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1 Introduction
The operating theater is one of the most expensive hospital resources. Therefore the al-

location of surgeries to operating rooms is a critical planning step for large hospitals, involv-
ing both combinatorial optimization problems and uncertainty handling, see e.g. Guerriero
and Guido (2011). In this paper, we consider a robust optimization problem introduced
by Denton et al. (2010) for assigning operating rooms (OR) to a list of patient blocks, that
is, groups of elective patients to be operated one after another by the same surgeon. This
paper presented a mixed integer programming (MIP) model to find an optimal allocation
of the ORs, robust against all duration scenarios d for the patient blocks in the set

D = {d ∈ Rn : ∀i, `i ≤ di ≤ ui;
∑
i

di − `i
ui − `i

≤ τ}. (1)

However, it is well known that surgical durations closely fit a lognormal distribution, see
e.g. Kayış et al. (2014) and the references therein. Therefore, we expect departures from the
nominal scenario to be highly nonlinear, a fact poorly captured by the set D. We present a
cutting-plane approach to solve a robust optimization problem protecting over confidence
regions of a lognormal distribution. In particular, we show that fixed point iterations can
be used to solve a nonconvex optimization problem to generate cut inequalities.

Throughout this article, we adopt the terminology of the job shop scheduling literature
because we believe that the problem studied here could have other fields of application.
Hence, patient blocks are called jobs and operating rooms are called machines.

2 Problem Formulation
We denote by J andM the sets of jobs and machines, of respective cardinality n and

p. The binary variable zm indicates whether machine m ∈M is activated, and the binary
variable xjm tells whether job j is allocated to machine m. Each job must be allocated to
one activated machine, so the set of all feasible solutions reads

X :=
{

(x, z) ∈ {0, 1}n×p × {0, 1}p : ∀j ∈ J ,
∑
m∈M

xjm = 1, ∀j,m ∈ J ×M, xjm ≤ zm

}
.

Denote by Tm the time available on machine m (if it is activated), cmf the fixed cost for
activating machine m and cmo the cost of overtime per unit of time on machine m. If the
duration of job j is dj > 0, the total cost of an allocation (x, z) ∈ X can be measured as

F (x, z;d) :=
∑
m∈M

cmf zm + cmo

∑
j∈J

xjmdj − Tm

+

,

where (u)+ := max(u, 0) denotes the nonnegative part of u ∈ R.
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In this paper, we consider the problem of finding the allocation (x, z) ∈ X minimizing
the overtime, while protecting ourselves against a set of likely scenarios D. This leads to
the following robust optimization problem:

min
(x,z)∈X

max
d∈D

F (x, z;d). (2)

We propose to use a cutting plane approach to solve Problem (2). Given a finite set
of scenarios D̂ = {d(1), . . . ,d(s)} ⊆ D, we first observe that the restricted master problem
min(x,z)∈X maxd∈D̂ F (x, z;d) can be formulated as a mixed integer linear program:

min
x,z,∆,δ

∑
m∈M

cmf zm +∆ (3a)

s.t. δim ≥
∑
j∈J

xjmd
(i)
j − zmTm, ∀i ∈ {1, . . . , s},∀m ∈M, (3b)

δim ≥ 0, ∀i ∈ {1, . . . , s},∀m ∈M, (3c)

∆ ≥
∑
m∈M

cmo δim, ∀i ∈ {1, . . . , s}, (3d)

(x, z) ∈ X (3e)

The objective function (3a) minimizes the fixed cost
∑
m c

m
f zm and the robust over-

time cost ∆, equations (3b) and (3c) define the overtime δim for machine m and scenario
d(i), and (3d) makes sure that ∆ is the worst-case overtime cost over all scenarios in D̂.
Finally, (3e) ensures that (x, z) is a valid allocation.

Next, we introduce the adversarial problem, which, given a solution (x∗, z∗) of the
restricted master problem (3), finds the worst scenario within the uncertainty set D,

max
d∈D

F (x∗, z∗;d). (4)

The cutting plane algorithm to solve Problem (2) can be described as follows. Start with
D(1) = {d̄}, where d̄i is the expected value of di. At iteration k ∈ N, solve Problem (3)
for D̂ = D(k) and set (x(k), z(k)) to the optimal solution. Then, solve Problem (4) with
(x∗, z∗) = (x(k), z(k)), insert the worst case scenario d(k) in the restricted uncertainty set,
D(k+1) = D(k) ∪ {d(k)}, and iterate.

It is straightforward that at each iteration, the optimal value of Problem (4) is an
upper bound for the value of (2), while the optimal value of (3) provides a lower bound.
This process can also be refined by generating worst-case scenarios directly at nodes of the
branch-and-bound tree of the MIP (3), see Bertsimas et al. (2014) for more details.

As mentioned in the introduction, this work is motivated by an application to surgery
scheduling, where each job typically follows a log-normal distribution. In the next section,
we show how to solve Problem (4) efficiently for adequate uncertainty sets.

3 Solving the adversarial problem
If we assume that log dj ∼ N (µj , σ2

j ), it is natural to consider an uncertainty set of the
form D := {d ∈ Rn+ : log(d) ∈ E}, where E :=

{
y ∈ Rn :

∑n
j=1 σ

−2
j (yj − µj)2 ≤ r2}

for some r > 0. Note that the set D defined above is simply a log-transformation of some
confidence ellipsoid of the multivariate normal law N (µ,Diag(σ)).

Problem (4) may be reformulated as

max
ε∈{0,1}p

max
d∈D

∑
m∈M

cmf z
∗
m + εmc

m
o (
∑
j∈J

x∗jmdj − Tm), (5)

which reduces to solving the inner maximization problem for the 2p values of the vector
ε ∈ {0, 1}p. Now, we make the change of variable yj = log dj . For a fixed ε, the value of
the inner maximization problem equals
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m∈M

cmf z
∗
m − εmcmo Tm + max

y∈E

∑
j∈J

uje
yj , (6)

where we have set uj :=
∑
m∈M εmc

m
o x
∗
jm ≥ 0. If we put aside the trivial case u = 0,

the necessary Karush-Kuhn-Tucker (KKT) conditions for the maximization problem in (6)
can be written as follows:

∃λ > 0 :
{
∀j ∈ J , λ(yj − µj)σ−1

j = σjuje
yj∑

j∈J (yj − µj)2σ−2
j = r2.

(7)

We can find the value of λ by substituting (yj − µj)σ−1
j = λ−1σjuje

yj in the second
equation: λ = r−1(

∑
j σ

2
ju

2
je

2yj )1/2. Substituting back in the first equation, we find that
for all j ∈ J , (yj − µj)(rσj)−1 = σjuje

yj (
∑
j σ

2
ju

2
je

2yj )−1/2. In other words, the vector
w := Diag(rσ)−1(y−µ) is a fixed point of the map g : w 7→ f(w)/‖f(w)‖ which maps the
unit sphere Sn−1 of Rn onto itself, where f(w) := σ ◦u ◦ exp(µ+ rσ ◦w), the exponential
is elementwise, and ◦ denotes the Hadamard (elementwise) product: (a ◦ b)i = aibi.

The next results give a condition –almost always verified in practice, cf. discussion at the
end of the current section– which guarantees that fixed point iterations of g converge, and
we can use the fixed point to find a global optimum of (6). To do this, we prove the following
result, which relies on Hilbert’s projective metric on the cone K := {x ∈ Rn : x > 0}. It is
defined by ∀x,y ∈ K, dH(x,y) := log maxi xi

yi
+ log maxj yj

xj
, see Nussbaum (1994). Note

that dH(x,y) = 0 implies x = αy for some α > 0, and dH defines a metric over K ∩Sn−1.

Proposition 1. The function h : x 7→ exp(x) is contractant for the Hilbert’s metric over
the unit sphere Sn−1 ⊂ Rn, with a global Lipschitz constant equal to 1√

2 :

∀x,y ∈ Sn−1 ∩K, dH
(
h(x), h(y)

)
≤ 1√

2
dH(x,y).

The proof of this result is omitted. It will be included in a full version of this article, and
relies on (Nussbaum 1994, Theorem 2.4), which can be used to obtain a formula for the local
Lipschitz constant at x ∈ Sn−1 ∩K. We are now ready to prove the following proposition,
which gives a simple condition ensuring convergence of the fixed point iterations.

Proposition 2. Assume that for all j ∈ J , rσj <
√

2. Then, there exists a point
w∗ ∈ Sn−1 ∩K such that the fixed point iterations g(g(· · · g(w0))) converge to w∗ for all
w0 ∈ Rn. Moreover, y∗ := µ+ rDiag(σ)w∗ is a global optimum of problem (6).

Proof. First note that the existence of a fixed point of g is guaranteed by Brouwer’s theo-
rem, and any fixed point must lie in Sn−1 ∩K. Elementary calculus shows that ∀x,y ∈ K,
dH
(
g(x), g(y)

)
= dH

(
f(x), f(y)

)
= dH

(
exp(rσ ◦ x), exp(rσ ◦ y)

)
≤ r‖σ‖∞dH(ex, ey).

Therefore, Proposition 1 implies that g is contractant for the Hilbert’s metric over Sn−1 ∩K
if r‖σ‖∞ <

√
2. It is well known that (Sn−1 ∩K, dH) is a complete metric space, see Nuss-

baum (1994), so Banach fixed point theorem ensures the unicity of a fixed point w∗ and
the convergence of fixed point iterations when r‖σ‖∞ <

√
2. In this case, y∗ := µ+rσ◦w∗

is the unique solution of the necessary conditions (7), so y∗ maximizes
∑
j uje

yj over E .

Choice of r: Care must be taken while setting the value of r defining E , to avoid
overconservatism. Indeed, the optimal solution of Problem (2) does not only protect against
scenarios in D, but also against all duration scenarios in D̄ = {d− u : d ∈ D,u ≥ 0}. For
the lognormal model log dj ∼ N (µj , σ2

j ), we can see using the inclusion-exclusion principle
that a scenario lies in D̄ with probability Pn(r) := Φ(r)n− (Φ(r)− 1

2 )n+ 1
2n

√
χ2
n(r), where

Φ is the standard normal cumulative distribution function (CDF), and χ2
n is the CDF of

the χ2-distribution with n degrees of freedom. For a confidence level α, we can hence choose
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Expected value 90th percentile
Instance n p LRS RIP LRS RIP

I1 11 5 0.97 1.01 0.98 1.00
I2 12 5 1.04 1.13 0.99 1.06
I3 11 5 0.98 1.05 0.99 1.02
I4 9 5 1.03 1.10 0.98 1.03
I5 12 5 0.77 0.74 0.66 0.63
I6 11 5 0.99 1.01 0.99 1.01
I7 12 5 0.98 1.09 0.95 1.02
I8 12 5 1.02 1.01 1.01 1.01
I9 12 5 0.97 1.07 0.97 1.02
I10 11 5 1.00 1.00 0.96 0.99

Table 1. Comparison of the ex-
pected value (resp. 90th percentile) of
F (x∗, z∗;d), for the solution (x∗, z∗)
found by the lognormal robust sched-
ule (LRS) approach of the present pa-
per and the robust IP (RIP) of Den-
ton et al. (2010), measured as a ratio
to the expected value (resp. 90th per-
centile) of F (x0, z0;d) for the reference
solution (x0, z0).

r by solving the equation Pn(r) = 1− α. Then, Problem (2) minimizes an upper bound of
the (1− α)−quantile of F (x, z;d).

Discussion on the assumptions of Proposition 2. Estimates of µj and σj usually
come from an analysis of historical data. It seems reasonable to assume that one can obtain
estimates σj ≤ 0.5, because σj = 0.5 already allows huge deviations from the nominal
scenario: 95%-confidence interval is [0.37mj , 2.67mj ], where mj := eµj is the median of dj .
In this situation, if we choose r by solving Pn(r) = 1 − α, the condition r‖σ‖∞ <

√
2 is

satisfied for n ≤ 21 jobs at the confidence level α = 0.05, and for n ≤ 45 at α = 0.1.

4 Application to Allocation of Operating Rooms
We present brief results for instances based on real data from the department of general

surgery of the Charité university hospital in Berlin. For each instance, we used as a reference
the solution provided by the longest processing time (LPT) heuristic, which is known to
give excellent results when the goal is to minimize the expected value of F (x, z;d), and
has an approximation guarantee of 13

12 in the deterministic case, cf. Denton et al. (2010).
We solved Problem (2) for lognormal activity durations with parameters estimated from
historical data, and a value of r corresponding Pn(r) = 0.90. Table 1 compares this solution
to the solution of the robust IP called MRORA in (Denton et al. 2010), based on Monte-
Carlo simulations withN = 106 runs. The uncertainty set D for MRORA is defined as in (1)
with [`i, ui] set to a 90% confidence interval of di, and τ computed with the newsvendor
rule described in the aforementioned paper. The table evidences that our solution is more
robust indeed (better 90th percentile), while remaining very good in terms of expected value
(it even beats the LPT reference solution on many instances). On average, our approach
reduces the 90th percentile of the overtime of 21.5 minutes per day (95% confidence interval
±6.1 min.) on all instances of 2013 (compared to MRORA). In conclusion, our approach
takes advantage from the knowledge of the distribution of di to handle extreme scenarios,
an essential feature for the stability of schedules in the operating theater.
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