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Abstract

We propose an algorithm to approximate the distribution of the completion time (makespan)
and the tardiness costs of a project, when durations are lognormally distributed. This prob-
lem arises naturally for the optimization of surgery scheduling, where it is very common
to assume lognormal procedure times. We present an analogous of Clark’s formulas to
compute the moments of the maximum of a set of lognormal variables. Then, we use mo-
ment matching formulas to approximate the earliest starting time of each activity of the
project by a shifted lognormal variable. This approach can be seen as a lognormal variant
of a state-of-the-art method used for the statistical static timing analysis (SSTA) of digital
circuits. We carried out numerical experiments with instances based on real data from the
application to surgery scheduling. We obtained very promising results, especially for the
approximation of the mean overtime in operating rooms, for which our algorithm yields
results of a similar quality to Monte-Carlo simulations requiring an amount of computing
time several orders of magnitude larger.

1 Introduction

An activity network is a mathematical representation of a project, given by a partial order
on a set of activities {ai,...,a,}, such that a; < a; indicates that activity a; cannot start
before the end of activity a;. A crucial question for planners is to estimate the end of a project,
when the duration of each uncertainty is uncertain. This question has attracted a considerable
attention from the operations research community over the last 60 years. The first techniques
to analyze an activity network are known as CPM (critical path method, [KJW59]) and PERT
(project evaluation and review technique, [MRCFEF59]). These two techniques are simple, but lack
of mathematical accuracy, especially when the network contains several uncorrelated paths that
have roughly the same length [MR64|. However PERT gained so much popularity that many
authors call activity networks PERT networks nowadays.

Parametric methods have also been proposed for the analysis of stochastic activity net-
works: Martin suggested to use polynomials [Mar65|, and Sculli used Clark’s formulas [Cla61|
to construct normal approximations of the earliest starting times of each activity [Scu83|. Also,
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exact expressions for the distribution of the completion time have been derived in the case
of exponentially distributed durations, and later extended to the case of phase-type distribu-
tions [FG83, KA86G, MU15]. However this method requires a state-space model that grows
exponentially with the size of the network, so it can be used for very small instances only.

More recently, the problem also attracted much attraction in the literature on digital
circuit optimization, where the goal is to approximate the signal delay through a network
formed by gates and wires [BCSS08]. It gave rise to a version of Sculli’s method in canonical
form [VRK™06], which is computationally more efficient. Recently, the technique was also ex-
tended by using the family of skew-normal distributions, to take into account the skewness of
the completion time [VV14].

Another important question in the field of stochastic activity network analysis is to find
out which activity is potentially a bottleneck of the project. To this end, the notion of
criticality has been developed, and algorithms have been proposed to compute criticality in-
dices [DE85, Monl11|. The notion of criticality has also been linked to that of persistency in
robust optimization, and methods based on semidefinite programming have been developed to
approximate these indices and to bound completion times over a family of activity distribu-
tions [BNT06, NTZ11].

The present article is motivated by an application to surgery scheduling, an area in which it is
well known that durations exhibit a lognormal distribution [SMV98], or even a shifted-lognormal
distribution [SHDV10]. More generally, the use of lognormal distributions for the analysis of
stochastic project networks has also been suggested by the authors of [TB12|. In order to cope
with the fat-tail behaviour of lognormals, we introduce a method to estimate the completion
time (makespan) of a project and its total tardiness by using shifted lognormal approximations.
Our numerical experiments show that our technique provide reasonable estimations in a much
shorter time than Monte-Carlo simulations. Since the state-of-the-art in stochastic resource-
constrained scheduling is to use metaheuristics combined with Monte-Carlo simulations for the
evaluation of planning policies [Bal07, RCL16], we think that our method has the potential to
drastically improve the efficiency of algorithms for the planning of surgical resources.

Notation We use boldface letters to denote vectors. Capital letters are reserved for matrices
or random variables, depending on the context. Hence boldface capital letters refer to a random
vector. The symbol e is used for the kth vector of the canonical basis of R", where the
dimension n should be clear from the context. In other words, e is the kth column of I,,, the
identity matrix of dimension n. We use the notation E[X] for the expected value of X, and
V[X] for its variance-covariance matrix. We write cov(X,Y") for the covariance between two
scalar random variables X and Y. In particular, we have cov(X, X) = V[X]. The probability
of a random event E is denoted by P[E].

Throughout this paper, the symbols ® and ¢ represent respectively the cumulative distri-
bution function (CDF) and probability distribution function (PDF) of the standard normal
distribution.

Ve e R, p(z) = \/12?69622, O(x) = /i ©(s) ds.



We use the standard notation X ~ Ny (u,) to say that X follows a (multivariate) normal
distribution with mean vector g € R¥ and variance-covariance matrix ¥ € Sﬁ (where S'i
represents the set of all k X k-symmetric positive semidefinite matrices), or simply X ~ N (u, X))
when the dimension is clear from the context. Then, the probability density of X at x is denoted
by

L )T (x u>) ,

1
or(z; p,X) = W exp<—2

where |X| is the determinant of ¥. The multivariate normal CDF at @ is the probability that
X < x, where the inequality is elementwise:

T Ty
Pp(x; 1, X) = / / oz, 2) d" 2.
zZ1=—00 ZE=—00

In particular, for £ = 1, we have the identities () = p1(2;0,1) and ®(x) = &1 (x;0,1).

2 Sum and Maximum of correlated lognormal variables

2.1 Maximum of correlated normal variables

Let X follow a multivariate normal distribution with mean vector p € R™ and variance-
covariance matrix ¥, and let Z = max(X;, Xo). Then, the first four moments of Z have
known analytical expressions that were given by Clark in 1961 [Cla61]. The first two of them
are:

ElZ] = m@Q + p2(1 — Q) + 6P (1)
E[Z%] = (4] + £1,1)Q + (13 + B22)(1 — Q) + (p1 + p2)0P, (2)

were 0 = /V[X; — Xo] = \/21,1 + X9 — 28,5, P = p(H5#2) and Q = ®(*#5#2). In partic-
ular, () coincides with the probability that X; > X2, or equivalently that Z = X;. Moreover,
Clark showed that for all i € {3,...,n}, we have

COV(Z, Xl) = QELi + (1 — Q)Ezﬂ'. (3)

This suggests a recursive algorithm to estimate the density of Xy := max(Xy,..., X,), by
rewriting Xnax = max(Z, Xs, ..., Xy) and by approximating the law of the vector (Z, X3, ..., Xx)
by a multivariate normal distribution of dimension n—1, with mean and covariance matrix com-
puted using (1)—(3).

2.2 Maximum of correlated lognormal variables

Now, we recall that a random vector X of dimension n is said to have a log-normal distribution
of parameters p and X if the vector log X := (log X1,...,log X,,) follow a multivariate normal
law with the same parameters:

X ~ IN(pu,Y) < log(X) ~N(u,X).



The recursive algorithm of Clark can immediately be adapted for lognormal variables. In-
deed, we have the relation

Xmax = max(X1,..., X,) = emax(os Xi....log Xun),

So we can use Clark’s algorithm to approximate max(log Xi,...,log X,,) by a normal dis-
tribution N (,umax,afnax) for some parameters pmax and omax. But then, this suggests that
log X1,ax can be approximated by a normal distribution, and so we can use the approximation
Xiax  ~ LN (pmax, U?nax)'

Our tests suggest that this lognormal approximation provides a reasonable estimate eHmaxt 5 Tinax
for the mean of X,,x, but the variance of X, is poorly approximated. To get a better ap-
proximation of the law of X, .x, we suggest to use the family of shifted lognormal distributions,
which have one additional location parameter and thus allow more flexibility. In particular, we
can match the first three moments of any right-skewed distribution with a shifted lognormal,
as shown in Lemma 2.1.

We point out that other authors have proposed to use the family of log-skew-normal distrib-
tions to approximate the sum of lognormal variables [HB15|. We chose to work with shifted log-
normals instead, because they allow to use simple closed-form expressions for moment-matching,
which is very important to achieve computational efficiency. Another argument in favour of
shifted lognormals is that they can be used to approximate normal variables (by letting the
shift parameter go to —o0), which could be useful to estimate the sum of a large numbers of
lognormal variables (by the central limit theorem).

2.3 Maximum of shifted lognormal variables

A scalar variable X is said to be have a shifted lognormal distribution with parameters c, u,
and o2 if log(X — ¢) follows a normal law of parameters p and o2. In this paper, we con-
sider the following multivariate extension of the shifted lognormal: X € R™ is said to have
a (n—variate) shifted lognormal distribution with parameters ¢, and ¥ if log(X — ¢) :=
(log(X1—c1),...,log(X1 —c1)) has a n—variate normal distribution with parameters g and X.

X ~ SLN(e,p1, %) < log(X —¢) ~N(p, X).

Simple calculus allows us to derive the first central moments of X ~ SLN (¢, p, X):

[ ] =+ eﬂﬁ-%zi,i (4)
cov(X;, Xj) = etit2 3500 it 3 (e¥ii — 1), (5)
3
E|X; —E[X,
skew(X;) := [ [Xi]] = (e¥ii 4 2) (e¥ii — 1)% (6)
V(X;)?

The introduction of the shift parameter allows one to invert the above relations in order to
match the first three moments of any right-skewed variable:



Lemma 2.1. Consider a random variable Y with mean m and variance v, and assume that
skew(Y) =~ > 0. Then, Y has the same first three moments as X ~ SLN (c, p, 02), where the
parameters ¢, i and o are given by the following formulas:

1 1
2 P22 (42 M3\
2497+ (472 +4)2 2
1 v
=-log | ————— 8
lu 2 Og (602(602—1)> ()
c=m— etz 9)

Proof. Tt is straightforward (though lengthy) to verify that the expression in (7) is the unique

solution to the equation (e +2) (e?” — 1)% =7, and is well defined as long as v > 0. Then,
the expressions of p and ¢ are simply found by inverting (5) and (4). O

We will show how to to compute the moments of the maximum of (correlated) shifted
lognormals. Then, we propose to approximate the law of the maximum by a shifted lognormal
using Lemma 2.1 to match its first three moments. We start with the maximum of 2 shifted
lognormal variables. Analogous to the case of normal variables, the general case with n variables
can be handled recursively, see Section 2.4.

So, let X ~ SLN (¢, u,¥) € R2. By definition of a shifted lognormal, we have X1 = ¢; + e¥?,
Xo = c3 + €2 for some random vector Y ~ N (u, X).

Now, assume without loss of generality that ¢; > ¢ and define § := log(c; —¢2), or 6 = —oc0
if ¢; = co. Denote by Ds the subset of all vectors y € R? satisfying yo > log(e® + e¥') (in the
limit we set D_o := {y € R%2: yo > y1}). This region is plotted in Figure 1, together with
the asymptotes. yo = 0 and y2 = y1. It is straightforward that Z := max(X1, X2) takes the
value of Xs if and only if Y € Ds. So the kth moment of Z around co can be expressed as the
integral

BZ-c)= [ (@) mn Dyt [ (@) i) dy.
y€R2\D5 y€D;s

Now, observe that the relation v’ on(z; 1, 2) = en vz v on(x; p + Xv, %) holds for all
v € R™. We apply this relation for vectors of the form v = ae; (i = 1,2) and we expand the
previous formula. After some simplifications, we find

k 5
E[(Z — 62)16] - Z <k) (k=) +im+%5 S {1 X (

pt X | oy
. )
— \J p2 + J¥1 2
‘7:

7Z>7

where Ps(m, S) represents the probability that a random variable W ~ Nj(m, S) belongs to
D;.

(10)

1+ kX0
po + k3o

2
4 ek#2+722,2pa (



Figure 1: Region D5 C R2.

Hence, we can determine E[Z*] by evaluating probabilities of the form Ps(m,S). We first
observe that the case 6 = —oo can be handled easily. Indeed, we have

P T) = B(Yy = Y1) = o221, (11)

where = \/V[¥Y = Y] = {/S11 + £a0 — 25,

To avoid numerical integration over a two-dimensional space we present a change of variable
that allows to integrate in one dimension only in Appendix A. Then, one can obtain quick
approximations of Ps(m,S) using a Gaussian quadrature formula; see Proposition A.1.

The proposed approach to approximate the maximum of two shifted lognormal distribution
is summarized in Algorithm 1 (MAX_BIVARIATE_SLN)

2.4 Handling more than two variables

To allow for a recursive computation of the maximum of n > 2 variables, we also need to update
the covariances of M := max(X,_1, X,) with X; (¢ = 1,...,n —2). Rather than performing an
exact computation —which would require to compute an integral over a tri-dimensional region,
we use the following heuristic procedure: Assume that

E11 212
Y= T 12
[ E12 E22 :|’ ( )



Algorithm 1 (MAX_BIVARIATE_SLN)
Approximates M := max(X1, X2), where X ~ SLN (¢, u, X).

Input: c € R? with ¢; > co, p € R X € §2;
Output: (co, 1o, 03), such that SLN (co, p10,03) approximates M,
and P() = ]P)[Xl > XQ]

d < log(c1 — c2) €e RU{—o0}
for all j € {0,1,2,3} do
Compute Pj < 1 — Ps(p + jXer, X)
Compute Q; Ps(p+ jXeq, X) > use Formula (11) or integral in Appendix A
end for
for all k € {1,2,3} do

.2 2
2 K
My, Z?:o (§)€5<k Ity H Py + etz g

end for
m < M + co
1)(—]\42—]\412

v < (M3 — 3MyMy + 2M3)v=3/2
Compute (¢, o, 09) from (m,v,v), with the moment matching formulas (7)—(9).
return (607 1o, 037 PO)

where the blocks Y171, X1 and X9y are of size (n—2) x (n—2), (n—2) x 2, and 2 x 2, respectively.
Let Xo = SLN(co, j19,03) be the approximation of M = max(X,_1,X,) returned by Algo-
rithm 1, and let Py := P(X,, < X,,—1), Qo = 1 — Py (Note that Py and (g can also be returned
by Algorithm 1). Then, we propose to approximate the distribution of (Xi,...,X,_o, M)
by a random variable of the form SLN(¢*, u*,¥%), where ¢t = [c1,...,cn_0,c0]7 € R* 1
pt = 1lu1, . pin—2, o] € RPL

by u P, _
{ ul ag }7 ana uw 12 Qo

A heuristic justification for this approximation is that it both works in the situation where
¢p—Cn—1 — +oo and ¢, — c,—1 — 0. In the first case, M tends to X,,, so Qg tends to 1 and T
tends to the principal submatrix of ¥ corresponding to the variables (X1, ..., X,—2, X;,). In the
latter case, M tends to ¢, +exp(max(Y,—_1,Y,)), and Clark’s formula (3) holds for the covariance
of the maximum of the two normal variables Y,,_1,Y,,. Moreover, we observed numerically that
the matrix 7 is positive semidefinite when the diagonal elements of ¥ are small enough, for a
wide range of input parameters: the following proposition gives a sufficient condition for ¥ to
be positive semidefinite that only depends on the parameters of the distribution of (X,,—1, X,,);
Figure 2 shows that this condition seems to hold with a high probability when max;(3; ;) is small.
In particular, during our tests the condition was never violated when max;(3;;) < 0.6, which
is often true in practice. Indeed, for a log-normal variable X ~ LN (u,0?), 02 = 0.6 already
allows huge deviations from the nominal scenario: 95%-confidence interval is [0.22m, 4.56m],
where m := e* is the median of X.
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Figure 2: Scatter plot showing whether the sufficient condition of Proposition 2.2 for ¥* to be positive
semidefinite holds, for N = 10° pairs of random variables (X7, X3) ~ SLN(c, u,Y). The parameters
of (X1,Xs) were generated with ¢; ~ LN(0,22%), co = 0, p1(4,2?), p2(4,22), 11 ~ Uniform([0,2]),

)

Y9 ~ Uniform([0,2]), and X1 5 = p(X11%22)"/2, where p ~ Uniform([—1,1]).

Proposition 2.2. If 03 > [Py, Qo]X22[Po, Qo]T, then X% is positive semidefinite.

Proof. We know that X is positive semidefinite, so by the Schur complement lemma, we have
Yoo = E{QEilElg. Hence, the inequality of the proposition implies

o5 = [P, QulE 1551 S12 [P, Qo] = u' S11u,
which, by the Schur complement lemma again, implies that X7 is positive semidefinite. O

The approach proposed above is summarized in Algorithm 2 (MAX_2_SLN). Note that the
algorithm also addresses the case where the condition of Proposition 2.2 is violated, by scaling
down the vector u. Then, the maximum of n SLN variables can be approximated by applying
MAX_2_SLN (n — 1) times, thanks to the relation

max(Xy,...,Xp) = max(Xy,..., Xp_o, max(X,_1, Xy)).



Algorithm 2 (MAX_2_SLN)
Approximates M := (X1,..., X,—2, max(X,_1, X,)), where X ~ SLN (¢, p, ).

Input: ce R", u € R", ¥ € S, with n > 2;
Output: (¢, u*,XT), such that SLN(ct, p™, X1) approximates M,
and Qo € [0, 1] such that P[X,, > X,_1] = Qo.

(211, X192, X92) + Block-decomposition of ¥, see (12)

(co, ft0, 72, Py) <~ MAX_BIVARIATE_SLN([cn—1,cn]”, [tn—1, ftn] T, S22)
Qo+ 1-F

ct [c1,. .. cna,c0)t € R

p = [pas o o, po]” € R

U <— Elg[Po, Qo]T e R 2

if O'g < [PQ, QQ]EQQ[P{), QU]T then

—1/2
a < 09 ([Po, Qo]E22[Po, Qo] ")
U <— ou > correction factor to ensure ¥ > 0
end if
Y11 u -1
YT« e st
Wl o2 | €%

return (C+a p‘+7 E+7 QO)

We can also use this algorithm to compute recursively an approximation of the probabilities
pi = Pmax(Xy,...,X,) = X;]. This is what we do in Algorithm 3 (MAX_K_SLN), where an
additional parameter k € {1,...,n} allows us to take the maximum of the k last variables only.

We point out that a recent paper [SZS06]| studies the order in which variables are considered
within the maximum operation (for the case of normal variables). The authors present a greedy
approach to optimize the binary tree used to take pairwise maximums. Similar ideas could also

be applied to the case of (shifted) lognormal variables, but we have not tried this so far.

Algorithm 3 (MAX_K_SLN)
Approximates M := (X1,..., Xp—k, max(X,—g+1,-.., X)), where X ~ SLN (¢, u, X).

Input: ce R", peR", X €S, and k € {1,...,n};
Output: (¢, u*,XT), such that SLN(ct, u™, 1) approximates M,
and p € R* such that Plmax(X, ki1, .-, Xn) = Xn_kii] = pi-

p<« [1] eR!

forie{l,....,k—1} do
(e, , X, Qp) <MAX_2_SLN(c, , X2)
p < [1—Qo, Qop™]"

end for

return (c,p,>,p)




2.5 Sum of shifted lognormal variables

Let Y ~ SLN(c¥,p¥,¥) € R™, and let X ~ SLN(cX, uX,Diag(a)?) € R™ be independent
from Y. In this section, we propose to approximate the law of S = X + Y by a (multivariate)
shifted lognormal distribution, using the method of moments. To do so, we use the following
relations: for all i € {1,...,n},

E[S;] = E[X;] + E[Y]

V[Si] = V[Xi] + V[Y{]
kowlsy] = VIXi? skew[Xi] + VI¥i]? skew[Yi]
(VIX;] + V[Yi)2

Then, we can use the moment matching formulas (7)-(9) to approximate S; by a shifted log-
normal variable with parameters ci,,ui,o'?. This suggests to use a bivariate distribution of
the form SLN (¢, p1, %), where the diagonal elements of ¥’ are X ; = o2, and the off-diagonal
elements can be set by equating cov(S;, S;) and cov(Y;, Yj):

(B[Y;] — ¢ )(E[Yj] = ¢f)

(E[Si] — ci)(E[S;] — ¢5)

¥ =log |1+ (e¥ii —1)].

Again, we conjecture that the approximate variance-covariance matrix ¥’ is positive semidefi-
nite for practical values of ¥. At least the situation ¥’ % 0 never occurred during our numerical
experiments, cf. Section 4. Should this situation arise, a possible fix would be to take a pro-
jection of ¥ over the cone ST, for which an explicit expression is given by the eigenvalue
decomposition [SAT9].

This approach is summarized in Algorithm 4.

3 Makespan and tardiness in an activity network

Consider a directed acyclic graph G = (V, E) with random variables X, ~ SLN(ce, fie,72)
attached to each arc e € E C V x V. Each arc of the graph corresponds to an activity, and no
activity can start before all its predecessors are finished. We assume that each activity starts as
early as possible (we say that the schedule is semi-active; see [SKD95]). Therefore, all activities
corresponding to outgoing arcs of a particular vertex v € V have the same starting time, which
we denote by Y, The completion time of activity e = (u,v) € E is denoted by Z, = Y, + Z(, ).
In addition we assume that no activity starts before ¢ = 0. The semi-active property of the
schedule can be expressed as follows:

Yv eV, Y, = max (Yu + X U)> = max Z,
u€pred(v) ’ e€d—(v)

where pred(v) C V' denotes the set of predecessors of v in G, 6~ (v) C E is the set of incoming
arcs of v, and the maximum of an empty sequence is set to 0, by convention.

10



Algorithm 4 (SUM_SLN)
Approximates S = X + Y, where X ~ SLN(cX,pX,Diag(o)?) € R" and Y ~
SLN (¢¥, uY,¥) € R™ are mutually independent.

Input: cX, uX, 0%, ¢, u¥ € R*, ¥ € S?;
Output: (c, u,Y’), such that SLN (e, p,¥') approximates the law of S.
for alli e {1,...,n} do
m¥ « X +exp(uX + 302); my « ¢ +exp(pd +3%i0)
m; < m; +m)
V¥ = (mF)2 (e = 1); v} = (m))? (¥ — 1)
v; v )
A (€% 2)(e7 — 1)V Y e (€0 4 2) (D — 1)1/
R (GO N RN COREH
Compute (¢, pi, 3} ;) from (m;, vi,7;), with the formulas (7)-(9).
end for
for all (i,7) € {1,...,n}? i# j do

Y _ oY mY Y o
% ¢ log[l + T—c St (e — 1)
end for

return (c,p,Y’)

The makespan of the activity network corresponds to the time at which all activities are
finished:

M = maxY, = maxZ,.
veV eckl

If we are given a due date d, and a per unit tardiness cost k, > 0 for the starting time of
activities {e € 67 (v)} that start from vertex v € V, we can define the total tardiness by

T=> (Yo —dy)T,

veV

where (z)* := max(z,0) is the nonnegative part of x. Note that we could define the tardiness
analogously for ending times of activities, by defining the tardiness costs arc-wise (rather than
vertex-wise).

3.1 Distribution of the makespan

From now on, we assume without loss of generality that V' contains 2 dummy vertices s and f,
corresponding to the start and the end of the schedule, respectively. We can always reduce to
this case, by adding a dummy arc with zero duration from s to every vertex in G that has no
predecessors. Similarly, every vertex in G without any successors is connected to £ by a dummy
arc. Note that the makespan M corresponds to the duration on the longest (s, f)—path of G.
This longest path is called critical path in the literature on project scheduling, and it is unique
with probability one under mild conditions on the activity durations [KBY*07].

11



The notion of critical path can be extended to the case with stochastic activity durations.
The criticality index of activity is defined as the probability that it belongs to the critical path;
see [DE85]. For all v € V'\ {s} and e € E, we define f{ as the probability that arc e belongs
to the longest path from s to v. It is not difficult to see that f* must be an (s, v)—flow of unit
value, that is, it satisfies the flow conservation equations

—1 if u=s;
Yu eV, Z fo— Z f::{ 1 if u=v;

0 otherwise.

e€d™ (u) e€dt(u)
Given a topological sort of the graph s = vy,v9,...,v, = £, we can compute M =Y,
recursively. We initialize the recursion with Y,, = 0. Then, for all ¢ = 2, ..., n, we compute

{ Vu € pred(vi), Ziw,) = Yu + X)) (13)

Yo, = maXees-(v;)(Ze)-

Our approach is to approximate the result of each of these operations by a shifted lognormal
variable; it is summarized in Algorithm 5 (MAKESPAN_SLN). At line 5 of the algorithm, we use
Algorithm 4 (SUM_SLN) to approximate the joint law of Y; = [Yy, ..., Y4,_,]7 and the variables
Ze (Ve € = (v;)). This is possible because Y; and the Z!s are mutually independent, and
because for Y ~ SLN (¢, p,3) we can use relations of the form:

e[ e 3 () ) 2 2

Then, we use Algorithm 3 (MAX_K_SLN) to replace the Z.’s by their maximum. So at the
end of the ith iteration (c, u, %) are the parameters of a SLN approximation of [Yy,, ..., Yy,]T.
Finally, at lines 7-8 we use the vector of probabilities p to compute an approximation of the
critical flow f" from s to v;.

3.2 Distribution of the tardiness

Recall that the tardiness is defined by T'= 3 i, k(Yo — d,)", where d, and k, are parameters
specifying the due date and tardiness cost per unit of time for vertex v. We can use Algorithm 5
to approximate the joint distribution of the Y,’s by a shifted lognormal. In what follows,
we assume that Y = [Y,,,...,Y, ]T ~ SLN(c,u, ) (with respect to some topological sort
v1,. .., 0y of the graph).

Denote by D, = (Y, — d,)" the tardiness of vertex v. If we are solely interested in the
expected value of T', we only need to approximate the expected values of the D,’s. For X ~
N(u,0%), a >0 and k € N, it holds that

loga [eS)
Hi(a,p,0%) =E [(max(a, eX))k} = / aFor (x;,u,az) dx —I—/ ey (x;u,az) dx

=—00 r=loga
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Algorithm 5 (MAKESPAN_SLN)
Estimate the distribution of the makespan of the activity graph G

Input: Directed acyclic graph G with topological order s = vy, ..., v, = £,
Distribution X, ~ SLN (ce, fie, 02), Ve € E;

Output: (¢, pu, ), such that SLN (¢, u, ) approximates (Y, ..., Yy, ),
and approximate critical flows f, Vv € V.

Initialization: ¢ < [0]; p < [—oo]; X1 1 + [1] > ie., Yo, < 0
fr«0 (Ve € E) > critical flow from s to s
for alli e {2,...,n} do
Let uy,...,ur € V be the predecessors of v;
Use SUM_SLN() to compute (c;,p;,%;) such that the joint law of (Y;, Z;) € RitF
can be approximated by SLN(ci, p;,%;), where Y;=1[Yy,...,Y,, ,]7 and
Zi=Yu, + Xy ) > Yup + X(up0n)) s see Eq. (14).
(e, p, 2, p) + MAX_K_SLN(¢;, pt;, 34, k)
Ve pifd (Yee NG (w))
f(vij,w) —pj (V5 €e{1,...,k})
end for
10: return (c,p, %, ..., f)

By using the relation ek, (x; 1, 02) — ckn+ik?o? V1 (ac; p+ ko2, 02), we find that for all a € R,

) aF (OB | it JRR% g ulosla) | oy if g s
Hk(a,,u,a ) =

1322 .
ehptzhkio otherwise.

Then, we have E[T] = Y, oy v E[Dy], where E[D,] = Hi(dy — cu, ftv, Sow) + ¢o — do.

The variance of T' can be expressed as a function of the covariances between the D,’s: V[T] =
> wvev sy fu Ky cov[Dy, Dy]. By writing V[D,] = E[D2] — E[D,]?, we obtain the expression

V[Dv] = HQ(dv — Cu; Mo, Ev,v) — Hy (dv — Cu; Mo, E’U,'U)Q'

By using the same technique as above, we can also express the cross-covariances in terms
of the bivariate normal CDF ®,. Indeed, we provide in Appendix B formulas to compute
G(a,b, p,¥) := E [max(a, e*) max(b,e")], where (X,Y) ~ N3(p,%). Then, we have:

COV[DUaDv] =G (du — Cyy dy — Cy, |: Hu :|7 [ gu,u guw }) (15)

— H, (du = Cu; Hu, Eu,u)f—rl (dv — Cy, Ko, Zv,v)-

If we need an approximation for the distribution of T', note that we need to use a family of
distributions that can give a strictly positive weight to the T' = 0. Indeed, if ¢ < d, T is not

13



Figure 3: Activity graph of one OR scheduling instance

absolutely continuous with respect to Lebesgue measure in 0, and the probability that "= 0
can be expressed thanks to the multivariate normal CDEF":

Py:=PT=0]=PVk=1,....m, Z, <d]=Pn(logd—rc);u,X).

Our natural candidate is to approximate the distribution of 7" by that of max(X,0), where
X ~ SLN (co, po, 03). We propose to set the parameters (co, f10, 03) so that 7' matches the first
two moments of X, and P[X < 0] = F.

4 Numerical Experiments

We run numerical experiments for N = 516 instances from an application to surgery scheduling,
based on real data from the Charité hospital in Berlin. On a short term perspective, that is,
when the goal is to schedule resources for the next day of operation (a problem often termed as
operational planning in the literature on operating room (OR) management, see e.g. [GG11]),
the most relevant criterion is the overtime [DT02, MDEO6], i.e. the time used by surgical
procedures outside of the regular block time. This criterion can be expressed as the total
tardiness of dummy vertices that indicate the end of surgical procedures in each OR.

An exemplary activity network from one of these instances is depicted in Figure 3. Here,
the two black nodes on both sides of the graph represent the start and the end of the schedule.
Each row corresponds to activities taking place in the same operating room: yellow, green,
and red vertices correspond to the start of the setup, surgical procedures, and clean-up of an
operation. The horizontal position of a node indicates the expected starting time of an activity.
Purple nodes indicate the end of the last surgical procedure in a given OR, so that the overtime
can be expressed as the total tardiness of all purple nodes (with respect to due dates indicating

14



the end of the regular block time in each room). Finally, dashed arcs are dummy activities with
zero-duration (nodes linked by dashed arcs could have been merged, but we left the dummy
activities on the figure for the sake of visualization). For example, a dummy arc linking a red
node R to a green node G indicates that the surgical procedure starting at G must wait for the
end of the procedure ending at R, because they use a common resource (in this situation, the
same surgeon).

We used maximum likelihood estimators to fit the parameters of a lognormal model for the
durations of N = 20.849 surgical procedures, and for the time required to prepare and clean-
up the OR before and after each operation. Our model is similar to [SHDV10], and relies on
characteristics of the patient, operation, and surgical team.

In a follow-up work, we want to use metaheuristics to optimize the allocation of resources in
the operating rooms (OR), and use the parametric method presented in this article to quickly
evaluate tentative schedules. In this article, we simply evaluate the quality of the approximation
of the makespan and the tardiness of a given schedule, in terms of mean and standard deviation.
For the sake of planning and risk management, another relevant statistic are upper quantiles of
the makespan and overtime. This measure is also known as value at risk (VaR) in the literature
on portfolio management:

VaRq(X) =inf{z € R: P[X > z] < a}.

For each schedule, we computed these statistics by means of a Monte-Carlo simulation with
10° runs. All relative errors are given with respect to the values computed in this Monte-Carlo
simulation, which we consider as the true values. We computed three approximations of the
distributions of the Y variables (in particular, recall that the makespan is M =Y, ):

e The normal approximation of Sculli [Scu83|: each duration is first approximated by a
normal variable by using the method of moments. Then, we iteratively approximate the
Y,,’s by a normal variable using the method of moments, using Clark’s formulas (1)—(3)
for the max-operation in Equation (13).

e A lognormal approximation based a straightforward variant of the above method, in which
all Y, are approximated by a lognormal. The sum of two lognormals is approximated
by another lognormal variable using the method of moments. For the maximum of log-
normal variables, Xyax := max(Xy,...,log X,), we used Clark’s method to construct

approx

an approximation max(log Xi,...,log X,,) "~ ./\/'(uo,ag), which suggests the approxi-
mation Xpax -~ LN (1o, 03).

e The shifted lognormal approximation proposed in the present article (Algorithm 5).

Then, for each of these three approximations we compute an estimated of the mean and
the variance of the overtime 7', by following the lines of Section 3.2. To estimate values-at-
risk of the overtime, we fit a shifted lognormal variable X so that E[max(X,0)], V[max(X,0)]
and P[X < 0] match with our estimates of E[T], V[T], and P[T" = 0]. Thereafter we used the
estimates VaR a(T") ~ VaR,(max(X,0)).

Finally, we also computed estimates of the statistics of interest based on a Monte-Carlo
approximations with N = 40 runs. The number N = 40 was chosen such that the CPU time
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Figure 4: Distribution of the error for the approximations of the mean, standard deviation and values-
at-risk of the makespan, over NV = 516 instances.

spent by the Monte-Carlo simulation and our shifted lognormal approximation procedure are
approximately equal.

Figure 4 shows the distribution of the relative error among the N = 516 instances for the
estimates of the mean, standard deviation, and values at risk of the makespan. Interestingly,
we see that the normal and lognormal approximations actually provide better estimates of the
mean, but the shifted lognormal is far better in terms of standard deviation and upper quantiles.

The distribution of the relative error for the four estimates of the mean, standard deviation,
and value-at-risk 10% are depicted in Figure 5. In addition, we have also plotted the distribution
of the absolute error for the estimates of the probability of zero-overtime (relative error is not
appropriate because this probability is often very small). The estimates based on the shifted
lognormal approximation are the clear winners for the mean and the standard deviation, and
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Figure 5: Distribution of the error for the estimations of the mean, standard deviation and VaR(0.1)
of the overtime, and for the estimations of the probability of zero-overtime, over N = 516 instances.

they yield slightly better results than the approximation based on (non-shifted) lognormals.
The fact that the estimates of the mean are better with the shifted lognormal comes from the
fact that the standard deviations of the starting times Y, are better approximated with this
procedure. Indeed, to approximate E[D,] = E[(Y, — d,)"] it is not enough to have a good
estimate E[Y,]; we also need some information on how often Y, > d,, and this information is
(partially) provided by the second moment of Y.

For example, our method provides an estimation of the mean overtime within 5% of the
true value for 98% of the instances, while this number falls to 83%, 68%, and 34% of the
instances for the lognormal, normal, and Monte-Carlo (with 40 runs) methods, respectively.
The standard deviation of the estimation error of the mean overtime is 24.5 times larger with
the Monte-Carlo approach than with the shifted log-normal approach. This suggests that we
would require approximately 24.52 ~ 600 times more simulation runs to obtain estimates of a
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similar quality by using the Monte-Carlo method.
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A Computation of normal probabilities over Dy

The next proposition expresses Ps(p,Y) as a one-dimensional integral, thanks to a change of
variable. Then, fast approximations of Ps(u,Y) can be obtained from the Gauss-Legendre
quadrature; see e.g. [GW&4].

Proposition A.1. Let 6 € R, u € R? and consider a variance-covariance matrix

pPo102 0'% +

for some 01,09 >0, p € (=1,1). Then,

Pa(w®) = [, et eo)dt (16)

o2
where the function f is defined for all t > 5;# by

1
o1/ 1 — p?
Proof. Consider the change of variables
1 <W1—M1 W2—#2> - Wo — 2
—p L Xp= 2l
/1 — P2 g9

01 (o]
which is well known to transform W ~ N3(u,Y) into a pair of independent and standardized
normal variables, X ~ AN5(0,1). Then, we have

f(t) = <log (e72tHH2 — 65) —p1 — polt) .

X =

W eDs = V2> e 4 W1 e m2Xotma > 0 4 o1V 1-p*Xatpor1 Xotin
s V12X (602X2+H2 _ 65) e~ (po1X24p1)

— X5 < f(XQ)

Note that f(t) is defined for all ¢ > % Hence,

Ps(p, %) = /

P2(y; u, X)) d’y = /
y€Ds x2

o f(z2)
/ wao(x;0,1) A’z
Rl R

7 1=—00

N /t‘s—ug e(t) @(f(1))dt,

T2

where we have used the fact that for all & € R?, @o(x;0,1) = ¢(z1)¢(22).
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B Covariance between dependent shifted lognormals

In Section 3.2 we need to compute cross-covariances between dependent shifted lognormal.
Equation (15) expresses these covariances using the function G(a, b, p, ) := E[max(a, eX) max(b, e¥)],
where the expectation is taken with respect to (X,Y) ~ Na(p,X). We will give below a for-

mula for G(a, b, p, ) relying on the bivariate normal CDF ®5. We need to distinguish 4 cases

in function of the sign of a and b.

o If a <0,b <0, note that
eXe¥ =X ~ IN(u1 + p2, $11 + B2 4+ 2519),
Then, a formula for G(a,b, p, X)) is easily obtained:

Gla,b, p, %) = E[6X+Y] — phtuet3(S1,14+52,24251 2)

e If a <0,b> 0, we need to use the identity
Vo e R, ¥'® on(x; 1, X) = e vtgv By on(T; p+ 3v, %), (17)
Recall that e; = [1,0]7 and ez = [0,1]7. In addition, we write 1 = [1,1]7.
G(a,b, 1, %) = E[e” max(b,e¥)]

be™ pa(x; p, ) + / M2 0y (@5 1, X)
{zeR2:z9>log b}

= be“”ézlvl/ v (; p + Xep, X)
{zeR2:z9<log b}

/{CCE]R2 :x2<log b}

+euT1+§1T21/ oo (2 + ¥1,5)
{zeR2:z9>log b}

In the last expression, the integrals represent normal probabilities over half-spaces of R?. These
probabilities can be expressed by using the standard normal CDF:

logb — o — 21,2>
172
22,/2

G(ay b)l“'ﬂz) = b€u1+%21’1@ (

+ em-l—uz-i—%(21,1+22,2+221,2) [1 ) (10gb — H2 _/21,2 - 2272)
1/2
22 2

e Similarly, if a > 0,b < 0,
G(a,b, p, 2) = E[e” max(a, e¥)]

w172
loga —pu1 — 312 — 211
_ s ( = )] |
1,1

1,1

+ e,u1+,u2+%(21,14—22,24—221,2)
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e Finally, for a > 0,0 > 0 we need to integrate over the 4 quadrants @; = (—o0,logal x
(—o00,logb], Q2 = (log a, +00)x (—00,logb], Q3 = (—o0,log a]x (log b, +o0) and Q4 = (log a, +00) X
(log b, +00):

G(a,b,u,E)Z/ abwz(w;u,EH/ be™ po(x; 1, )
Q1 Q2

+/ ae®? wz(w;u,EH/ "1 oo (23 1, X))
3 4

After using formula (17) and expressing probabilities over quadrant @); with the bivariate CDF,
we obtain

G(a,b,pu, ) = ab®o(€; p, X)

To— py—%
1 petatiSin [@ <62 (E-n el)) — @2 (4 p + Tey, Z)]

1/2
22,/2

o (er{(l i Ee2)> — &y (£ + Xeg, E)]

1/2
217/1
el —p—-31) % el (6 —p—31)
(1T21)1/2 (1T21)1/2 ’

+ ae#2+%22,2

1 e 13171 [1 TPy (Lp+31,8) — (

where we have set £ := [log a, log b]” .

22



	Introduction
	Sum and Maximum of correlated lognormal variables
	Maximum of correlated normal variables
	Maximum of correlated lognormal variables
	Maximum of shifted lognormal variables
	Handling more than two variables
	Sum of shifted lognormal variables

	Makespan and tardiness in an activity network
	Distribution of the makespan
	Distribution of the tardiness

	Numerical Experiments
	Computation of normal probabilities over D_delta
	Covariance between dependent shifted lognormals

