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Abstract. One important step in the fabrication of silicon-based integrated circuits is the
creation of semiconducting areas by diffusion of dopant impurities into silicon. Complex models
have been developed to investigate the redistribution of dopants and point defects. In general,
numerical analysis of the resulting PDEs is the central tool to assess the modelling process. We
present an adaptive approach which is able to judge the quality of the numerical approximation
and which provides an automatic mesh improvement. Using linearly implicit methods in time and
multilevel finite elements in space, we are able to integrate efficiently the arising reaction—drift—
diffusion equations with high accuracy. Two different diffusion processes of practical interest are
simulated.
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1. Introduction. Semiconductor device simulations which utilize sound physi-
cal models are nowadays an attractive tool to create new generations of devices. The
permanent advance in computational capabilities allows the incorporation of more
and more detailed physics into higher dimensional models in oder to remain relevant
for research efforts. Due to the great complexity of the established models, the nu-
merical analysis of PDEs is the central tool to assess the modelling process for large
scale problems. From our perspective, the most important requirement that modern
simulation programs must meet today is that they are able to judge the quality of
their numerical approximations and to determine an adaptive strategy to improve
the accuracy where needed. In such a way numerical and modelling errors can be
clearly distinguished with the effect that the reliability of the modelling process can
be assessed. Moreover, successful adaptive methods lead to substantial savings in
computational work. The motivation of our work in this field has been our conviction
that although engineering programs like SUPREM-1V (see [4] and references therein),
Dios [8], and ProMIS [21], are very useful tools they are only as reliable as the
accuracy of their numerical solutions can be assessed safely.

After presenting a representative survey of simulation software CAREY ET AL. [4]
pointed out that there is nowadays an increasing emphasis on all aspects of adaptively
generating a grid that evolves with the solution. Another challenge mentioned there
is to develop efficient higher—order one—step integration methods which can handle
very stiff reaction—diffusion problems and which allow us to accommodate a grid and
a moving boundary in each time step without any specific difficulties. In this work we
present a combination of both error—controlled grid refinement and powerful one—step
methods of linearly implicit type.

An elementary process step in the fabrication of silicon—based integrated circuits
is the diffusion mechanism of dopant impurities into silicon. The study of diffusion
processes is of great technological importance since their quality strongly influences
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the quality of electronical materials. Impurity atoms of higher or lower chemical
valence, such as arsenic, phosphorus, and boron, are introduced under high tempera-
tures (900°C-1100°C) into a silicon crystal to change its electrical properties. This is
the central process of modern silicon technology. Various pair—diffusion models have
been developed to allow accurate modelling of device processing. A good survey is
given by FAHEY, GRIFFIN and PLUMMER [9], where also a substantial bibliography
on the subject can be found. It should be pointed out that there is also an increasing
activity in mathematics to analyse the properties of such models, including existence,
uniqueness, and regularity of their solutions (e.g. GLIZTKY and HUNLICH [11], MERZ
ET AL. [18, 19]).

In this work, we select two different problems arising in current modelling of
dopant diffusion in semiconductor device simulations and demonstrate the new per-
spective that is opened by a dynamic error control. The simulation of the selected
dopant diffusion models requires the numerical solution of systems of time—dependent
partial differential equations involving algebraic equations as well. Due to the highly
nonuniformity of information distributed in time and space a self-adaptive algorithm
is often the only way to get an accurate solution with an acceptable amount of com-
putational time and memory requirement. We have used the finite element program
package KARDOS which was developed at the Konrad—Zuse—Zentrum in Berlin to solve
general nonlinear evolution problems in an adaptive way (ROITZSCH, ERDMANN, and
LANG [24]). In contrast to the widely used method of lines approach the code is
based on the adaptive Rothe method employing the discretization sequence first in
time and then in space (BORNEMANN [2], LANG [16, 17]). Multilevel techniques as
proposed by DEUFLHARD, LEINEN, and YSERENTANT [6] are used to improve the
spatial discretization in each time step, utilizing robust a posteriori error estimates of
the current solution. For the time discretization, linearly implicit methods of Rosen-
brock type with an error—controlled step size selection is applied. These features free
us from designing fixed spatial meshes where a priori knowledge about the regions
of main activities is required, and from tuning various solution parameters. It is our
strong feeling that a fully adaptive approach is always a valuable tool to perform
computations in a safe manner and allows the user to concentrate on the evaluation,
comparison, and verification of the different physical models.

This paper is organized as follows. We first introduce in Section 2 the reaction—
drift—diffusion model in the two—dimensional case. In Section 3, we describe our
adaptive time and space discretizations. In Section 4, two different dopant diffusion
models are introduced and numerical simulations are presented.

2. The Reaction—Drift—Diffusion Model. We consider m species X;, i =
1,...,m, and distinguish between mobile and immobile ones, introducing two index
sets I and I', where TUI' ={1,...,m} and INI'=0. Each X; is considered as a

union of charged species Xi(j), with j € S; :== {—N;,...,M;}, N;, M; € IN. Specially,
immobile species possess only one constant charge state. Denoting by C; the total

concentration of X;, i=1,...,m, we set for the mobile and immobile species
(2.1) Ci=3Y CY, ielur,
JES;
where ng ) denotes the concentration of Xi(j ), and we write C=(C1,...,Cp)T for the

whole concentration vector. Clearly, the consideration of the total concentration only
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reduces drastically the number of equations (we get m instead of > ;- (N; + M; + 1)
equations) as well as the physical constants necessary to describe the models appearing
in modern semiconductor device simulations. In the case of phosphorus diffusion in
silicon, the precise derivation and physical meaning of all the averaged quantities can
be found in GHADERI & HOBLER [10] and HOFLER & STRECKER [14]. There it is
also shown that each individual concentration C’l(’ ) in (2.1) can directly be computed
from the total concentration C;, i € TUI'.

We assume that the charge density of the electrons n and the holes p obey the
Boltzmann statistics

(2.2) n = n;exp (%) , P = njexp (_%) 7

where n; stands for the intrinsic carrier concentration, ¢ denotes the chemical poten-

tial of the electrons, and Uy is the thermal voltage defined by Uy =kpT, /e with the

Boltzmann constant kg, the absolute temperature 7,, and the elementary charge e.
Defining the total reference concentrations

(2.3) P(y) =Y Kiexp(—jy/Ur), ieIul,
JES;

where K f are positive constants, we introduce the electro—chemical activity u; of each
species X; by

(2.4) wi = Ci/P(), i€lUl'.

We set Q7 :=Q x (0,T), where @ C IR?, 0< T < 00, and define £7 :=8Q x (0,T)
which is composed of two disjoint parts for each mobile species, say X1 n; and X7 p;,
i € I. The reaction—drift—diffusion model supplemented with physically motivated
boundary and initial conditions splits into reaction—diffusion equations for the mobile
species X;, 1 € I,

86% +divJi(C,¥) + Ri(C,¢) = in O,
(2-5) JZ(C,¢') ‘n = hz(w)(cz - Pz(¢)) on ZT,N'L' )
Ci = Py on ¥r.p, ,
Ci(t=0) = C? in 2,

reaction equations for the immobile species X;, i € I,

aC;
(2.6) ot

+Ri(C,’¢) = 0 inQT,
Cz(t:()) = C? inQ,

and a Poisson equation for the chemical potential ¥ of the electrons
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@27) —EAib—f—Znismh (U_T> —;Qi(w)@ = 0 inQp,
Vy-n = 0 onXp,
where ¢ is the dielectric constant. Here, J; denote the drift—diffusion terms, R; are the
generation—recombination rates, (J; are the total charges, and h; are the transition

coefficients.
The standard model for the drift—diffusion term corresponds to

(2.8) Ji = —Dy(w) (vc@- L Qi)CY (%)) el
with the total diffusivity
(2.9) Di(y) = Y DIK]exp(—jy/Ur) | Pi(¥),

JES;:

where Df are positive constants. The total charge @Q;(1) is determined by

(2.10) Qi) =Y jK!exp(—jp/Ur) | Pi(y)

JES;:

and the transition coefficients read

(2.11) hi() = > hiK] exp (—jyp/Ur) | Pi(4),

JES;:

where hg are non—negative constants. The source terms R;(C,) result from the
reactions occurring during the redistribution of the immobile species. From the mass
action law we get

(212) Oéle ++Oéme \:\/Ble ++/8me,

where the stoichiometric coefficients a:=(ayq, ..., am), B:=(B1,. .-, Bm) € Z}* repre-
sent a special reaction taken from a certain set of permissible reactions R C Z* x Z".
Using the abbreviation u®:=II" 4, the reaction rates R; have the concrete form

(2:13) R(C,0)= Y (ai-B) Kap®) (u® - uP)
(o,B)er

with the total reaction rate coefficients K, ﬂ(l/)).

The well-posedness of system (2.5)—(2.7) under general assumptions has been
investigated by MERZ ET AL. [18, 19].



3. Time and Space Discretization. The system of equations (2.5)—(2.7) can
be written in the form of a quasilinear initial-value problem

(3.1) H%+divJ(v)+R(v) = 0 inQp,
v(t=0) = 0 inQ,
where v = (C1,...,Cm, )T is the (m 4+ 1)-dimensional solution vector. The (m +

1) x (m + 1)-matrix H is diagonal and has one zero entry, i.e., H =diag(1,...,1,0),
showing that the system is of differential-algebraic structure. The components of
the flux vector J(v) = (J1(v),..., Jm4+1(v)) that correspond to the immobile species
X;, i € I', vanish whereas the remaining diffusion operators are supplemented with
the corresponding boundary conditions given in (2.5) and (2.7). The reaction vector
R(v) can be derived analogously. An initial value for ¢ has to be calculated from the
elliptic equation in (2.7) using the starting values for the concentration vector C.
The principle difficulties in solving the system (3.1) numerically are the strong
nonlinearities, the differential-algebraic structure, and the presence of differential
operators making the problem infinitely stiff. In such a situation, an implicit or semi—
implicit discretization method should be applied to integrate in time. We use linearly
implicit methods of Rosenbrock type which are constructed by working the exact
Jacobian directly into the formula — an idea which was first proposed by ROSENBROCK
[25]. Applied to (3.1) a so—called s—stage Rosenbrock method has the recursive form

s

n

Vn = Up_1+ E bzvz )
i=1

YTn j=1

H i1 ' i—1
(3.2) ¢ (— +A('un_1)> Vi = Y FHV}-divJ ('vn_l + > az-]-V;‘)
: =

i-1
_R<Un1+2aijvy>, 1=1,...,s8,

\ 1=
where v,, denotes an approximation of v(t,) at t,=3,_, 7 and A is the Jacobian
matrix 9(divJ (v)+R(v))/dv. The coefficients vy, a;;, ¢;;, and b; are suitable chosen to
obtain good stability properties for stiff equations and a desired order of consistency.
In this work we have used the Rosenbrock solver ROWDA3 proposed by ROCHE [23].
The corresponding coefficients are presented in Tab. 3.1.

The fundamental idea of linearly implicit methods is that for the calculation of
the intermediate values V7', i=1,...,s, only a sequence of linear systems with one
and the same operator have to be solved. An iterative Newton method as known from
(fully) implicit time discretizations is no longer required. More details can be found in
the books of STREHMEL & WEINER [26], HAIRER & WANNER [13], and DEUFLHARD
& BORNEMANN [5].

The specific structure of the Rosenbrock method (3.2) allows us to construct a

second solution of inferior order

s
(3.3) v =va1+ Y bVY,
i=1
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replacing the coefficients b; in (3.2) by a different set of coefficients b}. The difference
between the two solutions is then used to estimate the local temporal error by

(3.4) en = |lv, —v)lla-

In practical applications it is often decisive to choose the norm carefully in order to
reflect accurately the scale of the problem. We employ here the weighted root mean
square norm

1/2
* R LA
(35) lon = v3llo = <m—+1 Y

i=1 g

with weights

Here, U, =(Up1,---,Un,m+1) should be a good approximation to the actual solution
at t=t,. The tolerances ATOL; and RTOL; have to be selected carefully to furnish
meaningful input for the error control.

v = 4.358665215084590e — 01

ag1 = 1.605996252195329¢ 4+ 00 | c21 = 8.874044410657833e — 01
as1 = 1.605996252195329¢ + 00 | ¢31 = 2.398747971635036e + 01
aszz = 0.000000000000000e + 00 | c32 = 5.263722371562129¢ + 00

by = 2.236727045296590e + 00 | b7 = 2.059356167645940¢e + 00
by = 2.250067730969644e + 00 | b 1.694014319346528e — 01
bs = —2.092514044390320e — 01 | b5 = 0.000000000000000e + 00

Fic. 3.1. Set of coefficients for the 3—stage ROWDA3 method.

Given a tolerance TOL; for the time discretization, a standard strategy is to
choose the step size of the time step according to

(37) Tn+4+1 =

Tn (TOLt . enl)l/p T

Tn—1 €n " €n

where p—1 is the order of the second solution v}. The proposed step 7,41 is then
executed. If the new error e,41 computed from (3.4) is less than TOL; the solution
Vn41 is accepted. Otherwise, the solution is rejected and the time step is repeated
with a reduced value of 7,,41. Formula (3.7) is related to a discrete PI-controller first
established by GUSTAFSSON ET AL. [12].

The linear problems (3.2) have to be solved for the intermediate values V7,
i=1,...,s. To get the right boundary conditions for those components that cor-
respond to the mobile species and the chemical potential, the Rosenbrock scheme
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(3.2) must be also applied to the non-linear algebraic equations describing the solu-
tion on the boundary. The arising elliptic boundary value problems are solved by a
multilevel finite element method. The main idea of the multilevel technique consists of
replacing the solution space by a sequence of discrete spaces with successively increas-
ing dimensions to improve the approximation property. It has proven to be a useful
tool for drastically reducing the size of the arising linear systems and to achieve high
and controlled accuracy of the spatial discretization (see e.g. DEUFLHARD, LEINEN,
and YSERENTANT [6], BORNEMANN, ERDMANN, and KORNHUBER |[3]).

The starting point of the finite element method is the weak formulation of (3.2).
Let ), be a permissible triangulation of Q C IR? into triangles and let S} consists of
all continuous vector functions the components of which are polynomials of first order
on each triangle. The finite element approximations V', € S +,i=1,...,s, have then
to satisfy the equations

(3.8) (LaViy, @) = (v}, ¢) forall ¢ € Sy,

where L, is the weak representation of the differential operator at the left—hand side
in (3.2) and r? stands for the entire right—hand side of the i—th equation in (3.2).
Since the operator L,, is independent of 4 its calculation is required only once within
each time step.

After computing the approximate intermediate values, a posteriori error estima-
tors can be utilized to give specific assessment of the error distribution. In the spirit
of BABUSKA & RHEINBOLDT [1], the spatial errors e =V — V!, are estimated by
solving local Dirichlet problems on small subdomains. Let w be the union of two tri-
angles having one common edge and let (), consists of all continuous vector functions
the components of which are polynomials of second order on each triangle belonging
to w. The local errors e} are then approximated by e, € @, satisfying

(Ln€in @) = (PP(efn+ Vil yn+ Vi) = LnVing)

0 ondw, i=1,...,s,

(3.9)

3
|

€in

for all ¢ € Q-
Once the approximate local spatial errors have been computed, we can estimate
the local error of the discrete Rosenbrock solution vpn =vn-1,n+> 2y, bV, by

S
Py, 1 p+ Z biezh

i=1

(3.10) n:i=

w

Here, Pv,_1, stands for the projection error resulting from representing the old
solution v,—_1,, on the new mesh designed for v, . The error estimator n is an
asymptotically upper bound for the norm of the local error. At first glance, it should
be attractive to use an increased size of the domain w to improve the quality of the
error estimator. However, the extensive comparison done by MITCHELL [20] shows
that the increased effort caused by solving local problems with more degrees of freedom
often does not pay off.

The estimation procedure is applied all over the computational domain, in our
case to all wy defined by the edges of Q. In order to produce a nearly optimal finite
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element mesh, subdomains wy having an error 7, larger than the mean square value of
all errors are refined. Triangles marked for refinement are divided into four congruent
triangles (red refinement). After that triangles with two or three refined edges are
compulsorily refined red; triangles with only one refined edge are subdivided into two
triangles (green closure). Green elements are removed before the next refinement
to avoid bad geometric properties of the triangulation. This refinement strategy is
standard and used e.g. in the KASKADE code [7].

The refinement technique described above equilibrates the local error over the
whole mesh in several iterations and improves the finite element solution until a fixed
spatial tolerance

1/2
(3.11) (Z ni) < TOL,
k

is achieved. Coarsening takes place only after an accepted time step before starting
the multilevel process. We identify regions of small errors by their n—values. We
coarse a region w if 17 does not exceed a quarter of the mean square value of all 7
computed for the finest mesh.

In practical computations the temporal and spatial discretization error have to
be balanced to keep the entire error below a prescribed tolerance TOL. We set
TOL,;=TOL/2 and TOL, = TOL/3, which worked quite well for the problems we have
solved. The linear systems are solved by the BicasTaB-algorithm [27] preconditioned
with an ILU—method.

4. Numerical Simulations. In order to test our dynamic mesh design algo-
rithm, a series of simulations for two different physical models have been performed.
We first consider the interaction of two unequally charged dopants, arsenic and boron,
and the influence of the chemical potential ¥. The second model describes phospho-
rus diffusion. It is based on a so—called pair—diffusion mechanism. Point defects such
as interstitials and vacancies influence the diffusion process under high temperatures
(900°C-1100°C). We concentrate on a comparison of our results with those known
from literature (e.g. [10], [14], and [15]). It turns out that practically relevant prob-
lems of the present type can safely and efficiently be solved by the proposed adaptive
approach.

We have solved the dopant diffusion processes on the rectangle Q={x=(x1,z2) €
R*0<z; <1073,0< 25 < 10~} for ¢ > 0, where the unit of measurement is given
in cm. The wafer surface is located at 1 = 0 and the bottom of the wafer is at
x5 = 1073, The relatively large expansion of the computational domain guarantees
that the solution is not affected by the boundary conditions at the bottom.

The implanted dopant concentrations are set initially to Gaussian profiles of the
form

(4.1) Ci(z,0) = C;exp (—%) , 1eIUr,

where C‘i > n; is the maximal value of the function, a = (al,ag)T determines the
position of the profile, o is the standard deviation and

2

(4.2) f@—a)= (1 —a1)? + i (|22 — aa] — b + |22 — aa| — b)
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If b=0, then we have the usual Gaussian profile, for b > 0 the maximum extends to
a whole line of length b in xy—direction.

The initial coarse grid used throughout our simulations is shown in Fig. 4.1. Since
the region of main solution activity is restricted to the direct neighborhood of the wafer
surface — the left hand part of the domain — all graphical presentations given below
correspond to the domain [0,107%] x [0,107*]. All computations were performed on
an IBM6000 computer.

FiG. 4.1. Coarse grid consisting of 160 triangular elements.

4.1. Multiple Species Diffusion. Dopant atoms occupy substitutional sites in
the silicon crystal lattice, losing (donors such as arsenic and phosphorus) or gaining
(acceptors such as boron) at the same time an electron. One fundamental interest in
semiconductor devices modelling is to study the interaction of two unequally charged
dopants and the influence of the chemical potential. Here, we select arsenic (As)
and boron (B). Neglecting heavy doping effects, we get a two—component system
with X; = As and X, = B, where both are considered as mobile species, i.e., I =
{As, B} and I'=0). Thus, the reaction—drift—diffusion model (2.5)—(2.7) reduces to the
equations (2.5) and (2.7) with vanishing reaction vector R. A detailed description of
this classical problem and the various parameters involved can be found in JUNGLING
ET AL. [15].

Particularly, we set Cay = 7 - 102%cm > and Cp =2 - 102%¢m 3. Both dopant
concentrations have to satisfy homogeneous Neumann boundary conditions.

In Fig. 4.2 the shape of the initial dopant implantations at 950°C is visualized.
The solutions obtained after thirty minutes show that the boron profile is mainly
influenced by the chemical potential while the arsenic concentration is changed only
slowly by diffusion, which is in good agreement with the results given in JUNGLING
ET AL. [15]. It can nicely be seen that the dynamic mesh chosen by our adaptive
algorithm for TOL =0.01 is well-fitted to the local behaviour of the solution. More
grid points are automatically placed in regions of high activity.

4.2. Phosphorus Diffusion. In a second study we use a general pair—diffusion
model to simulate phosphorus diffusion under high temperatures (900°C-1100°C).
The substitutional phosphorus defects in the silicon crystal lattice are denoted by A.
Since a diffusion mechanism based only on the direct interchange with neighbouring
silicon atoms turns out to be energetically unfavourable, native point defects called
interstitials (I) and vacancies (V') are taken into account. Both can form mobile pairs
with phosphorus atoms, designated by Al and AV. Therefore, we set m =5 and use,
for a better understanding, instead of i =1,...,5, the notation i =1,V, AI, AV, A,
with the mobile species I ={I,V, AI, AV} and the immobile species I' = {A}. The
set of permissible reactions R = {(a;,8;),i=1,...,5} we consider can be described
by



10

N
[y

N
=

N
o
o

2051 CB oy

N
o
Pl
N
<]

N
= ©
© o
“;

N
= ©
© o

i
e
o
=
s
o

i
@

=
@

LOG(CONCENTRATION) [1/cubic centimeter]
-
LOG(CONCENTRATION) [1/cubic centimeter]

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
DEPTH [micrometer] DEPTH [micrometer]

o

Fic. 4.2. Arsenic and boron diffusion at 950°C. Top: one-dimensional cuts along T2 =
5.1073 through the initial dopant implantations (left) and distributions after 30min (right). Bottom:
dynamic mesh (left) and shape of boron at t=30min (right).

alz(070707071)7 ﬁ1:(170707170);
ay =(0,0,0,0,1), B, =(0,1,1,0,0);
(43) a3 = (0307 ]-aOaO)a 183 = (13(],0307 ]-)7
oy =(0,0,0,1,0), B,=1(0,1,0,0,1);
as =(0,0,0,0,0), Bs=(1,1,0,0,0).

The model requires an enormous list of parameters. Most of them are essentially
unknown or at least controversial. The complete set of parameters, i.e., the quantities
D!, K], hl, and Kaﬂ(zp) can be found in GHADERI & HOBLER [10] and HOFLER &
STRECKER [14].

Particularly, we use Dirichlet boundary conditions at the wafer surface for i =
I1,V, and homogeneous Neumann conditions elsewhere. For the pairs, AI and AV,
homogeneous Neumann conditions are taken on the whole boundary. As initial values
we use

(4.4) Ci(t =0) = P,(y(t =0)), foralliel.

In Fig. 4.3 the evolution of the phosphorus profile and the corresponding dynamic
meshes near the wafer surface are plotted. The phosphorus concentration shows its
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FI1G. 4.3. Phosphorus diffusion at 900°C with C4 =6 - 1020cm—3. Evolution of the dynamic
meshes and the phosphorus concentration near the wafer surface at t=0, t=3, and t=30 min. The
mazimal concentration values can be found in Fig. 4.4.

typical ”kink and tail“ behaviour, a phenomenon which is known as anomalous dif-
fusion of phosphorus (for a detailed discussion see e.g. RICHARDSON and MULVANEY
[22]). Steep gradients are well resolved by the dynamic meshes, not wasting degrees
of freedom. Special one—dimensional cuts through the phosphorus concentration at
different times and for various peak concentration C4 are shown in Fig. 4.4. We
have included the intrinsic case where C'4 =10'8cm 3. It can be seen clearly that at
temperatures much higher than 900°C' the typical "kink and tail“ behaviour vanishes,
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F1G. 4.4. Phosphorus diffusion. One—dimensional cuts along z2=5- 105 through the phospho-
rus concentration Ca. Left: profiles at different times for 900°C and Cs =6 - 1020¢m—3. Middle:
profiles after 30min for different C4 at 900°C. Right: profiles after 30min for different C at
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FI1G. 4.5. Phosphorus diffusion at 900°C with C4 =6 - 1020¢rn~3. Ewvolution of time steps and
number of spatial discretization points chosen by ROWDA3 for TOL=0.02.
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F1G. 4.6. Phosphorus diffusion at 900°C with Ca=6-1029¢m—3. One-dimensional cuts along
x2="5-1075 through the concentration of interstitials C; (left) and vacancies Cy (right) at t=0,
t=3, and t=30 min.
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whereas the phosphorus diffusion proceeds faster. All results are in good agreement
with those given in the literature [10, 14, 15].

In Fig. 4.5 we have plotted the evolution of time steps and number of grid points
used by the adaptive algorithm. The chosen time steps range from 2 - 1071° up to
3-10% and increase monotonically in time. The spatial dynamics of the system show
an irregular behaviour. While approximately 2000 points are sufficient to represent
the steep initial contributions, about 9000 nodes around ¢ = 10~° are necessary to
guarantee a relative tolerance TOL = 0.02. We have detected that the increase of
grid points is caused by the sudden profile change of the interstitials concentration
Ct from ”concave to convex“, which can be seen in Fig. 4.6. Our adaptive algorithm
refines the spatial mesh drastically in order to resolve this crucial situation with high
accuracy and reliability.
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