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Abstract

In this article we developed a new method for approximating exit rates for molecular
dynamics with metastable regions. Due to the fact that Monte Carlo simulations perform
quite poor and are very computational expensive in this setting we create several similar
situations with a smoothed potential. For this we introduce a new parameter A € [0, 1]
(A = 1 very smoothed potential, A = 0 original potential) into the potential which controls
the influence the smoothing. We then sample the exit rate for different parameters A from
a given region in the smoothed potential. We try to connect the A to the exit rate to use
this dependency to approximate the real exit rate. The method can be seen as something

between hyperdynamics and temperature accelerated MC.
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Introduction

The exit rate out of a molecular state is one out of many things of interested in molecular
dynamics. Because it is very hard to compute this quantity directly with Monte Carlo
simulations there are several techniques available to accelerate the sampling of this exit
rates see for example [Leliévre, 2015] for a nice overview and mathematical investigation.

Often these exit rates are very small and this is why it is hard to get a good estimation



for this rates this is why one can consider this exit rates as a rare event. In this article
we consider a stochastic model for the atom movement. For this we use a system of

overdamped Langevin equations

dX, = —-VV(X,) +/(2D)dB, (1.1)

where VV : R3 — R3" is the gradient of the energy landscape, B; is the Brownian
motion and D = kBTT with kp being the Boltzmann constant, T the temperature and [ the
damping constant. Since the movement of the molecule in the energy landscape is described
by an steepest descent with a random (Gaussian i.i.d) perturbation, the molecule will stay a
long time in the conformation corresponding to this energy minimum. The transitions will
only take place when there is a lot of randomness (Brownian motion). This, the cragginess
and the high dimensionality makes it so hard to estimate the transition rate by a simple

MD simulation.

In mathematical terms the exit rate can be described as a conditional probability. Without
loss of generality we assume that we have two set S, 7 C Q with 7 = Q\S. We will call
S the starting set and T the target set. The holding probability between these two sets is
given by

PXieT|Xi-1€S...X0€S) (1.2)

where we have assumed that the stochastic process has started in S and X. are realizations
of the stochastic differential equation (1.1) for different time steps ¢ € [0,7] with 7" < oo

In order to find an approximated analytical expression for the exit rate we define the
corresponding indicator function for the different sets. Let 1s : © — {0,1} denote the
indicator function of the starting set and 17 — {0, 1} of the target set. Let X; for t > 0
define a realization of the stochastic differential equation (1.1) and let 1o : R — {0, 1} with
1o(x) =1 only for z = 0 . With these preparations, the expression

11()(/; ]lT(Xs)ds) (1.3)

is 1, if and only if the stochastic process X, never reached the (open) target set for s < ¢
otherwise it is zero. The exit rate of the starting set S is the quantity 6 > 0 which

approximately solves

exp(—6t)1g(z) ~ E[ns(xt)l()(/ot ]lT(XS)ds> X, = x} VeeQt>0.  (14)

The expectation value on the right hand side is taken over a random variable (depending
on realizations of the stochastic process X;) which is either 1 or 0. The value is only 1, if

the process has started in x = xp € S and never reached 7 during the process (stopping



criterion). The probability that a stochastic process of length ¢ meets this condition should
decrease almost exponentially due to Arrhenius equation. Thus, the expectation value is
approximated by an exponential function. A direct sampling of this quantity by computing
realizations of the stochastic process X; is impossible, if the exiting of the starting set S
is a very rare event (or if the starting set S is a metastable set). In this case the switching

from 1 to 0 is almost never observed, ¢ is almost 0.

Homotopy

Rare events occur in stochastic dynamics, if the potential energy function has high energy
barriers between the basins or looks like a craggy landscape. Downscaling of the ’hills’ is
the way to turn rare events into frequent events. Usually, thermodynamic simulations are
accelerated by increasing the temperature. Increasing the temperature is equivalent to a
linear downscaling of the potential energy function V : @ — R, where 2 is the position
space. For a parameter A € [0,1] this downscaling can be seen as a homotopy of the

potential energy function given by

A

Va(z) = 1 =2V (z)

This homotopy turns a potential energy function with local minima and local maxima step
by step into a flat (constant) function, like it is shown in the Fig. 1 on the left side. By the
downscaling the Boltzmann distribution of molecular states also turns step by step into a

flat histogram on the position space, indicated in Fig. 1 on the right side.

potential energy
Boltzmann probahility

position space position space

Figure 1: left: Downscaling of a potential energy function (solid line) to a flat function (dashed
line). right: The Boltzmann distribution of these functions turn into a flat histogram.

This temperature-driven type of acceleration has some drawbacks see [Sorensen and Voter, 2000]
for a general description of this approach. An almost flat histogram is not an easy func-
tion to sample from in a high-dimensional space. The reason is the following. Molecular
potential energy functions usually have only very located basins of low energy surrounded
by high and steep hills. The Boltzmann distribution (at "normal" temperature) has a low

entropy - much lower than the entropy of a flat histogram. Another idea of transform-



ing the potential energy landscape is given by solving a boundary vale problem for the

potential,

AV (z,\) = E?)\V(x,)\), V(x,0) = V(x) (1.5)

where A, is the Laplace operator in z-direction. In this equation, the diffusion evens out
the rough landscape. If we assume the position space to be unbounded, then potential
energy function values are usually unbounded, too. This means that the solution of the
heat equation is not converging against a constant function. From this one can conclude
that the Boltzmann distribution of the solution of the boundary value problem is not a flat
histogram, which would be quite hard to sample. Since the heat equation is well known in
literature it is known that the solution can be formulated as a convolution with a Gaussian
kernel cf. [Evans, 2010]. In the one-dimensional case (2 = R, A > 0) we get the homotopy

of the form

— s e (= ;y”) V(y)dy. (1.6)

This expression is also quite useful in order to apply our method in a high dimensional

V(z, \)

setting. If the potential V' is know there is only a one dimensional formula to solve to get
the transformed potential. In Fig.2 it is shown on the left side, how the diffusion turns
a given non-convex potential energy function into a convex function. By this convexity,
the Boltzmann distribution changes from a two-local maxima situation into a single bell-
shaped function (Fig. 2, right), which should have a low entropy. Thus, it is easy to sample
c.f. [Kostrowicki et al., 1991].

Using diffusion for a convexification of the potential energy function is an old idea. Also
the fundamental solution of the diffusion equation offers some nice computational aspects.
Since we want to use the smoothed potential for our simulations of the Langevin equation
(1.1) we have to calculate the derivative of the new potential. Here we can use a well

known property of the convolution formula

a,

4N

F/ _”tH )axV(x—t)dt.

So in order to calculate the derivative it is also possible to calculate the derivative of the

convolution kernel. This may be easier in some situations.

Numerical Aspects Since we consider distance depending potential we assume that we

can write the potential in the following form

N N
z) =Y fij(x) =Y Hy(rij(x))

1>] 1>]



potential energy
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position space position space

Figure 2: left: Diffusion of a potential energy function (solid line) to a convex function (dashed line).
right: The Boltzmann distribution of these functions turn into a bell-shaped histogram
with a low entropy.

with H;; : R® — R being the potential function for a certain distance and r;j(z) : R3xR3 —
R the distance between two points in R? defined by 7;;(x) = |lz; — z;{|,. Due to the linearity

of the Gauss transform it follows

N
[VIa(x) = [Hij o rijla(x).

i>j

For simplification we introduce a distance vector y € R? ylij =z — x5 1 =1,2,3 so that

we can rewrite H;; with functions h;; : R? - R
Hij(rij(z)) = Hy([|y7|]) = hij (y?).
For this type of functions More and Wu derived a special Gauss transformation formula
[Hij o rila(z) = [hij] zx(2).
For the case that H;; is a even function the formula gets
[hij] ax(x) = \f”?/”H / v + V2\s)H;j (ly7 | + V2Xs)e =% s, (1.8)

This formula is very nice in the sense of numerical treatment. We use a Gauss quadrature
to approximate the integral numerically for which there exists a error bound. Consider

(1.8) for fixed A and r;;(x). The integral (1.8) has the following general structure

Gor = K, / drr(s)e " ds. (1.9)
R

Using a Gauss quadrature rule (1.9) can be approximated by a finite sum

b
/ gr)\ dSNszgr/\



We can choose the weights and the sampling points. We want to guarantee that polynomial
of order 2q — 1 are integrated exactly by our approximation. This is why we choose the
weight function w(s) = e=*". Because of our claim for the approximation of our formula we
have to choose the roots of Hermit polynomial as sampling points and the weights w; have
to be calculated by the integration over weighted Legendre coefficients. Because of the
symmetry of the weight function we know that the samplings points have to be symmetric

around 0. So we get the following approximation for (1.8)

q

N
Fale) = () = D2 <= S o) + VS (o) + VEAs)
i>j K k=1
The error of this approximation is given by

I/ Ia@) =[] (@)] < 1’ Nep(x)

with v(x \//e | fl(z + As)|2ds

with p being some constant and f! being some piecewise continuous function on R with
[ < g cf. [Moré and Wu, 1995].

Identification of target sets and exit rates

We aim at a fast computation of (very small) exit rates ¢ from a given starting set to a
given target set in position space. The homotopy of the potential energy function is used
for an acceleration of the sampling procedure. So instead of sampling with (1.1) we sample

the Langevin equation with a flattened potential
dX} = —VV(X}\) ++/(2D)dB;, X = Xo, A€ [0,1],

with V (X, \) as given in (1.6). Temperature scaling and diffusion turn the rare events
into frequent events and allow for a statistical analysis. We want to correlate the exit
rates with the homotopy parameter A in order to use extrapolation techniques to estimate
the exit rate at A = 0. Instead of using fixed starting and target sets for the exit time
samplings, we will have to change these sets according to A too . The reason can clearly
be seen in Fig.2, left. A homotopy might change the energy landscape such that starting
and target sets should be selected accordingly. In order to get an algebraic expression for
the sets depending on the infinitesimal generator Ly of the samplings, we will use PCCA+
for identifying the metastable regions (starting and target set). The generator Ly depends
on A because the potential energy does. One eigenfunction of the infinitesimal generator
is the constant function e : @ — {1} with Lye = 0. First, the eigenvalue —o which is

closest to the eigenvalue 0 is searched for. The corresponding eigenfunction is denoted as



vy =R, e

Lyvg \ = —owvg )y,

omitting the explicit A-dependency in the followings for the sake of simplicity. PCCA+ uses
a linear transform of the leading eigenfunctions (in our case a transform of e and vs) in order
to compute the membership functions of the metastable sets cf. [Deuflhard and Weber, 2005]
[Weber, 1999]. Thus, the target set of our exit rate analysis is given by a membership func-
tion

X =aie+agvy, ai,az €R

which is not really a set in the strict sense. The membership function y is more like a fuzzy
set which is shown for the two different homotopy methods in Fig. 3. For this computation

we restricted the (1-dimensional) position space to a fixed interval.

membership function
membership function

position space position space

Figure 3: Plot of the membership function of the target set depending on the homotopy parameter
A. The solid line represents the membership function for the original potential energy
function. The dashed line corresponds to the flattened potentials shown in Fig. 1 and Fig.
2: The rarer the transitions between the metastable regions the steeper the membership
functions. Left: For the case of temperature scaling. Right: For the diffusion approach.

The eigenvalues of L represent the time-scales of the dynamical process, but they do not
exactly correspond to the exit rates. We already have solved the problem to find an analytic
relation between the (fuzzy) target set y and the homotopy parameter A by using PCCA-+.
A similar approach is now used in order to compute an analytic expression of the starting

set u : Q — [0,1] depending on A For a given € > 0 we solve the eigenvalue problem
Lu — e(xu) = —du, (1.11)

such that —& corresponds to the highest eigenvalue (which is close to 0) of L —eD,,, where
D, is the multiplication operator based on the membership function x. The corresponding
eigenfunction w is scaled such that the maximal value of u is 1 on a given compact subset
of the position space. For the discretized version of (1.11) it will be discussed later that
the function u can restricted to only have non negative values. We conjecture, that is

also a non negative eigenfunction for the continuous operator L — eD,, and after a suitable



rescaling, u is restricted to have values only in the interval [0,1]. In Fig. 4 it is shown
how these functions look like for the two homotopy approaches. The more the homotopy
parameter converges against A = 0, the more u can be interpreted as an indicator function

of the start set, i.e., the complement of the starting set.

-
-
......

0,5 0.5

u-function
u-function

position space position space

Figure 4: The function u is depending on the homotopy parameter A\. The solid line represents the
u- function for the original potential energy function. The dashed line corresponds to
the solution of (1.11) for the flattened potentials shown in Fig. 1 and Fig. 2.
Left: temperature scaling. Right: diffusion approach.

That u is indeed similar to a complement function of x can be understood by looking at the
eigenvalue of (1.11). If w is a complement of x , then xyu ~ 0. The equation approximately
restricts to an eigenproblem Lu = —d&wu which is solved by piecewise constant functions on
the metastable sets. We will now see that it makes sense to regard & as the exit rate of
the process. By using the Feyman-Kac formula [@Oksendal, 2003|, the function u meets the

equation
t
exp(—at)u(z) = E[U(Xt) exp < - e/ X(Xs)ds> | Xo = CL'} (1.12)
0
where the left hand side is a solution of the differential equations

ou
— = Lu— = —6u. 1.1
T u — €e(xu) ou (1.13)

The above equation is a real equation and not only an approximation. It looks very similar
to (1.4). The indicator function 1s of the starting set is replaced by u , which is indeed
regarded as the fuzzy or relaxed starting set function. The same holds for the indicator
function 17 of the target set and its relaxation y. Instead of testing if the stochastic
process has reached the target set by ]10<f[f ]lT(XS)ds> in (1.4), this {0, 1}-decision has

been replaced by an exponential penalty term exp ( —€ fg x(X s)ds) € [0, 1], which tends
to zero the longer the process stays in x. Thus, & represents indeed a weak formulation of

an exit rate out of the starting set. The rate of the rare event.

Instead of estimating the exit rate, one is often interested in finding the expected time
Tarrive Which a process needs in order to arrive at a target set 7 when starting in a certain

state = . Note, that the approximation (1.4) for the set-based case turns into an equation



(1.12) for the membership functions. For the starting point Xy = x, the right hand side of
(1.12) represents the ratio of states after simulation time ¢ which are still in the starting
"set" u(-) after simulation of time ¢. Thus, one can compute the estimated exit time into
the target "set" x(:) (starting from a point with u(z) = 1) by a weighted mean value

computation using the left hand side of

fooo exp(—oT)Tdr

fooo exp(—oT)dr

=51

E [Tarrwe] -

Approximating the eigenproblems

Instead of a continuous trajectory X, we only get discrete time-steps from a realization
Xo, X1, Xo, ... of a discrete-time and continuous-space Markov chain. The correspondence
between the time-discrete transfer operator P™ and the infinitesimal generator L can be

written formally as
PT = exp(7L).

This transformation keeps the eigenfunctions L of unchanged but turns an eigenvalue —&

of L into an eigenvalue exp(—70) of P7 . This means, for the eigenfunction vp of L that
PTvy = exp(TL)vy = exp(—70)v2 (1.14)

holds. The eigenproblems of L used for the identification of x are, thus, easily transferable
to eigenproblems of P7. The eigenproblem (1.11), however, is a bit more complicated. It
would be nice, if it would be possible to simulate trajectories according to a dissipative
transfer operator P7 = exp(r(L — eD,)) for the modified infinitesimal generator L — eD,.
In this paper, we will apply a heuristics instead, which works very well for our given
examples. A time-discretization of the modified infinitesimal generator L — eD, can be

approximated by

~

P" = exp(1(L — €D, )) = exp(7L) exp(—7eDy ) = P" exp(—TeD,). (1.15)

Equality holds, if L and D, commute. Commuting operators exist for non-ergodic pro-
cesses, where Y is an indicator function of one of the ergodic compounds of the state space.
For almost non-ergodic processes, thus, for metastable processes, this approximation is
assumed to be good enough for our purposes. In fact, in the given examples below, the
error which stems from this approximation is much smaller than the sampling error. This
means, that given the transfer operator of the Markov chain P”, we can estimate the exit

rate & by computing the membership function y via eigenfunction analysis of P” and,



then, solving the eigenfunction problem of P exp(—7eD,). The result is

b= —%log(p(PT)) ~ —% log(p((P" exp(—7eDy)))) (1.16)

where p(A) denotes the spectral radius of A.

lllustrative Example

In this example section we use two common approaches for the investigation of dynamical
systems. First we use the homotopy approach to sample the generator of the stochastic
process. In the second part we are going to assume that we can describe our dynamical sys-
tem by a overdamped Langevin Equation. We wee use our accelerated sampling approach

to differ the potential in which the process is living in.

In our first example we want to simulate a stochastic process on the double-well potential

V(z) =8zt — %xg’ + 222 + %az +1.

This potential has exactly the shape presented in Fig. 1 and Fig. 2 (on the left, solid
line). Instead of a continuous simulation we will directly sample from a discrete-space and
discrete-time Markov chain. For the space discretization we divide the interval [—0.5, 1.5]
into equal units by x; = —0.48 + k0.02 for £ = 1,...,101. For the illustrative example
we will need an exact solution of the above eigenvalue problems, thus, the infinitesimal
generator is approximated by a 101-by-101-rate matrix L. Consecutive indices ¢ an j have
a positive entry

exp(—SV (z;))

Lis =\ ap(CBV ;)

where the negative diagonal elements of L are determined such that the row sums of L
are zero cf. |Lie et al., 2013]. All the other elements of the matrix L are zero. In order to
obtain a metastable process we set the inverse temperature to be 5 = 3. The realization
of a Markov chain according to this discrete infinitesimal generator is done by using a
transition probability matrix

P :=exp(TL) (1.17)

with a small time step of 7 = 10. Note that in realistic molecular simulations small time
steps are mandatory, because of numerical reasons and because of the craggy potential
energy landscape. Using this kind of construction of a Markov chain and for different

homotopy parameters A ranging between 0 and 0.15, we have simulated Markov chains for

10



the modified potential energy functions

Va(x) = (1 — 6.6A)V (x) (1.18)

in case of the temperature-based homotopy approach where the potential energy function

is simply scaled down, and

Va(z) = V(x) 4+ 961% + (4 — 88z + 9622)\ (1.19)

for the convolution-based homotopy approach where the heat equation is solved analyti-
cally. The shape of these modified potential energy functions is also indicated in Fig.1 and
Fig. 2 (left side, dotted lines). Based on the formula

N
so-% exp(—BV (z;)) exp(—BV (2:)) ) (1.20)

2o S exp(—BV () ° (zexp<—ﬁv<xj>>
J J

for the entropy of the Boltzmann distribution, it is possible to show that indeed the en-
tropy of the convolution-based homotopy has a lower bound than the temperature-based
homotopy, see Fig. 5. This will lead to a more efficient sampling of the corresponding

distribution in the case of the convolution approach.

0 0.075 015
parameter A

Figure 5: The entropy of Boltzmann distribution of the convolution-based homotopy method (solid
line) has a lower upper bound than the entropy of the Boltzmann distribution of the
temperature-based homotopy method. The reason is, that the simple downscaling of the
potential energy function leads to a flat Boltzmann histogram with a high entropy value.
The convolution approach allows for a more efficient sampling.

For the eigenvalue problem (1.11), the parameter € was defined as € = 0.01. The smaller
the parameter €, the broader is the region of the position space, where the function u is
almost 1 for A = 0. The parameter ¢ should not be too small, in order to serve as a
penalty expression in (1.12). The correct choice of € is not part of this article. It turns out
that the logarithm of —6 can be approximated with a polynomial of degree 3 in the case
of the convolution approach in order to extrapolate the correct exit rate at A = 0, if we
sample from the modified potentials at 0.0375 < A < 0.15 Whereas, for the temperature

11



approach a polynomial of (at least) degree 2 is needed. The corresponding polynomials

are plotted in Fig. 6. The advantage of using a convolution approach can be seen in Fig.

log(ext rate)

0.05 0.1 0.15
parameter A

Figure 6: Extrapolation of the logarithm of the exit rate by using a polynomial regression. The
real dependency of the exit rate from the parameter \ is plotted as a solid line. The
approximated polynomial is plotted as dashed line. For the polynomial regression the
indicated A-values are used (circle: convolution approach; cross: temperature scaling).

7. Here the second largest eigenvalue of Lvs = —owvy for different A-values is divided by
the eigenvalue at A = 0 . This ratio is denoted as acceleration, because it shows how
the original dominant time-scales of the system are accelerated by the homotopy, thus,

increasing the second largest eigenvalue o.

y o) »

%)

log(acceleration)

-
-
-
-

N
»
L)

AY

o

0 03575 0H5
parameter A

Figure 7: Acceleration of the dominant time-scales of the molecular system depending on A. Solid
line: convolution method. Dashed line: temperature scaling. Note that a logarithmic
plot is shown, such that the convolution method is some order of magnitudes "faster”
than the temperature scaling.

Simulation based examples

In the previous section we have discussed an illustrative example. For the presented com-
putations, we used a known infinitesimal generator of the system and a time discretization
of 7 = 10. In real-world applications we aim at using sampling routines for determining
the transition probabilities between subsets of the state space. Thus, there is a statistical
error connected to the creation of transition matrices. In Figure 8, we have generated a
Markov chain of 15000 steps (for different homotopy parameters \) in order to estimate the

transition matrix P7. For low values of A transitions between the right and the left basin

12



log(exit rate)
log{exit rate)

0.05 0.1 0.15 = 0.05 0.1 0.15
parameter 2. parameter A

Figure 8: Using a sampling for the estimation of P™ combined with the approach in (1.12) provides
estimates for the exit rates of the molecular system. The potential energy functions
have been sampled for 16 different A-values between 0.04 and 0.15. Left: temperature
rescaling. Right: convolution approach. The solid lines indicate the correct polynomial
approximations (corresponding to Fig. 6). The dashed lines indicate the polynomial
fitting according to the sampling data. For the polynomial fitting outliers have been
identified first (circles).

did not occur due to metastability. Only for A > 0.045 the samplings did provide a good
estimate for temperature scaling as well as for the convolution approach. The estimated

exit rates corresponding to the presented theory are shown in Fig.8.

35 8
3l 7
7 =
£ o8l . 56
£ Es
- t =
= 2t E
5 g«
s 15 =]
53
£ I g
£ gL £ .
= £ 2
0 s . :
temperature convolution temperature convolution

Figure 9: In this figure there is a sampling error for the approximated rates. The mean squared
errors of the estimated logarithmic rates are plotted on the left for 30 different samplings
(vertical dots). The standard deviation (red line) and the mean error (blue bar) are
shown, too. On the right, it is shown how this error is increased by the polynomial
extrapolation for finding the original exit rate at A = 0. For the temperature scaling
we used a polynomial of degree 2, for the convolution method we used a polynomial of
degree 3. Better statistical results are provided by the convolution method.

This sampling error was always small for the convolution based method, but for the tem-
perature scaling some sampling results were really bad (Fig. 9 left). Although, in order
to extrapolate the exit rate from the samplings, a polynomial fit is needed. We used a
polynomial of degree 2 to extrapolate in the case of temperature scaling, and we used a
polynomial of degree 3 for the convolution method. A higher polynomial degree leads to
a higher amplification of the statistical error (Fig. 9 right). Still the convolution method

had a better performance.

For a more realistic example, we will numerically simulate trajectories of the stochastic

13



differential process. In this case, a discrete infinitesimal generator of the process is not
explicitly given (in terms of a matrix) — only a trajectory. Additionally, we will fix the
functions u and x to be characteristic functions of the start and the target set, independent

from A. Furthermore, we will fix the starting point of the process.

We now want to estimate the probability that the process is leaving certain set around
a minimum. For the toy example the set is [—0.5,0.5]. The stochastic process which is
satisfying the above SDE (1.1) starts at Xy = —0.25. In order to find this probability
we calculate 1000 short trajectories of length 1000 in different potentials depending on
different homotopy parameters A € [0,0.16]. We then count the processes which are in the
well for every time step. From this we can see how likely it is for the process to leave the
well depending on different flattening parameters. This information we can use to estimate

the first exit rate for the process in the original potential.

Hormotopy(Pot)

Hormotopy(Pot)

Figure 10: original potential (left), potential with A = 0.16

The first result which is already visible form looking at the flattened potential is that the
dynamic of the underlying system is faster then the in the original potential. The process
sampled in Vj 16 (most flattened potential) only stays 145 time steps in the well on average
while the process sampled in Vj never the well within the 1000 steps. As one can see in Fig.
11 the number of steps increases while the parameter A is going to zero. The SDE (1.1) is
solved with a Euler Maruyama scheme with dt = 1/1000. We estimate the probability by

fitting some curves in the data points we generated with the above method.

10000¢ <

9000 + \

8000 \
7000 \
6000 - \
5000 \
4000+

3000+ \
2000+ \

1000 -

0 002 004 006 008 01 012 014 016

0

Figure 11: Number of steps still the hitting set is reached depending on A
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Figure 12: left: Exit rates which are different from 0 by sampling in different transformed poten-
tials. right: Extrapolated exit rates by fitting an polynomial of order 5 in the data.

Butane

With the technique described above, we try to estimate the probability for butane starting
with an torsion angle about 180° changing to 120°. In order to simulate butane we calculate
the position in the next time step by a stochastic differential equation (1.1). The potential
V : R*? — R is given by the atom atom interaction depending on the distance of the atoms
r(x,y) =z — y||2, where z,y € R? are the atom positions. The derivative of the potential
will give us the force field VV : R4 — R42,

We consider 4 different types of atom atom interactions. For a direct connection of to

atoms we calculate the binding energies

Bia(r) = K(r — dgpj00)*

The constant dopy/cc specifies if a CH or CC bond is considered (dog = 1.1,doc = 1.54)
and we use K = 5 for all our simulations. The second type of interactions is when there
is a atom in between the two considered atoms. The formula for the binding energy looks

quite similar to the case before but other constants are used

Bia(r) = K(r — dy/cmico)’

Again the constant dpp/cm/cc specifies what kind of interaction is considered (dypy =
1.78,dcy = 2.19,dcc = 2.6). The third kind of interaction is used if there are two
atoms between the considered atoms. In this case the torsion angle and the Lennard Jones
potential have to be taken into account. The Lennard Jones potential is weighted with

I = 0.01 so that it does not dominate the energy in this case. The formula is given by

Apn/cnjcc Bunjon/cco

TLI(r) = (=5 -

)+ T(r = drgiom/00150)° " = aryom ocs)

Again the constants Ay cn/cos Banjcn/cos duH/CH/CC 80 CHH/CH/OCq SPECILy which
kind of bond is considered. They are given in the table 1. For our simulation we choose
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Annjonjcc | Bunjcrjco | dunjcr/cows, | dam/cH/cCs

HH 7220 76 2.5 3.1
CH 37430 1274 3.58 8.1
CC 285800 372.5 4.74 11.1

Table 1: Constants for the TLJ potential and for the LJ potential

the constant T' = 5. In the last case all interactions where there are more than 4 atoms
are between the considered ones the Lennard Jones potential is used. The term is given

by

Apn/cnicc Bua/cn/cc
LJ(r) = =S - R,

The constants Ay p/cnjco, Bur/cnjcc are specified by which atoms are interacting. The
vales for the different cases are the same as in the case before and can also be looked up
in the table 1. The whole potential of butane is given by the summation of the different

energies calculated for all atoms. The force field is given by the derivative of the energies.

To calculate the new position we have to solve the SDE. For this we use a Leap Frog scheme
with 50 interim stages. We calculated 10 trajectories of length 1000 for each parameter
A. As a first result one can see that also in the high dimensional case the dynamics of the

system is faster when the flattened potential is considered see the above figure.
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Figure 13: left: Average over 10 trajectories of a system in the original potential.
right: Average over 10 trajectories in the smoothed potential with A =1

With the above setting we can also try to estimate the probability for this event.

Conclusions

We are able to show that homotopy method can be used to calculate exit rates of rare
events in dynamical systems. In our case we considered dynamical system which can be
discretized in two sets. One starting and one hitting set. In this case the homotopy only
has to guarantee that the discretization keeps this two sets separated. In our further
investigations we will look at systems with have more than two sets. We will investigate

in the question how these sets scale under the homotopy.
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Figure 14: Estimation of exit rate in the original potential
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