartite + even → Hall Property

See for example Theorem 8 in Chapter 7 of [Ber73].
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Bipartite, Stable, Kőnig, (Strong) Hall Property 9 Semi-Bipartite +
even

For all graph properties on the left hand side there are graphs with this
property and an odd number of vertices.

Semi-Bipartite + even, Hall Property 9 Bipartite, Stable, Kőnig,
Strong Hall Property

Figure 4 shows a semi-bipartite graph (with the Hall property) that is neither
bipartite nor stable, and has neither the Kőnig nor the strong Hall property.

Remaining implications

“Bipartite → Stable, (Strong) Hall Property”, “Kőnig Property →
(Strong) Hall Property”, and “Stable → Hall Property” follow by
transitivity.

3.2 Relations between Hypergraph Properties

The hypergraph case deals with more classes, and not all results of the graph
case carry over.
Figure 5 shows a diagram summarizing the relationships of the investigated
hypergraph properties; solid lines indicate hypergraph results and dashed
lines an “overlay” of Figure 3.

Strong Multiplied
Hall Property

Normal

Balanced Hall Property

Multiplied Hall
Property

Bipartite

Kőnig Property Stable

Hall

Semi-Bipartite + even

Figure 5: Summary of relations between hypergraph properties

In the remainder, we argue that the implications indicated by the transitive
closure of the solid arrows, and only these implications, are valid.
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Figure 6: A hypergraph with the strong multiplied Hall-Property and
ν(H) = 2 < 3 = τ(H).

Balanced → Normal

See Theorem 4 in [Lov72].

Normal 9 Balanced

See Figure 1a for a normal, non-balanced hypergraph.

Normal → Kőnig Property

See Theorem 3 in [Lov72].

Kőnig Property 9 Balanced, Normal

Choose some Kőnig-Egerváry graph which is not bipartite. This is also a
hypergraph with the Kőnig property which is neither balanced nor normal.

Balanced → Hall Property

This is the main result of [CCKV96].

Hall Property 9 Balanced, Normal

The hypergraphs depicted in Figure 6 and Figure 7b are not balanced and
not normal but have the Hall property.

Normal → Strong Multiplied Hall Property

See Theorem 2.1.

Strong Multiplied Hall → Multiplied Hall-Property

See the proof of Corollary 2.2.
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Multiplied Hall Property 9 Strong Multiplied Hall Property

The hypergraph shown in Figure 7b has the multiplied Hall property but
it does not have the strong multiplied Hall property as def(H) = 3 > 1 =
d∗(H(2)).

Balanced → Kőnig, (Strong) Multiplied Hall Property & Normal →
Multiplied Hall Property

By transitivity.

Normal, Kőnig, (Strong) Multiplied Hall Property 9 Hall Property

Figure 1a shows a hypergraph without the Hall property which is normal,
and thus has the Kőnig property. Furthermore, as the depicted hypergraph
is normal it has the multiplied and the strong multiplied Hall property.

(Strong) Multiplied Hall Property 9 Balanced, Normal, Kőnig Property

Figure 6 shows a hypergraph H with ν(H) = 2 and τ(H) = 3, so it does
not have the Kőnig property, is not balanced, and not normal. However,
as indicated by the red and blue nodes, the critical difference of the hyper-
graph is one which is the same as its deficiency. In particular, the depicted
hypergraph has the strong multiplied Hall property.
In addition, in Example 3.1 we give a family of hypergraphs with the multi-
plied Hall property which are not necessarily balanced, normal, or have the
Kőnig property.

Example 3.1. We define for a graph G the hypergraph K(G) with the same
vertex set as G and whose hyperedges are all maximal cliques of G as it was
done in [FLV84]. If G is perfect, then the dual hypergraph of K(G) is normal
(see [Lov72]), however, K(G) itself must not be normal.

Claim: If G is a perfect graph in which every maximal clique has size k,
then def(K(G)) 6= 0 if and only if d(K(G)(k−1)) 6= 0.

Proof. If d(H(k−1)) 6= 0, then H has no perfect matching and thus H has
positive deficiency.
It remains to show that whenever H has no perfect matching the hypergraph
H(k−1) contains a pair B,R ⊆ V (k−1) such that |B| > |R| and |e∩R| ≥ |e∩B|
∀e ∈ E(k−1). As H has no perfect matching, the size of a minimum hyperedge
cover of H is greater than |V |

k . By the construction of H, every hyperedge
cover of H corresponds to a clique cover of G, and vice versa. This implies
that the minimum size of a clique cover of G is greater than |V |

k . As G is
perfect the minimum size of a clique cover in G is equal to the maximum

12



(a) A perfect graph G in which every
maximal clique has size three. (b) The 3-uniform hypergraph con-

structed using G.

Figure 7: Illustration of the construction in Example 3.1.

size of a stable set of G. Let S ⊆ V be a maximum stable set. We use S to
define B,R ⊆ V (k−1) in the following way:

B := {(v, 1), (v, 2), . . . , (v, k − 1)|v ∈ S},
R := {(v, 1)|v ∈ V \ S}.

We have that

|B| > k − 1

k
|V | = |V | − |V |

k
> |V | − |S| = |R|.

As S is a stable set and B contains just k − 1 copies of every vertex of
S, we have that |e ∩ B| ≤ k − 1 for every e ∈ E(k−1). On the other hand,
|e∩R| ≥ k−1 for all e ∈ E(k−1) holds. Thus, |e∩R| ≥ |e∩B| ∀e ∈ E(k−1). �

All (k − 1)-trees are perfect graphs in which every maximal clique has size
k, see Figure 7 for the construction of K(G) where G is a 2-tree.

Kőnig Property 9 (Strong) Multiplied Hall Property

The hypergraphH with vertices v1, v2, v3, v4, v5 and hyperedges {v1, v2, v3, v4},
{v1, v5}, {v2, v5}, {v3, v4} (see Figure 8) has matching number ν(H) = 2 and
vertex covering number τ(H) = 2, so it has the Kőnig property. In the
following we show that H does not have the multiplied Hall property.
Suppose to the contrary that H has the multiplied Hall property. As H has
no perfect matching, there must exist a pair R,B ⊆ V (3) of disjoint node
sets such that |e ∩R| ≥ |e ∩B| for all e ∈ E(3) and |R| < |B|.
For i = 1, . . . , 5 we define

yi := |{copies of vi in R}| − |{copies of vi in B}|.

13



v1 v2

v3v4

v5

v1 v2

v3v4

v5

Figure 8: A hypergraph with the Kőnig property and without the multiplied
Hall property.

Then |R| < |B| and |e∩R| ≥ |e∩B| ∀e ∈ E(3) imply the following inequalities:

y1 + y2 + y3 + y4 + y5 ≤ −1 (18)

y1 + y2 + y3 + y4 ≥ 0 (19)

y1 + y5 ≥ 0 (20)

y2 + y5 ≥ 0 (21)

y3 + y4 ≥ 0. (22)

The inequalities (18) and (19) imply y5 ≤ −1, and (20-21) imply y1 ≥ −y5 ≥
1, y2 ≥ −y5 ≥ 1. Using these observations and inequality (22) we get

−1 ≥ y1 + y2 + y3 + y4 + y5 ≥ y2 + y3 + y4 ≥ y2 ≥ 1,

which is a contradiction. Thus, H does not have the multiplied Hall property.

Hall Property → Multiplied Hall Property

If H has the Hall property, then d∗(H(r−1)) = 0 implies d(H) = 0, as
d∗(H(r−1)) ≥ d(H). Furthermore, d(H) = 0 implies def(H) = 0, thus
d∗(H(r−1)) = 0 ⇒ def(H) = 0. It is easy to see that the converse impli-
cation def(H) = 0⇒ d∗(H(r−1)) = 0 always holds. In particular, H has the
multiplied Hall property.

Hall Property 9 Kőnig Property

See Figure 7b or 6.

Hall Property 9 Strong Multiplied Hall Property

The hypergraphH depicted in Figure 7b has the Hall property but d∗(H(2)) =
1 < 3 = def(H).
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[LP86] László Lovász and Michael D Plummer. Matching Theory, vol-
ume 29 of Annals of Discrete Mathematics. Elsevier, 1986.

[Sch03] Alexander Schrijver. Combinatorial Optimization – Polyhedra
and Efficiency. Springer, 2003.

[Sch11] R. Scheidweiler. Matchings in balanced hypergraphs. PhD the-
sis, RWTH Aachen, 2011. availabe at http://publications.rwth-
aachen.de/record/64351.

[Ste79] F. Sterboul. A characterization of the graphs in which the
transversal number equals the matching number. Journal of
Combinatorial Theory, 27(2):228–229, 1979.

15


