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A b s t r a c t . In this paper we introduce a discontinuous finite element method. In our approach, 
it is possible to combine the advantages of finite element and finite difference methods. The main 
ingredients are numerical flux approximation and local orthogonal basis functions. The scheme is 
defined on arbitrary triangulations and can be easily extended to nonlinear problems. Two different 
error indicators are derived. Especially the second one is closely connected to our approach and able 
to handle arbitrary variing flow directions. Numerical results are given for boundary value problems 
in two dimensions. They demonstrate the performance of the scheme, combined with the two error 
indicators. 
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1. Introduction 
The tranport equation arises in many areas of physics, such as reactor analysis, 
induction of electrons in solids and the propagation of photons in stellar and planetary 
atmospheres. All this applications lead to equations of the form 

ß • Vu(x, ß) + a(x)u(x, ß) = Sgia{x,ß,rj)u{x,rj)dv + f{x,ß) for x € ft 

u(x,ß) = 0 f o r a ; e r _ 
(1.1) 

where a is the transfer kernel describing the distribution of particles arising from 
scattering, fission and capturing events and a is the total cross-section. Further, Q is 
in general a domain in IR3 and T_ := {x € dtt : ß-n(x) < 0} its inflow boundary, with 
n(x) denoting the outer unit normal to ti at x . The unknown function u - u(x,ß) 
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is the density of particles, moving in the direction ß. 
The numerical approach in general, is to approximate the integral in (1.1) by a sum, 
using an angular quadrature scheme with N evaluation points, and so we have to 
solve N transport equations as introduced in section 2. Therefor, one should use 
an adaptive high resolution scheme for solving the transport equation to obtain a 
fast and accurate algorithm. This demands can be satisfied by a discontinuous finite 
element method, DFEM. This method is based on a local approach, since the solution 
is allowed to be discontinuous across interelement boundaries. The DFEM is already 
widely used for equations of the form (1.1). It was first analyzed by LESAINT &; 
RAVIART, [8] , and more recently by JOHNSON & PlTKÄRANTA , [7] , who obtained 
improved estimates. Later, RICHTER , [11] , developed a new approach to DFEM 
by using two types of triangles in his analysis. In a note on convergence PETERSON 
, [9] , proved optimality of this estimates for quasi-uniform meshes. Our work was 
stimulated by the paper of COCKBURN & SHU, [3] , in which ideas of nonoscillating 
finite difference methods in combination with finite element methods are used. 
In the following, we will describe a variant of DFEM which can involve this ideas while 
keeping nice features of finite element methods, such as easy handling of complex 
geometries and boundary conditions. We can increase the accuracy locally rather 
than to use wider stencils as in finite difference methods. Another important aspect 
is, that within this approach it is possible to transmit the well established finite 
difference methodology for this equations to irregular grids and higher dimensions. 
The method is explicit and able to work on very irregular grids. This is necessary , 
since during the solution process the grid will be adapted to the solution. 
Two error indicators are derived and compared. The first uses a dual problem in a 
standard way. The second is based on the ease of increasing locally the degree of the 
approximating polynomials in the context of DFEM. For this, we choose a basis of 
orthogonal polynomials on each triangle. So, we can split the solution in it's constant 
and linear part. The magnitude of the linear part is taken as an error indicator. This 
different motivation are reflected in a quite different behavior of the indicators in our 
applications. 

The outline of the paper is as follows. In the second section we introduce the model 
equation and our scheme. It is shown, that it fitts between finite difference and finite 
element methods. In the third section an error estimation is given for the case of a 
constant flow field vector ß. For an abitrary vector ß we introduce the idea of local 
orthogonal basis functions and the corresponding error indicator. The last section 
includes some numerical experiments merely done to show the performance of the 
different indicators. Finally, a conclusion and some remarks on the discretization of 
convection-diffusion equations are given. 
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2. Scalar linear transport equation and discretiza­
tion 

We consider the first-order hyperbolic equation 

ß • Vu + au = / in ft , 
u = g on T_ . \ ' ) 

as a model of equation (1.1). Here, ft is a bounded polygonal domain in IR2 . The 
flow field vector ß : ft —> IR2 is a prescribed smooth vector field, and a is a bounded 
measurable function on ft and g the given inflow condition. 

For a finite element triangulation Th = {T} of ft, we denote by PK(T) the space of 
polynomials of degree < K on T G Th. The DFEM for (2.1) is derived from the 
weak formulation on each T G Th. We replace the exact solution u by its possible 
discontinuous approximation Uh with Uh\r G PK{T). Finally, integrating by parts 
yields for vh\T G PK(T) 

I «/i(-V • (ßvh) + a-vh)dx + / uhvhß -nds = / fvhdx . (2.2) 
r dT T 

Since Uk is piecewise polynomial of degree K over the triangulation T it is not exactly 
defined at dT. This gives many possibilities to choose this variables at the boundaries. 
In the following we will use this to adopt the successful nonoscillatory methodology 
, see e.g. [6], from the finite difference method. We replace the flux function u^ß • n 
by some numerical average flux h(uh

nl , ue
h

xt). With the definitions for a x € dT 

uh
nt := lim Uh(xl) for xl £ interior of T 

x'—*x 

ue
h

xt := lim Uh(x') for x' G exterior of T 
xl—yx 

we can use e.g. a Lipschitz continuous "monotone" flux as given in [3]. Such a func­
tion /i(-,-) satisfies the consistency relation h(u,u) — uß • n, is nondecreasing in its 
first argument and nonincreasing in its second argument. Scheme (2.2) now reads: 

Find Uh\r G PK(T) such that for each triangle T G Th 

J uh(-V • (ßvh) + avh)dx + J h(v}h
nt, ulxt)vhds = J fvhdx , Vvh G PK(T) . (2.3) 

T dT T 

A possible, choice of h(-,-) is the Engquists-Osher two-point monotone flux, which 
for an arbitrary function fl(u) is defined as 



o a 

hE0(a,b) = Jmm(fl'(s),0)ds + /max(/Z'(s),0)(fe + //(0) . (2.4) 
o o 

Now, the following result gives an interesting connection to the usually discontinuous 
Galerkin method introduced by REED & HiLL [10]. First we recall their formulation 
of the method: Seek a function U^T € PK(T) such that for all T G Th 

J{ß • Vuh + auh)vhdx + J (u+ - ul)vh\ß • n\ds = J fvhdx , Vvh G PK(T) , (2.5) 
T dT- T 

with dT_ = {x G dT : ß • n(x) < 0} and u± = lim uk(x + eß). 

Lemma 2.1 The method (2.5) is equivalent to (2.3) with the numerical flux approx­
imation (2.4). 

Proof. For fl(u) = uß • n we get with (2.4) 

/ hEO{v}£1, uefl)vkds = J K x t m i n ^ • n, 0) + ujj1* max(/3 • n, 0))vhds 
dT dT 

= / u^vh\ß • n\ds - J uj?vh\ß • n\ds , 
9T+ dT-

with dT+ = {x G dT : ß • n(x) > 0}. The reformulations 

yield for the left-hand side of (2.3) after integrating by parts the equality 

/ uh{- V • (ßvh) + avh)dx + / / ^ ( i C 1 , u?)vhds 
T dT 

= f(ß • Wuh + auh)vhdx - J u];vh\ß • n\ds + / utvh\ß • n\ds+ 
T dT+ dT-

+ I ulvh\ß • n\ds - f ulvh\ß-n\ds 
87+ dT-

= f(ß • Vuh + auh)vhdx + / {ut - ul)vh\ß • n\ds 
T 9T-

which proves the lemma. • 



Remark 2.2 Therefor, with the above Lemma 2.1 the usual discontinuous Galerkin 
method, as analyzed in [7], is a special case of the generalized discontinuous Galerkin 
method (2.3). This fact gives us a hint how to handle the more complicate problem 
of a nonlinear flow field vector, as e.g. in Burgers equation ß := u • Vu. A second 
important aspect of this approach is it's ability to transmit the well established finite 
difference schemes to very irregular grids. 

It has been shown in [8] that for constant ß an ordering of the triangles {7\, T2,...} 
exists such that the finite element approximation can be computed in an explicit way. 
The same was done in [5] if \ß • n\ > 0 for all sides of triangles in TV The ordering 
is also possible if div(ß) = 0 , see [13]. For this cases, transport problems like (2.1) 
seem connected to explicit methods in a natural way. 

For further analysis, we introduce for each triangle T a finite element space Vh defined 
by 

Vh := K € L2(il) : vh\T € PK(T), T € Th} . 

Note, that any choice of the degrees of freedom of the approximate solution is allowed 
in this formulation, c.f. [5]. Summing up over all T € T\ in (2.3), we arrive at the 
following equivalent formulation of (2.3) : Find Uh € Vh such that 

B(uh,vh) = (f,Vh),VvheVh (2.6) 

where 

B(w,v) := Y, I K ~ V • (ßv) + H r + {h, v)dT} . (2.7) 
Tel* 

Here (-,-)x> ( v ) a r denote the L2(T), L2{dT) inner products. Of course, we can 
replace Uh by the exact solution u in (2.6), i.e., we have the consistency relation 

B{u-uh,vh) = 0 vh€Vh. (2.8) 

3. Error Estimates 

3.1 Constant unit flow field vector ß 

For constant unit ß JOHNSON & PlTKÄRANTA [7] obtained for the usual discontin­
uous Galerkin method (2.5) various stability and convergence results, including an 
Z»2-error estimate of the form 
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\\u-uh\\0<Q<C-h"+?\u\K+hU. (3.1) 

This error estimate is based on a stability inequality 

K | M + IKIkf i<C( | | / | | o ,n + lb||o,r_), (3.2) 

where | • \htß is a mesh-dependent seminorm which controls the derivative /?• V«/, and 
the jumps of Uhß • n across the interelement boundaries. This stability result is, of 
course, also true for (2.3),(2.4). In what follows, we will present another proof of the 
convergence result (3.1) using only a special part of | • 1^ , 

\\(ut-uj;)\ß.nm\0trh<\uh\Kß. (3.3) 

All interelement boundaries are denoted by Th := (J dT \<9f2. 
\T€Th J 

We start our derivation by considering the dual problem to (2.1) for 0 (E L\(Q) : 

-ß • V</> + oip = 0 in Q , ,„ , 
ip = O o n r + . [6A) 

In the next step we seek an approximate solution iph € Vh such that 

B(vhiiph) = (Q,vh), vheVh (3.5) 

where B is as in (2.7), with h = hE0. Setting w = vh and v = iph in (2.7), we get 

Z{hEO,<pk)= [vj;fa-ipt)\ß-n\ds. 

Here, for a piecewise continuous function vk we define v^(x) = lim v(x — eß), x G I \ . 
£—>0 _ 

The function <fh is the solution to the problem (3.4). Now, we introduce the local 
L2-projection ü € Vh of the exact solution u by 

f(u -ü)vdx = 0,v£ PK(T) ,T £Th 

Applying the Bramble-Hilbert lemma [2] and a standard estimate of norms over 
boundaries, see e.g. [1], we get 

| |u-ti | |o,T < ChK+1\u\K+1<T , 

| | u -ü | | 0 l 9r < Ch*+l"\u\«+i.T • 



With the choice 0 = vh = (uh - u) G Vh and recalling (2.8), it is 

I K - "llo,n = Biu ~ Wh) = {u-ü,-ß- Vtph + atph) 

+ J(u - ü)-(ipl - ?l)\ß • n\ds . 

Since ß • Viph G Vh and with (3.2), (3.3), it follows by Cauchy-Schwarz inequality 
that 

I K - olio* < (Ci ^ + 1 / 2 + C a l M k n ^ l u U L n • 

Using the triangle inequality we finally obtain 

II« - Mfc||o,n < II« - ü||o,n + I K - «||o,n 

= (C,h«W + CadlaHco.n + l)h"+l) \u\K+hQ . ( 3 ' 6 ) 

This completes the proof. • 

An obvious idea to improve u^ during an adaptive process is the equidistribution of 
all local element errors. To give (3.6) a practical meaning, an approximation D^+1Uh 
of the Sobolev seminorm lul^+i^ is needed. This can be done by using the numerical 
solution Uh,. We refer the interested reader to [4]. 
For a local error indicator we can use 

\\u - ufc||o,T « C{h"+$ + ( I M U r + l)h"+1)D$+1uh ,TeTh (3.7) 

3.2 Arbitrary flow field vector ß 

The situation becomes more complicate if ß is an arbitrary vector function, not 
necessary constant or with vanishing divergence. In this case neither stability nor 
convergence results are known. Nevertheless, we can use the flexibility of our scheme 
in increasing locally the degree of the approximating polynomials. In this way, we 
can get an efficient error indicator, if we choose the polynomials appropriate. 
For the implementation of (2.6) we use a local orthogonal basis'm PK{T), {VQ, vj,..., ve } 
, £ G M, such that vf has support in T and 

{vf,v]) = Ci6ii, d^0,i,j = 0,l,...,£. 

This orthogonality is achieved by choosing an orthogonal basis over the standard 
triangle A := {(£,77) G IR2 : 0 < £, r/ < 1, £ + rj < 1} 

z;0
A = 2, t;A = 6 £ - 2 , 1^ = 2 ^ + 2*7-1), . . . . 
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For simplicity of presentation, we restrict ourselves to the case /c = 1 , i.e. linear 
polynomials. Using an affine-linear mapping F : A —» T € I/, , we get in this case, 

vo = i^(({xux2),ri(xuX2) = 1 , 
/— (3-8) 

where |T| stands for the area of T. The choice of the constants will become clear 
below. If we define the degrees of freedom as 

4m) = p-^/ut£dx, r e r , , m = o,i,2 , (3.9) 

with 7 = 1 if m = 0 and 7 = 2 if m = 1,2, we get the approximation of the exact 
solution in Vj, by 

uh(x) = £ u^vl(x) ,x6T,TeTh. (3.10) 
m=0 

Clearly, the process described above is applicable for arbitrary I € M, too. We 
mention, that Uj is an approximation of the average of the exact solution u in T. 
Moreover, by our construction (3.8), the basic function vf, i = 1,2, vanishes in the 
midpoint xnad of the triangle T, i.e., for K = 1 

uh(x
nid) = uP. (3.11) 

Hence, we can concentrate the degrees of freedom (3.8) as cell variables in the mid­
point of all T G Th- We are now working over the dual triangulation in a natural 
way. 

Considering vrT' as an improved local numerical solution with piecewise constant trial 
functions (this is not the same as for K = 0 ! ), we can use for arbitrary /c the local 
error estimate 

\\u - uh\\0tT » | |4 0 ) - ufc||o,r = II E 4m)v™0OII > T € Th (3.12) 
m=0 

in an adaptive process. 



4. Numerical Results 

The numerical experiments are mainly done to demonstrate the different behavior 
of the two error indicators (3.7) and (3.12) and the high accuracy of the method. 
For the first example, the tranportation of a discontinuous inflow condition along a 
straight line, both error indicators are applied. The behavior during the refinement 
process and the final grids, which are necessary to obtain the exact solution with our 
algorithm are compared. Our aim is to show, that the scheme is able to resolve the 
jump in the solution with a small number of grid points. The second example is a 
transportation of the inflow condition along circular lines around the origin. This 
problem is known in the literature as a very hard one, because the streamlines are 
bended and the distance between inflow and outflow boundary is relatively long. The 
divergence of the corresponding flow field is zero, and the triangles can be ordered to 
obtain an explicit algorithm. 

4.1 Example 1: Transportation along a line 

The first problem we consider is equation (2.1) on f i = (0; 1) x (0; 1) with a = 0, 
/ = 0 and the flow direction ß = (1.0; 1.0) . The inflow boundaries are the lines 
{(x,y) € IR2 : x = 0} and {(x,y) G IR2 : y = 0} with the boundary condition 

*.»>=-{! S T 4 

So, the discontinuity in the boundary condition doesn't coincide with the initial grid 
lines. The calculations are done on the basis of the program KASKADE implemented 
by [12]. It should be mentioned, that in nearly all applications published, the grid 
lines are posed to represent the discontinuity of g(x,y) at the inflow boundary. 
The first picture shows the intermediate grid, produced by the first error indicator, 
left, and the second indicator, right. They are applied in such a way, that at each 
refinement step no more than 1/4 of the coarser grid triangles are refined. It can 
be seen, that both indicators try to resolve the discontinuous inflow condition. The 
difference occurs at the outflow boundary. Through the explicit solution process, the 
flow field is calculated along ß and the greatest amount of error is at the outflow part 
of du. The derivation of the first error indicator started from the adjoint problem 
(3.4) to (2.1), especially ß is replaced by —ß , the opposite flow direction. So, it takes 
this rough solution as a reference. This is also reflected on the solution after three 
refinement steps, which is shown in figure 2. The solution is plotted such that each 
triangle is coulored with respect to u^ . We divided the range from —1 to 2 in 16 
equidistant gray scales to include possible over- and undershoots. On each grid point 
we have as many solution values as triangles belonging to this point. The solution is 
not interpolated nor smoothed to show the high resolution of the scheme. 

j 
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Figure 1: Intermedeate grids for example 1 

Figure 2: Solution of example 1 on intermediate grids 

On the left grid, produced by indicator (3.7), the algorithmn is not able to resolve 
the outflow in the same manner as on the grid generated by (3.12). 
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Figure 3: Final grids 

In figure 3 the final grids, which were necessary to reproduce the exact solution, are 
shown. The left grid, corresponding to (3.7) is one refinement level deeper than the 
right one for the reasons discussed above. 

4.2 Example 2: Rotating cone problem 

In this case equation (2.1) is given on a domain fi = {(—1.0; 1.0) x (—1.0; 1.0)}\r 
with the variable flow direction ß = {y,-x) . It is <r = 0 , / = 0 and the boundary 
condition on the inflow part set to zero with the exception of T := {{x;y) : x = 
0 A 0 < y < —1}. Here we use 

' 0 if 0 > y > -0 .1 
g(y):=\ 1 if - 0.1 > y > - 0 . 5 

k 0 if —0.5 > y > - 1 . 0 

The exact solution is a transport of this "rectangular" inflow condition along circular 
lines around the origin to the outflow boundary, which is located opposite to T . 
In this case, the indicator (3.7) had had no theoretical motivation, at least in our 
derivation, in section 3 . So, it should be not applied here. These considerations are 
inforced by the numerical results. 

The figure 4 shows the grid, produced by (3.12) and the solution after six refinement 
steps. It can be seen, that the algorithm begins to resolve the discontinuous solution 
starting from the inflow boundary along the streamlines. 
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Figure 4: Intermideate grid and solution for example 2 
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Figure 5: Final grid and solution for example 2 

It is also interesting to see, that the longer the streamlines are, the more difficult it 
is to resolve the discontinuity. 

Figure 5 shows the final grid with about 8000 triangles. The error is approximately 
10% . The time lasted to obtain this solution was about 8 minutes on a Sun-Sparc-
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1 Workstation. To compare this result, we mention [5]. There, they need nearly 
20000 triangles to follow a smooth inflow condition transported along grid lines on 
an equidistant grid. In spite of our remark on indicator (3.7) made above, we tried 
it on the same problem. The result is shown in figure 6. 

Figure 6: Grid and solution for example 2 with indicator (3.12) 

The indicator was not able to transport the refined grid. After four refinement steps 
all further refinement takes place near the inflow region of ft. The grid consists of 
more than 10000 triangles and gives an evidently worst solution than in figure 5. 

5. Concluding Remarks 

We have proposed a discontinuous finite element method for the transport equation. 
The method is of arbitrary order and can be applied in an explicit manner on quite 
irregular grids. Through it's derivation the scheme can combine the nice features of 
finite element methods with successful techniques of finite difference schemes. Fur­
thermore, it provides a very useful and robust error indicator. Our analysis and 
numerical results suggest, that it can be used in a rather efficient manner in general 
situations. 

One extension of the method should be the calculation of convection dominated 
convection-diffusion equations. In our approach, we approximate the solution by 
linear functions over each triangle. So, we have to solve 3 x 3 linear systems lo­
cally. Sinqe the solution is possibly discontinuous across interelement boundaries, the 
Laplacian operator cannot be discretized in a suitable manner. A remedy is to split 



the equation into two transport equations, as it is done in the mixed finite element 
method. However, this means that we have to solve 15 x 15 linear systems on each 
triangle; a significant increase in numerical work. This seems not practical to us. 
This topic constitutes the subject of ongoing work. 

Acknowledgement The authors would like to thank R. Roitzsch for his patient 
support during the implementation of the algorithm. 
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