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2 THEORETICAL BACKGROUND

1 Introduction

In this thesis, we develop an algorithm for clustering spatial time series into a prescribed

number of clusters based on their spatial and dynamical properties.

After an introduction to the underlying theoretical background we will review known

results about the Robust Perron Cluster Cluster Analysis (PCCA+), which forms the basis

for our application. PCCA+ allows to identify metastable clusters in Markov chains which

are configurations of the system which are likely to persist for a longer time. In the course,

we will extend the known results by a stochastic interpretation for the propagator matrix

which encodes the time evolution on the clusters.

We then explain a method to turn spatial time series into a Markov chain to obtain a

spatial clustering by further application of PCCA+, respecting the dynamic information.

Finally, we will apply that method to data obtained by tracking human eye fixations while

these look at different paintings to detect the depicted objects. This can be seen as a form

of object recognition which does not rely on the image data itself but detects the objects

based on the human recognition reflected in their eye movement.

The presented program was developed in cooperation with the Zuse Institute Berlin and

the University of Potsdam and I would like to thank Dr. Weber and Prof. Dr. Kliegl for

their support.

2 Theoretical background

2.1 Introduction to Markov chains

Let S be any finite set, i.e. S := {s1, ..., sN}. A Markov chain on S is a stochastic process,

consisting of a sequence of random variables Xi : Ω → S, i ∈ N satisfying the Markov

property:

P (Xt+1 = x|X1 = x1, X2 = x2, ..., Xt = xt) = P (Xt+1 = x|Xt = xt) ∀t ∈ N.

It is common to interpret S as the state space of possible outcomes of measurements at

time step t represented by Xt. The Markov property assures that the transition probabil-

ities to the next time step xt+1 only depend on the current state xt. This means that the

process at time t has no memory of its previous history (x1, ..., xt−1), sometimes this is also

called the memoryless property.

We will furthermore assume that the process is autonomous, i.e. not explicitly depend-

ing on the time:

P (Xt+1 = x|Xt = y) = P (Xt = x|Xt−1 = y)∀t ∈ N.

This does not really impose a restriction since any non-autonomous process can be turned
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2 THEORETICAL BACKGROUND

into an autonomous one: By adding all possible times to the state space S using the

Cartesian product S′ := N × S, the explicit time-dependence of the process on S can be

implicitly subsumed by an autonomous process on S′.

Since S is finite, we can, enumerating all states in S, encode the whole process in the

right stochastic transition matrix

Pij := P (Xt+1 = j|Xt = i) ,

in which case right stochastic means that each row has row sum one and propagation of

states is realized by right application of P .

A stationary distribution is a row vector π, satisfying

πP = π,
N∑
i=1

πi = 1.

Given a stationary distribution π, we denote by Dπ the diagonal matrix with π on its

diagonal.

Although we only consider a discrete state space in this thesis, the results are extendible

to continuous state spaces as well. A natural way is using a set-based discretization di-

viding the state space into a finite mesh of subsets. For high dimensional state spaces, as

for example met in molecular dynamics, this approach exhibits the curse of dimensional-

ity, as the size of the mesh grows exponentially with the dimensions. Weber developed

a meshless version of PCCA+ using a global Galerkin discretization[9] as solution to this

problem .

2.2 Clustering of the state space

The goal of PCCA+ is to reduce the complexity of analysis of the Markov chain by a di-

mension reduction of the state space. To formalize this we will now introduce the concept

of clustering, which is subsuming different states of the state space to a smaller set of

n ∈ N clusters C := {1, ..., n}.
The simplest possibility is assigning each state k ∈ S to a cluster i ∈ C which can be

encoded by means of the characteristic vector χi ∈ {0, 1}N :

χi,k =

1, if state k belongs to cluster i

0, else
.

Due to its discrete nature, this crisp clustering approach, used by the Perron Cluster Cluster
Analysis (PCCA) [1], has the disadvantage of not being robust against small perturbations

since continuous changes in P finally result in discontinuous changes in the clustering.

Deuflhard and Weber therefore developed a robust version, Robust Perron Cluster Analy-
sis (PCCA+) [2], by making use of a fuzzy clustering representing each cluster by an almost

2



2 THEORETICAL BACKGROUND

characteristic vector
χi ∈ [0, 1]n . (2.1)

Almost characteristic vectors {χi}ni=1 satisfying the partition of unity property

n∑
i=1

χi = 1 (2.2)

are called membership vectors as they describe the relative membership of each state to

each cluster. We will refer to the matrix collection χ := (χi)
n
i=1 ∈ RN×n of the membership

vectors as a clustering, whereas in the field of computational chemistry it is also referred

to as conformations.

2.3 Galerkin projection of the transition matrix

The coupling Matrix

To represent the dynamics on the reduced/clustered state space in the case of a crisp
clustering χ, i.e. χi ∈ {0, 1}, Deuflhard et al. [1] introduced the coupling matrix

Wij :=
〈χj , Pχi〉π
〈χi, 1〉π

=
χTj DπPχi

πTχi
,

or in matrix notation

W := diag
(
χTπ

)−1
χTDπPχ.

The entries Wij can thus be interpreted as conditional transition probabilities from cluster

i to cluster j, given the starting distribution π.
In the fuzzy clustering setting, the problem arises that it is not clear anymore which state

belongs to which cluster. It is therefore convenient to interpret the membership of state

j to cluster χi, χij , as the probability of measuring state j belonging to cluster χi. Then,

Wij denotes the expectation value for measuring cluster χj after propagating the density

given by χi.

Note, however, that even if no real transitions are actually happening in the state space,

we still may count transitions between clusters since we measure the same state once

belonging to one and then to another cluster, as demonstrated in example 3.

One of the main motivations for developing PCCA+ was the wish to identify so called

metastable conformations of molecular systems, e.g. to analyze the effectivity of active

pharmaceutical ingredients in Computational Molecular Design (for a overview over this

approach see [7]). These conformations are almost invariant aggregates of states, i.e. mem-
bership vectors with high self-transition probabilities, guaranteeing that the system resides

in these states on longer timescales.

This can be formalized, as proposed by Huisinga [3], by the definition of the metastabil-
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2 THEORETICAL BACKGROUND

ity of membership vectors as the trace of the corresponding coupling matrix: tr (W ) . Note,

this does not need to correspond with a high probability of the cluster.

The propagator matrix

Unfortunately, the projection via the coupling matrix does not commute with time prop-

agation and therefore cannot be used for long term analyses of the underlying Markov

chain.

As remedy, Kube and Weber [5] proposed the coarse propagator matrix

PC :=
(
χTDπχ

)−1
χTDπPχ (2.3)

which coincides with the coupling matrix W in the crisp clustering setting. Assuming that

χ is a linear combination of vectors spanning a P -invariant subspace satisfying an in-

vertibility condition, it has the advantage that discretization via χ and time propagation

commute, i.e.

Pχ = χPC . (2.4)

This property ensures that the coupling matrix represents the right dynamics of the un-

derlying Markov chain on the reduced state space, even for iterative application, i.e.

Pnχ = χPnC .

Theorem 1. Let χ = XA, X ∈ RN×n, A ∈ Rn×n satisfying the subspace condition

PX = XΛ (2.5)

for some Λ ∈ Rn×n and C := XTDπX be invertible.
Then the PC is conjugate to Λ and discretization-propagation commutativity (2.4) holds.

Proof. We calculate

PC =
(
χTDπχ

)−1
χTDπPχ

=
(
ATCA

)−1
ATCΛA

= A−1C−1A−TATCΛA

= A−1ΛA, (2.6)

which implies

Pχ = PXA = XΛA = XAA−1ΛA = χPC .

This form of the theorem constitutes a small generalization towards its so far published

versions in which C = Id was assumed instead of invertibility.

4



2 THEORETICAL BACKGROUND

Stochastic interpretation

Due to the matrix inversion, the propagator matrix can have negative entries as shown in

example 3 below, thus prohibiting a natural stochastic interpretation.

We will therefore shed some light into the connection between the coupling- and the

propagator matrix making use of the notation of the restriction- and interpolation operators
introduced by Kube and Weber [5]:

R : RN → Rn, x 7→ xχ

I : Rn → RN , x 7→ xD−1π̃ χTDπ

with π̃ = πR and χ as above, where we apply them from the right in line with the used

notation of right-stochastic matrices.

These provide the transformations between the (fine-grained) configuration space and

the (coarse-grained) cluster space. These are in the sense that IRw = w, i.e. I reconstructs

the fine-grained density lost by the restriction R using the fine-grained stationary density.

This allows to reformulate the coupling- and propagator matrix as

W = IPR

PC = (IR)−1 IPR.

Now, consider the situation when setting P = Id with a fuzzy clustering. Then W =

IR = D̃π
−1
χTDπχ 6= Id as different clusters overlap. The result corresponds to the

transitions which are introduced to the coarser system due to the overlap.

As this overlap would be applied on every iteration of W , it would lead to increased

mixing between the states resulting in wrong long-term results. PC grants the desired

commutativity (2.4) by factoring out these transitions.

This also shows how we can compute a corresponding stochastically interpretable cou-
pling matrix for larger times corresponding to n iterations, Wn, from the smaller matrix

Pc:

Wn := IPnR = IRPnC .

5



2 THEORETICAL BACKGROUND

2.4 Example Processes

To demonstrate the connections between the different projections we now will show some

example systems.

Example 1: The decoupled system

Consider

P =


1
2

1
2 0

1
2

1
2 0

0 0 1

 .

In this ideal decoupled system we have two invariant subspaces spanned by the so called

Perron eigenvectors with eigenvalue 1, the vectors 1

1

0

 and

 0

0

1

 .

These can be interpreted as a crisp clustering and, assuming an equidistributed starting

distribution, we can compute the, in the crisp case coinciding, matrices

W = PC =

(
1 0

0 1

)
.

Example 2: The 3-pot

Next, we will consider the stationary Markov chain on three states with a fuzzy clustering:

P :=

 1 0 0

0 1 0

0 0 1

 , χ =

 1 0
1
2

1
2

0 1

 , π =
1

3

 1

1

1

 .

According to our definitions we now compute

PC :=

(
1 0

0 1

)
, W =

1

6

(
5 1

1 5

)
.

We thus observe that PC contains the expected stationary dynamics on the reduced state

space while W accounts for the possible transitions of observing the second state once in

cluster 1 and once in cluster 2, due to the overlap in the clustering.
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3 PCCA+

Example 3: Negative entries

Let us now consider

P =

(
0 1

1 0

)
, χ =

(
1 0
1
2

1
2

)
, π =

1

2

(
1 1

)
.

Computation of the propagator matrix now leads to negative entries:

PC =
1

2

(
1 1

3 −1

)
.

Let us first compute the propagation of the normalized density corresponding to χ2:

(0, 1) · P = (1, 0) ,

i.e. s2 is propagated to s1. The corresponding computation on the cluster space is

(0, 1) · PC =
1

2
(3,−1) .

Here, the negative entry amounts for the overlap of the clusters and is necessary to encode

state s1: As both clusters hold an amount of s2 we use a linear combination to eliminate

this. We thus may interpret PC acting to the basis of clusters eliminating the overlap.

We can calculate the corresponding density on the state space by applying the interpo-

lation operator

I =

(
2
3

1
3

0 1

)
,

1

2
(3,−1) · I = (1, 0) .

3 PCCA+

In this section, we will construct the Robust Perron Cluster Cluster Analysis algorithm,

introduced in [2]. We first will construct the matrix X spanning the required invariant

subspace and examine the possible linear transformations A mapping these to a set of

membership vectors. Finally, we propose different objectives to an optimization problem

to specify a “good” solution.

Unlike previous treatises, we will not restrict ourselves to reversible processes and pro-

vide a more general version of PCCA+ using the Schur decomposition thus reflecting the

newest developments in [10].

Note, that we impose a fixed cluster number n. An overview over methods for estimating

the cluster number based on different criteria is given by Röblitz, Weber[8].

PCCA+ will construct the clusters described by the membership vectors as a linear com-

bination of eigenvectors. This guarantees that χ spans an invariant subspace, thus leading

to preservation of the slow time-scales. By choosing the n < N eigenvectors with the
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3 PCCA+

largest eigenvalues, one hopes to preserve the principal dynamics of P . A good indica-

tor towards this goal is that eigenvectors with large eigenvalues represent conformations

with a high degree of self-mapping. Deuflhard et al. [1] have furthermore shown that

the desired metastability is bounded from above by the sum of the chosen eigenvalues

and for ε-perturbations of the coupling of uncoupled Markov chains also from below by∑
λi −O

(
ε2
)
, justifying the choice of large eigenvalues.

3.1 Subspace construction

For the construction of the invariant subspace, we make use of the real Schur decompo-
sition decomposing a matrix P = QΛQ−1 into a orthonormal matrix Q, whose columns

are called the Schur vectors, and an upper quasi-triangular (1-by-1 and 2-by-2 blocks on

its diagonal) matrix Λ, called the Schur form. The columns of Q are called the Schur vec-

tors of P . The eigenvalues of P appear on the diagonal of Λ, where complex conjugate

eigenvalues correspond to the 2-by-2 blocks.

Compute the Schur decomposition of P̃ = D
1
2
πPD

− 1
2

π . Then reorder the Schur form
so that the upper left n × n block contains the n largest eigenvalues, recomputing the

corresponding Schur vectors using a Schur reordering algorithm [4]. Note, that in the case

of complex conjugate eigenvalues we have to select or discard the whole 2-by-2 blocks.

Let us denote the resulting Schur form and -vectors by Λ, X̃. Then, defining X = D
− 1

2
π X̃

and inserting into P̃ X̃ = X̃Λ leads to PX = XΛ. Furthermore, due to orthonormality of

X̃, we have XTDπX = Id. So X and Λ satisfy the conditions for Theorem 1.

3.2 The feasible transformation set

Given the invariant subspace X, we will now examine the set of feasible matrices FA ⊂
Rn×n for the transformation A, leading to actual membership vectors χ := XA. As P is

stochastic, the vector e = (1, ..., 1)T is mapped to itself and thus forms an eigenvector

to eigenvalue one which for stochastic matrices also is the largest eigenvalue. By the

reordering of X and due to XTDπX, we have Xi,1 = 1, i = 1, ..., N . Thus, one can

reformulate the positivity (2.1) and partition of unity (2.2) conditions in terms of the

matrices X and A, leading to the following constraints for A:

A1,j ≥ −
n∑
k=2

XikAkj , i = 1, ..., N, j = 1, ..., n (positivity) , (3.1)

Ai,1 = δi,1 −
n∑
j=2

Aij , i = 1, ..., n (partition of unity) (3.2)

Since these constraints are linear in A, the set FA is a convex polytope.

8



3 PCCA+

Figure 3.1: Schematic illustration of the linear transformation mapping the row vectors
of the eigenvectors X (points on the z = 1 hyperplane) onto the standard
2-simplex.

Geometrically, one might think of the N rows of the matrix χ as points in the space Rn

(see Figure 3.1). The positivity (2.1) and partition of unity (2.2) conditions force these

points to lie on the standard (n− 1)-simplex ∆. Now, if χT = ATXT this means that

the matrix A maps the N rows of the eigenvector matrix X to that simplex. As we have

seen the first component of each row is 1, thus, all rows lie on the hyperplane with first

component 1. They furthermore are contained in a bounded region, and thus we can map

them linearly onto ∆ via a linear map A.

Thus, we directly see that the set FA is not empty. It furthermore is infinite, as we can

always shrink the image further and it will still fit into ∆.

3.3 Optimization

As we have the choice between infinitely many possible solutions for A ⊂ FA, we will now

specify and motivate different optimization objectives to choose a specific solution by the

optimization problem.

Maximal scaling condition

Assuming (maximality assumption), that the convex hull co (X) of the rows of X already

has the form of an (n− 1)-simplex, we can now choose A uniquely (up to permutation)

to map this exactly onto ∆, which among all the ways of mapping X into ∆ gives us the

highest distinctiveness between the resulting clusters. This assumption is equivalent to

the situation that for each corner there exists a row getting mapped into that corner, i.e.

max
i=1..N

χij = 1, j = 1, ..., n,

justifying its name.

As in general the maximality assumption is not met, it seems natural to turn it into an

9



3 PCCA+

optimization problem. This has been done in [2, 9] by imposing maximization of the

maximal scaling condition

I1 (A) :=

n∑
j=1

max
i=1..N

χij ≤ nC .

Assuming that the maximality assumption is almost met, i.e. maxi=1..N χij ≈ 1, j =

1, ..., n, Weber [9] proposes to determine the maximizing indices by the index mapping
algorithm (Algorithm 2), turning this convex optimization problem into a linear one:

I1 (A) =
n∑

i,j=1

Xind(X)j ,i
Aij

In [9], Weber furthermore shows that Wjj ≤ maxi=1..N χij , which implies that I1 is an

upper bound for the metastability, which thus should be large.

Note, that this objective, ignoring the data points not being the maxima, cannot dis-

tinguish between differences in the interior of the convex hull, leading to possibly non-

optimal transformation matrices A as illustrated in Figure 3.2.

Figure 3.2: Mapping of 7 rows of the eigenvectors (affine hexagon with an interior point)
to a 2-simplex. While I1 cannot differentiate between the two mappings, I2
will choose the second as it provides a crisper assignment of the interior point.

Maximal metastability condition

Another choice might be optimizing directly towards a maximal metastability as done by

Deuflhard and Weber [2, 9]

I2 (A) := trace (W ) =

n∑
i=1

λi

n∑
j=1

A2
ij

A1,j

where they establish the latter equation making use of πi = A1,i ([9], Lemma 3.6).

10



3 PCCA+

Crispness objective

Röblitz [8] argues that the stochastic interpretation of W is not valid in the fuzzy setting,

due to the overlap. Optimization of the trace of PC makes no sense as it is similar to Λ,

see (2.6), and therefore independent of A. She therefore suggests maximization of

I3 := trace (IR) =

n∑
i=1

n∑
j=1

A2
ij

A1,j

which is similar to the maximal metastability condition with the corresponding P replaced

by the identity.

Maximizing the trace minimizes the off-diagonal entries of IR leading to the least

amount of clustering-induced transitions and therefore to a as crisp as possible cluster-

ing.

Unconstrained Optimization

Due to the high number of inequality constraints (3.1), solving these linear or convex

problems may still be very time consuming. Following Deuflhard and Weber [2, 9], we

will now show how to turn this constrained into an unconstrained optimization problem

by enforcing the constraints after each iteration.

Define the set F
′
A by the equality constraints

Ai,1 = δi,1 −
n∑
j=2

Aij , i = 1, ..., n

A1,j = − min
l=1,...,N

n∑
i=2

XliAij , j = 1, ...., n. (3.3)

Comparing these equalities to (3.1), one easily checks that F
′
A ⊂ FA.

Now consider the following feasibilization algorithm F : R(n−1)×(n−1) � F
′
A, mapping

any arbitrary matrix
(
Ãij

)
i,j=2,...,n

to a feasible transformation matrix A and thus enforc-

ing the desired constraints:

Algorithm 1: Feasibilization algorithm

1. For i = 2, ...., n define Ãi,1 := −
∑n

j=2 Ãij

2. For j = 1, ..., n define Ã1,j := −minl=1,...,N
∑n

i=2XliÃij

3. For i, j = 1, ..., n define Aij :=
Ãij∑k
j=1 Ã1,j

4. Return A

Steps 1 and 2 guarantee feasibility of Ã with respect to (3.3) for i = 2, ..., n respectively

j = 1, ..., n. As these equalities are linear in A, they are invariant under scalar multipli-
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cation and step 3 now furthermore assures the equality (3.3) for i = 1. Thus, F indeed

maps to F
′
A. Furthermore, taking any matrix A ∈ F ′A, dropping the first row and column

to get Ã and computing F
(
Ã
)

= A, we see that F is surjective.

As any objective function Ii, i = 1, 2, 3 is convex over FA it attains its maximum at one

of the vertices v (FA), which are contained in F ′A (for a proof see [9], Lemma 3.5). Thus,

we can also optimize the function F ◦ Ii over R(n−1)×(n−1) and have thereby transformed

the constrained optimization problem in n2 unknowns to an unconstrained in (n− 1)2

unknowns.

As the feasibilization algorithm is not differentiable, Deuflhard and Weber [2] propose

the use of the nonlinear simplex method of Nelder and Mead [6] as local optimization

routine.

Initial guess

Based on Weber and Galliat [11], we outline the inner simplex algorithm determining an

initial guess for the matrix A by constructing a simplex surrounding all row-points and

then computing the transformation to the standard simplex, thus, turning the global into

a local optimization problem.

The first step, the index mapping algorithm, searches for the indices ij of the successively

farthest linear independent rows. It starts by choosing the largest row vector as starting

point and then iteratively adds the points with the largest distance to the hyperplane

spanned by the chosen points so far:

Algorithm 2: Index mapping algorithm

1. Find starting point: i1 := argmaxj∈C ‖X·,j‖2

2. Translate to origin: For i ∈ S set Xi,· ←[ Xi,· −Xi1,·

3. For j = 2, ..., n

a) Find index of the farthest point: ij := argmaxj∈C ‖X·,j‖2

b) Projection to hyperplane by Gram-Schmidt process: X ← [ X −
XXT

ij ,· ⊗Xij ,·∥∥∥Xij ,·∥∥∥2
4. Return the indices ij

The inner simplex algorithm uses these indices to construct of the n extremal points to

construct the matrix A mapping these to the vertices of ∆:

Algorithm 3: Inner simplex algorithm

Return A (X) := (Xij)
−1
i=i1,...,in, j=1,...,n with i1, ..., in computed by the index mapping

algorithm

12



3 PCCA+

In the case of the maximality assumption, X spans a (n− 1)-simplex, and the index
mapping algorithm determines its vertices, thus co (AX) = ∆ and A ∈ v (FA) maximizes

I1. For the general case though, Weber [9] (Lemma 3.13, Theorem 3.14) has shown that

the following statements are equivalent:

1. The convex hull co (X) of X is a simplex.

2. The result of the inner simplex algorithm is feasible, i.e. A ∈ FA.

3. A ∈ v (FA) and therefore maximizes I1.

Therefore, the result is not feasible in the generic case. If, however, the maximality as-
sumption almost holds, i.e. the convex hull of X is a small perturbation of a simplex,

which according to Weber [9] (3.4.4) is satisfied in many applications, the algorithm still

gives a solution near the unperturbed solution. Thus, A is near a vertex of the set FA and

thus a good initial guess for a local optimization of the unconstrained optimization.

3.4 The PCCA+ algorithm

Once we have decided on an objective function we can now put together all steps:

Algorithm 4: PCCA+

1. Given P and π, compute X, Λ using the weighted Schur decomposition as in section
3.1

2. Determine the, in general infeasible, initial guess A0 := A (X) by the inner simplex
algorithm.

3. Perform an iterative local optimization A0, A1, ... of the objective function I1, I2 or
I3. In each step Ak → Ak+1 only update the elements Ak,ij , i, j 6= 1 without
constraints, then use Algorithm 1 to get a feasible matrix Ak before evaluating the
corresponding objective function.

4. Return X and A.

Extension to time-continuous Markov chains

PCCA+ is also applicable to the clustering of time-continuous Markov chains (c.f. [5]).

In that case, the transition matrix P gets replaced by a transition rate matrix Q having

row-sum zero and non-negative off-diagonal entries. The transitions after a fixed time can

then be computed by

P (t) = etQ.

In that case, the eigenvectors of P and Q are the same and the eigenvalues of P are the

exponential of the corresponding eigenvalues of Q. As the exponential is monotone, the

13



4 APPLICATION TO EYE TRACKING DATA

eigenvectors with highest absolute eigenvalue, near 1, of P correspond to the eigenvectors

with smallest absolute value, near zero, of Q.

So by selecting the eigenvectors with smallest eigenvalue of Q we can compute the

corresponding clustering for time-continuous Markov chains.

4 Application to eye tracking data

This algorithm was applied to experimental eye tracking data obtained by the Department

of Psychology of the University of Potsdam with the goal to detect objects as metastable

clusters using just the dynamics of the human eye, i.e. without any data of the image

itself, and thus provides a way of interpreting the humans object recognition expressed

through the eye movements.

4.1 The experiment and model

A group of test persons was presented different pictures for about 10 seconds, during

which an eye tracker measured their fixations fi ∈ R2 and their respective durations ti ∈
R. For subsequent analysis it is necessary to group different areas of the image into areas
of interest (AOE) which correspond to subjectively identified objects in the corresponding

picture.

To apply PCCA+, we need to turn this spatial time series into a Markov chain.

We model each fixation as a random choice on a spatial grid, weighted by a Gaussian of

the distance to the grid points, and then construct a Markov chain by counting the induced

transitions on the grid points. Assuming, that humans, when looking at the pictures, do

not jump randomly between all recognized objects but remain for some fixations inside

one AOE, this behaviour should recur as high metastability of a clustering, corresponding

to the AOEs.

4.2 Implementation

As state space we choose a spatial grid S := {si}, where the natural choice is using all

fixation coordinates as grid (si = fi ) or alternatively use some spatial clustering algorithm

(e.g. k-means) to reduce the computational effort of the following PCCA+ routine.

Introducing a parameter σ, we assign a membership of each fixation to each grid point

weighted by a Gaussian of the distance between them, i.e. for each fixation fi and each

state sj:

Mij :=
e
|fi−sj|2

2σ2∑
j e
|fi−sj|2

2σ2

(4.1)
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4 APPLICATION TO EYE TRACKING DATA

This mass matrix assures that nearby fixations “overlap”, adopting the metric information

contained in the fixation data to the Markov process. Thus, the parameter σ, scaling the

distance between points, can be interpreted as a spatial coupling constant.

We then choose a fixed time step ∆τ as grid size for the time discretization, along which

we count the transitions between the states weighted with the corresponding fixation tran-

sitions, and row-normalize it to generate a transition matrix. In detail, for the transitions

from state i to j we have

Pij =

∑
s=0Mfs,iMfs+1,j∑

s=0Mfs,i
,

where fs denotes the current fixation at time s∆τ .

Once we have constructed P this way, we now compute the stationary distribution,

being the left eigenvector to eigenvalue one, and pass them to PCCA+, which in return

gives us X and A to compute the clustering χ = XA.

As a final step, we discretize this fuzzy clustering by assigning to each state si the cluster

ci with the maximal share:

ci = argmaxjχij . (4.2)

Note, that choosing this discretization of the fuzzy clustering, some clusters may never

be assigned, when being dominated by other clusters on every grid point.

In case of preclustering via k-means, the cluster assignment of the grid is passed to the

corresponding fixations according to the k-means assignments.

The program was implemented in Julia and its source will be published on

https://github.com/kliegl/Hokusai.

4.3 Choice of the parameters

The desired number of clusters, n, was chosen near the number of objects recognized

by the experimenter. This, of course, is a subjective choice, but the number of clusters

in general depends on the desired resolution of the clustering and thus on the further

application. For example, imagine a picture of a bookshelf with books, here one might

recognize either the whole shelf, the books, or their titles as objects.

The time step size ∆τ should be chosen as large as possible without skipping too many

transitions. If it is chosen too large some fixations will be skipped resulting in loss of

information and thus leading to a worse clustering. If, on the other hand, chosen too

small we count one fixation as multiple self-transitions, thus weakening the effect of the

real transitions, favouring the spatial over the dynamic information.

The parameter σ introduces the spatial information and can thus be considered as

a weight between dynamic and spatial clustering and is therefore inherently necessary.

While small σ values favour the dynamic information, this can lead to scattered clusters
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4 APPLICATION TO EYE TRACKING DATA

neglecting the spatial component. Large σ values will lead to a more regular and convex

clustering by enforcing a stronger spatial coupling between nearby fixations.

For a general routine ∆τ should be chosen small enough for most fixations to be counted

and then increase σ starting from small values to reach the desired spatial regularity.

The maximal scaling condition was used for the following clusterings, as it provided the

best results.

4.4 Results

Each of the following clusterings was computed based on about 2000 fixations. Each

fixation is marked as a dot, with the color representing the corresponding cluster.

The Sistine Madonna

Figure 4.1(a) depicts Raphael’s “Sistine Madonna” oil painting, one of the last of his many

Madonnas, commissioned by Pope Julius II for the Monastery of San Sisto in Piacenza,

Italy. In the middle, we see the Madonna, holding Jesus, her child. She is flanked by Saint

Sixtus and Saint Barbara. To their feet, we can see the two cherubim who became quite

popular on their own in the last centuries as motives for postcards, advertisements, gifts

and home décor. In the bottom left, we can see the Pope’s crown, the Papal tiara.

In (b) we chose a small σ value to emphasize the dynamic share of the clustering. As a

consequence Saint Sixtus and Saint Barbara are clustered into one cluster, indicating back

and forth movements of the observer, although they are separated by the Madonna. This

non-convex clustering is a feature specific to the analysis of the dynamics which can not

be reached by purely spatial clustering, e.g. k-means. Furthermore, the Madonna with

her child and the Papal tiara are separated. The noisy red cluster is typical for small σ

values, as small cycles get uncoupled from the rest of the fixations due to the missing

spatial coupling.

The more natural σ choice and a higher cluster number in (c) allow a separation be-

tween the left and right saints, and instead of the red noise-cluster we now get a further

cluster for the right curtain.

Further refinement (d) leads to additional separation of the left curtain, the background

behind Saint Sixtus, his and Madonnas feet as well as her skirt. Unfortunately, we were

not able to separate the Madonna from her child.
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4 APPLICATION TO EYE TRACKING DATA

(a) Original (b) n = 5, τ = 20, σ = 35

(c) n = 6, τ = 50, σ = 60 (d) n = 10, τ = 60, σ = 50

Figure 4.1: The Sistine Madonna (1512) by Raphael
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(a) Original (b) n = 6, τ = 100, σ = 250

(c) n = 7, τ = 80, σ = 120 (d) n = 9, τ = 80, σ = 120

Figure 4.2: The Three Trees (1643) by Rembrandt

Three Trees

In Figure 4.2(a), we see Rembrandt’s “Three Trees”, widely regarded as his greatest and

most elaborate landscape etching. It features a combination of many details: Of course

there are the three trees as most prominent feature in the foreground, complemented by

a fisherman accompanied by his wife in the lower left, a painter on the hill to the right of

the trees and a cloud formation resembling and upcoming storm to their left.

Already the coarse clustering (b) shows a good separation of the trees, also assigning

clusters to the fisherman and the stormy clouds, additionally the three corners of the

image.

The refinement (c) now also separates the fisherman and his wife from the background,

and further refinement (d) even separates the treetops from their trunks, also assigning

an own cluster to the painter.
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4 APPLICATION TO EYE TRACKING DATA

(a) Original (b) n = 6, τ = 80, σ = 80

(c) n = 8, τ = 80, σ = 80 (d) n = 10, τ = 80, σ = 100

Figure 4.3: In the Totomi Mountains (1830) by Hokusai

In the Totomi Mountains

Figure 4.3(a) shows Katsushika Hokusai’s “In the Totomi Mountains”, one out 36 color

woodblock prints of his series “Thirty-six Views of Mount Fuji”, featuring the prominent

volcano Mount Fuji, the highest mountain in Japan. This picture was chosen for it has a

large number of distinct features: Two men sawing a large tree block on stands, a woman

with a baby on her back watching a third man sawing a tree trunk on the ground and

another man in the back making a fire, the Mount Fuji in the back entwined by a curling

cloud.

The clustering into six clusters (b) focuses on a rough separation of the people (three

clusters on five people), the legend in the top left, the smoke of the fire and the strawmat

at the foot of the tree block. One might object that none of these clusters separate any of

the objects properly, but as we impose just six clusters one can’t expect a clear separation

as the objects in between have to become assigned as well.

Increasing the cluster number to eight (c), we gain an splitting of the former upper left

cluster, now properly isolating the legend, the smoke around the Mount Fuji with its peak

and the top of the wood block.
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Further refinement to ten clusters (d) splits the two lower clusters into three, now

distinguishing between the man sawing on the ground, the woman with her baby and the

standing woodcutter with the man making the fire in the background. Additionally, the

upper right cluster gets split into two, now correctly differentiating between the smoke

and the hill.

5 Discussion

Given a good choice of parameters, the algorithm showed to be able to cluster the points

to the subjectively identified objects in the picture, backing up the hypothesis that human

sight exhibits the metastable behaviour on recognized objects.

This conclusion already implies the current problem of the approach, the parameters.

Although most of the resulting clusters proved to be stable in many situations, high cluster

numbers or small σ values lead to unstable results.

The time step parameter ∆τ could be completely eliminated by using a time-continuous

Markov chain as underlying transition model, leading to a transition rate matrix. Unfor-

tunately the ad hoc approach using

Wij =

(∑
a→bMaiMbjτa→b∑

a→bMai

)−1
,

denoting by
∑

a→b the sum over all fixation transitions, from a to b, and τa→b the corre-

sponding transition time, leads to worse results. It is not yet clear to the author how to

construct the most likelihood estimator for the corresponding process.

A, compared to the here chosen maximum method (4.2), more sophisticated method

to discretize the fuzzy clustering could also proof crucial in improving the results. One

possibility might be weighting the clusters with their size, thus, emphasizing their relative

shape and/or discarding points with no clear assignment to an extra cluster. This would

also solve the problem of non-assignment of some clusters mentioned in section 4.2.

The choice of other mass matrices M in (4.1) and a different weighting of the states

than by the stationary distribution π in section 3.1 might allow for further adjustment of

the results.

Overall, the presented method, turning the time series into a Markov chain and applying

PCCA+ for the clustering, proved to be successful and a viable approach to spatial time

series clustering with open opportunities for further improvement.
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